JP2021127845A - Expansion valve and refrigeration cycle device - Google Patents

Expansion valve and refrigeration cycle device Download PDF

Info

Publication number
JP2021127845A
JP2021127845A JP2020021085A JP2020021085A JP2021127845A JP 2021127845 A JP2021127845 A JP 2021127845A JP 2020021085 A JP2020021085 A JP 2020021085A JP 2020021085 A JP2020021085 A JP 2020021085A JP 2021127845 A JP2021127845 A JP 2021127845A
Authority
JP
Japan
Prior art keywords
valve
refrigerant
expansion valve
throat
valve body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020021085A
Other languages
Japanese (ja)
Other versions
JP7478410B2 (en
Inventor
庸晴 諏佐
Tsuneharu Susa
庸晴 諏佐
康徹 西村
Yasunori Nishimura
康徹 西村
智也 山口
Tomoya Yamaguchi
智也 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP2020021085A priority Critical patent/JP7478410B2/en
Publication of JP2021127845A publication Critical patent/JP2021127845A/en
Application granted granted Critical
Publication of JP7478410B2 publication Critical patent/JP7478410B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Details Of Valves (AREA)

Abstract

To provide an expansion valve capable of suppressing or reducing vibration of a valve element itself as a vibration generation source to suppress valve vibration.SOLUTION: An expansion valve comprises: a valve body having a valve chamber 13 that communicates with an inflow path 21 for introducing a refrigerant and communicates with an outflow path 22 for discharging the refrigerant through a throat part 20; a valve element 15 that is arranged in the valve chamber, and changes a refrigerant flow rate by advancing and retreating with respect to a valve seat 14 between a valve closing state of being seated on the valve seat and a valve opening state of being separated from the valve seat; a valve element support part 16 that supports the valve element; an energization member 17 that energizes the valve element toward the valve seat through the valve element support part; an actuation rod 19 that is in contact with the valve element, and moves the valve element in a valve opening direction against the energization force of the energization member; and a drive part that drives the actuation rod. A tip part 19a of the actuation rod forms a narrowed part 31 that narrows a refrigerant flow path at the downstream end part of the throat part, in an expansion valve that is in contact with the valve element through the throat part.SELECTED DRAWING: Figure 2

Description

本発明は、膨張弁および冷凍サイクル装置に係り、特にエアコンなどの冷凍サイクルに備えられる膨張弁の弁振動を抑制し、異音が発生することを防ぐ技術に関する。 The present invention relates to an expansion valve and a refrigeration cycle device, and particularly relates to a technique for suppressing valve vibration of an expansion valve provided in a refrigeration cycle such as an air conditioner to prevent generation of abnormal noise.

カーエアコンのような冷凍サイクル装置では、エバポレータ(蒸発器)の能力を十分に引き出すために膨張弁が備えられる。この膨張弁は、エバポレータの出口側配管の冷媒温度に感応してエバポレータに供給される冷媒の流れを絞り、最適流量に制御する。 Refrigeration cycle devices such as car air conditioners are equipped with expansion valves to maximize the capacity of the evaporator. This expansion valve throttles the flow of the refrigerant supplied to the evaporator in response to the temperature of the refrigerant in the outlet side piping of the evaporator, and controls the flow rate to the optimum flow rate.

一方、かかる膨張弁では、弁の開度が小さいときに弁振動が生じ、この振動によって膨張弁から異音が発生することがある。このため、下記特許文献1のような弁振動を抑制する提案が従来からなされている。 On the other hand, in such an expansion valve, valve vibration occurs when the opening degree of the valve is small, and this vibration may generate an abnormal noise from the expansion valve. Therefore, a proposal for suppressing valve vibration as in Patent Document 1 below has been conventionally made.

特開2019−11885号公報Japanese Unexamined Patent Publication No. 2019-11885

ところで、上記特許文献1に記載の発明は、防振ばねにより弁支持部や作動棒の振動を拘束することにより効果的な制振が可能となる一方で、機械的拘束により制振する追加部品としての防振ばねを新たに備える必要がある。 By the way, in the invention described in Patent Document 1, the vibration damping spring enables effective vibration damping by restraining the vibration of the valve support portion and the operating rod, while the additional component that damps the vibration by mechanical damping. It is necessary to newly provide an anti-vibration spring.

したがって、本発明の目的は、振動発生源としての弁体自体の振動を抑制或いは低減して弁振動を抑制することができる膨張弁を提供することにある。 Therefore, an object of the present invention is to provide an expansion valve capable of suppressing or reducing the vibration of the valve body itself as a vibration source to suppress the valve vibration.

前記課題を解決し目的を達成するため、本発明に係る膨張弁は、冷媒を導入する流入路に連通するとともに当該冷媒を排出する流出路にのど部を介して連通する弁室を有する弁本体と、弁室の内部に配置され、弁座に着座した閉弁状態と弁座から離間した開弁状態との間で弁座に対して進退動することにより冷媒の流量を変更する弁体と、弁体を支持する弁体支持部と、弁体支持部を介して弁体を弁座に向けて付勢する付勢部材と、弁体に接触して付勢部材による付勢力に抗し弁体を開弁方向へ移動させる作動棒と、作動棒を駆動する駆動部とを備え、作動棒の先端部が、のど部を通って弁体に接触している膨張弁であって、のど部の下流側の端部に、冷媒の流路を狭める狭窄部を形成した。 In order to solve the above problems and achieve the object, the expansion valve according to the present invention has a valve body having a valve chamber that communicates with an inflow path for introducing a refrigerant and also communicates with an outflow path for discharging the refrigerant through a throat portion. And a valve body that is arranged inside the valve chamber and changes the flow rate of the refrigerant by advancing and retreating with respect to the valve seat between the valve closed state seated on the valve seat and the valve open state separated from the valve seat. , The valve body support part that supports the valve body, the urging member that urges the valve body toward the valve seat via the valve body support part, and the urging member that comes into contact with the valve body and resists the urging force by the urging member. An expansion valve that includes an operating rod that moves the valve body in the valve opening direction and a driving unit that drives the operating rod, and the tip of the operating rod is in contact with the valve body through the throat. A narrowed portion for narrowing the flow path of the refrigerant was formed at the downstream end of the portion.

本発明は、のど部から流出路へ流れ出る冷媒が持つ慣性力によって、弁の開閉動作に対するのど部の実際の流量変化に遅れが生じ、この遅れが弁の自励振動を引き起こしあるいは増大させる原因となっていることに着目してなされたもので、のど部の出口付近の冷媒の慣性力を低減することで弁体自体が発生する振動を抑制して弁振動を抑制するものである。具体的には次のとおりである。 According to the present invention, the inertial force of the refrigerant flowing from the throat to the outflow path causes a delay in the actual flow rate change of the throat with respect to the valve opening / closing operation, and this delay causes or increases the self-excited vibration of the valve. This is done by paying attention to the fact that the valve vibration is suppressed by reducing the inertial force of the refrigerant near the outlet of the throat portion to suppress the vibration generated by the valve body itself. Specifically, it is as follows.

図7は従来の膨張弁を示すものであるが、この図に示すように弁室13と流出路22とを接続するのど部20は、内径が一定の真っ直ぐな円管状の形状を有し、作動棒19の先端部19aがのど部20を貫通して弁体15に接触している。作動棒19の先端部19aは外径が一定の円柱形状を有し、作動棒19の先端部19aと、のど部20の内壁面との間が冷媒の流路となっている。すなわち、弁体15が作動棒19に押されて弁座14から離れると、弁室13内の冷媒は弁室13からのど部20に浸入し、作動棒19とのど部20の内壁との間を通ってのど部出口20aから流出路22へ流れ出す。 FIG. 7 shows a conventional expansion valve. As shown in this figure, the throat portion 20 connecting the valve chamber 13 and the outflow passage 22 has a straight circular tubular shape having a constant inner diameter. The tip portion 19a of the operating rod 19 penetrates the throat portion 20 and is in contact with the valve body 15. The tip 19a of the operating rod 19 has a cylindrical shape having a constant outer diameter, and a flow path for the refrigerant is between the tip 19a of the operating rod 19 and the inner wall surface of the throat 20. That is, when the valve body 15 is pushed by the operating rod 19 and separated from the valve seat 14, the refrigerant in the valve chamber 13 penetrates into the throat portion 20 from the valve chamber 13 and is between the operating rod 19 and the inner wall of the throat portion 20. It flows out from the throat outlet 20a to the outflow path 22 through the throat.

一方、この開弁状態から弁体15が弁座14に向けて進行し、弁が次第に閉じられていくと、のど部20の入口(弁座部分)では、弁の開口面積(流路断面積)の減少により流量が減少しようとする。ところが、弁内を流れる冷媒は慣性力を持つため、のど部20の出口側20aでは、のど部入口の開口面積の減少に伴う流量減少に即座に追従することは出来ない。このため、弁体15によって絞られたのど部入口からの冷媒流入量に比べてのど部出口20aからの冷媒流出量が相対的に多くなり、のど部20内の圧力が一時的に低くなることによって弁室13内との圧力差が一時的に大きくなり弁体15に閉弁方向への力がかかることになる。そして、この圧力差による力が弁体15の振動を引き起こすタイミングで加わると自励振動が発生する。また、既に振動が生じている状況では振動を増大させることになる。 On the other hand, when the valve body 15 advances toward the valve seat 14 from this valve open state and the valve is gradually closed, the opening area (flow path cross-sectional area) of the valve at the inlet (valve seat portion) of the throat portion 20 is reached. ) Will decrease and the flow rate will decrease. However, since the refrigerant flowing in the valve has an inertial force, the outlet side 20a of the throat portion 20 cannot immediately follow the decrease in the flow rate due to the decrease in the opening area of the throat portion inlet. Therefore, the amount of refrigerant flowing out from the throat outlet 20a is relatively large compared to the amount of refrigerant flowing in from the throat inlet squeezed by the valve body 15, and the pressure in the throat 20 is temporarily lowered. As a result, the pressure difference from the inside of the valve chamber 13 temporarily increases, and a force is applied to the valve body 15 in the valve closing direction. Then, when the force due to this pressure difference is applied at the timing of causing the vibration of the valve body 15, self-excited vibration is generated. Moreover, in the situation where the vibration has already occurred, the vibration will be increased.

逆に、微小に弁が開いている状態からさらに弁が開かれていく場合には、のど部20の入口では弁の開口面積の増大により流量が増加しようとする。ところが、のど部20の出口側20aでは、のど部入口の開口面積の増大に伴う流量増加に即座に追従することは出来ない。このため、のど部入口からの冷媒流入量に比べてのど部出口20aからの冷媒流出量が相対的に少なくなり、のど部20内の圧力が一時的に高くなり弁室13内との圧力差が一時的に小さくなり弁体15に開弁方向への力がかかる。そして、この力が振動を引き起こすタイミングあるいは振動を助長するタイミングで加わると上記閉弁方向への操作時と同様に自励振動を発生させ、また振動を増大させる。 On the contrary, when the valve is further opened from the state where the valve is slightly opened, the flow rate at the inlet of the throat portion 20 tends to increase due to the increase in the opening area of the valve. However, on the outlet side 20a of the throat portion 20, it is not possible to immediately follow the increase in the flow rate due to the increase in the opening area of the throat portion entrance. Therefore, the amount of refrigerant outflow from the throat outlet 20a is relatively small compared to the amount of refrigerant inflow from the throat inlet, the pressure in the throat 20 is temporarily increased, and the pressure difference from the valve chamber 13 is increased. Temporarily becomes smaller and a force is applied to the valve body 15 in the valve opening direction. Then, when this force is applied at the timing of causing the vibration or the timing of promoting the vibration, self-excited vibration is generated and the vibration is increased as in the case of the operation in the valve closing direction.

そこで本発明では、冷媒の流路断面積が小さくなるように窄めた狭窄部を、のど部の下流側の端部(のど部の出口部)に備える。狭窄部の形成により、のど部出口付近における冷媒の慣性力を小さくしその影響を抑えることができ、のど部と弁室内との圧力差の一時的な変動を低減することが出来る。これにより、自励振動の発生ならびに振動の増大を従来に比べ抑えることが可能となる。また、本発明では前記特許文献1記載の発明のように別部材(防振ばね)を新たに備える必要がないが、防振効果をさらに高めるために防振ばねを併用することも可能である。 Therefore, in the present invention, a narrowed portion narrowed so as to reduce the cross-sectional area of the flow path of the refrigerant is provided at the downstream end portion (outlet portion of the throat portion) of the throat portion. By forming the narrowed portion, the inertial force of the refrigerant near the outlet of the throat portion can be reduced and its influence can be suppressed, and the temporary fluctuation of the pressure difference between the throat portion and the valve chamber can be reduced. This makes it possible to suppress the generation of self-excited vibration and the increase in vibration as compared with the conventional case. Further, in the present invention, it is not necessary to newly provide a separate member (vibration-proof spring) as in the invention described in Patent Document 1, but it is also possible to use a vibration-proof spring in combination in order to further enhance the vibration-proof effect. ..

上記狭窄部の具体的態様としては、例えば、下流に向かうに従って外径が大きくなる拡径部を作動棒の先端部に備えれば良い。また、下流に向かうに従って内径が小さくなる縮径部をのど部に備えても良い。 As a specific embodiment of the narrowed portion, for example, an enlarged diameter portion whose outer diameter increases toward the downstream side may be provided at the tip end portion of the operating rod. Further, the throat portion may be provided with a reduced diameter portion whose inner diameter decreases toward the downstream side.

また、本発明に係る冷凍サイクル装置は、冷媒を圧縮する圧縮機と、圧縮機で圧縮された冷媒を冷却して液化する凝縮器と、凝縮器で液化された冷媒を減圧膨張させる膨張弁と、膨張弁で減圧膨張された冷媒を蒸発気化する蒸発器とを備えた冷凍サイクル装置であり、膨張弁として上述した本発明に係る膨張弁を使用する。 Further, the refrigeration cycle apparatus according to the present invention includes a compressor that compresses the refrigerant, a condenser that cools and liquefies the refrigerant compressed by the compressor, and an expansion valve that depressurizes and expands the refrigerant liquefied by the condenser. , A refrigeration cycle device including an evaporator that evaporates and vaporizes the refrigerant expanded under reduced pressure by the expansion valve, and the expansion valve according to the present invention described above is used as the expansion valve.

本発明はカーエアコンに好ましく適用することが出来るものであるが、用途や適用対象はカーエアコンに限られず、ルームエアコンや冷凍機など他の様々な冷凍サイクル装置に適用することが可能である。 Although the present invention can be preferably applied to car air conditioners, its use and application are not limited to car air conditioners, and it can be applied to various other refrigeration cycle devices such as room air conditioners and refrigerators.

本発明によれば、弁体自体が発生する振動を防止ないし抑制することが出来るため、追加部品としての防振ばねに依らずとも弁振動を抑制することが出来る。 According to the present invention, since the vibration generated by the valve body itself can be prevented or suppressed, the valve vibration can be suppressed without relying on the anti-vibration spring as an additional component.

本発明の他の目的、特徴および利点は、図面に基づいて述べる以下の本発明の実施の形態の説明により明らかにする。なお、各図中、同一の符号は、同一又は相当部分を示す。また本発明はこれらの実施の形態に限定されるものではなく、特許請求の範囲に記載の範囲内で種々の変更を行うことができることは当業者に明らかである。 Other objects, features and advantages of the present invention will be clarified by the following description of embodiments of the present invention described with reference to the drawings. In each figure, the same reference numerals indicate the same or corresponding parts. Further, the present invention is not limited to these embodiments, and it is clear to those skilled in the art that various modifications can be made within the scope of the claims.

図1は、本発明の第1の実施形態に係る膨張弁を示す縦断面図である。FIG. 1 is a vertical cross-sectional view showing an expansion valve according to a first embodiment of the present invention. 図2は、前記第1実施形態に係る膨張弁(閉弁状態)ののど部(図1の符号A部分)を拡大して示す縦断面図である。FIG. 2 is an enlarged vertical cross-sectional view showing a throat portion (reference numeral A portion in FIG. 1) of the expansion valve (valve closed state) according to the first embodiment. 図3は、本発明の第2の実施形態に係る膨張弁(閉弁状態)ののど部を前記図2と同様に示す縦断面図である。FIG. 3 is a vertical cross-sectional view showing the throat portion of the expansion valve (valve closed state) according to the second embodiment of the present invention in the same manner as in FIG. 図4は、本発明の第3の実施形態に係る膨張弁(閉弁状態)ののど部を前記図2と同様に示す縦断面図である。FIG. 4 is a vertical cross-sectional view showing the throat portion of the expansion valve (valve closed state) according to the third embodiment of the present invention in the same manner as in FIG. 図5は、本発明の第4の実施形態に係る膨張弁(閉弁状態)ののど部を前記図2と同様に示す縦断面図である。FIG. 5 is a vertical cross-sectional view showing the throat portion of the expansion valve (valve closed state) according to the fourth embodiment of the present invention in the same manner as in FIG. 図6は、本発明の第5の実施形態に係る冷凍サイクル装置を示す概念図である。FIG. 6 is a conceptual diagram showing a refrigeration cycle device according to a fifth embodiment of the present invention. 図7は、従来の膨張弁(閉弁状態)ののど部を前記図2と同様に示す縦断面図である。FIG. 7 is a vertical cross-sectional view showing the throat portion of the conventional expansion valve (valve closed state) in the same manner as in FIG.

〔第1実施形態〕
図1から図2を参照して本発明の第1の実施形態について説明する。なお、図1に上下左右の各方向を表す二次元直交座標を示しているが、以下これらの方向に基いて説明を行う。
[First Embodiment]
The first embodiment of the present invention will be described with reference to FIGS. 1 to 2. Although FIG. 1 shows two-dimensional Cartesian coordinates representing each of the up, down, left, and right directions, the description will be given below based on these directions.

図1から図2に示すように、本発明の第1の実施形態に係る膨張弁11は、弁室13を内部に備えた弁本体12と、弁室内上部に形成された弁座14と、弁座14に対向し且つ弁座14に対して進退動(上下動)可能に設置された弁体15と、弁体15を下方から支持する弁体支持部16と、弁本体12の下面部に装着されることにより弁室13を封止するばね受け部材18と、ばね受け部材18と弁体支持部16との間に配置されて弁体支持部16を介し弁体15を弁座14に向け上方へ付勢するコイルばね(付勢部材)17と、弁体15をコイルばね17の付勢力に抗して弁座14から後退させる(下方へ移動させる)作動棒19と、弁本体12の上面部に備えられて作動棒19を上下動させるダイアフラム装置(駆動部)24とを有する。なお、作動棒19は、弁本体12の内部において上下方向に延び、上端をダイアフラム装置24に接続し、下端を弁体15に接触させてある。 As shown in FIGS. 1 to 2, the expansion valve 11 according to the first embodiment of the present invention includes a valve body 12 having a valve chamber 13 inside, a valve seat 14 formed in the upper part of the valve chamber, and a valve seat 14. A valve body 15 that faces the valve seat 14 and is installed so as to be able to move forward and backward (up and down) with respect to the valve seat 14, a valve body support portion 16 that supports the valve body 15 from below, and a lower surface portion of the valve body 12. A spring receiving member 18 that seals the valve chamber 13 by being mounted on the valve chamber 13 and a valve body 15 that is arranged between the spring receiving member 18 and the valve body supporting portion 16 and the valve body 15 is connected to the valve seat 14 via the valve body supporting portion 16. A coil spring (urging member) 17 that urges upward toward the valve, an operating rod 19 that retracts (moves downward) the valve body 15 from the valve seat 14 against the urging force of the coil spring 17, and a valve body. It has a diaphragm device (driving unit) 24 provided on the upper surface portion of the 12 to move the operating rod 19 up and down. The operating rod 19 extends in the vertical direction inside the valve body 12, the upper end thereof is connected to the diaphragm device 24, and the lower end thereof is in contact with the valve body 15.

また弁本体12は、弁室13に冷媒を導入する流入路21と、弁室13から弁11の外部へ冷媒を排出する流出路22と、弁本体12の上部を左右に貫通するように冷媒を流通させる戻り流路23とをさらに備えている。なお、戻り流路23と上記ダイアフラム装置24の詳細については、本実施形態の膨張弁11を使用する後述の第5実施形態において説明する。 Further, the valve body 12 has an inflow path 21 for introducing the refrigerant into the valve chamber 13, an outflow path 22 for discharging the refrigerant from the valve chamber 13 to the outside of the valve 11, and a refrigerant so as to penetrate the upper part of the valve body 12 to the left and right. It is further provided with a return flow path 23 for circulating the water. The details of the return flow path 23 and the diaphragm device 24 will be described in the fifth embodiment described later in which the expansion valve 11 of the present embodiment is used.

また弁本体12は、弁室13(弁座14)と流出路22を接続するのど部20を有する。のど部20は、本実施形態では水平断面が円形で一定の内径を有する円管状に形成してある。また、当該のど部20には作動棒19の先端部19aが挿通されている。 Further, the valve body 12 has a throat portion 20 that connects the valve chamber 13 (valve seat 14) and the outflow passage 22. In the present embodiment, the throat portion 20 is formed in a circular tubular shape having a circular horizontal cross section and a constant inner diameter. Further, the tip portion 19a of the operating rod 19 is inserted through the throat portion 20.

流入路21と流出路22とは、弁室13およびのど部20を介して互いに連通するが、コイルばね17の上方への付勢力によって弁体15が弁座14に当接し着座した閉弁状態(図1および図2に示す状態)では流入路21と流出路22とは連通せずに遮断状態となる。一方、作動棒19の下方への押圧力により弁体15が下方へ移動し弁座14から離れると、流入路21と流出路22とが連通する。これにより、流入路21を通って弁室13の内部に流入した冷媒は、弁座14と弁体15の間を通り抜けてのど部20に浸入し、のど部20を通過した後、のど部出口20aから流出路22内に流れ込み、流出路22を通って膨張弁11の外へ排出されエバポレータ64(後述の図6参照)に導入される。そして、弁体15と弁座14との距離が変更されることにより冷媒の流量が調整される。 The inflow passage 21 and the outflow passage 22 communicate with each other via the valve chamber 13 and the throat portion 20, but the valve body 15 is in contact with the valve seat 14 due to the upward urging force of the coil spring 17, and is seated in a closed state. In (the state shown in FIGS. 1 and 2), the inflow path 21 and the outflow path 22 do not communicate with each other and are cut off. On the other hand, when the valve body 15 moves downward due to the downward pressing force of the operating rod 19 and separates from the valve seat 14, the inflow path 21 and the outflow path 22 communicate with each other. As a result, the refrigerant that has flowed into the valve chamber 13 through the inflow path 21 passes between the valve seat 14 and the valve body 15 and enters the throat portion 20, passes through the throat portion 20, and then exits from the throat portion. It flows into the outflow passage 22 from 20a, is discharged to the outside of the expansion valve 11 through the outflow passage 22, and is introduced into the evaporator 64 (see FIG. 6 described later). Then, the flow rate of the refrigerant is adjusted by changing the distance between the valve body 15 and the valve seat 14.

また、作動棒先端部13aの上端部には、冷媒の流路を狭める狭窄部31を形成してある。この狭窄部31は、本実施形態では、のど部20内に配置される作動棒先端部13aを、作動棒本体部19b(作動棒19の上側部分)より小さな一定の外径を有する丸棒状の円柱部190と、当該円柱部190の上端から徐々に外径が大きくなるようなテーパ状の外周面を有する逆円錐台形のテーパ部191とにより形成し、テーパ部191がのど部20の下流側の端部(上端部)に位置するように配置する。 Further, a narrowed portion 31 for narrowing the flow path of the refrigerant is formed at the upper end portion of the operating rod tip portion 13a. In the present embodiment, the narrowed portion 31 has a round bar shape in which the tip portion 13a of the operating rod arranged in the throat portion 20 has a constant outer diameter smaller than that of the operating rod main body portion 19b (upper portion of the operating rod 19). It is formed by a cylindrical portion 190 and an inverted conical trapezoidal tapered portion 191 having a tapered outer peripheral surface whose outer diameter gradually increases from the upper end of the cylindrical portion 190, and the tapered portion 191 is on the downstream side of the throat portion 20. It is arranged so that it is located at the end (upper end) of the.

このように構成することで本実施形態によれば、作動棒19とのど部20の内壁面との間に形成される冷媒の流路をのど部20の上端部において先細りにする(言い換えれば、のど部上端部において冷媒の流路断面積を小さくする)ことができ、のど部出口20a付近における冷媒の慣性力を低減することが出来る。したがって、前述したようなのど部20と弁室13内との一時的な圧力差の変動を低減することができ、自励振動の発生ならびに振動の増大を防振ばね或いは従来に比べ抑えることが可能となる。また、本実施形態によれば作動棒先端部13aの形状を変更するだけで良く、防振ばねのような別部材を新たに備える必要がないから、部品点数や製造工程数の増加を招くこともない。但し、特異条件においても有効に弁振動の発生を防止したい等の要望に従い、防振ばねを併用することを妨げるものではない。 With this configuration, according to the present embodiment, the flow path of the refrigerant formed between the operating rod 19 and the inner wall surface of the throat portion 20 is tapered at the upper end portion of the throat portion 20 (in other words, it is tapered. The cross-sectional area of the flow path of the refrigerant can be reduced at the upper end of the throat portion), and the inertial force of the refrigerant near the outlet 20a of the throat portion can be reduced. Therefore, it is possible to reduce the temporary fluctuation of the pressure difference between the throat portion 20 and the inside of the valve chamber 13 as described above, and it is possible to suppress the generation of self-excited vibration and the increase of vibration as compared with the anti-vibration spring or the conventional one. It will be possible. Further, according to the present embodiment, it is only necessary to change the shape of the operating rod tip portion 13a, and it is not necessary to newly provide a separate member such as an anti-vibration spring, which causes an increase in the number of parts and the number of manufacturing processes. Nor. However, it does not prevent the combined use of anti-vibration springs in accordance with the desire to effectively prevent the occurrence of valve vibration even under peculiar conditions.

〔第2実施形態〕
図3を参照して本発明の第2の実施形態について説明する。なお、本実施形態では、前記第1実施形態と同様の構成については同一の符号を付して重複した説明を省略し、相違点を中心に説明を行う(以降の実施形態についても同様)。
[Second Embodiment]
A second embodiment of the present invention will be described with reference to FIG. In the present embodiment, the same components as those in the first embodiment are designated by the same reference numerals, duplicated explanations are omitted, and the differences will be mainly described (the same applies to the subsequent embodiments).

本発明の第2実施形態に係る膨張弁は、前記第1実施形態と同様に作動棒19の先端部19aを特有の形状にして狭窄部を形成したものであるが、第1実施形態と異なり、作動棒先端部19a全体を逆円錐台形状にして狭窄部31を形成した。 The expansion valve according to the second embodiment of the present invention has a narrowed portion formed by forming the tip portion 19a of the operating rod 19 into a unique shape as in the first embodiment, but is different from the first embodiment. The entire tip 19a of the operating rod was formed into an inverted truncated cone shape to form the narrowed portion 31.

すなわち、前記第1実施形態と同様に内径が一定の円管状ののど部20を貫通する作動棒先端部19aを、下流(上方)へ向かうに従って外径が大きくなるテーパ状の外周面192を備えるものとした。これにより、のど部20内の冷媒流路をのど部20の出口20aに向かうにつれ断面積が小さくなるようにすることができ、のど部出口20aに狭窄部31を形成することが出来る。 That is, as in the first embodiment, the operating rod tip portion 19a penetrating the circular tubular throat portion 20 having a constant inner diameter is provided with a tapered outer peripheral surface 192 whose outer diameter increases toward the downstream (upward) direction. I made it. As a result, the cross-sectional area of the refrigerant flow path in the throat portion 20 can be reduced toward the outlet 20a of the throat portion 20, and the narrowed portion 31 can be formed at the throat portion outlet 20a.

〔第3実施形態〕
図4を参照して本発明の第3の実施形態について説明すると、前記第1および第2実施形態では作動棒19に特有の形状を備えることで狭窄部31を形成したが、本実施形態に係る膨張弁では、のど部側を従来と異なる形状とすることで狭窄部31を形成する。
[Third Embodiment]
Explaining the third embodiment of the present invention with reference to FIG. 4, the narrowed portion 31 is formed by providing the operating rod 19 with a shape peculiar to the first and second embodiments. In such an expansion valve, the narrowed portion 31 is formed by forming the throat portion side into a shape different from the conventional one.

具体的には、図4に示すように下流(上方)へ向かうにつれ、すなわちのど部出口20aに向かうにつれ内径が小さくなるようなテーパ面200と、当該テーパ面200の上縁から垂直上方へ延びる内径が一定で且つのど部20の下部の内径より小さな内径を有するリング状の小径内壁面201とによりのど部20の上端部を構成する。なお、のど部20に挿通される作動棒先端部19aは、外径が一定の円柱状の形状を有する。 Specifically, as shown in FIG. 4, a tapered surface 200 whose inner diameter decreases toward the downstream (upward) direction, that is, toward the throat outlet 20a, and a tapered surface 200 extending vertically upward from the upper edge of the tapered surface 200. A ring-shaped small-diameter inner wall surface 201 having a constant inner diameter and an inner diameter smaller than the inner diameter of the lower portion of the throat portion 20 constitutes an upper end portion of the throat portion 20. The operating rod tip 19a inserted through the throat 20 has a columnar shape having a constant outer diameter.

このような狭窄部31によっても前記第1および第2実施形態と同様にのど部出口20a付近における冷媒流路を狭めることができ、当該部分の冷媒の慣性力を低減させることが出来る。 With such a narrowed portion 31, the refrigerant flow path in the vicinity of the throat outlet 20a can be narrowed as in the first and second embodiments, and the inertial force of the refrigerant in the portion can be reduced.

〔第4実施形態〕
図5を参照して本発明の第4の実施形態について説明すると、本実施形態に係る膨張弁は、前記第3実施形態と同様にのど部側を従来と異なる形状とすることで狭窄部31を形成したものである。
[Fourth Embodiment]
Explaining the fourth embodiment of the present invention with reference to FIG. 5, the expansion valve according to the present embodiment has a constricted portion 31 by making the throat portion side different from the conventional shape as in the third embodiment. Is formed.

具体的には、図5に示すようにのど部20の内壁面全体をのど部出口20aに向けて先細りになるように窄めたテーパ面202とし、これにより狭窄部31を形成した。なお、のど部20に挿通される作動棒先端部19aは、前記第3実施形態と同様に外径が一定の円柱状の形状を有する。 Specifically, as shown in FIG. 5, the entire inner wall surface of the throat portion 20 is formed into a tapered surface 202 that is narrowed so as to taper toward the throat portion outlet 20a, thereby forming the narrowed portion 31. The operating rod tip 19a inserted into the throat 20 has a columnar shape having a constant outer diameter as in the third embodiment.

〔第5実施形態〕
本発明の第5の実施形態として前記第1実施形態の膨張弁11を用いた冷凍サイクル装置について説明する。
[Fifth Embodiment]
As a fifth embodiment of the present invention, a refrigeration cycle device using the expansion valve 11 of the first embodiment will be described.

図6に示すようにこの冷凍サイクル装置41は、冷媒を圧縮するコンプレッサ(圧縮機)42と、コンプレッサ42で圧縮された冷媒を冷却して液化するコンデンサ(凝縮器)43と、コンデンサ43で液化された冷媒を減圧膨張させる膨張弁11と、膨張弁11で減圧膨張された冷媒を蒸発気化するエバポレータ(蒸発器)44とを備え、膨張弁として前記第1実施形態に係る膨張弁11を使用する。 As shown in FIG. 6, the refrigeration cycle device 41 is liquefied by a compressor (compressor) 42 that compresses the refrigerant, a condenser (condenser) 43 that cools and liquefies the refrigerant compressed by the compressor 42, and a condenser 43. An expansion valve 11 that decompresses and expands the generated refrigerant and an evaporator (evaporator) 44 that evaporates and vaporizes the refrigerant that has been decompressed and expanded by the expansion valve 11 are provided, and the expansion valve 11 according to the first embodiment is used as the expansion valve. do.

かかる冷凍サイクル装置41では、コンプレッサ42で加圧された冷媒は、コンデンサ43で液化されて膨張弁11に送られる。また、膨張弁11で断熱膨張された冷媒はエバポレータ44に送り出され、エバポレータ44で、エバポレータ44の周囲を流れる空気と熱交換される。エバポレータ44から戻る冷媒は、膨張弁11の戻り流路23を通ってコンプレッサ42へ戻される。 In such a refrigeration cycle device 41, the refrigerant pressurized by the compressor 42 is liquefied by the condenser 43 and sent to the expansion valve 11. Further, the refrigerant adiabatically expanded by the expansion valve 11 is sent to the evaporator 44, and the evaporator 44 exchanges heat with the air flowing around the evaporator 44. The refrigerant returning from the evaporator 44 is returned to the compressor 42 through the return flow path 23 of the expansion valve 11.

膨張弁11には、コンデンサ43から高圧の冷媒が供給される。より具体的には、コンデンサ43から送られた高圧冷媒は、流入路21を通って弁室13に流れ込む。コイルばね17によって弁体15が弁座14に押し付けられて着座した閉弁状態にあれば、弁室13と流出路22とが連通していないから、弁室13内の冷媒は膨張弁11から排出されない。 A high-pressure refrigerant is supplied to the expansion valve 11 from the condenser 43. More specifically, the high-pressure refrigerant sent from the condenser 43 flows into the valve chamber 13 through the inflow path 21. If the valve body 15 is pressed against the valve seat 14 by the coil spring 17 and is seated in the valve closed state, the valve chamber 13 and the outflow passage 22 do not communicate with each other, so that the refrigerant in the valve chamber 13 comes from the expansion valve 11. Not discharged.

一方、コイルばね17の付勢力に抗して作動棒19が下方へ移動し、弁体15を弁座14から後退させると、弁室13と流出路22とが連通状態(開弁状態)となり、弁室13内の冷媒が流出路22から排出されてエバポレータ44へ送り出される。かかる作動棒19の動作は、弁本体12の上面部に備えられたダイアフラム装置24により行われる。 On the other hand, when the operating rod 19 moves downward against the urging force of the coil spring 17 and the valve body 15 is retracted from the valve seat 14, the valve chamber 13 and the outflow path 22 are in a communicating state (valve open state). , The refrigerant in the valve chamber 13 is discharged from the outflow passage 22 and sent out to the evaporator 44. The operation of the operating rod 19 is performed by the diaphragm device 24 provided on the upper surface of the valve body 12.

ダイアフラム装置24は、上蓋部材25と、中央部に開口を有する受け部材26と、上蓋部材25と受け部材26との間に配置されたダイアフラム(図示せず)とを備える。そして、上蓋部材25とダイアフラムとによって囲まれる第1空間には、作動ガスを充填してある。また、ダイアフラムには作動棒19の上端が接続されており、第1空間内の作動ガスが液化されると、作動棒19はダイアフラムによって上方へ引き上げられ、液化された作動ガスが気化されると、作動棒19はダイアフラムによって下方へ押し下げられる。このようにして、膨張弁11の開弁状態と閉弁状態との間の切り換えが行われる。 The diaphragm device 24 includes an upper lid member 25, a receiving member 26 having an opening at the center, and a diaphragm (not shown) arranged between the upper lid member 25 and the receiving member 26. The first space surrounded by the upper lid member 25 and the diaphragm is filled with working gas. Further, the upper end of the working rod 19 is connected to the diaphragm, and when the working gas in the first space is liquefied, the working rod 19 is pulled upward by the diaphragm and the liquefied working gas is vaporized. , The actuating rod 19 is pushed down by the diaphragm. In this way, the expansion valve 11 is switched between the valve open state and the valve closed state.

また、ダイアフラムと受け部材26との間の第2空間は、前記受け部材中央の開口を通じて戻り流路23と連通している。このため、戻り流路23を流れる冷媒の温度と圧力に応じて、第1空間内の作動ガスの相(気相か液相か)が変化し、この変化に応じて作動棒19が駆動される。このようにして膨張弁11では、エバポレータ44から膨張弁11に戻る冷媒の温度と圧力に応じて、膨張弁11からエバポレータ44に向けて供給される冷媒の量が自動的に調整される。 Further, the second space between the diaphragm and the receiving member 26 communicates with the return flow path 23 through the opening in the center of the receiving member. Therefore, the phase (gas phase or liquid phase) of the working gas in the first space changes according to the temperature and pressure of the refrigerant flowing through the return flow path 23, and the working rod 19 is driven according to this change. NS. In this way, the expansion valve 11 automatically adjusts the amount of the refrigerant supplied from the expansion valve 11 toward the evaporator 44 according to the temperature and pressure of the refrigerant returning from the evaporator 44 to the expansion valve 11.

また、本実施形態の冷凍サイクル装置41では、前記第1実施形態の膨張弁11を使用しているため、自励振動の発生ならびに振動の増大を抑え、異音の発生を防ぐことが出来る。 Further, since the refrigerating cycle device 41 of the present embodiment uses the expansion valve 11 of the first embodiment, it is possible to suppress the generation of self-excited vibration and the increase of vibration and prevent the generation of abnormal noise.

なお、本実施形態に係る冷凍サイクル装置では、第1実施形態の膨張弁11を使用したが、当該膨張弁11以外にも他の実施形態に係る膨張弁あるいは本発明に基いて構成可能な他の膨張弁を用いることも可能である。 In the refrigeration cycle apparatus according to the present embodiment, the expansion valve 11 of the first embodiment is used, but other than the expansion valve 11, the expansion valve according to another embodiment or other components that can be configured based on the present invention. It is also possible to use the expansion valve of.

11 膨張弁
12 弁本体
13 弁室
14 弁座
15 弁体
16 弁体支持部
17 コイルばね(付勢部材)
18 ばね受け部材
19 作動棒
19a 作動棒の先端部
19b 作動棒の本体部
20 のど部
20a のど部出口
21 流入路
22 流出路
23 戻り流路
24 ダイアフラム装置
25 上蓋部材
26 受け部材
31 狭窄部
41 冷凍サイクル装置
42 コンプレッサ(圧縮機)
43 コンデンサ(凝縮器)
44 エバポレータ(蒸発器)
190 円柱部
191 テーパ部
192 テーパ状の外周面
200,202 テーパ面
201 小径内壁面
11 Expansion valve 12 Valve body 13 Valve chamber 14 Valve seat 15 Valve body 16 Valve body support 17 Coil spring (urging member)
18 Spring receiving member 19 Operating rod 19a Tip of operating rod 19b Main body of operating rod 20 Throat 20a Throat outlet 21 Inflow path 22 Outflow path 23 Return flow path 24 Diaphragm device 25 Top lid member 26 Receiving member 31 Narrowing part 41 Refrigeration Cycle device 42 Compressor
43 Capacitor (condenser)
44 Evaporator (evaporator)
190 Cylindrical part 191 Tapered part 192 Tapered outer peripheral surface 200, 202 Tapered surface 201 Small diameter inner wall surface

Claims (4)

冷媒を導入する流入路に連通するとともに当該冷媒を排出する流出路にのど部を介して連通する弁室を有する弁本体と、
前記弁室の内部に配置され、弁座に着座した閉弁状態と前記弁座から離間した開弁状態との間で前記弁座に対して進退動することにより前記冷媒の流量を変更する弁体と、
前記弁体を支持する弁体支持部と、
前記弁体支持部を介して前記弁体を前記弁座に向けて付勢する付勢部材と、
前記弁体に接触して前記付勢部材による付勢力に抗し前記弁体を開弁方向へ移動させる作動棒と、
前記作動棒を駆動する駆動部と
を備え、
前記作動棒の先端部が、前記のど部を通って前記弁体に接触している
膨張弁であって、
前記のど部の下流側の端部に、前記冷媒の流路を狭める狭窄部を形成した
ことを特徴とする膨張弁。
A valve body having a valve chamber that communicates with the inflow path for introducing the refrigerant and also communicates with the outflow path for discharging the refrigerant through the throat.
A valve that is arranged inside the valve chamber and changes the flow rate of the refrigerant by advancing and retreating with respect to the valve seat between a valve closed state seated on the valve seat and a valve opened state separated from the valve seat. With the body
A valve body support portion that supports the valve body and
An urging member that urges the valve body toward the valve seat via the valve body support portion, and
An actuating rod that comes into contact with the valve body and moves the valve body in the valve opening direction against the urging force of the urging member.
A drive unit for driving the operating rod is provided.
An expansion valve in which the tip end portion of the operating rod is in contact with the valve body through the throat portion.
An expansion valve characterized in that a constricted portion that narrows the flow path of the refrigerant is formed at the downstream end of the throat portion.
下流に向かうに従って外径が大きくなる拡径部を前記作動棒の先端部に備えることにより前記狭窄部を形成した
請求項1に記載の膨張弁。
The expansion valve according to claim 1, wherein the constricted portion is formed by providing the tip end portion of the operating rod with an enlarged diameter portion whose outer diameter increases toward the downstream side.
下流に向かうに従って内径が小さくなる縮径部を前記のど部に備えることにより前記狭窄部を形成した
請求項1または2に記載の膨張弁。
The expansion valve according to claim 1 or 2, wherein the narrowed portion is formed by providing the throat portion with a reduced diameter portion whose inner diameter decreases toward the downstream side.
冷媒を圧縮する圧縮機と、
前記圧縮機で圧縮された前記冷媒を冷却して液化する凝縮器と、
前記凝縮器で液化された前記冷媒を減圧膨張させる膨張弁と、
前記膨張弁で減圧膨張された前記冷媒を蒸発気化する蒸発器と
を備えた冷凍サイクル装置であって、
前記膨張弁が、前記請求項1から3のいずれか一項に記載の膨張弁であることを特徴とする冷凍サイクル装置。
A compressor that compresses the refrigerant and
A condenser that cools and liquefies the refrigerant compressed by the compressor, and
An expansion valve that decompresses and expands the refrigerant liquefied by the condenser,
A refrigeration cycle apparatus including an evaporator that evaporates and vaporizes the refrigerant that has been decompressed and expanded by the expansion valve.
A refrigeration cycle apparatus according to any one of claims 1 to 3, wherein the expansion valve is the expansion valve according to any one of claims 1 to 3.
JP2020021085A 2020-02-12 2020-02-12 Expansion valve and refrigeration cycle device Active JP7478410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020021085A JP7478410B2 (en) 2020-02-12 2020-02-12 Expansion valve and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020021085A JP7478410B2 (en) 2020-02-12 2020-02-12 Expansion valve and refrigeration cycle device

Publications (2)

Publication Number Publication Date
JP2021127845A true JP2021127845A (en) 2021-09-02
JP7478410B2 JP7478410B2 (en) 2024-05-07

Family

ID=77488266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020021085A Active JP7478410B2 (en) 2020-02-12 2020-02-12 Expansion valve and refrigeration cycle device

Country Status (1)

Country Link
JP (1) JP7478410B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006125751A (en) * 2004-10-29 2006-05-18 Saginomiya Seisakusho Inc Electric control valve and refrigeration cycle device
WO2008001803A1 (en) * 2006-06-29 2008-01-03 Daikin Industries, Ltd. Expansion valve with refrigerant flow dividing structure and refrigeration unit utilizing the same
JP2019011885A (en) * 2017-06-29 2019-01-24 株式会社不二工機 Expansion valve

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006125751A (en) * 2004-10-29 2006-05-18 Saginomiya Seisakusho Inc Electric control valve and refrigeration cycle device
WO2008001803A1 (en) * 2006-06-29 2008-01-03 Daikin Industries, Ltd. Expansion valve with refrigerant flow dividing structure and refrigeration unit utilizing the same
JP2019011885A (en) * 2017-06-29 2019-01-24 株式会社不二工機 Expansion valve

Also Published As

Publication number Publication date
JP7478410B2 (en) 2024-05-07

Similar Documents

Publication Publication Date Title
JP6119566B2 (en) Ejector
JP6048339B2 (en) Ejector
US10309702B2 (en) Control valve
JP6119489B2 (en) Ejector
JP2006189240A (en) Expansion device
JP6003844B2 (en) Ejector
JP6090104B2 (en) Ejector
JP2017025975A (en) Pressure operation valve and refrigeration cycle
JP2014206147A (en) Ejector
JP6091580B1 (en) Thermal expansion valve
WO2014080596A1 (en) Ejector
JP2021127845A (en) Expansion valve and refrigeration cycle device
WO2016143292A1 (en) Ejector-type refrigeration cycle
JP2021103069A (en) Expansion valve, refrigerant introduction pipe and refrigeration cycle device
WO2016143291A1 (en) Ejector and ejector-type refrigeration cycle
WO2016185664A1 (en) Ejector, and ejector-type refrigeration cycle
JP2011133157A (en) Expansion valve
JP2017187225A (en) Expansion valve
JP7482498B2 (en) Expansion valve and refrigeration cycle device
JP7462932B2 (en) Expansion valve and refrigeration cycle device
WO2016117308A1 (en) Ejector
JP7153912B2 (en) expansion valve
JP2021081173A (en) Expansion valve and refrigeration cycle device
JP7382057B2 (en) Expansion valve and refrigeration cycle equipment
WO2019059093A1 (en) Expansion valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240415

R150 Certificate of patent or registration of utility model

Ref document number: 7478410

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150