JPH04366375A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH04366375A
JPH04366375A JP3139967A JP13996791A JPH04366375A JP H04366375 A JPH04366375 A JP H04366375A JP 3139967 A JP3139967 A JP 3139967A JP 13996791 A JP13996791 A JP 13996791A JP H04366375 A JPH04366375 A JP H04366375A
Authority
JP
Japan
Prior art keywords
refrigerant
expansion valve
piping
flow
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3139967A
Other languages
Japanese (ja)
Inventor
Tomomi Umeda
知巳 梅田
Toshihiko Fukushima
敏彦 福島
Shozo Nakamura
中村 昭三
Ryoji Sato
良次 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3139967A priority Critical patent/JPH04366375A/en
Publication of JPH04366375A publication Critical patent/JPH04366375A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To prevent the generation of refrigerant fluid noise attributable to pressure fluctuations by installing a piping system which fixedly reduces its cross sectional area on a horizontal piping between a condenser and an expansion valve in a device where the condenser to connect the expansion valve by crossing the direction of its inlet passage with the gravity direction at right angles. CONSTITUTION:A compressor 1, a condenser 2, a piping 3 whose cross section is fixedly reduced, an expansion valve 4 and an evaporator 5 are connected by way of a piping 6 in the shape of a closed circuit, thereby forming a refrigeration cycle. During air conditioning operation, refrigerant is cooled and condensed at the condenser 2 and turned in high pressure liquid refrigerant therein. However, even when the refrigerant is not completely condensed and flow out from the condenser 2 under both vapor and liquid phase conditions, the piping 3 whose cross section is fixedly reduced, allows the fluid to flow continuously in vapor phase and liquid phase respectively, thereby minimizing pressure fluctuations induced by air foam closing when the refrigerant passes through the piping 3. Then, the refrigerant is forced to flow into the expansion valve 4 laid out on a horizontal level where the inlet passages crosses the direction of gravity at right angles.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、冷媒の流量制御並びに
減圧膨張機構に膨張弁を備えた空気調和機に係り、特に
、冷媒流動音の低減を図った空気調和機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner equipped with an expansion valve in a refrigerant flow rate control and decompression/expansion mechanism, and more particularly to an air conditioner in which refrigerant flow noise is reduced.

【0002】0002

【従来の技術】冷媒の流量制御並びに減圧膨張機構とし
て、膨張弁前後配管から生じる冷媒流動音の低減、配管
および膨張弁の振動圧減策には、従来、例えば、特開昭
57−129371号公報,実開昭60−69970 
号公報がある。
BACKGROUND ART Conventionally, as a refrigerant flow rate control and decompression/expansion mechanism, measures have been taken to reduce the refrigerant flow noise generated from the piping before and after the expansion valve, and to reduce the vibration pressure of the piping and the expansion valve. Publication, Utility Model No. 60-69970
There is a publication.

【0003】特開昭57−129371号公報では、膨
張弁の高圧側に固定のオリフィスを設け、冷媒に所定の
乾き度をもたせるようにし、膨張弁本来のオリフィスを
通過する際の冷媒中の気泡を多くし、また、その分布を
均一化して騒音レベルの低減を図っている。
[0003] In JP-A-57-129371, a fixed orifice is provided on the high-pressure side of the expansion valve so that the refrigerant has a predetermined degree of dryness, and air bubbles in the refrigerant when passing through the original orifice of the expansion valve are removed. The aim is to reduce the noise level by increasing the noise level and making the distribution more uniform.

【0004】また、実開昭60−69970 号公報に
記載されているものでは、凝縮器から膨張弁のオリフィ
スに至るまでの間に、冷媒圧力を受けて開口面積を変え
る可変オリフィスを設けることで、圧縮機起動後の騒音
を防止し、定常運転時には、可変オリフィスが冷媒流に
対して抵抗とならず、圧縮機の動力の損失を抑え、快適
で効率の良い運転を図っている。
[0004] Furthermore, in the device described in Japanese Utility Model Application Publication No. 60-69970, a variable orifice is provided between the condenser and the orifice of the expansion valve to change the opening area in response to the refrigerant pressure. This prevents noise after the compressor is started, and during steady operation, the variable orifice does not create resistance to the flow of refrigerant, suppressing loss of compressor power and ensuring comfortable and efficient operation.

【0005】[0005]

【発明が解決しようとする課題】上記従来技術では、膨
張弁の高圧側に固定のオリフィスまたは可変オリフィス
を設けることにより、冷媒に所定の乾き度をもたせるよ
うにして、冷媒調整用膨張弁本来のオリフィスを通過す
る際の冷媒中の気泡含有量を多くすることは、逆に小気
泡が増えることで、その小気泡が膨張弁のオリフィスを
通過する際に発生する高周波数の騒音が増加する可能性
が生じる結果となる。
[Problems to be Solved by the Invention] In the above-mentioned prior art, a fixed or variable orifice is provided on the high pressure side of the expansion valve to give the refrigerant a predetermined degree of dryness. Increasing the bubble content in the refrigerant when it passes through the orifice can conversely increase the number of small bubbles, which can increase the high-frequency noise generated when the small bubbles pass through the expansion valve orifice. This results in the occurrence of sex.

【0006】この高周波数の音は、耳ざわりな音であり
、快適性向上の面からも問題があり、さらに、低周波数
の冷媒流動音に関しては全く改善されていないため、冷
媒流動音の発生源の根本から消滅させるには至っていな
い。
[0006] This high-frequency sound is unpleasant to the ears and poses a problem in terms of improving comfort.Furthermore, the low-frequency refrigerant flow noise has not been improved at all, so it is difficult to identify the source of the refrigerant flow noise. It has not yet been possible to eradicate it from its roots.

【0007】また、乾き度を変化させる程のオリフィス
を設けることは、そのオリフィス自身から、冷媒流動に
よる別の騒音を発生させることになりかねない。
[0007] Furthermore, if an orifice is provided that is large enough to change the degree of dryness, the orifice itself may generate other noise due to the flow of refrigerant.

【0008】主として、空気調和機内の配管は、水平配
管と垂直配管で構成されているため、流れには、水平流
と垂直流とが存在している。冷媒が気液二相状態で存在
している場合、垂直上昇流,垂直下降流とも、ガス冷媒
と液冷媒に速度差があるため、スラグ流のような間欠気
泡塊のある流れおよび気泡流,環状流が流動様式の大半
を占めている。そのため、気液二相状態の垂直上昇流や
垂直下降流で、膨張弁の絞り部に流入すると、絞り部入
口で、気泡塊による閉塞が生じ、圧力変動が発生する。 さらに、この気泡閉塞が間欠的であると、圧力変動が発
生する。さらに、この気泡閉塞が間欠的であると、圧力
変動が不規則で間欠的になり、これが冷媒流動音の発生
ならびに膨張弁前後配管の振動発生の原因となっている
[0008] The piping inside the air conditioner mainly consists of horizontal piping and vertical piping, so there are horizontal flows and vertical flows. When the refrigerant exists in a gas-liquid two-phase state, there is a speed difference between the gas refrigerant and the liquid refrigerant in both vertical upward flow and vertical downward flow. Annular flow dominates the flow pattern. Therefore, when vertical upward flow or vertical downward flow in a gas-liquid two-phase state flows into the throttle section of the expansion valve, blockage occurs at the entrance of the throttle section with a mass of bubbles, causing pressure fluctuations. Furthermore, if this bubble blockage is intermittent, pressure fluctuations occur. Furthermore, if the bubble blockage is intermittent, pressure fluctuations become irregular and intermittent, which causes refrigerant flow noise and vibrations in the piping before and after the expansion valve.

【0009】本発明は、垂直流では、スラグ流またはフ
ロス流のように、気泡塊を伴う流れであったものが、水
平流にすると、主として、層状流あるいは波状流等の気
泡塊を伴わない流れとなり、膨張弁絞り部での気泡塊が
生じなくなるという実験的発見に基づいてなされたもの
で、膨張弁に流入する冷媒の流動状態に着目し、膨張弁
前後配管で発生している冷媒流動音ならびに冷媒流動に
よる配管の振動低減を図るために、膨張弁に冷媒を安定
した流動状態である水平流として流入させるものであり
、気液分離性能の向上および気泡塊の合体を促進し、ス
ラグ流やフロス流といった気泡塊を伴う流れを、層状流
あるいは波状流といった気相,液相がそれぞれ連続した
流動様式に移行させるのに必要な水平配管長さを短縮す
ることを目的としている。
[0009] The present invention is characterized in that vertical flow is a flow accompanied by bubbles, such as a slag flow or froth flow, but when it is turned into a horizontal flow, it is mainly a laminar flow or a wavy flow, which is not accompanied by bubbles. This was made based on the experimental discovery that the refrigerant flow that occurs in the piping before and after the expansion valve is based on the experimental discovery that air bubbles do not form at the expansion valve restrictor. In order to reduce noise and pipe vibration caused by refrigerant flow, the refrigerant flows into the expansion valve as a horizontal flow in a stable flow state, improving gas-liquid separation performance and promoting the coalescence of air bubbles, reducing slag The purpose is to shorten the length of horizontal piping required to transform a flow with bubbles, such as a flow or a froth flow, into a laminar flow or wavy flow, in which the gas and liquid phases are continuous.

【0010】0010

【課題を解決するための手段】上記目的を達成するため
に、本発明の空気調和機は、少なくとも圧縮機,凝縮器
,膨張弁,蒸発器を配管で接続して構成し、冷媒を圧縮
機から順次凝縮器,膨張弁,蒸発器を経て、再び圧縮機
に戻すサイクルで循環させ、また、凝縮器に膨張弁を膨
張弁の入口通路が重力方向と直交するように接続した空
気調和機において、凝縮器と膨張弁との間の水平配管上
に、少なくとも一つの配管断面積が縮小する固定した形
状を有する配管を設けたことを特徴している。
[Means for Solving the Problems] In order to achieve the above object, the air conditioner of the present invention is configured by connecting at least a compressor, a condenser, an expansion valve, and an evaporator with piping, and the refrigerant is transferred to the compressor. In an air conditioner, the air is circulated through the condenser, expansion valve, evaporator, and back to the compressor, and the expansion valve is connected to the condenser so that the inlet passage of the expansion valve is perpendicular to the direction of gravity. , is characterized in that at least one pipe having a fixed shape with a reduced cross-sectional area is provided on the horizontal pipe between the condenser and the expansion valve.

【0011】[0011]

【作用】上記のように構成された空気調和機において、
膨張弁の入口通路を、またその入口通路に接続する配管
を重力方向と直交する方向になるように設置された膨張
弁と、凝縮器の間の水平配管部に、配管断面積が縮小す
る固定した形状をもつ配管を設けることにより、断面積
が縮小の場合には、液冷媒の噴流と、ガス冷媒の噴流と
を生じさせることで、間欠的に存在している気泡塊の合
体を促進させるため、気相と液相がそれぞれ連続した流
動様式で膨張弁に流入させるために必要な水平配管長さ
を短縮することができる。
[Operation] In the air conditioner configured as above,
The inlet passage of the expansion valve and the piping that connects to the inlet passage are installed in the horizontal piping section between the expansion valve and the condenser, which are installed in a direction perpendicular to the direction of gravity, to reduce the cross-sectional area of the piping. By providing piping with a shape that reduces the cross-sectional area, a jet of liquid refrigerant and a jet of gas refrigerant are generated to promote the coalescence of the air bubbles that are present intermittently. Therefore, it is possible to shorten the length of the horizontal piping required to cause the gas phase and the liquid phase to flow into the expansion valve in a continuous flow manner.

【0012】この結果、ガス冷媒と液冷媒とが共存する
気液二相流でも、短距離の水平配管で、気相と液相とが
不連続な流動様式から、層状流,波状流といった気相と
液相とが連続した流動様式に移行することが可能となり
、膨張弁の絞り部に層状流,波状流を主とする気相と液
相が連続している流動状態で膨張弁絞り部に流入させる
ことができるため、気泡閉塞による圧力変動を小さくす
ることができる。
As a result, even in a gas-liquid two-phase flow where a gas refrigerant and a liquid refrigerant coexist, in a short horizontal pipe, the flow pattern in which the gas phase and liquid phase are discontinuous changes to laminar flow or wavy flow. It is possible to transition to a flow mode in which the phase and liquid phase are continuous, and the expansion valve throttle part is in a flow state where the gas phase and liquid phase are continuous, mainly laminar flow and wavy flow. Since the gas can flow into the air, pressure fluctuations due to air bubble blockage can be reduced.

【0013】従って、この圧力変動によって発生する冷
媒流動音および膨張弁前後配管の振動を低減することが
できる。
[0013] Therefore, it is possible to reduce the refrigerant flow noise and the vibrations of the piping before and after the expansion valve, which are caused by this pressure fluctuation.

【0014】[0014]

【実施例】以下、本発明による空気調和機の実施例を図
面を参照して説明する。
Embodiments Hereinafter, embodiments of the air conditioner according to the present invention will be described with reference to the drawings.

【0015】図1から図3に、本発明の実施例で、膨張
弁の入口通路もしくは出入口両通路の方向が重力方向と
直交する水平面上に配管した空気調和機を示す。
FIGS. 1 to 3 show an air conditioner according to an embodiment of the present invention, in which the direction of the inlet passage or both the inlet and outlet passages of the expansion valve is piped on a horizontal plane orthogonal to the direction of gravity.

【0016】図1は、空気調和機の構成と冷房運転時の
冷媒の流れを示す系統図である。空気調和機は、圧縮機
1,凝縮器2,配管断面積が縮小する固定した形状をも
った配管3,膨張弁4,蒸発器5およびそれらの機器を
接続する配管6から構成されている。空気調和機内の冷
媒は、圧縮機1で圧縮されて高温高圧の冷媒蒸気となり
、凝縮器2で冷却されて凝縮し高圧液冷媒となる。この
時、冷媒が完全に凝縮されずに気液二相状態で凝縮器2
から流出したとしても配管断面積が縮小する固定した形
状をもつ配管3通過時に、気相と液相の分離および気泡
塊の合体が促進され、気相,液相それぞれが連続した流
れとなり、膨張弁4の入口通路が重力方向と直交する水
平面上に配置された膨張弁4に流入する。この膨張弁4
で、減圧,膨張して室内空気温度より十分低い温度の気
液二相状態の冷媒となり、蒸発器5で室内空気から蒸発
潜熱に相当する熱量を奪いながら蒸発し、低圧のガスと
なって、再び、圧縮機1に吸入される。従って、配管断
面積が縮小する固定した形状の配管3を膨張弁4の入口
通路側に設置することで、冷媒が、例えば、スラグ流,
フロス流といった間欠気泡塊が存在するような流動様式
であっても、気泡塊の合体が促進され、膨張弁4には、
気相と液相とがそれぞれ連続した水平流として流入する
ことになる。また、気泡塊合体が促進されるため、従来
気相と液相とがそれぞれ連続した流れとなすのに必要で
あった水平配管長さを短縮することができる。
FIG. 1 is a system diagram showing the configuration of an air conditioner and the flow of refrigerant during cooling operation. The air conditioner includes a compressor 1, a condenser 2, a pipe 3 having a fixed shape whose cross-sectional area is reduced, an expansion valve 4, an evaporator 5, and a pipe 6 connecting these devices. The refrigerant in the air conditioner is compressed by a compressor 1 to become a high-temperature, high-pressure refrigerant vapor, and is cooled and condensed by a condenser 2 to become a high-pressure liquid refrigerant. At this time, the refrigerant is not completely condensed and is in a gas-liquid two-phase state in the condenser 2.
When passing through the pipe 3, which has a fixed shape and reduces the cross-sectional area of the pipe even if it flows out from the pipe, the separation of the gas and liquid phases and the coalescence of the bubbles are promoted, and the gas and liquid phases become continuous flows and expand. An inlet passage of the valve 4 flows into an expansion valve 4 arranged on a horizontal plane perpendicular to the direction of gravity. This expansion valve 4
The refrigerant is depressurized and expanded to become a gas-liquid two-phase refrigerant at a temperature sufficiently lower than the indoor air temperature, and evaporates in the evaporator 5 while removing heat equivalent to the latent heat of vaporization from the indoor air, becoming a low-pressure gas. It is sucked into the compressor 1 again. Therefore, by installing the fixed-shaped pipe 3 whose pipe cross-sectional area is reduced on the inlet passage side of the expansion valve 4, the refrigerant can flow, for example, into a slag flow.
Even in a flow mode such as a froth flow where intermittent air bubbles exist, the coalescence of the air bubbles is promoted, and the expansion valve 4 has the following properties:
The gas phase and the liquid phase each flow in as continuous horizontal flows. Furthermore, since the coalescence of bubbles is promoted, it is possible to shorten the length of the horizontal piping, which was conventionally required to form a continuous flow of the gas phase and the liquid phase.

【0017】図2は、冷房暖房両用の空気調和機の構成
と冷房運転時の冷媒の流れを示す系統図である。また、
図3は冷房暖房両用の空気調和機の構成と、暖房運転時
の冷媒の流れを示す系統図である。空気調和機は、圧縮
機1,四方弁7,熱交換器8,配管断面積が縮小する固
定した形状をもつ配管3a,膨張弁の入口通路ならびに
出口通路がともに重力方向と直交する水平面上に配置さ
れた膨張弁4,配管断面積が縮小する固定した形状の配
管3b,熱交換器9およびそれらの機器を接続する配管
6で構成されている。ここで、図2に示す冷房運転時で
は、冷媒は、圧縮機1,四方弁7,凝縮器としての熱交
換器8,配管断面積が縮小する固定した形状の配管3a
,膨張弁4,配管断面積が縮小する固定した配管形状3
b,蒸発器としての熱交換器9,四方弁7、そして再び
圧縮機1の順に流れる。図3に示す暖房運転時では、冷
媒は、配管断面積が縮小する固定した形状の配管3bを
通り、膨張弁4に流入する。
FIG. 2 is a system diagram showing the configuration of an air conditioner for both cooling and heating and the flow of refrigerant during cooling operation. Also,
FIG. 3 is a system diagram showing the configuration of an air conditioner for both cooling and heating and the flow of refrigerant during heating operation. The air conditioner includes a compressor 1, a four-way valve 7, a heat exchanger 8, a pipe 3a having a fixed shape whose cross-sectional area is reduced, and an inlet passage and an outlet passage of an expansion valve, all of which are arranged on a horizontal plane perpendicular to the direction of gravity. It is composed of a disposed expansion valve 4, a fixed-shaped pipe 3b whose cross-sectional area is reduced, a heat exchanger 9, and a pipe 6 that connects these devices. Here, during the cooling operation shown in FIG. 2, the refrigerant is supplied to the compressor 1, the four-way valve 7, the heat exchanger 8 as a condenser, and the fixed-shaped pipe 3a whose pipe cross-sectional area is reduced.
, expansion valve 4, fixed pipe shape 3 with reduced pipe cross-sectional area
b, the heat exchanger 9 as an evaporator, the four-way valve 7, and then the compressor 1 again. During the heating operation shown in FIG. 3, the refrigerant flows into the expansion valve 4 through the fixed-shaped pipe 3b whose cross-sectional area is reduced.

【0018】よって、膨張弁4の入口通路および出口通
路がともに重力方向と直交する水平面上に配置された膨
張弁4の入口および出口通路につながる配管上に、それ
ぞれ配管断面積が縮小する固定した形状の配管3aおよ
び3bを設置することで、冷房運転時,暖房運転時とも
、冷媒が、例えば、スラグ流,フロス流といった間欠気
泡塊が存在するような流動様式であっても、気泡塊の合
体が促進され、膨張弁4には、気相と液相とがそれぞれ
連続した水平流として流入することになる。また、気泡
塊の合体が促進されるため、従来、気相と液相とがそれ
ぞれ連続した流れとなすのに必要であった、水平配管長
さを短縮することができる。
Therefore, on the piping connected to the inlet and outlet passages of the expansion valve 4, both of which are arranged on a horizontal plane perpendicular to the direction of gravity, there is a fixed pipe whose cross-sectional area is reduced. By installing the shaped pipes 3a and 3b, even when the refrigerant has a flow mode such as a slag flow or a froth flow that has intermittent air bubbles, it is possible to prevent air bubbles from forming during both cooling and heating operations. The coalescence is promoted, and the gas phase and liquid phase flow into the expansion valve 4 as continuous horizontal flows. Furthermore, since the coalescence of the bubbles is promoted, the length of the horizontal piping, which was conventionally required to form a continuous flow of the gas phase and the liquid phase, can be shortened.

【0019】図4から図17に配管断面積が縮小する固
定した形状を有する配管の配管形状の実施例を示す。
FIGS. 4 to 17 show examples of pipe shapes for pipes having a fixed shape in which the cross-sectional area of the pipe is reduced.

【0020】図4は、絞りとして固定オリフィスを用い
た実施例であり、配管10と固定オりフィス11から構
成されている。
FIG. 4 shows an embodiment in which a fixed orifice is used as the throttle, and is composed of a pipe 10 and a fixed orifice 11.

【0021】図5は、絞りとして固定オリフィスを用い
ているが、気泡塊の流動を考慮し、オリフィスの軸線と
配管の軸線とが同一線上に無い場合の実施例であり、配
管10と固定オリフィス12から構成されている。
FIG. 5 shows an example in which a fixed orifice is used as a throttle, but in consideration of the flow of bubbles, the axis of the orifice and the axis of the piping are not on the same line, and the piping 10 and the fixed orifice are It consists of 12.

【0022】図6は、絞りとして固定ノズルを用いた実
施例であり、配管10と固定ノズル13から構成されて
いる。
FIG. 6 shows an embodiment in which a fixed nozzle is used as the throttle, and is composed of a pipe 10 and a fixed nozzle 13.

【0023】図7は、絞りとして、固定ノズルを用いて
いるが、気泡塊の流動を考慮し、ノズルの軸線と配管の
軸線とが同一線上にない場合の実施例であり、配管10
と固定ノズル14から構成されている。
FIG. 7 shows an example in which a fixed nozzle is used as the aperture, but in consideration of the flow of air bubbles, the axis of the nozzle and the axis of the piping are not on the same line.
and a fixed nozzle 14.

【0024】図8は、絞りとして固定ベンチュリ管を用
いた実施例であり、配管10と固定ベンチュリ管15か
ら構成されている。
FIG. 8 shows an embodiment in which a fixed venturi tube is used as the restrictor, and is composed of a pipe 10 and a fixed venturi tube 15.

【0025】図9は、絞りとして固定末広がり管を用い
た実施例であり、配管10と固定末広がり管16から構
成されている。
FIG. 9 shows an embodiment in which a fixed diverging tube is used as the throttle, and is composed of a pipe 10 and a fixed diverging tube 16.

【0026】図10は、絞りとして固定先細り管を用い
た実施例であり、配管10と固定先細り管17から構成
されている。
FIG. 10 shows an embodiment in which a fixed tapered tube is used as the throttle, and is composed of a pipe 10 and a fixed tapered tube 17.

【0027】図11は、絞りとして固定チョークを用い
た実施例であり、配管10と固定チョーク18から構成
されている。
FIG. 11 shows an embodiment in which a fixed choke is used as the restrictor, and is composed of a pipe 10 and a fixed choke 18.

【0028】図12は、絞りとして固定チョークを用い
ているが、気泡塊の流動を考慮して、チョークの軸線と
配管の軸線とが同一線上に無い場合の実施例であり、配
管10と固定チョーク19から構成されている。
FIG. 12 shows an example in which a fixed choke is used as the throttle, but in consideration of the flow of air bubbles, the axis of the choke and the axis of the piping are not on the same line. It consists of a choke 19.

【0029】図13および図14は、絞りとして全幅せ
きを用いた実施例であり、配管10と全幅せき20から
構成されている。
FIGS. 13 and 14 show an embodiment in which a full-width weir is used as the throttle, and is composed of a pipe 10 and a full-width weir 20.

【0030】図15は、絞りとして三角せきを用いた実
施例であり、配管10と三角せき21から構成されてい
る。
FIG. 15 shows an embodiment in which a triangular weir is used as the throttle, and is composed of a pipe 10 and a triangular weir 21.

【0031】図16は、絞りとして四角せきを用いた実
施例であり、配管10と四角せき22から構成されてい
る。
FIG. 16 shows an embodiment in which a square weir is used as the diaphragm, and is composed of a pipe 10 and a square weir 22.

【0032】図17は、絞りとして半円せきを用いた実
施例であり、配管10と半円せき23から構成されてい
る。
FIG. 17 shows an embodiment in which a semicircular weir is used as the throttle, and is composed of a pipe 10 and a semicircular weir 23.

【0033】従って、絞りを用いた場合も、せきを用い
た場合にも、間欠的に存在する気泡塊を含む気液二相状
態の冷媒が、配管断面積が縮小された冷媒通路を通過す
る際、液冷媒24の噴流とガス冷媒25の噴流が生じ、
液冷媒24の噴流の周囲に形成される空間にガス冷媒が
流入することで、気液分離および気泡塊の合体が促進さ
れる。
[0033] Therefore, regardless of whether a throttle is used or a weir is used, the refrigerant in a gas-liquid two-phase state containing intermittent air bubbles passes through the refrigerant passage whose pipe cross-sectional area is reduced. At this time, a jet of liquid refrigerant 24 and a jet of gas refrigerant 25 are generated,
Gas refrigerant flowing into the space formed around the jet of liquid refrigerant 24 promotes gas-liquid separation and coalescence of bubble masses.

【0034】図4から図17に示すような形状の配管の
実施例を凝縮器と膨張弁入口との間の水平配管上に設け
ることにより、膨張弁には、冷媒が気液二相の状態であ
っても、気相と液相とがそれぞれ連続している状態で流
入することになり、冷媒流動音の低減が図れる。
[0034] By providing the embodiments of piping having the shapes shown in FIGS. 4 to 17 on the horizontal piping between the condenser and the expansion valve inlet, the refrigerant is in a gas-liquid two-phase state at the expansion valve. Even in this case, the gas phase and the liquid phase flow in in a continuous state, so that the refrigerant flow noise can be reduced.

【0035】なお、配管形状を二つ以上組み合わせて使
用してもよい。
Note that two or more pipe shapes may be used in combination.

【0036】[0036]

【発明の効果】本発明によれば、空気調和機において、
凝縮器と膨張弁の少なくとも入口通路およびそれに接続
する配管部分が重力方向と直交する水平面に配置された
膨張弁との間に、配管断面積が縮小する固定した形状を
有する配管を設けたことにより、気液分離の向上と気泡
塊の合体を促進させ、気相と液相がそれぞれ連続した水
平流として膨張弁に冷媒を流入させることができるので
、気泡塊による膨張弁絞り部での閉塞を防止することが
でき、冷媒流動の不安定現象、例えば圧力変動を小さく
することができる。このため、圧力変動を原因として発
生する冷媒流動音を低減でき、さらに、配管振動の低減
を図れる。
[Effect of the invention] According to the present invention, in an air conditioner,
By providing piping having a fixed shape that reduces the cross-sectional area of the piping between the condenser and the expansion valve in which at least the inlet passage of the expansion valve and the piping portion connected thereto are arranged in a horizontal plane perpendicular to the direction of gravity. This improves gas-liquid separation and promotes the coalescence of bubble masses, allowing the refrigerant to flow into the expansion valve as a continuous horizontal flow of the gas and liquid phases, thereby preventing blockage at the expansion valve restrictor due to bubble masses. It is possible to prevent instability of the refrigerant flow, such as pressure fluctuations, and to reduce the phenomenon of instability in the refrigerant flow. Therefore, refrigerant flow noise generated due to pressure fluctuations can be reduced, and pipe vibration can also be reduced.

【0037】また、耳ざわりな冷媒流動音が低減できる
ため、快適性も向上する。
[0037] Furthermore, since the unpleasant refrigerant flow noise can be reduced, comfort is also improved.

【0038】さらに、気相と液相とをそれぞれ連続した
流れとするために必要であった水平管の長さを短縮する
ことができる。
Furthermore, it is possible to shorten the length of the horizontal pipe that is required to make the gas phase and liquid phase flow continuously.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例の配管断面積が縮小する固定
した形状を有する配管を配置した時の空気調和機の冷房
運転時のサイクルの系統図。
FIG. 1 is a system diagram of a cycle during cooling operation of an air conditioner when pipes having a fixed shape with a reduced pipe cross-sectional area are arranged according to an embodiment of the present invention.

【図2】本発明の一実施例の配管断面積が縮小する固定
した形状を有する配管を配置した時の冷房暖房両用の空
気調和機の冷房運転時のサイクルの系統図。
FIG. 2 is a system diagram of a cycle during cooling operation of an air conditioner for both cooling and heating when pipes having a fixed shape with a reduced pipe cross-sectional area are arranged according to an embodiment of the present invention.

【図3】本発明の一実施例の配管断面積が縮小する固定
した形状を有する配管を配置した時の冷房暖房両用の空
気調和機の暖房運転時のサイクルの系統図。
FIG. 3 is a system diagram of a heating operation cycle of an air conditioner for both cooling and heating when pipes having a fixed shape with a reduced pipe cross-sectional area are arranged according to an embodiment of the present invention.

【図4】本発明の一実施例の配管断面積が縮小する固定
した形状を有する配管の絞りにオリフィスを用いた時の
説明図。
FIG. 4 is an explanatory diagram when an orifice is used to restrict a pipe having a fixed shape whose cross-sectional area is reduced according to an embodiment of the present invention.

【図5】本発明の一実施例の配管断面積が縮小する固定
した形状を有する配管の絞りに配管軸線から偏心したオ
リフィスを用いた時の説明図。
FIG. 5 is an explanatory diagram of an embodiment of the present invention in which an orifice eccentric from the pipe axis is used to restrict a pipe having a fixed shape whose cross-sectional area is reduced;

【図6】本発明の一実施例の配管断面積が縮小する固定
した形状を有する配管の絞りにノズルを用いた時の説明
図。
FIG. 6 is an explanatory diagram when a nozzle is used to throttle a pipe having a fixed shape whose cross-sectional area is reduced according to an embodiment of the present invention.

【図7】本発明の一実施例の配管断面積が縮小する固定
した形状を有する配管の絞りに配管軸線から偏心したノ
ズルを用いた時の説明図。
FIG. 7 is an explanatory diagram when a nozzle eccentric from the pipe axis is used to throttle a pipe having a fixed shape in which the cross-sectional area of the pipe is reduced according to an embodiment of the present invention.

【図8】本発明の一実施例の配管断面積が縮小する固定
した形状を有する配管の絞りにベンチュリ管を用いた時
の説明図。
FIG. 8 is an explanatory diagram when a Venturi tube is used to restrict a pipe having a fixed shape whose cross-sectional area is reduced according to an embodiment of the present invention.

【図9】本発明の一実施例の配管断面積が縮小する固定
した形状を有する配管の絞りに末広がり管を用いた時の
説明図。
FIG. 9 is an explanatory diagram when a divergent tube is used to restrict a pipe having a fixed shape whose cross-sectional area is reduced according to an embodiment of the present invention.

【図10】本発明の一実施例の配管断面積が縮小する固
定した形状を有する配管の絞りに先細り管を用いた時の
説明図。
FIG. 10 is an explanatory diagram when a tapered pipe is used to restrict a pipe having a fixed shape whose cross-sectional area is reduced according to an embodiment of the present invention.

【図11】本発明の一実施例の配管断面積が縮小する固
定した形状を有する配管の絞りにチョークを用いた時の
説明図。
FIG. 11 is an explanatory diagram when a choke is used to throttle a pipe having a fixed shape whose cross-sectional area is reduced according to an embodiment of the present invention.

【図12】本発明の一実施例の配管断面積が縮小する固
定した形状を有する配管の絞りに配線軸線から偏心した
チョークを用いた時の説明図。
FIG. 12 is an explanatory diagram when a choke eccentric from the wiring axis is used to restrict a pipe having a fixed shape whose cross-sectional area is reduced according to an embodiment of the present invention.

【図13】本発明の一実施例の配管断面積が縮小する固
定した形状を有する配管の絞りに全幅せきを用いた時の
説明図。
FIG. 13 is an explanatory diagram when a full-width weir is used to restrict a pipe having a fixed shape whose cross-sectional area is reduced according to an embodiment of the present invention.

【図14】本発明の一実施例の配管断面積が縮小する固
定した形状を有する配管の絞りに全幅せきを用いた時の
配管の正面図。
FIG. 14 is a front view of a pipe according to an embodiment of the present invention when a full-width weir is used to throttle a pipe having a fixed shape whose cross-sectional area is reduced.

【図15】本発明の一実施例の配管断面積が縮小する固
定した形状を有する配管の絞りに三角せきを用いた時の
配管の正面図。
FIG. 15 is a front view of a pipe according to an embodiment of the present invention when a triangular weir is used as a throttle for a pipe having a fixed shape whose cross-sectional area is reduced.

【図16】本発明の一実施例の配管断面積が縮小する固
定した形状を有する配管の絞りに四角せきを用いた時の
配管の正面図。
FIG. 16 is a front view of a pipe according to an embodiment of the present invention when a square weir is used as a restriction for a pipe having a fixed shape whose cross-sectional area is reduced.

【図17】本発明の一実施例の配管断面積が縮小する固
定した形状を有する配管の絞りに半円せきを用いた時の
配管の正面図。
FIG. 17 is a front view of a pipe according to an embodiment of the present invention when a semicircular weir is used to restrict a pipe having a fixed shape whose cross-sectional area is reduced.

【符号の説明】[Explanation of symbols]

1…圧縮機、2…凝縮器、3,3a,3b…配管、4…
膨張弁、5…蒸発器、6,10…配管、7…四方弁、8
,9…熱交換器、11,12…オリフィス、13,14
…ノズル、15…ベンチュリ管、16…末広がり管、1
7…先細り管、18,19…チョーク、20…全幅せき
、21…三角せき、22…四角せき、23…半円せき、
24…液冷媒、25…ガス冷媒。
1... Compressor, 2... Condenser, 3, 3a, 3b... Piping, 4...
Expansion valve, 5... Evaporator, 6, 10... Piping, 7... Four-way valve, 8
, 9... Heat exchanger, 11, 12... Orifice, 13, 14
... Nozzle, 15... Venturi tube, 16... Divergent tube, 1
7...Tapered pipe, 18, 19...Choke, 20...Full width weir, 21...Triangular weir, 22...Square weir, 23...Semicircular weir,
24...Liquid refrigerant, 25...Gas refrigerant.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】圧縮機,凝縮器,膨張弁,蒸発器およびこ
れらを結ぶ配管を含み、冷媒を前記圧縮機から前記凝縮
器,前記膨張弁,前記蒸発器を経て、再び前記圧縮機に
戻すサイクルで循環させ、また、前記凝縮器に前記膨張
弁を前記膨張弁の入口通路の方向が重力方向と直交する
ように接続した空気調和機において、前記凝縮器と前記
膨張弁との間の水平配管上に少なくとも一つの前記配管
の断面積が縮小する固定した形状の配管を設けたことを
特徴とする空気調和機。
Claim 1: The refrigerant includes a compressor, a condenser, an expansion valve, an evaporator, and piping connecting these, and the refrigerant is returned from the compressor to the compressor via the condenser, the expansion valve, and the evaporator. In an air conditioner in which the expansion valve is connected to the condenser in such a way that the direction of the inlet passage of the expansion valve is orthogonal to the direction of gravity, the An air conditioner characterized in that at least one pipe has a fixed shape in which the cross-sectional area of the pipe is reduced.
JP3139967A 1991-06-12 1991-06-12 Air conditioner Pending JPH04366375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3139967A JPH04366375A (en) 1991-06-12 1991-06-12 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3139967A JPH04366375A (en) 1991-06-12 1991-06-12 Air conditioner

Publications (1)

Publication Number Publication Date
JPH04366375A true JPH04366375A (en) 1992-12-18

Family

ID=15257839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3139967A Pending JPH04366375A (en) 1991-06-12 1991-06-12 Air conditioner

Country Status (1)

Country Link
JP (1) JPH04366375A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006097947A (en) * 2004-09-29 2006-04-13 Fuji Koki Corp Motor operated valve
JP2021103069A (en) * 2019-12-26 2021-07-15 株式会社不二工機 Expansion valve, refrigerant introduction pipe and refrigeration cycle device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006097947A (en) * 2004-09-29 2006-04-13 Fuji Koki Corp Motor operated valve
JP2021103069A (en) * 2019-12-26 2021-07-15 株式会社不二工機 Expansion valve, refrigerant introduction pipe and refrigeration cycle device

Similar Documents

Publication Publication Date Title
JPH07146032A (en) Expansion valve
JP6012882B2 (en) Expansion valve
JPH0626738A (en) Air conditioning apparatus
KR20030095626A (en) heating and cooling system
JP5535098B2 (en) Refrigeration cycle equipment
JP2007032979A (en) Refrigerating cycle device
CN108061409A (en) For the variable orifice of chiller unit
JPH1123104A (en) Air conditioner
JPH04366375A (en) Air conditioner
JP2006336992A (en) Air conditioner
JPH09292166A (en) Air conditioner
JP2012137223A (en) Flow divider of heat exchanger, refrigerating cycle device provided with the flow divider, and air conditioner
Kong et al. Simulation study on noise reduction effect of porous material on electronic expansion valve
JPH10185363A (en) Refrigerant distributor for refrigerating cycle
JPH0217368A (en) Distributor for air conditioner
JP6325681B2 (en) Expansion valve and refrigeration cycle apparatus using expansion valve
CN214307708U (en) Throttling device and air conditioner
JPH0526540A (en) Air-conditioner
CN221005584U (en) Filtering component, throttling device and air conditioner
CN215373041U (en) Evaporator input pipe assembly, air conditioner indoor unit and air conditioner
CN212538077U (en) Air conditioner
JPH04222363A (en) Room heat exchanger for heat pump air conditioner
JP2012137224A (en) Flow divider of heat exchanger, refrigerating cycle device provided with the flow divider, and air conditioner
JP2665790B2 (en) Receiver tank
JPH01212878A (en) Flow separator