JP7462818B2 - Workpiece machining device, grinding wheel, and workpiece machining method - Google Patents

Workpiece machining device, grinding wheel, and workpiece machining method Download PDF

Info

Publication number
JP7462818B2
JP7462818B2 JP2023119334A JP2023119334A JP7462818B2 JP 7462818 B2 JP7462818 B2 JP 7462818B2 JP 2023119334 A JP2023119334 A JP 2023119334A JP 2023119334 A JP2023119334 A JP 2023119334A JP 7462818 B2 JP7462818 B2 JP 7462818B2
Authority
JP
Japan
Prior art keywords
workpiece
grindstone
grinding
arc
grinding wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023119334A
Other languages
Japanese (ja)
Other versions
JP2023126661A (en
Inventor
一郎 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2023119334A priority Critical patent/JP7462818B2/en
Publication of JP2023126661A publication Critical patent/JP2023126661A/en
Application granted granted Critical
Publication of JP7462818B2 publication Critical patent/JP7462818B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

本発明はワーク加工装置、砥石、およびワーク加工方法に関する。 The present invention relates to a workpiece processing device, a grinding wheel, and a workpiece processing method.

従来、半導体ウェーハ等の円板状のワーク(被加工物)の外周部の面取り加工を行うために、ワークの外周部に砥石を押し当てて研削を行っている。ワークの面取り部の形状および寸法の精度を向上させるために、砥石の外周部に、ワークの完成形状に対応した形状および寸法の溝(総形溝)を形成し、その溝内にワークの外周部を挿入してワークを回転させ、溝の内周面によってワークの外周部を研削する方法がある。しかし、この方法では、製造すべきワークの形状や寸法が変わる度に砥石を交換する必要があり、多品種の少量生産には適していない。また、面取り加工を繰り返すと砥石の外周部の溝の内周面が摩耗または破損して溝の形状および寸法が変化するため、ワークの面取り加工の精度が低下する。従って、長期間にわたってワークの面取り加工を行ったら、砥石を交換または整形し直す必要が生じる。 Conventionally, in order to chamfer the outer periphery of a disk-shaped workpiece (workpiece) such as a semiconductor wafer, a grinding wheel is pressed against the outer periphery of the workpiece to perform grinding. In order to improve the accuracy of the shape and dimensions of the chamfered portion of the workpiece, a groove (formed groove) with a shape and dimensions corresponding to the finished shape of the workpiece is formed on the outer periphery of the grinding wheel, the outer periphery of the workpiece is inserted into the groove, the workpiece is rotated, and the outer periphery of the workpiece is ground by the inner periphery of the groove. However, with this method, the grinding wheel needs to be replaced every time the shape or dimensions of the workpiece to be manufactured change, and it is not suitable for small-lot production of a wide variety of products. In addition, repeated chamfering causes the inner periphery of the groove on the outer periphery of the grinding wheel to wear or break, changing the shape and dimensions of the groove, which reduces the accuracy of the chamfering of the workpiece. Therefore, after chamfering the workpiece for a long period of time, it becomes necessary to replace or reshape the grinding wheel.

必要に応じて砥石の交換または整形を行うために、特許文献1,2に記載されている方法では、ワークの完成形状に対応する総形溝を有するマスター砥石を作製しておき、砥石材料の外周部をマスター砥石の溝の内周面に当接させて研削することにより、型材であるツルーイング砥石(ツルアー)を作製する。さらに、砥石材料にツルーイング砥石の外周部を当接させてマスター砥石と同様な総形溝を形成することにより、実際のワークの面取り加工に用いるための砥石の形状を整える(整形する)ことができる。ツルーイング砥石は面取り用の砥石(例えばレジンボンド砥石)よりも硬い材料(例えばGC砥石)からなり、マスター砥石はツルーイング砥石よりも硬い材料(例えばメタルボンド砥石)からなる。このようにツルーイング砥石を用いて砥石を整形する工程は、ツルーイングと呼ばれる。 In order to replace or reshape the grinding wheel as necessary, the methods described in Patent Documents 1 and 2 involve preparing a master grinding wheel having a formed groove corresponding to the finished shape of the workpiece, and grinding the outer periphery of the grinding wheel material by abutting it against the inner periphery of the groove of the master grinding wheel to prepare a truing grinding wheel (truer), which is a mold material. Furthermore, by abutting the outer periphery of the truing wheel against the grinding wheel material to form a formed groove similar to that of the master grinding wheel, the shape of the grinding wheel to be used for chamfering of the actual workpiece can be adjusted (shaped). The truing wheel is made of a material (e.g., a GC wheel) harder than the grinding wheel for chamfering (e.g., a resin-bonded wheel), and the master grinding wheel is made of a material (e.g., a metal-bonded wheel) harder than the truing wheel. The process of shaping the grinding wheel using the truing wheel in this way is called truing.

特許文献1,2には、円板状のワークに対して平行に配置された円板状の砥石の総形溝を用いて面取り加工を行う方法に加えて、円板状のワークの外周の接線方向に対して斜めに傾けて配置された円板状の砥石の溝を用いてワークの面取りを行う方法(ヘリカル方式の加工方法)も示唆されている。ヘリカル方式の面取り加工方法については、特許文献3にも記載されている。特許文献3に記載された方法では、ワークの外周の接線方向に対して斜めに傾けて配置された砥石は、外周部に凹状の溝が形成されており内側向きの傾斜面を有している。この傾斜面をワークの外周部に当接させて研削を行う。特許文献4には、円板状のワークに対して平行に配置された円板状の砥石により研削を行い、その後に、円板状のワークの外周の接線方向に対して斜めに傾けて配置された円板状の砥石により、ヘリカル方式でより精密な研削を行う加工方法と、ヘリカル方式の精密研削用の砥石をツルーイングするためのツルーイング砥石およびツルーイング方法が開示されている。 In addition to the method of chamfering using the groove of a disk-shaped grinding wheel arranged parallel to a disk-shaped workpiece, Patent Documents 1 and 2 also suggest a method of chamfering a workpiece using a groove of a disk-shaped grinding wheel arranged at an angle to the tangent direction of the outer periphery of the disk-shaped workpiece (helical processing method). The helical chamfering method is also described in Patent Document 3. In the method described in Patent Document 3, the grinding wheel arranged at an angle to the tangent direction of the outer periphery of the workpiece has a concave groove formed on the outer periphery and has an inwardly inclined surface. Grinding is performed by abutting this inclined surface on the outer periphery of the workpiece. Patent Document 4 discloses a processing method in which grinding is performed with a disk-shaped grinding wheel arranged parallel to the disk-shaped workpiece, and then more precise grinding is performed by the helical method with a disk-shaped grinding wheel arranged at an angle to the tangent direction of the outer periphery of the disk-shaped workpiece, and a truing grinding wheel and a truing method for truing a grinding wheel for precision grinding in the helical method.

特許文献1~4に記載されているようにワークの外周の接線方向に対して斜めに傾けて配置された砥石を用いてワークの面取り加工を行うと、砥石の外周部に設けられた溝の内周面とワークの外周部との接触部分の長さが長い状態で研削が行われ、さらにワークを低速で回転させながら研削することにより、ワークの面取り部の表面粗さを小さくすることができる。従って、後で行われる仕上げの研磨工程が実施しやすくなる。 As described in Patent Documents 1 to 4, when chamfering a workpiece using a grinding wheel positioned at an angle to the tangent direction of the outer periphery of the workpiece, grinding is performed with a long contact area between the inner surface of the groove on the outer periphery of the grinding wheel and the outer periphery of the workpiece. Furthermore, by grinding while rotating the workpiece at a low speed, the surface roughness of the chamfered portion of the workpiece can be reduced. This makes it easier to carry out the finish polishing process that is performed later.

特許文献5には、厚さ方向の寸法がワークの厚さよりも大きい溝が外周部に設けられた砥石を用いて、砥石の溝の内周面をワークの外周部に当接させて面取り加工を行う方法が開示されている。また、特許文献5には、ワークよりも厚く外周部に溝が設けられておらず外周部の断面形状が凸状である砥石を用いて、砥石の外周部の凸状部分の一部を構成する傾斜面をワークの外周部に当接させて面取り加工を行う方法も開示されている。 Patent Document 5 discloses a method of performing chamfering by using a grindstone with a groove on its outer periphery, the dimension of which in the thickness direction is larger than the thickness of the workpiece, and abutting the inner surface of the groove of the grindstone against the outer periphery of the workpiece. Patent Document 5 also discloses a method of performing chamfering by using a grindstone that is thicker than the workpiece, has no groove on its outer periphery, and has a convex cross-sectional shape on its outer periphery, and abutting an inclined surface that constitutes part of the convex part on the outer periphery of the grindstone against the outer periphery of the workpiece.

特許文献6に記載された方法では、円板状のワークに対して直交するように円板状の砥石を配置する。ワークは、その平面形状の中心に位置する回転軸を中心として回転可能である。砥石は、ワークの回転軸に直交する回転軸を中心として回転可能であるとともに、その回転軸に垂直な方向(円板状のワークに平行な方向)にも、回転軸に平行な方向(円板状のワークに直交する方向)にも移動可能である。ワークを回転させた状態で、砥石を回転させながらワークに接近させて、回転する砥石の外周部を、砥石の回転方向と直交する方向に回転するワークの外周部に当接させつつ砥石を移動させることで、ワークの面取り加工を行う。このような加工工程はコンタリングと呼ばれる。 In the method described in Patent Document 6, a disk-shaped grinding wheel is placed perpendicular to a disk-shaped workpiece. The workpiece can rotate around a rotation axis located at the center of its planar shape. The grinding wheel can rotate around a rotation axis perpendicular to the rotation axis of the workpiece, and can move in a direction perpendicular to the rotation axis (parallel to the disk-shaped workpiece) and in a direction parallel to the rotation axis (perpendicular to the disk-shaped workpiece). With the workpiece rotated, the grinding wheel is rotated and brought close to the workpiece, and the outer periphery of the rotating grinding wheel is brought into contact with the outer periphery of the workpiece rotating in a direction perpendicular to the rotation direction of the grinding wheel while the grinding wheel is moved, thereby chamfering the workpiece. This type of processing process is called contouring.

特許文献7に記載された方法では、円板状のワークに対して直交するように配置されたカップ型砥石を用い、特許文献6と同様に、ワークを回転させた状態で、カップ型砥石を回転させながらワークに接近させる。回転するカップ型砥石のカップ形状の先端面を、カップ型砥石の回転方向と直交する方向に回転するワークの外周部に当接させつつカップ型砥石を移動させることで、ワークの面取り加工を行う。 In the method described in Patent Document 7, a cup-shaped grinding wheel is placed perpendicular to a disk-shaped workpiece, and like Patent Document 6, the cup-shaped grinding wheel is rotated and brought close to the workpiece while the workpiece is rotating. The cup-shaped grinding wheel is moved while the tip surface of the cup shape of the rotating cup-shaped grinding wheel is brought into contact with the outer periphery of the workpiece, which is rotating in a direction perpendicular to the rotation direction of the cup-shaped grinding wheel, thereby chamfering the workpiece.

特許文献8には、円板状の砥石を2個用いて特許文献6と同様に面取り加工を行う方法と、カップ型砥石を2個用いて特許文献7と同様に面取り加工を行う方法が開示されている。 Patent document 8 discloses a method of chamfering using two disk-shaped grinding wheels in the same manner as in Patent document 6, and a method of chamfering using two cup-shaped grinding wheels in the same manner as in Patent document 7.

特許文献9に記載された方法では、内周側の砥石要素(カップ形状)と、外周側の、内周側の砥石要素による研削よりも精密な研削のための砥石要素(カップ形状)とを有する大型で二重構造のカップ型である第一砥石と、カップの第二砥石とを用いて、ワークの外周部の加工を行う。 In the method described in Patent Document 9, a large, double-structure cup-shaped first grinding wheel having an inner grinding wheel element (cup-shaped) and an outer grinding wheel element (cup-shaped) for more precise grinding than that achieved by the inner grinding wheel element, and a cup-shaped second grinding wheel are used to machine the outer periphery of the workpiece.

特許文献10に記載された方法では、ウェーハの周端縮径加工では2個の溝なし砥石をそれぞれ一定の高さに保持したままでウェーハに接触させて加工し、コンタリング加工ではウェーハ周端部の各面に前記2個の溝なし砥石をそれぞれ各別に移動させ、ウェーハ周端部の径方向の同一箇所を上下から挟み込んでそれぞれの面を同時に加工する。 In the method described in Patent Document 10, in the peripheral edge diameter reduction process of the wafer, two grooveless grindstones are held at a fixed height and brought into contact with the wafer to process it, and in the contouring process, the two grooveless grindstones are moved separately to each side of the peripheral edge of the wafer, and the same radial location of the wafer peripheral edge is sandwiched from above and below to process each side simultaneously.

特許文献11に記載された方法では、外周部に凸状研削部分を有する円板状の砥石を用い、円板状のワークと砥石を互いに平行に配置し、砥石とワークを回転させつつ、凸状研削部分とワークとの接触部分がワークの所望の断面形状に沿って移動するように砥石の円弧状部分の曲率半径に基づいて算出された移動条件に従って、砥石をワークに対して相対的に移動させる。 In the method described in Patent Document 11, a disk-shaped grinding wheel having a convex grinding portion on its outer periphery is used, the disk-shaped workpiece and the grinding wheel are arranged parallel to each other, and while rotating the grinding wheel and the workpiece, the grinding wheel is moved relative to the workpiece according to movement conditions calculated based on the radius of curvature of the arc-shaped portion of the grinding wheel so that the contact portion between the convex grinding portion and the workpiece moves along the desired cross-sectional shape of the workpiece.

特開2005-153085号公報JP 2005-153085 A 特開2007-165712号公報JP 2007-165712 A 特開平5-152259号公報Japanese Patent Application Laid-Open No. 5-152259 特開2007-044817号公報JP 2007-044817 A 特開平11-207585号公報Japanese Patent Application Laid-Open No. 11-207585 特開2000-317789号公報JP 2000-317789 A 特開2008-034776号公報JP 2008-034776 A 特開2014-37014号公報JP 2014-37014 A 特開2017-154240号公報JP 2017-154240 A 特開2008-177348号公報JP 2008-177348 A 特許7093875号公報Patent No. 7093875

特許文献1~4に記載されているようにワークの外周の接線方向に対して斜めに傾けて配置される砥石の外周部に、精度良くワークを面取りするための溝を形成することは容易ではない。ワークに所望の形状の面取り部を形成するためには、溝の内周面がワークの外周部に適切な角度および適切な接触長さで接触しなければならない。ワークの外周の接線方向に対して傾けて配置される砥石において、このようにワークの外周部に適切な角度および適切な接触長さで正確に接触する内周面を有する溝を形成することは難しい。特に、ワークを回転させる駆動部や、ワークを研削するための砥石を回転させる駆動部を利用してツルーイング砥石を回転させてツルーイングを行う場合には、ワークの外周の接線方向に対して傾いた状態で良好な面取り加工ができる溝を精度良く形成することは難しく、より容易にツルーイングできる方法が求められている。また、製造すべきワークの面取り部の形状や寸法が変わると、ツルーイング砥石を作製するためのマスター砥石の溝の形状も変更する必要があり、作業が煩雑である。 As described in Patent Documents 1 to 4, it is not easy to form a groove for chamfering a workpiece with high precision on the outer periphery of a grinding wheel that is arranged at an angle to the tangent direction of the outer periphery of the workpiece. In order to form a chamfer of a desired shape on the workpiece, the inner periphery of the groove must contact the outer periphery of the workpiece at an appropriate angle and with an appropriate contact length. In a grinding wheel that is arranged at an angle to the tangent direction of the outer periphery of the workpiece, it is difficult to form a groove having an inner periphery that accurately contacts the outer periphery of the workpiece at an appropriate angle and with an appropriate contact length. In particular, when truing is performed by rotating a truing grinding wheel using a drive unit that rotates the workpiece or a drive unit that rotates a grinding wheel for grinding the workpiece, it is difficult to form a groove with high precision that allows good chamfering processing in a state inclined to the tangent direction of the outer periphery of the workpiece, and a method for easier truing is required. In addition, if the shape or dimensions of the chamfered portion of the workpiece to be manufactured change, the shape of the groove of the master grinding wheel for producing the truing grinding wheel must also be changed, which is cumbersome work.

ワークの外周の接線方向に対して斜めに傾けて配置された砥石を用いてワークの加工を行う場合には、溝の内周面の形状や寸法は容易に変更できないため、所望の加工形状に近づけるために微細な補正を行うことは困難である。従って、ワークとしてオリエンテーションフラット部を有するウェーハを作製する場合に、ワークの外周の接線方向に対して斜めに傾けて配置された砥石の、主にワークの外周の円弧状の部分を形成するための溝を用いてオリエンテーションフラット部も精度良く形成することはできない。そのため、オリエンテーションフラット部形成用の溝を、円弧状の部分の形成用の溝とは別に形成しておく必要があり、砥石の製造が煩雑になるとともに、2つの溝を使い分けるために加工時間が長くなる。 When machining a workpiece using a grindstone that is tilted diagonally relative to the tangent direction of the workpiece's outer periphery, it is difficult to make fine corrections to approximate the desired machining shape, because the shape and dimensions of the inner periphery of the groove cannot be easily changed. Therefore, when manufacturing a wafer having an orientation flat as the workpiece, it is not possible to form the orientation flat with high precision using the groove for mainly forming the arc-shaped portion of the outer periphery of the workpiece, which is formed on a grindstone that is tilted diagonally relative to the tangent direction of the workpiece's outer periphery. For this reason, it is necessary to form the groove for forming the orientation flat separately from the groove for forming the arc-shaped portion, which makes the manufacture of the grindstone complicated and increases the machining time to use two grooves separately.

特許文献5に記載されている方法では、砥石の溝の内周面の一部である傾斜面、または砥石の外周の凸状部分の一部である傾斜面にワークの外周部を当接させて研削する。ワークを砥石の傾斜面に沿って相対的に移動させることによりワークの外周面を研削するため、研削されたワークの外周部の形状は砥石の傾斜面に対応した形状になる。砥石の外周の傾斜面の角度を任意に変更することはできないため、ワークの面取り部を任意の形状に形成することは難しい。また、ワークの両面の面取り部と、先端の直線部と、直線部と面取り部との間の曲面部とにおいて、ワークを砥石に沿って相対的に往復動作(トラバース)させながら研削を行うため、加工が煩雑で加工時間が長い。 In the method described in Patent Document 5, the outer periphery of the workpiece is ground by abutting it against an inclined surface that is part of the inner periphery of the grinding wheel groove, or against an inclined surface that is part of the convex portion of the outer periphery of the grinding wheel. The outer periphery of the workpiece is ground by moving the workpiece relatively along the inclined surface of the grinding wheel, so the shape of the ground outer periphery of the workpiece corresponds to the inclined surface of the grinding wheel. Since the angle of the inclined surface of the outer periphery of the grinding wheel cannot be changed arbitrarily, it is difficult to form the chamfered portion of the workpiece into an arbitrary shape. In addition, grinding is performed while the workpiece is moved back and forth (traverse) relatively along the grinding wheel at the chamfered portions on both sides of the workpiece, the straight portion at the tip, and the curved portion between the straight portion and the chamfered portion, making the processing complicated and taking a long time.

特許文献6に記載された方法では、円板状の砥石が円板状のワークに対して直交するように配置されるため、大型の砥石を用いると、砥石がワークの支持や駆動のための機構(例えば吸着テーブルや回転機構)に干渉するおそれがある。従って、ワークの安定的な支持や円滑な駆動を妨げないようにするため、大型の砥石ではなく小型の砥石が用いられる。その結果、加工効率が悪く加工時間が長くなる。また、小型の砥石は大型の砥石に比べて、同一のワークの面取り加工を行う際に、同一個所がワークの外周部に接触して研削する時間が長いため、砥石の寿命が短い。さらに、ワークは、砥石との接触個所が所望の断面形状に沿うような軌跡で移動するが、ワークのそれぞれの個所が十分に研削されてからワークが移動するので、高効率化のためにはワークは高速で回転する必要がある。このようにワークを高速で回転させながら研削を行い、かつ、ワークの外表面に、ワークの回転方向と直交する方向に回転する砥石の条痕が、ワークの厚さ方向に沿って延びる形状で形成されるため、研削された部分の表面粗さが大きい。この研削工程の後に、より精密な仕上げの研磨工程を行おうとしても、ワークの回転方向と直交する方向に沿う条痕が存在するため研磨しにくい。特に、ワークの傾斜面状になった部分が、後工程である精密な研磨工程において研磨しにくく、十分に研磨されずに条痕が残る可能性がある。 In the method described in Patent Document 6, the disk-shaped grinding wheel is arranged perpendicular to the disk-shaped workpiece, so if a large grinding wheel is used, the grinding wheel may interfere with the mechanism for supporting and driving the workpiece (for example, the suction table or the rotation mechanism). Therefore, in order not to interfere with the stable support and smooth driving of the workpiece, a small grinding wheel is used instead of a large one. As a result, the processing efficiency is poor and the processing time is long. In addition, when chamfering the same workpiece, a small grinding wheel has a short life because the same part of the workpiece is in contact with the outer periphery of the workpiece and grinds for a long time compared to a large grinding wheel. Furthermore, the workpiece moves in a trajectory such that the contact part with the grinding wheel follows the desired cross-sectional shape, but the workpiece moves only after each part of the workpiece is sufficiently ground, so the workpiece needs to rotate at high speed for high efficiency. In this way, the workpiece is ground while rotating at high speed, and the grinding marks of the grindstone rotating in a direction perpendicular to the direction of rotation of the workpiece are formed on the outer surface of the workpiece in a shape that extends along the thickness direction of the workpiece, so the ground portion has a large surface roughness. Even if a more precise polishing process is performed after this grinding process, it is difficult to polish the workpiece because of the presence of the marks that run perpendicular to the direction of rotation of the workpiece. In particular, the inclined surface portion of the workpiece is difficult to polish in the subsequent precision polishing process, and there is a possibility that the workpiece will not be polished sufficiently and marks will remain.

特許文献7に記載された方法では、カップ型砥石の作製が煩雑であり、特にツルーイングが困難である。また、カップ形状の先端面がワークの外周部に適切に接触するようにカップ型砥石を配置して駆動することは容易ではなく、カップ型砥石の支持および駆動のための機構が複雑である。 In the method described in Patent Document 7, the production of the cup-shaped grinding wheel is complicated, and truing is particularly difficult. In addition, it is not easy to position and drive the cup-shaped grinding wheel so that the tip surface of the cup shape properly contacts the outer periphery of the workpiece, and the mechanism for supporting and driving the cup-shaped grinding wheel is complex.

特許文献8に記載された方法では、前述した特許文献6,7に記載された方法における問題点に加えて、2個の砥石を同時に駆動するために装置が複雑になるとともに、2個の砥石の間に寸法や形状の違いが生じやすく、安定して高精度の面取り加工を行うことが容易ではないという問題がある。 In addition to the problems with the methods described in Patent Document 8, which are described in Patent Documents 6 and 7, the method described in Patent Document 8 has the problem that the device is complicated because two grinding wheels are driven simultaneously, and differences in size and shape are likely to occur between the two grinding wheels, making it difficult to perform stable, high-precision chamfering.

特許文献9に記載された方法では、第一砥石の形状が非常に複雑であり、第一砥石の作製が煩雑である。また、ワークは2本の回転軸を中心としてそれぞれ回転させられるため、ワークの支持および駆動のための機構も複雑である。このように、特許文献9に記載された方法を実施する加工装置は非常に複雑である。 In the method described in Patent Document 9, the shape of the first grinding wheel is very complex, and the production of the first grinding wheel is cumbersome. In addition, because the workpieces are rotated about two rotation axes, the mechanisms for supporting and driving the workpieces are also complex. Thus, the processing device that implements the method described in Patent Document 9 is very complex.

特許文献10に記載された方法では、特許文献6に記載された方法と同様に、円板状のワークに対して直交するように配置された円板状の砥石を用いて研削を行う。しかも、この方法では、高速回転するワークの厚さ方向位置を調整するためには、圧電素子を利用する機構が必須であり、加工装置が複雑で高価になるとともに、ワークの厚さ方向位置を常に調整しながらワークを回転させるため、所望の断面形状を形成する精度が悪くなる傾向にある。特に、ワークの所望の断面形状の円弧状の部分の半径(R寸法)を、円板状のワークの全周において一定にすることが困難である。 In the method described in Patent Document 10, similar to the method described in Patent Document 6, grinding is performed using a disk-shaped grinding wheel arranged perpendicular to the disk-shaped workpiece. Moreover, in this method, a mechanism using a piezoelectric element is necessary to adjust the thickness direction position of the workpiece rotating at high speed, which makes the processing device complex and expensive, and since the workpiece is rotated while constantly adjusting the thickness direction position of the workpiece, the accuracy of forming the desired cross-sectional shape tends to deteriorate. In particular, it is difficult to keep the radius (R dimension) of the arc-shaped portion of the desired cross-sectional shape of the workpiece constant around the entire circumference of the disk-shaped workpiece.

特許文献11に記載された方法では、砥石の外周部の凸状研削部分がワークに近づきながらワークの研削を行うため、研削時の負荷や振動が大きい。そして、凸状研削部分の半径方向体積が大きいため、砥石の重量や回転時の慣性モーメントが大きく、結果として、砥石の回転時の振動が大きくなり易く、砥石の製造コストが高くなる。また、研削時に砥石とワークとの接触部分に研削水(クーラント)を供給しても、凸状研削部分に接触した研削水が飛散し易く、効率良く円滑な研削を行うことが困難である。 In the method described in Patent Document 11, the convex grinding portion on the outer periphery of the grinding wheel approaches the workpiece while grinding the workpiece, resulting in large loads and vibrations during grinding. Furthermore, because the radial volume of the convex grinding portion is large, the weight of the grinding wheel and the moment of inertia during rotation are large, which results in large vibrations during rotation of the grinding wheel and high manufacturing costs for the grinding wheel. Furthermore, even if grinding water (coolant) is supplied to the contact area between the grinding wheel and the workpiece during grinding, the grinding water that comes into contact with the convex grinding portion is likely to splash, making it difficult to perform efficient and smooth grinding.

本発明は、ワークの面取り加工を容易に効率良くかつ高精度に行うことができ、ワークおよび砥石を支持および駆動する機構が簡単であって、しかも砥石の整形が容易にできるワーク加工装置、砥石、およびワーク加工方法を提供することを目的とする。 The present invention aims to provide a workpiece processing device, grinding wheel, and workpiece processing method that can perform chamfering of a workpiece easily, efficiently, and with high precision, has a simple mechanism for supporting and driving the workpiece and grinding wheel, and can easily shape the grinding wheel.

本発明の円板状のワークを所望の断面形状に形成するためのワーク加工装置は、前記ワークを支持するワーク支持機構と、前記ワークに対して平行に配置される円板状の砥石と、前記砥石を支持する砥石支持機構と、を有し、前記ワーク支持機構は前記ワークを回転させ、前記砥石支持機構は前記砥石を回転させ、前記ワーク支持機構による前記ワークの回転の中心となる回転軸と、前記砥石支持機構による前記砥石の回転の中心となる回転軸とは互いに平行であり、前記ワーク支持機構は、前記ワークの片側の面のみを吸着する吸着部材を有し、前記吸着部材の平面形状は、前記ワークの半径よりも小さい半径の円形状であり、円形状の前記吸着部材の外周部分は、外側に向かうにつれて厚さが薄くなる先薄形状を有し、前記砥石は外周部に凹状研削部分を有しており、前記凹状研削部分の、前記砥石の前記回転軸に沿う断面における断面形状は、外周側から内周側に向かって窪む凹状であり、少なくとも厚さ方向の両端部にそれぞれ円弧状部分を有し、前記両端部の前記円弧状部分の間に、前記ワークの厚さ以上の厚さを有し前記ワークの直径を小さくすることと前記ワークの外周部の厚さ方向の中間部を平滑にすることとの少なくとも一方のための研削を行う直線部分を有する形状であり、前記砥石と前記ワークは、前記砥石支持機構または前記ワーク支持機構によって互いに接近したり離れたりするように相対的に移動可能であり、前記砥石支持機構または前記ワーク支持機構は、前記凹状研削部分と前記ワークとの接触部分が前記ワークの前記所望の断面形状に沿って移動するように前記砥石の前記円弧状部分の曲率半径に基づいて算出された移動条件に従って、前記砥石を前記ワークに対して相対的に移動させ、前記砥石の前記円弧状部分が、前記ワークの前記所望の断面形状の面取り部との間に実質的に隙間が生じることなく前記ワークに当接するように、前記砥石の前記円弧状部分の曲率半径は少なくとも前記ワークの厚さの10倍以上であり、前記ワークの前記吸着部材によって吸着される前記片側の面側に位置する前記円弧状部分は、前記砥石の前記回転軸に沿う断面において、前記所望の断面形状の前記ワークの、前記片側の面側の前記面取り部の長さ以上であって、かつ、当該円弧状部分の接線が前記吸着部材の前記先薄形状の角度と一致する角度で延びる位置において前記ワークの前記片側の面側の端部と接する状態で前記吸着部材の前記先薄形状に当接する長さ未満の長さを有していることを特徴とする。 The present invention provides a workpiece machining device for forming a disk-shaped workpiece into a desired cross-sectional shape, the device comprising: a workpiece support mechanism for supporting the workpiece; a disk-shaped grinding wheel arranged parallel to the workpiece; and a grinding wheel support mechanism for supporting the grinding wheel, the workpiece support mechanism rotates the workpiece, the grinding wheel support mechanism rotates the grinding wheel, a rotation axis around which the workpiece is rotated by the workpiece support mechanism and a rotation axis around which the grinding wheel is rotated by the grinding wheel support mechanism are parallel to each other, the workpiece support mechanism has an adsorption member for adsorbing only one side of the workpiece, and a planar shape of the adsorption member is such that the planar shape of the adsorption member is such that the planar shape of the workpiece ... a circular suction member having a radius smaller than the radius of the workpiece, an outer peripheral portion of the circular suction member having a tapered shape with a thickness that decreases toward the outside, the grindstone having a concave grinding portion on the outer peripheral portion, a cross-sectional shape of the concave grinding portion in a cross section along the rotation axis of the grindstone being concave recessed from the outer peripheral side toward the inner peripheral side, and having arc-shaped portions at least on both ends in a thickness direction, and a grinding surface having a thickness greater than or equal to the thickness of the workpiece and a grinding surface for grinding at least one of reducing the diameter of the workpiece and smoothing a middle portion of the outer peripheral portion of the workpiece in a thickness direction. The grindstone and the workpiece are relatively movable by the grindstone support mechanism or the workpiece support mechanism so as to approach or move away from each other, and the grindstone support mechanism or the workpiece support mechanism moves the grindstone relative to the workpiece in accordance with a movement condition calculated based on a radius of curvature of the arc-shaped portion of the grindstone so that a contact portion between the concave grinding portion and the workpiece moves along the desired cross-sectional shape of the workpiece, and the arc-shaped portion of the grindstone moves the workpiece without generating a substantial gap between the chamfered portion of the desired cross-sectional shape of the workpiece and the chamfered portion of the desired cross-sectional shape of the workpiece. the radius of curvature of the arc-shaped portion of the grinding wheel is at least 10 times the thickness of the workpiece so that the arc-shaped portion located on the one side of the workpiece that is attracted by the suction member has a length, in a cross section along the rotation axis of the grinding wheel, that is greater than or equal to the length of the chamfered portion on the one side of the workpiece having the desired cross-sectional shape, and is less than the length at which the arc-shaped portion abuts against the tapered shape of the suction member when in contact with the end of the one side of the workpiece at a position where a tangent to the arc-shaped portion extends at an angle that matches the angle of the tapered shape of the suction member.

本発明の円板状のワークを所望の断面形状に形成するためのもう1つのワーク加工装置は、前記ワークを支持するワーク支持機構と、前記ワークに対して平行に配置される円板状の砥石と、前記砥石を支持する砥石支持機構と、を有し、前記ワーク支持機構は前記ワークを回転させ、前記砥石支持機構は前記砥石を回転させ、前記ワーク支持機構による前記ワークの回転の中心となる回転軸と、前記砥石支持機構による前記砥石の回転の中心となる回転軸とは互いに平行であり、前記ワーク支持機構は、前記ワークの片側の面のみを吸着する吸着部材を有し、前記吸着部材の平面形状は、前記ワークの半径よりも小さい半径の円形状であり、円形状の前記吸着部材の外周部分は、外側に向かうにつれて厚さが薄くなる先薄形状を有し、前記砥石は外周部に凹状研削部分を有しており、前記凹状研削部分の、前記砥石の前記回転軸に沿う断面における断面形状は、外周側から内周側に向かって窪む凹状であり、少なくとも厚さ方向の両端部にそれぞれ円弧状部分と、前記円弧状部分よりも厚さ方向外側に位置して前記円弧状部分と連続的に繋がっている斜面部分と、を有し、前記両端部の前記円弧状部分の間に前記ワークの厚さ以上の厚さを有し前記ワークの直径を小さくすることと前記ワークの外周部の厚さ方向の中間部を平滑にすることとの少なくとも一方のための研削を行う直線部分を有する形状であり、前記斜面部分は、前記所望の断面形状の前記ワークの、前記片側の面側の面取り部の角度と一致する、前記円弧状部分と前記斜面部分との境界位置における前記円弧状部分の接線方向に沿って延びており、前記砥石と前記ワークは、前記砥石支持機構または前記ワーク支持機構によって互いに接近したり離れたりするように相対的に移動可能であり、前記砥石支持機構または前記ワーク支持機構は、前記凹状研削部分と前記ワークとの接触部分が前記ワークの前記所望の断面形状に沿って移動するように前記砥石の前記円弧状部分の曲率半径に基づいて算出された移動条件に従って、前記砥石を前記ワークに対して相対的に移動させ、前記砥石の前記円弧状部分の曲率半径は少なくとも前記ワークの厚さの10倍以上であり、前記ワークの前記吸着部材によって吸着される前記片側の面側に位置する前記斜面部分は、前記砥石の前記回転軸に沿う断面において、前記所望の断面形状の前記ワークの、前記片側の面側の前記面取り部の長さ以上であって、かつ、前記ワークの前記片側の面に対して当該斜面部分が延びる方向がなす角度が、前記ワークの前記片側の面に対して前記吸着部材の前記先薄形状がなす角度よりも小さい場合に、前記円弧状部分の接線が前記吸着部材の前記先薄形状の角度と一致する角度で延びる位置において前記ワークの前記片側の面側の端部と接する状態で当該斜面部分が前記吸着部材の前記先薄形状に当接する長さ未満の長さを有していることを特徴とする。 Another workpiece machining device for forming a disk-shaped workpiece into a desired cross-sectional shape of the present invention includes a workpiece support mechanism for supporting the workpiece, a disk-shaped grinding wheel arranged parallel to the workpiece, and a grinding wheel support mechanism for supporting the grinding wheel, the workpiece support mechanism rotates the workpiece, the grinding wheel support mechanism rotates the grinding wheel, a rotation axis that is the center of rotation of the workpiece by the workpiece support mechanism and a rotation axis that is the center of rotation of the grinding wheel by the grinding wheel support mechanism are parallel to each other, the workpiece support mechanism has an adsorption member that adsorbs only one side of the workpiece, the planar shape of the adsorption member is a circle with a radius smaller than the radius of the workpiece, and an outer peripheral portion of the circular adsorption member is a circular adsorption member. has a tapered shape that becomes thinner toward the outside, the grinding wheel has a concave grinding portion on its outer periphery, the cross-sectional shape of the concave grinding portion in a cross section along the rotation axis of the grinding wheel is concave recessed from the outer periphery toward the inner periphery, and has at least an arc-shaped portion at each end in the thickness direction, and a slope portion located outside the arc-shaped portion in the thickness direction and continuously connected to the arc-shaped portion, and has a straight portion between the arc-shaped portions at each end , the straight portion having a thickness equal to or greater than the thickness of the workpiece and performing grinding for at least one of reducing the diameter of the workpiece and smoothing the middle portion of the outer periphery of the workpiece in the thickness direction , and the slope portion has a shape having the desired cross-sectional shape. The concave grinding portion extends along a tangent direction of the arc-shaped portion at a boundary position between the arc-shaped portion and the inclined surface portion, which coincides with the angle of the chamfer on the one surface side of the workpiece, the grindstone and the workpiece can be relatively moved toward and away from each other by the grindstone support mechanism or the workpiece support mechanism, and the grindstone support mechanism or the workpiece support mechanism moves the grindstone relative to the workpiece in accordance with a movement condition calculated based on a radius of curvature of the arc-shaped portion of the grindstone so that a contact portion between the concave grinding portion and the workpiece moves along the desired cross-sectional shape of the workpiece, and the radius of curvature of the arc-shaped portion of the grindstone is at least 10 times the thickness of the workpiece. The above is characterized in that the inclined portion located on the one side of the workpiece that is attracted by the suction member has a length that is greater than or equal to the length of the chamfered portion on the one side of the workpiece having the desired cross-sectional shape, in a cross section along the rotation axis of the grinding wheel, and when the angle in which the inclined portion extends with respect to the one side of the workpiece is smaller than the angle that the tapered shape of the suction member makes with respect to the one side of the workpiece, the inclined portion has a length that is less than the length at which the inclined portion abuts the tapered shape of the suction member when in contact with the end of the one side of the workpiece at a position where a tangent to the arc-shaped portion extends at an angle that matches the angle of the tapered shape of the suction member.

本発明の、外周部に凹状研削部分を有しており回転可能な円板状の砥石であって、前記凹状研削部分の、前記砥石の回転軸に沿う断面における断面形状は、外周側から内周側に向かって窪む凹状であり、少なくとも厚さ方向の両端部にそれぞれ円弧状部分を有し、前記両端部の前記円弧状部分の間に、前記ワークの厚さ以上の厚さを有し前記ワークの直径を小さくすることと前記ワークの外周部の厚さ方向の中間部を平滑にすることとの少なくとも一方のための研削を行う直線部分を有する形状である砥石を用いて、円板状のワークを所望の断面形状に形成するためのワーク加工方法は、前記ワークと前記砥石とを互いに平行に配置するステップと、前記砥石を回転させるとともに、前記砥石の前記回転軸と平行な回転軸を中心として前記ワークを回転させつつ、前記凹状研削部分と前記ワークとの接触部分が前記ワークの前記所望の断面形状に沿って移動するように前記砥石の前記円弧状部分の曲率半径に基づいて算出された移動条件に従って、前記砥石を前記ワークに対して相対的に移動させるステップと、を含み、前記砥石を前記ワークに対して相対的に移動させるステップは、片側の面のみが吸着部材によって吸着された前記ワークと前記砥石とを回転させつつ、前記砥石の前記凹状研削部分の前記円弧状部分を前記ワークの外周端面から一方の面に向かって、前記移動条件に従って予め算出された角度だけ前記ワークに対して相対的に曲線的に移動させることにより、前記ワークの前記一方の面側の外周部を研削して前記ワークの前記所望の断面形状の面取り部を形成することと、前記砥石を前記ワークの外周端面に沿って前記一方の面側から他方の面側へ前記ワークに対して相対的に移動させることと、前記ワークと前記砥石とを回転させつつ、前記砥石の前記凹状研削部分の前記円弧状部分を前記ワークの外周端面から前記他方の面に向かって、前記移動条件に従って予め算出された角度だけ前記ワークに対して相対的に曲線的に移動させることにより、前記ワークの前記他方の面側の外周部を研削して前記ワークの前記所望の断面形状の面取り部を形成することと、を含み、前記吸着部材の平面形状は、前記ワークの半径よりも小さい半径の円形状であり、円形状の前記吸着部材の外周部分は、外側に向かうにつれて厚さが薄くなる先薄形状を有し、前記砥石の前記円弧状部分が、前記ワークの前記所望の断面形状の前記面取り部との間に実質的に隙間が生じることなく前記ワークに当接するように、前記砥石の前記円弧状部分の曲率半径は少なくとも前記ワークの厚さの10倍以上であり、前記ワークの前記吸着部材によって吸着される前記片側の面側に位置する前記円弧状部分は、前記砥石の前記回転軸に沿う断面において、前記所望の断面形状の前記ワークの、前記片側の面側の前記面取り部の長さ以上であって、かつ、当該円弧状部分の接線が前記吸着部材の前記先薄形状の角度と一致する角度で延びる位置において前記ワークの前記片側の面側の端部と接する状態で前記吸着部材の前記先薄形状に当接する長さ未満の長さを有しており、前記ワークの前記一方の面側または前記他方の面側の外周部の粗い研削を行う際には、前記ワークと前記砥石とを回転させつつ、前記砥石の前記凹状研削部分の前記円弧状部分を前記ワークの外周端面から前記一方の面または前記他方の面に向かって、前記砥石の前記回転軸と前記ワークの前記回転軸とが同一平面内に位置するように、前記移動条件に従って予め算出された角度だけ前記ワークに対して相対的に曲線的に移動させたら、前記砥石の前記ワークに対する相対的な移動を停止させ、前記ワークの前記一方の面側または前記他方の面側の外周部の精密な研削を行う際には、前記ワークと前記砥石とを回転させつつ、前記砥石の前記凹状研削部分の前記円弧状部分を前記ワークの外周端面から前記一方の面または前記他方の面に向かって、前記砥石の前記回転軸と前記ワークの前記回転軸とが同一平面内に位置するように、前記移動条件に従って予め算出された角度だけ前記ワークに対して相対的に曲線的に移動させた後に、曲線的な移動の際に前記砥石の前記回転軸と前記ワークの前記回転軸とが位置していた前記平面に対して垂直または斜めに交差する方向に延びる平面内において前記砥石の前記回転軸と前記ワークの前記回転軸とが相対的に移動するように、前記砥石を前記ワークに対して相対的に直線的に移動させることを特徴とする。 The present invention provides a method for machining a disc-shaped workpiece into a desired cross-sectional shape using a grindstone having a concave grinding portion on its outer periphery and a circular grinding wheel that is rotatable, the concave grinding portion having a cross-sectional shape in a cross section along a rotation axis of the grindstone being concave recessed from the outer periphery toward the inner periphery, the concave grinding portion having an arc-shaped portion at least at both ends in a thickness direction, and a straight portion having a thickness equal to or greater than the thickness of the workpiece and performing grinding for at least one of reducing the diameter of the workpiece and smoothing an intermediate portion of the outer periphery in the thickness direction of the workpiece between the arc-shaped portions at both ends, the straight portion having a thickness equal to or greater than the thickness of the workpiece and performing grinding for at least one of reducing the diameter of the workpiece and smoothing an intermediate portion of the outer periphery in the thickness direction of the workpiece, the method comprising the steps of: disposing the workpiece and the grindstone parallel to each other; and rotating the grindstone and rotating the workpiece about a rotation axis parallel to the rotation axis of the grindstone, while moving the grindstone relatively to the workpiece in accordance with a moving condition calculated based on a radius of curvature of the arc-shaped portion of the grindstone so that a contact portion between the concave grinding portion and the workpiece moves along the desired cross-sectional shape of the workpiece, the grindstone being configured to move in a direction parallel to the rotation axis of the grindstone. the step of moving the grinding wheel relative to the workpiece includes: rotating the workpiece , only one side of which is attracted by the attraction member, and the grinding wheel, while moving the arc-shaped portion of the concave grinding portion of the grinding wheel in a curved manner relative to the workpiece from the outer circumferential end face of the workpiece toward one side by an angle calculated in advance in accordance with the movement conditions, thereby grinding the outer circumferential portion of the one side of the workpiece to form a chamfered portion of the desired cross-sectional shape of the workpiece ; moving the grinding wheel relative to the workpiece along the outer circumferential end face of the workpiece from the one side to the other side; and while rotating the workpiece and the grinding wheel, moving the arc-shaped portion of the concave grinding portion of the grinding wheel in a curved manner relative to the workpiece from the outer circumferential end face of the workpiece toward the other side by an angle calculated in advance in accordance with the movement conditions, thereby grinding the outer circumferential portion of the other side of the workpiece to form a chamfered portion of the desired cross -sectional shape of the workpiece, The suction member has a circular shape, and an outer peripheral portion of the circular suction member has a tapered shape that becomes thinner toward the outside, and the radius of curvature of the arc-shaped portion of the grindstone is at least 10 times the thickness of the workpiece so that the arc-shaped portion of the grindstone abuts against the workpiece without generating a substantial gap between the arc-shaped portion and the chamfered portion of the desired cross-sectional shape of the workpiece, and the arc-shaped portion located on the side of the one surface of the workpiece that is sucked by the suction member is located in front of the desired cross-sectional shape in a cross section along the rotation axis of the grindstone. the workpiece has a length equal to or longer than the length of the chamfered portion on the one surface side, and shorter than the length at which the arc-shaped portion abuts against the tapered shape of the attraction member in a state where the tangent of the arc-shaped portion abuts against the end of the one surface side of the workpiece at a position where the tangent of the arc-shaped portion extends at an angle that coincides with the angle of the tapered shape of the attraction member, and when rough grinding of the outer periphery of the one surface side or the other surface side of the workpiece is performed, the arc-shaped portion of the concave grinding portion of the grindstone is ground from the outer periphery end face of the workpiece to the one surface side or the other surface side of the workpiece while rotating the workpiece and the grindstone. or, when performing precision grinding of the outer periphery of the one face side or the other face side of the workpiece, the grinding wheel is moved in a curved manner relative to the workpiece by an angle calculated in advance in accordance with the movement conditions, from the outer periphery end face of the workpiece toward the one face side or the other face side of the workpiece, so that the rotation axis of the grinding wheel and the rotation axis of the workpiece are located in the same plane, and then the relative movement of the grinding wheel with respect to the workpiece is stopped. When performing precision grinding of the outer periphery of the one face side or the other face side of the workpiece, while rotating the workpiece and the grinding wheel, the arc-shaped portion of the concave grinding portion of the grinding wheel is moved in a curved manner relative to the workpiece by an angle calculated in advance in accordance with the movement conditions, from the outer periphery end face of the workpiece toward the one face side or the other face side, so that the rotation axis of the grinding wheel and the rotation axis of the workpiece are located in the same plane, and then the grinding wheel is moved linearly relative to the workpiece so that the rotation axis of the grinding wheel and the rotation axis of the workpiece move relatively in a plane extending in a direction perpendicular or obliquely intersecting the plane in which the rotation axis of the grinding wheel and the rotation axis of the workpiece were located during the curved movement.

外周部に凹状研削部分を有しており回転可能な円板状の砥石であって、前記凹状研削部分の、前記砥石の回転軸に沿う断面における断面形状は、外周側から内周側に向かって窪む凹状であり、少なくとも厚さ方向の両端部にそれぞれ円弧状部分と、前記円弧状部分よりも厚さ方向外側に位置して前記円弧状部分と連続的に繋がっている斜面部分と、を有し、前記両端部の前記円弧状部分の間に前記ワークの厚さ以上の厚さを有し前記ワークの直径を小さくすることと前記ワークの外周部の厚さ方向の中間部を平滑にすることとの少なくとも一方のための研削を行う直線部分を有する形状である砥石を用いて、円板状のワークを所望の断面形状に形成するためのもう1つのワーク加工方法は、前記ワークと前記砥石とを互いに平行に配置するステップと、前記砥石を回転させるとともに、前記砥石の前記回転軸と平行な回転軸を中心として前記ワークを回転させつつ、前記凹状研削部分と前記ワークとの接触部分が前記ワークの前記所望の断面形状に沿って移動するように前記砥石の前記円弧状部分の曲率半径に基づいて算出された移動条件に従って、前記砥石を前記ワークに対して相対的に移動させるステップと、を含み、前記砥石を前記ワークに対して相対的に移動させるステップは、片側の面のみが吸着部材によって吸着された前記ワークと前記砥石とを回転させつつ、前記砥石の前記凹状研削部分の前記円弧状部分を前記ワークの外周端面から一方の面に向かって、前記移動条件に従って予め算出された角度だけ前記ワークに対して相対的に曲線的に移動させることにより、前記ワークの前記一方の面側の外周部を研削して前記ワークの前記所望の断面形状の面取り部を形成することと、前記砥石を前記ワークの外周端面に沿って前記一方の面側から他方の面側へ前記ワークに対して相対的に移動させることと、前記ワークと前記砥石とを回転させつつ、前記砥石の前記凹状研削部分の前記円弧状部分を前記ワークの外周端面から前記他方の面に向かって、前記移動条件に従って予め算出された角度だけ前記ワークに対して相対的に曲線的に移動させることにより、前記ワークの前記他方の面側の外周部を研削して前記ワークの前記所望の断面形状の面取り部を形成することと、を含み、前記吸着部材の平面形状は、前記ワークの半径よりも小さい半径の円形状であり、円形状の前記吸着部材の外周部分は、外側に向かうにつれて厚さが薄くなる先薄形状を有し、前記砥石の前記円弧状部分の曲率半径は少なくとも前記ワークの厚さの10倍以上であり、前記斜面部分は、前記所望の断面形状の前記ワークの、前記片側の面側の前記面取り部の角度と一致する、前記円弧状部分と前記斜面部分との境界位置における前記円弧状部分の接線方向に沿って延びており、前記ワークの前記吸着部材によって吸着される前記片側の面側に位置する前記斜面部分は、前記砥石の前記回転軸に沿う断面において、前記所望の断面形状の前記ワークの、前記片側の面側の前記面取り部の長さ以上であって、かつ、前記ワークの前記片側の面に対して当該斜面部分が延びる方向がなす角度が、前記ワークの前記片側の面に対して前記吸着部材の前記先薄形状がなす角度よりも小さい場合に、前記円弧状部分の接線が前記吸着部材の前記先薄形状の角度と一致する角度で延びる位置において前記ワークの前記片側の面側の端部と接する状態で当該斜面部分が前記吸着部材の前記先薄形状に当接する長さ未満の長さを有しており、前記ワークの前記一方の面側または前記他方の面側の外周部の粗い研削を行う際には、前記ワークと前記砥石とを回転させつつ、前記砥石の前記凹状研削部分の前記円弧状部分を前記ワークの外周端面から前記一方の面または前記他方の面に向かって、前記砥石の前記回転軸と前記ワークの前記回転軸とが同一平面内に位置するように、前記移動条件に従って予め算出された角度だけ前記ワークに対して相対的に曲線的に移動させたら、前記砥石の前記ワークに対する相対的な移動を停止させ、前記ワークの前記一方の面側または前記他方の面側の外周部の精密な研削を行う際には、前記ワークと前記砥石とを回転させつつ、前記砥石の前記凹状研削部分の前記円弧状部分を前記ワークの外周端面から前記一方の面または前記他方の面に向かって、前記砥石の前記回転軸と前記ワークの前記回転軸とが同一平面内に位置するように、前記移動条件に従って予め算出された角度だけ前記ワークに対して相対的に曲線的に移動させた後に、曲線的な移動の際に前記砥石の前記回転軸と前記ワークの前記回転軸とが位置していた前記平面内に前記砥石の前記回転軸と前記ワークの前記回転軸とが位置する状態を維持したまま、前記砥石を前記ワークに対して相対的に直線的に移動させることを特徴とする。 A rotatable, disk-shaped grinding wheel having a concave grinding portion on its outer periphery, the cross-sectional shape of the concave grinding portion in a cross section along the rotation axis of the grinding wheel is concave recessed from the outer periphery toward the inner periphery, and has at least an arc-shaped portion at each end in the thickness direction, and a slope portion located outside the arc-shaped portion in the thickness direction and continuously connected to the arc-shaped portion, and has a thickness greater than or equal to the thickness of the workpiece between the arc-shaped portions at both ends for at least one of reducing the diameter of the workpiece and smoothing the middle portion of the outer periphery of the workpiece in the thickness direction. Another method for forming a disk-shaped workpiece into a desired cross-sectional shape using a grindstone having a shape having a straight portion for grinding the concave grinding surface includes the steps of: arranging the workpiece and the grindstone parallel to each other; rotating the grindstone and rotating the workpiece about a rotation axis parallel to the rotation axis of the grindstone; and moving the grindstone relative to the workpiece in accordance with a movement condition calculated based on a radius of curvature of the arc-shaped portion of the grindstone so that a contact portion between the concave grinding portion and the workpiece moves along the desired cross-sectional shape of the workpiece. and a step of moving the grindstone relative to the workpiece, the step including: rotating the workpiece, only one side of which is attracted by an attraction member , and the grindstone, while moving the arc-shaped portion of the concave grinding portion of the grindstone in a curved manner from the outer peripheral end face of the workpiece toward one side by an angle calculated in advance according to the movement conditions, thereby grinding the outer periphery of the one side of the workpiece to form a chamfered portion of the workpiece having the desired cross-sectional shape ; and moving the grindstone along the outer peripheral end face of the workpiece toward the one side. and, while rotating the workpiece and the grindstone, moving the arc-shaped portion of the concave grinding portion of the grindstone in a curved manner from the outer peripheral end face of the workpiece toward the other surface by an angle calculated in advance according to the movement conditions, thereby grinding the outer periphery of the other surface side of the workpiece to form a chamfered portion of the workpiece having the desired cross-sectional shape, wherein the planar shape of the attraction member is a circle with a radius smaller than the radius of the workpiece, and the outer periphery of the circular attraction member is a circle with a radius smaller than the radius of the workpiece. The peripheral portion has a tapered shape that becomes thinner toward the outside, the radius of curvature of the arc-shaped portion of the grindstone is at least 10 times the thickness of the workpiece, the inclined portion extends along a tangent direction of the arc-shaped portion at a boundary position between the arc-shaped portion and the inclined portion, which coincides with the angle of the chamfer on the one side of the workpiece having the desired cross-sectional shape, and the inclined portion located on the one side of the workpiece that is attracted by the attraction member is located at a cross section along the rotation axis of the grindstone that coincides with the angle of the chamfer on the one side of the workpiece having the desired cross-sectional shape. a chamfered portion on the one side of the workpiece, and an angle formed by a direction in which the inclined portion extends with respect to the one side of the workpiece is smaller than an angle formed by the tapered shape of the suction member with respect to the one side of the workpiece, the inclined portion has a length less than a length at which the inclined portion abuts against the tapered shape of the suction member in a state in which the tangent of the arc-shaped portion contacts the end of the one side of the workpiece at a position where the tangent of the arc-shaped portion extends at an angle that coincides with the angle of the tapered shape of the suction member, and when rough grinding of the outer periphery of the one side or the other side of the workpiece is performed, While rotating the workpiece and the grindstone, the arc-shaped portion of the concave grinding portion of the grindstone is moved in a curved manner relative to the workpiece from the outer peripheral end face of the workpiece toward the one surface or the other surface by an angle calculated in advance according to the movement conditions so that the rotation axis of the grindstone and the rotation axis of the workpiece are positioned in the same plane, and then the relative movement of the grindstone with respect to the workpiece is stopped. When performing precise grinding of the outer peripheral portion of the one surface side or the other surface side of the workpiece, the concave grinding portion of the grindstone is moved in a curved manner relative to the workpiece by an angle calculated in advance according to the movement conditions. The method is characterized in that the arc-shaped portion of the grinding portion is moved curvilinearly relative to the workpiece from the outer peripheral end face of the workpiece toward the one face or the other face by an angle calculated in advance according to the movement conditions so that the rotation axis of the grinding wheel and the rotation axis of the workpiece are located in the same plane, and then the grinding wheel is moved linearly relative to the workpiece while maintaining the state in which the rotation axis of the grinding wheel and the rotation axis of the workpiece are located in the plane in which the rotation axis of the grinding wheel and the rotation axis of the workpiece were located during the curvilinear movement.

外周部に凹状研削部分を有しており回転可能な円板状の砥石であって、前記凹状研削部分の、前記砥石の回転軸に沿う断面における断面形状は、外周側から内周側に向かって窪む凹状であり、少なくとも厚さ方向の両端部にそれぞれ円弧状部分を有し、前記両端部の前記円弧状部分の間に、前記ワークの厚さ以上の厚さを有し前記ワークの直径を小さくすることと前記ワークの外周部の厚さ方向の中間部を平滑にすることとの少なくとも一方のための研削を行う直線部分を有する形状である砥石を用いて、円板状のワークを所望の断面形状に形成するためのさらにもう1つのワーク加工方法は、前記ワークと前記砥石とを互いに平行に配置するステップと、前記砥石を回転させるとともに、前記砥石の前記回転軸と平行な回転軸を中心として前記ワークを回転させつつ、前記凹状研削部分と前記ワークとの接触部分が前記ワークの前記所望の断面形状に沿って移動するように前記砥石の前記円弧状部分の曲率半径に基づいて算出された移動条件に従って、前記砥石を前記ワークに対して相対的に移動させるステップと、を含み、前記砥石を前記ワークに対して相対的に移動させるステップは、片側の面のみが吸着部材によって吸着された前記ワークと前記砥石とを回転させつつ、前記砥石の前記凹状研削部分の前記円弧状部分を前記ワークの外周端面から一方の面に向かって、前記移動条件に従って予め算出された角度だけ前記ワークに対して相対的に曲線的に移動させることにより、前記ワークの前記一方の面側の外周部を研削して前記ワークの前記所望の断面形状の面取り部を形成することと、前記砥石を前記ワークの外周端面に沿って前記一方の面側から他方の面側へ前記ワークに対して相対的に移動させることと、前記ワークと前記砥石とを回転させつつ、前記砥石の前記凹状研削部分の前記円弧状部分を前記ワークの外周端面から前記他方の面に向かって、前記移動条件に従って予め算出された角度だけ前記ワークに対して相対的に曲線的に移動させることにより、前記ワークの前記他方の面側の外周部を研削して前記ワークの前記所望の断面形状の面取り部を形成することと、を含み、前記吸着部材の平面形状は、前記ワークの半径よりも小さい半径の円形状であり、円形状の前記吸着部材の外周部分は、外側に向かうにつれて厚さが薄くなる先薄形状を有し、前記砥石の前記円弧状部分が、前記ワークの前記所望の断面形状の前記面取り部との間に実質的に隙間が生じることなく前記ワークに当接するように、前記砥石の前記円弧状部分の曲率半径は少なくとも前記ワークの厚さの10倍以上であり、前記ワークの前記吸着部材によって吸着される前記片側の面側に位置する前記円弧状部分は、前記砥石の前記回転軸に沿う断面において、前記所望の断面形状の前記ワークの、前記片側の面側の前記面取り部の長さ以上であって、かつ、当該円弧状部分の接線が前記吸着部材の前記先薄形状の角度と一致する角度で延びる位置において前記ワークの前記片側の面側の端部と接する状態で前記吸着部材の前記先薄形状に当接する長さ未満の長さを有しており、前記ワークの前記一方の面側または前記他方の面側の外周部の粗い研削を行う際には、前記ワークと前記砥石とを回転させつつ、前記砥石の前記凹状研削部分の前記円弧状部分を前記ワークの外周端面から前記一方の面または前記他方の面に向かって、前記移動条件に従って予め算出された角度だけ前記ワークに対して相対的に曲線的に移動させたら、前記砥石の前記ワークに対する相対的な移動を停止させ、前記ワークの前記一方の面側の外周部の精密な研削を行う際には、前記ワークと前記砥石とを回転させつつ、前記ワークの回転時に生じる厚さ方向の位置誤差を考慮して前記ワークが回転時に通過する厚さ方向の前記一方の面側において最も外側の位置を基準にして、前記砥石の前記凹状研削部分の前記円弧状部分を前記ワークの外周端面から前記一方の面に向かって、前記移動条件に従って予め算出された角度だけ前記ワークに対して相対的に曲線的に移動させた後に、移動を停止させ、前記砥石が前記ワークの前記一方の面側の前記面取り部の斜面に接する位置で、前記ワークの厚さ方向の位置を調整しながら前記ワークの回転速度を遅くして少なくとも1回転以上回転させることで、前記ワークの回転時の位置誤差を打ち消しながら前記ワークの前記一方の面側を研削し、前記ワークの前記他方の面側の外周部の精密な研削を行う際には、前記ワークと前記砥石とを回転させつつ、前記ワークの回転時に生じる厚さ方向の位置誤差を考慮して前記ワークが回転時に通過する厚さ方向の前記他方の面側において最も外側の位置を基準にして、前記砥石の前記凹状研削部分の前記円弧状部分を前記ワークの外周端面から前記他方の面に向かって、前記移動条件に従って予め算出された角度だけ前記ワークに対して相対的に曲線的に移動させた後に、移動を停止させ、前記砥石が前記ワークの前記他方の面側の前記面取り部の斜面に接する位置で、前記ワークの厚さ方向の位置を調整しながら前記ワークの回転速度を遅くして少なくとも1回転以上回転させることで、前記ワークの回転時の位置誤差を打ち消しながら前記ワークの前記他方の面側を研削することを特徴とする。 A further method for forming a disk-shaped workpiece into a desired cross-sectional shape using a grinding wheel having a concave grinding portion on its outer periphery and a rotatable disk-shaped grinding wheel, the concave grinding portion having a cross-sectional shape in a cross section along the rotation axis of the grinding wheel that is concave recessed from the outer periphery toward the inner periphery, at least one of an arc-shaped portion at each end in the thickness direction, and a straight portion having a thickness equal to or greater than the thickness of the workpiece and performing grinding for at least one of reducing the diameter of the workpiece and smoothing an intermediate portion of the outer periphery of the workpiece in the thickness direction, is a method for forming a disk-shaped workpiece into a desired cross-sectional shape using a grinding wheel having a concave grinding portion on its outer periphery and a cross-sectional shape in a cross section along the rotation axis of the grinding wheel that has an arc-shaped portion at least at both ends in the thickness direction, and a straight portion between the arc-shaped portions at both ends that has a thickness equal to or greater than the thickness of the workpiece and performs grinding for at least one of reducing the diameter of the workpiece and smoothing an intermediate portion of the outer periphery of the workpiece in the thickness direction. and a step of moving the grindstone relatively to the workpiece in accordance with a movement condition calculated based on a radius of curvature of the arc-shaped portion of the grindstone so that a contact portion between the concave ground portion and the workpiece moves along the desired cross-sectional shape of the workpiece while rotating the grindstone and the workpiece about a rotation axis parallel to the rotation axis of the grindstone. The step of moving the grindstone relatively to the workpiece includes: rotating the workpiece, only one surface of which is attracted by an attraction member, and the grindstone, and moving the grindstone relatively to the workpiece in accordance with a movement condition calculated based on a radius of curvature of the arc-shaped portion of the grindstone so that a contact portion between the concave ground portion and the workpiece moves along the desired cross-sectional shape of the workpiece. a grinding wheel moving along the outer circumferential end face of the work from the one surface side to the other surface side relative to the work, the ... and grinding the outer periphery of the other surface side of the workpiece by moving the grindstone in a curved line relative to the workpiece to form a chamfered portion of the desired cross-sectional shape of the workpiece , wherein the planar shape of the attraction member is a circle having a radius smaller than the radius of the workpiece, the outer periphery of the circular attraction member has a tapered shape that becomes thinner toward the outside, the radius of curvature of the arc-shaped portion of the grindstone is at least 10 times the thickness of the workpiece so that the arc-shaped portion of the grindstone abuts against the workpiece without generating a substantial gap between the arc-shaped portion of the grindstone and the chamfered portion of the desired cross-sectional shape of the workpiece, and the arc-shaped portion located on the one surface side that is attracted by the attracting member has a length, in a cross section along the rotation axis of the grindstone, that is equal to or longer than the length of the chamfered portion on the one surface side of the workpiece having the desired cross-sectional shape, and is shorter than a length that abuts against the tapered shape of the attracting member in a state where the tangent of the arc-shaped portion abuts against the end of the one surface side of the workpiece at a position that extends at an angle that coincides with the angle of the tapered shape of the attracting member, and when rough grinding of the outer periphery of the one surface side or the other surface side of the workpiece is performed, the workpiece and the grindstone are rotated, and the front of the concave grinding portion of the grindstone is ground. When the arc-shaped portion is moved in a curved manner relative to the workpiece from the outer peripheral end surface of the workpiece toward the one surface or the other surface by an angle calculated in advance according to the movement conditions, the relative movement of the grindstone with respect to the workpiece is stopped, and when performing precise grinding of the outer periphery of the one surface side of the workpiece, the arc-shaped portion of the concave grinding portion of the grindstone is moved from the outer peripheral end surface of the workpiece toward the one surface, while rotating the workpiece and the grindstone, taking into account a position error in the thickness direction that occurs when the workpiece rotates, and using as a reference the outermost position on the one surface side in the thickness direction through which the workpiece passes when it rotates. After the grinding wheel is moved in a curved line relative to the workpiece by an angle calculated in advance according to the movement conditions, the movement is stopped, and the workpiece is rotated at least one revolution while adjusting the position in the thickness direction of the workpiece at a position where the grinding wheel contacts the slope of the chamfered portion on the one side of the workpiece, thereby grinding the one side of the workpiece while canceling out a position error during rotation of the workpiece, and when performing precise grinding of the outer periphery of the other side of the workpiece, the workpiece and the grinding wheel are rotated while taking into account a position error in the thickness direction that occurs during rotation of the workpiece. the arc-shaped portion of the concave grinding portion of the grinding wheel is moved in a curved manner relative to the workpiece from the outer peripheral end face of the workpiece toward the other surface by an angle calculated in advance in accordance with the movement conditions, based on the outermost position on the other surface side in the thickness direction through which the grinding wheel passes, and then the movement is stopped; and at a position where the grinding wheel contacts the sloping surface of the chamfered portion on the other surface side of the workpiece, the rotation speed of the workpiece is slowed down and the workpiece is rotated at least one revolution while adjusting the position in the thickness direction of the workpiece, thereby grinding the other surface side of the workpiece while canceling out a position error during rotation of the workpiece.

本発明によると、ワークの面取り加工を容易に効率良くかつ高精度に行うことができ、ワークおよび砥石を支持および駆動する機構が簡単であって、しかも砥石の整形が容易にできるワーク加工装置、砥石、およびワーク加工方法を提供することができる。 The present invention provides a workpiece processing device, grinding wheel, and workpiece processing method that can perform chamfering of a workpiece easily, efficiently, and with high precision, has a simple mechanism for supporting and driving the workpiece and grinding wheel, and can easily shape the grinding wheel.

本発明の第1の実施形態に係るワーク加工装置を模式的に示す正面図である。1 is a front view showing a schematic view of a workpiece machining device according to a first embodiment of the present invention; 図1に示すワーク加工装置の砥石を示す断面図である。FIG. 2 is a cross-sectional view showing a grindstone of the workpiece machining apparatus shown in FIG. 本発明の第1の実施形態に係るワーク加工方法の一例を順番に模式的に示す正面図である。1A to 1C are front views sequentially and diagrammatically illustrating an example of a workpiece machining method according to a first embodiment of the present invention. 図3(B)に示す工程を示す拡大図である。FIG. 4 is an enlarged view showing the step shown in FIG. 図4に示す工程に続く工程を示す拡大図である。5 is an enlarged view showing a step subsequent to the step shown in FIG. 4; 図5に示す工程に続く工程を示す拡大図である。FIG. 6 is an enlarged view showing a step subsequent to the step shown in FIG. 5 . (A)は本発明の第1の実施形態において加工されたワークの例を示す正面図であり、(B)はワークの上面側の厚さ方向と水平方向の位置ずれの大きさを説明するための説明図であり、(C)はワークの下面側の厚さ方向と水平方向の位置ずれの大きさを説明するための説明図である。(A) is a front view showing an example of a workpiece machined in the first embodiment of the present invention, (B) is an explanatory diagram for explaining the magnitude of positional deviation in the thickness direction and horizontal direction of the upper surface side of the workpiece, and (C) is an explanatory diagram for explaining the magnitude of positional deviation in the thickness direction and horizontal direction of the lower surface side of the workpiece. 本発明の第1の実施形態において加工されたワークの他の例を示す正面図である。FIG. 4 is a front view showing another example of the workpiece machined in the first embodiment of the present invention. 従来のワーク加工装置の砥石の一例を示す断面図である。FIG. 1 is a cross-sectional view showing an example of a grindstone of a conventional workpiece processing device. 図1に示すワーク加工装置の砥石および砥石支持機構の一例を詳細に示す断面図である。2 is a cross-sectional view showing in detail an example of a grindstone and a grindstone support mechanism of the workpiece machining apparatus shown in FIG. 1 . 本発明の第1の実施形態の砥石の好ましい寸法を説明するための説明図である。FIG. 2 is an explanatory diagram for explaining preferred dimensions of the grindstone according to the first embodiment of the present invention. 本発明の第2の実施形態に係るワーク加工装置の砥石を示す断面図である。FIG. 6 is a cross-sectional view showing a grindstone of a workpiece machining apparatus according to a second embodiment of the present invention. 本発明の第2の実施形態の砥石の好ましい寸法を説明するための説明図である。FIG. 11 is an explanatory diagram for explaining preferred dimensions of a grinding wheel according to a second embodiment of the present invention. 本発明の第3の実施形態に係るワーク加工装置を模式的に示す正面図である。FIG. 11 is a front view illustrating a workpiece machining device according to a third embodiment of the present invention. 本発明の第4の実施形態に係るワーク加工装置を示す正面図である。FIG. 10 is a front view showing a workpiece machining device according to a fourth embodiment of the present invention. 本発明のワーク加工方法の一例を説明するためのワークおよび砥石の平面図である。1 is a plan view of a workpiece and a grinding wheel for explaining an example of a workpiece machining method of the present invention. FIG. 本発明のワーク加工方法の他の例を説明するためのワークの平面図である。10 is a plan view of a workpiece for explaining another example of the workpiece machining method of the present invention. FIG. 図17を用いて説明されるワーク加工方法の例を説明するための説明図である。18 is an explanatory diagram for explaining an example of a workpiece machining method described with reference to FIG. 17 .

以下、本発明の実施形態について図面を参照して説明する。図1は、本発明の第1の実施形態に係るワーク加工装置1を模式的に示す正面図である。図2は、ワーク加工装置1の砥石5を示す断面図である。ワーク加工装置1は、半導体ウェーハやガラス基板やセラミックス等の円板状のワーク2を研削して、ワーク2の外周部の面取りを行う装置である。ワーク加工装置1は、シリコン(Si)やシリコンカーバイド(SiC)や窒化ガリウム(GaN)やヒ化ガリウム(GaAs)やサファイア等を含む高硬度のワーク2の面取り加工に特に適している。ただし、ワーク加工装置1を、その他の種類のワークの加工に用いることもできる。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a front view showing a workpiece processing device 1 according to a first embodiment of the present invention. FIG. 2 is a cross-sectional view showing a grinding wheel 5 of the workpiece processing device 1. The workpiece processing device 1 is a device that grinds a disk-shaped workpiece 2 such as a semiconductor wafer, a glass substrate, or a ceramic, and chamfers the outer periphery of the workpiece 2. The workpiece processing device 1 is particularly suitable for chamfering a high-hardness workpiece 2 including silicon (Si), silicon carbide (SiC), gallium nitride (GaN), gallium arsenide (GaAs), sapphire, etc. However, the workpiece processing device 1 can also be used to process other types of workpieces.

ワーク加工装置1は、円板状のワーク2を支持するとともに回転軸3を中心として回転させるワーク支持機構4と、円板状の砥石5を支持するとともに回転軸6を中心として回転させる砥石支持機構7と、を有している。一例としては、ワーク2は直径が50~300mmで厚さが1mm以下程度の円板状であり、砥石5は直径が100~200mmで厚さが20~60mm程度の円板状である。便宜上、図面中ではワーク2の厚さを厚く図示している。ワーク支持機構4と砥石支持機構7とは、円板状のワーク2と円板状の砥石5とを互いに平行に支持している。ワーク支持機構4は、円板状のワーク2の片側の面2bを吸着部材10によって吸着保持し、ワーク2の平面形状の中心に位置してワーク2に対して直交する回転軸3を中心としてワーク2を回転させることができる。同様に、砥石支持機構7は、円板状の砥石5を、砥石5の平面形状の中心に位置して砥石5に対して直交する回転軸6を中心として回転させることができる。ワーク支持機構4によるワーク2の回転の中心となる回転軸3と、砥石支持機構7による砥石5の回転の中心となる回転軸6とは互いに平行である。砥石5とワーク2は、砥石支持機構7またはワーク支持機構4によって互いに接近したり離れたりするように相対的に移動可能である。一例としては、砥石支持機構7は、砥石5を回転させている状態で、砥石5およびワーク2に対して平行な面内(回転軸3および回転軸6に直交する面内)で、砥石5がワーク2に対して接近する方向にもワーク2から離れる方向にも砥石5を移動させることができ、かつ砥石5およびワーク2に対して直交する面内(回転軸3および回転軸6に平行な面内)で、砥石5がワーク2に対して接近する方向にもワーク2から離れる方向にも砥石5を移動させることができる。従って、砥石5は、砥石支持機構7によって、少なくとも回転軸3,6を含む面内で、ワーク2に対して任意の方向から接近することができ、かつ任意の方向に離れることができる。ワーク支持機構4は、ワーク支持機構4の回転軸3の温度を一定に保つための液体または気体の流れを発生させる温度調整機構15を有している。なお、詳述しないが、ワーク支持機構4および砥石支持機構7は、公知の吸着テーブルや回転モータや可動ステージ等から構成されていてよい。ワーク支持機構4の詳細かつ具体的な構成例については後述する。 The workpiece processing device 1 has a workpiece support mechanism 4 that supports a disk-shaped workpiece 2 and rotates it around a rotation axis 3, and a grinding wheel support mechanism 7 that supports a disk-shaped grinding wheel 5 and rotates it around a rotation axis 6. As an example, the workpiece 2 is disk-shaped with a diameter of 50 to 300 mm and a thickness of about 1 mm or less, and the grinding wheel 5 is disk-shaped with a diameter of 100 to 200 mm and a thickness of about 20 to 60 mm. For convenience, the thickness of the workpiece 2 is illustrated as being thick in the drawings. The workpiece support mechanism 4 and the grinding wheel support mechanism 7 support the disk-shaped workpiece 2 and the disk-shaped grinding wheel 5 in parallel with each other. The workpiece support mechanism 4 adsorbs and holds one side 2b of the disk-shaped workpiece 2 with an adsorption member 10, and can rotate the workpiece 2 around a rotation axis 3 that is located at the center of the planar shape of the workpiece 2 and perpendicular to the workpiece 2. Similarly, the grindstone support mechanism 7 can rotate the disk-shaped grindstone 5 around a rotation axis 6 that is located at the center of the planar shape of the grindstone 5 and perpendicular to the grindstone 5. The rotation axis 3, which is the center of rotation of the workpiece 2 by the workpiece support mechanism 4, and the rotation axis 6, which is the center of rotation of the grindstone 5 by the grindstone support mechanism 7, are parallel to each other. The grindstone 5 and the workpiece 2 can be moved relatively to each other by the grindstone support mechanism 7 or the workpiece support mechanism 4 so as to approach or move away from each other. As an example, the grindstone support mechanism 7 can move the grindstone 5 in a direction in which the grindstone 5 approaches the workpiece 2 and in a direction in which the grindstone 5 moves away from the workpiece 2 in a plane parallel to the grindstone 5 and the workpiece 2 (in a plane perpendicular to the rotation axis 3 and the rotation axis 6) while rotating the grindstone 5, and can move the grindstone 5 in a direction in which the grindstone 5 approaches the workpiece 2 and in a direction in which the grindstone 5 moves away from the workpiece 2 in a plane perpendicular to the grindstone 5 and the workpiece 2 (in a plane parallel to the rotation axis 3 and the rotation axis 6). Therefore, the grinding wheel 5 can approach the workpiece 2 from any direction and move away from it in any direction within a plane including at least the rotation axes 3 and 6 by the grinding wheel support mechanism 7. The workpiece support mechanism 4 has a temperature adjustment mechanism 15 that generates a flow of liquid or gas to keep the temperature of the rotation axis 3 of the workpiece support mechanism 4 constant. Although not described in detail, the workpiece support mechanism 4 and the grinding wheel support mechanism 7 may be composed of a known suction table, a rotary motor, a movable stage, etc. Detailed and specific configuration examples of the workpiece support mechanism 4 will be described later.

ワーク加工装置1の砥石5は、図2に示すように、基体になるベース円板部5aと、ベース円板部5aの外周部に位置する凹状研削部分5bと、凹状研削部分5bと厚さ方向に並んで設けられている断面長方形状研削部分5gと、を有している。ベース円板部5aは、アルミニウムやステンレス等の合金からなり、厚さ方向に延びて回転軸6が挿通されるストレート状の取付穴5cと、砥石支持機構7の図示しない保持部(例えばフランジ部)に取り付けるための凹部5dとが設けられている。砥石5の外周部に位置する凹状研削部分5bはメタルボンド砥石またはレジンボンド砥石等からなり、凹状研削部分5bの、砥石5の回転軸6に沿う断面における断面形状は、半径方向外側(外周側)から内側(内周側)に向かって窪む凹状であり、厚さ方向の両端部にそれぞれ円弧状部分5eを有し、両端部の円弧状部分5eの間に、ワーク2の厚さ以上の厚さを有する直線部分5fを有する形状である。凹状研削部分5bは、半径方向外側に向かって突出する凸形状の部分を含んでいない。断面長方形状研削部分5gは、砥石5の厚さ方向において凹状研削部分5bよりもさらに外側に位置し、ワーク2と対向する面が回転軸6に沿う断面において砥石5の厚さ方向と平行な直線状である。図2では、円弧状部分5eと直線部分5fとの境界を仮想的な線(2点鎖線)で示している。 2, the grinding wheel 5 of the workpiece processing device 1 has a base disk portion 5a serving as a base body, a concave grinding portion 5b located on the outer periphery of the base disk portion 5a, and a grinding portion 5g having a rectangular cross section arranged in line with the concave grinding portion 5b in the thickness direction. The base disk portion 5a is made of an alloy such as aluminum or stainless steel, and is provided with a straight mounting hole 5c extending in the thickness direction through which the rotating shaft 6 is inserted, and a recess 5d for mounting to a holding portion (e.g., a flange portion) not shown in the figure of the grinding wheel support mechanism 7. The concave grinding portion 5b located on the outer periphery of the grinding wheel 5 is made of a metal bond grinding wheel or a resin bond grinding wheel, etc., and the cross-sectional shape of the concave grinding portion 5b in a cross section along the rotating shaft 6 of the grinding wheel 5 is a concave shape recessed from the radial outside (outer periphery side) to the inside (inner periphery side), and has arc-shaped portions 5e at both ends in the thickness direction, and has a straight portion 5f having a thickness greater than the thickness of the workpiece 2 between the arc-shaped portions 5e at both ends. The concave ground portion 5b does not include a convex portion that protrudes radially outward. The rectangular cross-sectional ground portion 5g is located further outward than the concave ground portion 5b in the thickness direction of the grinding wheel 5, and the surface facing the workpiece 2 is a straight line parallel to the thickness direction of the grinding wheel 5 in a cross section along the rotation shaft 6. In FIG. 2, the boundary between the arc-shaped portion 5e and the straight portion 5f is shown by a virtual line (two-dot chain line).

図1に示すワーク加工装置1を用いたワーク加工方法について説明する。図3(A)~図3(D)はこのワーク加工方法の一例を順番に模式的に示す正面図である。図3(A)~図3(D)に示すように、砥石5の厚さはワーク2の厚さに比べてはるかに大きい。まず、被加工物であるワーク2(例えば半導体ウェーハ)をワーク支持機構4の吸着部材10により吸着保持して、回転軸3を中心として回転させる。ワーク2は回転させられるが移動はしない。砥石支持機構7に取り付けられている砥石5を、砥石支持機構7によって、回転軸6を中心として回転させるととともに、砥石5の外周部がワーク2の外周部に当接するように移動させる。一例としては、図3(A)に示すように、砥石支持機構7に取り付けられた砥石5を、ワーク支持機構4の吸着部材10に吸着保持されたワーク2に断面長方形状研削部分5gが対向するように配置する。ワーク2を、回転軸3を中心として回転させるとともに、砥石5を、回転軸6を中心として回転させながら、砥石5の断面長方形状研削部分5gをワーク2の外周部に当接させて研削する。このように断面長方形状研削部分5gを用いてワーク2の外周部の粗い研削(粗研)を行って、ワーク2を所望の大きさに近づけるように径を小さくする。こうして断面長方形状研削部分5gにより粗く研削されたワーク2の外周面を、図3(B)に示すように、砥石5の凹状研削部分5bの直線部分5fに当接させてより精密な研削(精研)を行って、ワーク2を所望の大きさ(所望の直径)にする。 A workpiece machining method using the workpiece machining device 1 shown in FIG. 1 will be described. FIGS. 3(A) to 3(D) are front views that show an example of this workpiece machining method in sequence. As shown in FIGS. 3(A) to 3(D), the thickness of the grindstone 5 is much larger than that of the workpiece 2. First, the workpiece 2 (e.g., a semiconductor wafer) is sucked and held by the suction member 10 of the workpiece support mechanism 4 and rotated around the rotation axis 3. The workpiece 2 is rotated but does not move. The grindstone 5 attached to the grindstone support mechanism 7 is rotated around the rotation axis 6 by the grindstone support mechanism 7 and moved so that the outer periphery of the grindstone 5 abuts on the outer periphery of the workpiece 2. As an example, as shown in FIG. 3(A), the grindstone 5 attached to the grindstone support mechanism 7 is arranged so that the cross-sectional rectangular grinding portion 5g faces the workpiece 2 sucked and held by the suction member 10 of the workpiece support mechanism 4. While rotating the workpiece 2 around the rotation axis 3 and rotating the grindstone 5 around the rotation axis 6, the grinding wheel 5 is brought into contact with the outer periphery of the workpiece 2 to grind it. The grinding wheel 5 is used to roughly grind (roughly grind) the outer periphery of the workpiece 2, thereby reducing the diameter of the workpiece 2 to approach the desired size. The outer periphery of the workpiece 2 thus roughly ground by the grinding wheel 5 is brought into contact with the straight line portion 5f of the concave grinding portion 5b of the grindstone 5 as shown in FIG. 3B, thereby grinding (finely grinding) the outer periphery of the workpiece 2 to the desired size (desired diameter).

それから、砥石5を、ワーク2の一方の面側(図3(A)~図3(D)に示す例ではワーク2の上方)に移動させつつ、ワーク2の回転と砥石5の回転とを続行したまま、図3(C)に示すように、砥石5の外周部をワーク2の一方の面の外周部に当接させた状態で、砥石5をワーク2に対して移動させる。具体的には、砥石5をワーク2の厚さ方向の中心付近かつ半径方向側から、ワーク2の他方の面側(図3(A)~図3(D)に示す例では下面側)かつ半径方向側に向けて徐々に移動させる。それにより、砥石5の上側の凹状研削部分5bの円弧状部分5eがワーク2の外周部の一方の面側(上側)のエッジに当接して研削して面取りが行われ、面取り部2aが形成される。 Then, while moving the grindstone 5 to one side of the workpiece 2 (above the workpiece 2 in the example shown in Fig. 3(A) to Fig. 3(D)), the workpiece 2 and the grindstone 5 are continued to rotate, and the grindstone 5 is moved relative to the workpiece 2 with the outer periphery of the grindstone 5 abutting against the outer periphery of one side of the workpiece 2 as shown in Fig. 3(C). Specifically, the grindstone 5 is gradually moved from near the center in the thickness direction of the workpiece 2 and radially inside toward the other side of the workpiece 2 (the lower side in the example shown in Fig. 3(A) to Fig. 3(D)) and radially outside . As a result, the arc-shaped portion 5e of the upper concave grinding portion 5b of the grindstone 5 abuts against the edge of one side (upper side) of the outer periphery of the workpiece 2, grinding and chamfering, and the chamfered portion 2a is formed.

ワーク2の外周部の上側のエッジの面取りが完了したら、砥石5の厚さ方向の中心付近がワーク2と対向するように砥石5を一方の面側(図3(A)~図3(D)に示す例では上方)に移動(上昇)させる。そして、図3(D)に示すように、砥石5の凹状研削部分5bの円弧状部分5eをワーク2の他方の面の外周部に当接させ、砥石5を上昇させながら、ワーク2の半径方向側から側に向けて移動させる。このように、回転する砥石5の下側の凹状研削部分5bの円弧状部分5eをワーク2の外周部に当接させてワーク2を研削することで、ワーク2の外周部の下側のエッジの面取りが行われ、面取り部2aが形成される。最終的には、ワーク2が砥石5の凹状研削部分5bよりも外側に位置して砥石5がワーク2に接しない状態になり、ワーク2の面取り加工が終了する。図3(A)~図3(D)に示すように、ワーク2および砥石5の厚さ方向において、砥石5がワーク2の中心に対向する位置から一方の面側と他方の面側(上下)に往復移動(トラバース)して、ワーク2の外周部の上側のエッジの面取りと下側のエッジの面取りとを行う。ワーク2の外周部の上側のエッジの面取りも下側のエッジの面取りも、ワーク2の半径方向における砥石5の同一方向の移動(ワーク2の半径方向側から側に向かう移動)によって行われる。本実施形態では、両面の面取り部2aは、砥石5がワーク2の半径方向側から側に向かう一方向の動作だけで形成される。例えば、特許文献5に記載されているように、ワークの先端の直線部のみならず、直線部と面取り部との間の曲面部や両面の面取り部においても、砥石とワークとが相対的に往復動作(トラバース)して研削する方法に比べて、本実施形態では、研削加工を容易かつ短時間で効率良く実施できる。そして、本実施形態の砥石5の凹状研削部分5bは主に円弧状の曲面であるため、形成する面取り部2aの形状および寸法に合わせて曲面形状の計算および設計が容易である。なお、一部の図面においては、ワーク2の所望の断面形状を判りやすくするために、面取り部2aの形成途中または形成前の段階であっても、ほぼ完成した状態の面取り部2aの形状を図示している場合がある。 When the chamfering of the upper edge of the outer periphery of the workpiece 2 is completed, the grindstone 5 is moved (raised) to one side (upward in the example shown in Fig. 3(A) to Fig. 3(D)) so that the vicinity of the center in the thickness direction of the grindstone 5 faces the workpiece 2. Then, as shown in Fig. 3(D), the circular arc portion 5e of the concave grinding portion 5b of the grindstone 5 is brought into contact with the outer periphery of the other side of the workpiece 2, and the grindstone 5 is raised while moving from the inside to the outside in the radial direction of the workpiece 2. In this way, the circular arc portion 5e of the lower concave grinding portion 5b of the rotating grindstone 5 is brought into contact with the outer periphery of the workpiece 2 to grind the workpiece 2, thereby chamfering the lower edge of the outer periphery of the workpiece 2 and forming the chamfered portion 2a. Finally, the workpiece 2 is positioned outside the concave grinding portion 5b of the grindstone 5, and the grindstone 5 is not in contact with the workpiece 2, and the chamfering of the workpiece 2 is completed. As shown in Fig. 3(A) to Fig. 3(D), in the thickness direction of the workpiece 2 and the grindstone 5, the grindstone 5 moves back and forth (traverses) from a position facing the center of the workpiece 2 to one side and the other side (up and down) to chamfer the upper edge and the lower edge of the outer periphery of the workpiece 2. The upper edge and the lower edge of the outer periphery of the workpiece 2 are both chamfered by the movement of the grindstone 5 in the same direction in the radial direction of the workpiece 2 (movement from the radial inside to the radial outside of the workpiece 2). In this embodiment, the chamfered portions 2a on both sides are formed by the movement of the grindstone 5 in only one direction from the radial inside to the radial outside of the workpiece 2. For example, as described in Patent Document 5, in this embodiment, grinding can be performed easily, quickly, and efficiently by grinding not only the straight portion at the tip of the workpiece but also the curved portion between the straight portion and the chamfered portion and the chamfered portion on both sides by the grindstone and the workpiece moving back and forth (traverses) relative to each other. In addition, since the concave grinding portion 5b of the grindstone 5 in this embodiment is mainly an arc-shaped curved surface, it is easy to calculate and design the curved surface shape according to the shape and dimensions of the chamfered portion 2a to be formed. Note that in some drawings, in order to make the desired cross-sectional shape of the workpiece 2 easier to understand, the shape of the chamfered portion 2a in a nearly completed state is shown even in the middle of or before the formation of the chamfered portion 2a.

このワーク加工方法について、図4~6を参照して、より詳細に説明する。本実施形態の加工方法では、砥石5の凹状研削部分5bとワーク2との接触部分がワーク2の所望の断面形状に沿って移動するように、砥石5とワーク2との相対的な移動の移動条件を計算によって求める。本実施形態の砥石5の寸法は既知であるため、砥石5とワーク2とを相対的に移動させるための移動条件は、砥石5の凹状研削部分5bの厚さ方向の両端部に位置する円弧状部分5eの曲率半径に基づいて算出する。こうして算出された移動条件に従って、砥石支持機構7またはワーク支持機構4が、砥石5をワーク2に対して相対的に移動させる。例えば、ワーク2の所望の断面形状を、ワーク2の回転軸3と砥石5の回転軸6とを含む面内の2次元の座標として表し、砥石5とワーク2との接触部分が各座標の点を辿るように砥石5とワーク2の相対的な移動条件が設定される。こうして、本実施形態では、砥石5とワーク2がNC制御(数値制御)されて相対的に移動することでワーク2の研削が行われる。 This workpiece machining method will be described in more detail with reference to Figures 4 to 6. In the machining method of this embodiment, the movement conditions for the relative movement between the grindstone 5 and the workpiece 2 are calculated so that the contact portion between the concave grinding portion 5b of the grindstone 5 and the workpiece 2 moves along the desired cross-sectional shape of the workpiece 2. Since the dimensions of the grindstone 5 in this embodiment are known, the movement conditions for relatively moving the grindstone 5 and the workpiece 2 are calculated based on the radius of curvature of the arc-shaped portion 5e located at both ends in the thickness direction of the concave grinding portion 5b of the grindstone 5. According to the movement conditions thus calculated, the grindstone support mechanism 7 or the workpiece support mechanism 4 moves the grindstone 5 relative to the workpiece 2. For example, the desired cross-sectional shape of the workpiece 2 is expressed as two-dimensional coordinates in a plane including the rotation axis 3 of the workpiece 2 and the rotation axis 6 of the grindstone 5, and the relative movement conditions between the grindstone 5 and the workpiece 2 are set so that the contact portion between the grindstone 5 and the workpiece 2 follows the points of each coordinate. Thus, in this embodiment, the grinding wheel 5 and the workpiece 2 are moved relative to each other under NC (numerically controlled) control, thereby grinding the workpiece 2.

具体的には、砥石5の断面長方形状研削部分5gをワーク2の外周部に当接させて粗い研削(粗研)を行った後に、図4に示すように、砥石5の凹状研削部分5bの直線部分5fをワーク2の外周部に当接させてより精密な研削(精研)を行って、ワーク2の直径を小さくする。ワーク2の外周部がほぼ直線状になり、ワーク2の直径が所望の大きさになるまでワーク2を研削する。その後に、図5に示すように、ワーク2の一方の面側(例えば上側)において予め設定された位置P1から、ワーク2の一方の面側(例えば上側)の角部が砥石5の凹状研削部分5bの円弧状部分5eに沿って相対的に曲線的に摺動するように、砥石5をワーク2に対して相対的に厚さ方向に移動させる。予め算出された移動条件に基づいて、砥石5とワーク2とが相対的に厚さ方向と半径方向とに適切に移動することにより、砥石5はワーク2に対して相対的に所望の曲線軌跡を辿る。そして、ワーク2の半径方向外側から内側に向かう相対的な移動の開始点P1からの角度αが、予め設定された所定の角度になる位置P2に到達したら、砥石5とワーク2との相対的な移動量を一定にして、砥石5をワーク2に対して相対的に直線的に移動させる。それにより、ワーク2の所望の断面形状(2点鎖線にて図示)の直線部分を形成する。角度αは、ワーク2の回転軸3と砥石5の回転軸6とを含む面内でワーク2の内周側から測定される角度である。そして、砥石5はワーク2の厚さ方向の一方の面の外側まで相対的に移動してワーク2と非接触になり、ワーク2の一方の面の研削が完了する。ワーク2の他方の面側においても、図6に示すように、図5に示すワーク2の一方の面側における動作を実質的に上下反転した動作を行うことにより、ワーク2の他方の面の研削を行う。 Specifically, after roughly grinding (rough grinding) by abutting the cross-sectional rectangular grinding portion 5g of the grinding wheel 5 on the outer periphery of the workpiece 2, as shown in FIG. 4, the straight portion 5f of the concave grinding portion 5b of the grinding wheel 5 is abutted on the outer periphery of the workpiece 2 to perform more precise grinding (fine grinding) to reduce the diameter of the workpiece 2. The workpiece 2 is ground until the outer periphery of the workpiece 2 becomes almost straight and the diameter of the workpiece 2 becomes the desired size. Then, as shown in FIG. 5, the grinding wheel 5 is moved in the thickness direction relative to the workpiece 2 from a position P1 preset on one side (e.g., the upper side) of the workpiece 2 so that the corner of one side (e.g., the upper side) of the workpiece 2 slides relatively curvedly along the arc-shaped portion 5e of the concave grinding portion 5b of the grinding wheel 5. Based on the movement conditions calculated in advance, the grinding wheel 5 and the workpiece 2 move appropriately relative to each other in the thickness direction and radial direction, so that the grinding wheel 5 follows a desired curved trajectory relative to the workpiece 2. Then, when the angle α from the starting point P1 of the relative movement from the outside to the inside in the radial direction of the workpiece 2 reaches a position P2 at which the angle is a preset predetermined angle, the grinding wheel 5 is moved linearly relative to the workpiece 2 while keeping the relative movement amount between the grinding wheel 5 and the workpiece 2 constant. This forms a linear portion of the desired cross-sectional shape of the workpiece 2 (shown by a two-dot chain line). The angle α is an angle measured from the inner circumference side of the workpiece 2 within a plane including the rotation axis 3 of the workpiece 2 and the rotation axis 6 of the grinding wheel 5. Then, the grinding wheel 5 moves relatively to the outside of one surface in the thickness direction of the workpiece 2 and becomes out of contact with the workpiece 2, completing grinding of one surface of the workpiece 2. On the other surface of the workpiece 2, as shown in FIG. 6, the operation on one surface of the workpiece 2 shown in FIG. 5 is substantially reversed upside down, thereby grinding the other surface of the workpiece 2.

砥石5とワーク2の大きさの差は、実際には、図4~6に示されているよりもはるかに大きく(例えば砥石5の円弧状部分5eの曲率半径はワーク2の厚さの数十倍であり)、砥石5の円弧状部分5eの、ワーク2の外周面に接する部分はほぼ直線状になる場合がある。例えば、砥石5が移動して移動角度αが所定の大きさになった時点(図5,6参照)で、砥石5の円弧状部分5eが、ワーク2に形成される面取り部2aの所望の形状(図5,6には2点鎖線にて図示)との間に生じる隙間が無視できるほど非常に小さく、ワーク2の面取り部2a全体を所望の形状に研削できるようにワーク2に接する可能性がある。その場合には、砥石5が移動して移動角度αが所定の大きさになった時点で砥石5の移動を中止して、その後に砥石5をワーク2に対して相対的に直線的に移動させる工程を省略することも考えられる。より精密な研削を行う場合には、移動角度αが所定の大きさになるまで砥石5を曲線的に移動させた後に、砥石5をワーク2に対して相対的に直線的に移動させる工程を行うことが好ましい。しかし、精密な研削の前段階として比較的粗い研削を行う場合には、移動角度αが所定の大きさになるまで砥石5を曲線的に移動させた後に、砥石5をワーク2に対して相対的に直線的に移動させる工程を省略して、作業を簡略化してもよい。本実施形態では、砥石5の円弧状部分5eが、ワーク2の所望の断面形状の面取り部2aとの間に実質的に隙間が生じることなくワーク2に当接するように、砥石5の円弧状部分5eの曲率半径は少なくともワーク2の厚さの10倍以上である。 The difference in size between the grinding wheel 5 and the workpiece 2 is actually much larger than that shown in Figures 4 to 6 (for example, the radius of curvature of the arc-shaped portion 5e of the grinding wheel 5 is several tens of times the thickness of the workpiece 2), and the portion of the arc-shaped portion 5e of the grinding wheel 5 that contacts the outer circumferential surface of the workpiece 2 may be almost linear. For example, when the grinding wheel 5 moves and the movement angle α becomes a predetermined size (see Figures 5 and 6), the gap between the arc-shaped portion 5e of the grinding wheel 5 and the desired shape of the chamfered portion 2a formed on the workpiece 2 (shown by a two-dot chain line in Figures 5 and 6) is so small that it can be ignored, and the grinding wheel 5 may contact the workpiece 2 so that the entire chamfered portion 2a of the workpiece 2 can be ground into the desired shape. In that case, it is also possible to omit the process of stopping the movement of the grinding wheel 5 when the movement angle α becomes a predetermined size and then moving the grinding wheel 5 linearly relative to the workpiece 2. When performing more precise grinding, it is preferable to perform a step of moving the grindstone 5 in a curved line until the movement angle α reaches a predetermined value, and then moving the grindstone 5 linearly relative to the workpiece 2. However, when performing relatively rough grinding as a preliminary step to precise grinding, the operation may be simplified by omitting the step of moving the grindstone 5 in a curved line until the movement angle α reaches a predetermined value, and then moving the grindstone 5 linearly relative to the workpiece 2. In this embodiment, the radius of curvature of the arc-shaped portion 5e of the grindstone 5 is at least 10 times the thickness of the workpiece 2 so that the arc-shaped portion 5e of the grindstone 5 abuts against the workpiece 2 without generating a substantial gap between the arc-shaped portion 5e and the chamfered portion 2a of the workpiece 2 having the desired cross-sectional shape.

このように、本実施形態では、予め算出した移動条件に従って砥石5とワーク2とを相対的に移動させることにより、砥石5とワーク2との接触部分がワーク2の所望の断面形状に基づいて算出された移動軌跡を辿る。その結果、ワーク2を所望の断面形状に形成することができる。そして、種類の異なるワーク2の加工を行う場合には、新たに加工するワーク2の所望の断面形状に合わせて、そのワーク2を加工するための移動条件を算出する。この時、砥石5の円弧状部分5eの曲率半径に基づいて移動条件を算出するため、同一の砥石5を用いて様々な形状のワーク2を正確に加工することができる。 In this manner, in this embodiment, by moving the grindstone 5 and the workpiece 2 relatively according to the movement conditions calculated in advance, the contact portion between the grindstone 5 and the workpiece 2 follows a movement trajectory calculated based on the desired cross-sectional shape of the workpiece 2. As a result, the workpiece 2 can be formed into the desired cross-sectional shape. When machining a different type of workpiece 2, the movement conditions for machining the workpiece 2 are calculated according to the desired cross-sectional shape of the new workpiece 2 to be machined. At this time, the movement conditions are calculated based on the radius of curvature of the arc-shaped portion 5e of the grindstone 5, so that workpieces 2 of various shapes can be accurately machined using the same grindstone 5.

本実施形態の効果について説明する。特許文献6,10に記載されている従来の加工方法では、構造上、あまり大きな(大径の)砥石を用いることは困難であるため、小さい(小径の)砥石で加工を行わなければならない。その結果、砥石の寿命は短く、砥石の交換や整形を行う頻度が高い。しかし、本実施形態では、砥石5および砥石支持機構7が他の部材、具体的にはワーク支持機構4に干渉するおそれが小さいため、構造上の制約が小さく、大きな(大径の)砥石5を用いてワーク2を加工することができる。従って、砥石5の寿命が長く、砥石5の交換や整形の頻度が低い。また、特許文献6,10に記載されている加工方法では、砥石の回転方向と、ワークに対する相対的な移動方向とが、実質的に一致している(いずれもワーク2の厚さ方向である)。そのため、砥石の外周部に大きな凹凸部があると、砥石の回転によりワークの外周面に回転方向(ワークの厚さ方向)に沿う線状痕が生じやすい。この砥石は回転しながら、ワークに対して相対的に、回転方向と同じ方向、すなわち線状痕と実質的に平行な方向に移動するため、線状痕は消されずに残りやすい。砥石の、ワークの外周面に線状痕を生じさせた部分(大きな凹凸部)は、ワークの周方向の位置は変わらないままワークの厚さ方向に相対移動する。従って、ワークには、この大きな凹凸部に当接せず線状痕と同程度に深く研削されることはない部分が残る可能性がある。その結果、砥石が移動しても線状痕は消されずに残りやすい。なお、砥石の回転方向と直交する方向にワークが回転するが、ワークの回転により周方向に移動する長さは、砥石とワークとがワークの厚さ方向に相対移動する長さに比べてはるかに長い。砥石は、ワークの全周の研削と、ワークの厚さ方向への相対移動とを行うため、ワークの加工時間があまり長くならないようにするためには、砥石がワークに対して相対的にワークの厚さ方向に移動する速度があまり遅くならないようにすることが必要である。ワークの砥石に当接する部分は、ワークの周方向の幅が狭く、砥石がワークに対して相対的にワークの厚さ方向に移動する速度が遅くならないようにするためには、ワークの回転速度(周方向の移動速度)を速くして、砥石がワークの全周に当接して研削するのに要する時間を短くすることが求められる。このように、ワークの回転速度を速くすることにより、ワークと砥石とが互いに直交する方向に回転しても、研削後のワークの表面粗さが粗くなる。これに対し、本実施形態では、砥石5の回転方向と、ワーク2に対する相対的な移動方向とが、実質的に直交する。砥石5の回転方向はワーク2の周方向であり、相対移動方向はワーク2の厚さ方向である。砥石5の外周部に大きな凹凸部があると、砥石5の回転によりワーク2の外周面に周方向に沿う線状痕が生じる。この砥石5は回転しながら、ワーク2に対して相対的に、回転方向と直交する方向、すなわち線状痕と実質的に直交する方向に移動するため、線状痕は残りにくい。砥石5の、ワーク2の外周面に線状痕を生じさせた部分(大きな凹凸部)は周方向に回転しながら線状痕に直交する方向に移動するため、この大きな凹凸部はワーク2の外周面のほぼ全体に順次当接する。従って、ワーク2の外周面のほぼ全体が、この大きな凹凸部によって線状痕と同程度に深く研削される。このように、砥石5の回転方向と、ワーク2に対する相対的な移動方向とが実質的に直交することにより、ワーク2の外周面に生じた線状痕は消されて平滑になりやすい。なお、この構成では、ワーク2の回転速度が速くても、砥石5の回転方向(ワーク2の周方向)と砥石5の相対移動方向(ワーク2の厚さ方向)とが直交しており相対移動距離が短いため、砥石5がワーク2の厚さ方向に非常にゆっくりと相対移動しても、加工時間はそれほど長くならない。従って、砥石5のワーク2の厚さ方向の相対移動速度を比較的遅くして、ワーク2の全周を十分に研削することにより、研削後のワークの表面粗さを良好にすることができる。 The effect of this embodiment will be described. In the conventional processing methods described in Patent Documents 6 and 10, it is difficult to use a grinding wheel that is too large (large diameter) due to its structure, so processing must be performed with a small (small diameter) grinding wheel. As a result, the life of the grinding wheel is short, and the grinding wheel needs to be replaced or shaped frequently. However, in this embodiment, the grinding wheel 5 and the grinding wheel support mechanism 7 are unlikely to interfere with other members, specifically the workpiece support mechanism 4, so there are few structural constraints and the workpiece 2 can be processed using a large (large diameter) grinding wheel 5. Therefore, the life of the grinding wheel 5 is long, and the frequency of replacement and shaping of the grinding wheel 5 is low. In addition, in the processing methods described in Patent Documents 6 and 10, the rotation direction of the grinding wheel and the relative movement direction with respect to the workpiece are substantially the same (both are the thickness direction of the workpiece 2). Therefore, if there are large uneven parts on the outer periphery of the grinding wheel, linear marks along the rotation direction (thickness direction of the workpiece) are likely to be generated on the outer periphery of the workpiece due to the rotation of the grinding wheel. Since the grindstone rotates and moves in the same direction as the rotation direction, i.e., in a direction substantially parallel to the linear marks, relative to the workpiece, the linear marks are likely to remain without being erased. The part of the grindstone that caused the linear marks on the outer peripheral surface of the workpiece (large uneven part) moves relatively in the thickness direction of the workpiece while the position in the circumferential direction of the workpiece remains unchanged. Therefore, there is a possibility that a part of the workpiece that does not come into contact with the large uneven part and is not ground as deeply as the linear marks remains. As a result, the linear marks are likely to remain without being erased even when the grindstone moves. Note that the workpiece rotates in a direction perpendicular to the rotation direction of the grindstone, but the length of the circumferential movement of the workpiece due to the rotation is much longer than the length of the relative movement of the grindstone and the workpiece in the thickness direction of the workpiece. Since the grindstone grinds the entire circumference of the workpiece and moves relatively in the thickness direction of the workpiece, in order to prevent the processing time of the workpiece from being too long, it is necessary to prevent the speed at which the grindstone moves in the thickness direction of the workpiece relative to the workpiece from slowing down too much. The portion of the workpiece that contacts the grinding wheel has a narrow width in the circumferential direction of the workpiece, and in order to prevent the speed at which the grinding wheel moves in the thickness direction of the workpiece relative to the workpiece from slowing down, it is necessary to increase the rotation speed of the workpiece (the speed of movement in the circumferential direction) to shorten the time required for the grinding wheel to contact the entire circumference of the workpiece and grind it. In this way, by increasing the rotation speed of the workpiece, even if the workpiece and the grinding wheel rotate in directions perpendicular to each other, the surface roughness of the workpiece after grinding becomes rough. In contrast, in this embodiment, the rotation direction of the grinding wheel 5 and the relative movement direction with respect to the workpiece 2 are substantially perpendicular to each other. The rotation direction of the grinding wheel 5 is the circumferential direction of the workpiece 2, and the relative movement direction is the thickness direction of the workpiece 2. If there are large uneven parts on the outer periphery of the grinding wheel 5, the rotation of the grinding wheel 5 will cause linear scratches along the circumferential direction on the outer periphery of the workpiece 2. Since the grinding wheel 5 moves relative to the workpiece 2 in a direction perpendicular to the rotation direction, i.e., in a direction substantially perpendicular to the linear scratches, while rotating, linear scratches are unlikely to remain. The portion of the grinding wheel 5 that has caused linear scratches on the outer peripheral surface of the workpiece 2 (large uneven portion) moves in a direction perpendicular to the linear scratches while rotating in the circumferential direction, so that the large uneven portion comes into contact with almost the entire outer peripheral surface of the workpiece 2 in sequence. Therefore, almost the entire outer peripheral surface of the workpiece 2 is ground by the large uneven portion to the same depth as the linear scratches. In this way, the rotation direction of the grinding wheel 5 and the relative movement direction with respect to the workpiece 2 are substantially perpendicular to each other, so that the linear scratches on the outer peripheral surface of the workpiece 2 are easily erased and smoothed. In addition, in this configuration, even if the rotation speed of the workpiece 2 is fast, the rotation direction of the grinding wheel 5 (circumferential direction of the workpiece 2) and the relative movement direction of the grinding wheel 5 (thickness direction of the workpiece 2) are perpendicular to each other, and the relative movement distance is short, so even if the grinding wheel 5 moves very slowly in the thickness direction of the workpiece 2, the processing time does not become so long. Therefore, by making the relative movement speed of the grinding wheel 5 in the thickness direction of the workpiece 2 relatively slow and grinding the entire circumference of the workpiece 2 sufficiently, the surface roughness of the workpiece after grinding can be improved.

特許文献5に記載されている従来の加工方法では、砥石の外形に沿ってワークを相対的に移動させることにより研削を行うため、加工後のワークの形状は砥石の外形(特に砥石の曲線状または直線状の傾斜面の形状や角度)によって決まる。従って、形状の異なるワークを形成するためには、砥石の交換が必要である。これに対し、本実施形態では、砥石5とワーク2の相対的な移動が、砥石5の外形に沿うように行われるのではなく、砥石5の凹状研削部分5bの円弧状部分5eの曲率半径を考慮して算出された移動条件に従って行われる。そのため、形状の異なるワーク2を形成する際には、砥石5を交換する必要はなく、移動条件を変更すればよい。すなわち、砥石5を交換することなく、同一の砥石5を用いて様々な形状のワーク2を形成できる。移動条件は砥石5の凹状研削部分5bの円弧状部分5eの曲率半径等に基づく計算によって求められ、砥石5とワーク2の相対的な移動はこの移動条件に基づいて数値制御されるため、加工精度は良好である。このように、本実施形態によると、同一の砥石5により様々な形状のワーク2を形成でき、しかも加工精度が良好であり、さらに砥石5の寿命が長いという多くの優れた効果を奏することができる。 In the conventional processing method described in Patent Document 5, grinding is performed by moving the workpiece relatively along the outer shape of the grinding wheel, so the shape of the workpiece after processing is determined by the outer shape of the grinding wheel (especially the shape and angle of the curved or linear inclined surface of the grinding wheel). Therefore, in order to form a workpiece of a different shape, it is necessary to replace the grinding wheel. In contrast, in this embodiment, the relative movement of the grinding wheel 5 and the workpiece 2 is not performed along the outer shape of the grinding wheel 5, but is performed according to movement conditions calculated taking into account the radius of curvature of the arc-shaped portion 5e of the concave grinding portion 5b of the grinding wheel 5. Therefore, when forming a workpiece 2 of a different shape, it is not necessary to replace the grinding wheel 5, and it is sufficient to change the movement conditions. In other words, it is possible to form workpieces of various shapes using the same grinding wheel 5 without replacing the grinding wheel 5. The movement conditions are calculated by calculation based on the radius of curvature of the arc-shaped portion 5e of the concave grinding portion 5b of the grinding wheel 5, and the relative movement of the grinding wheel 5 and the workpiece 2 is numerically controlled based on these movement conditions, so that the processing accuracy is good. In this way, this embodiment has many excellent effects, such as being able to form workpieces 2 of various shapes using the same grinding wheel 5, having good machining accuracy, and having a long life for the grinding wheel 5.

本実施形態の加工装置および加工方法によると、図7(A)に示すように、外周部が1対の円弧状部分とそれらを接続する直線部分とよって形成されたいわゆるT形状のワーク2も、図8に示すように、外周部が半円状であるいわゆるR形状のワーク2も、精度良く形成することができる。図7(A)に示すT形状のワーク2の場合、外周部の1対の円弧状部分のそれぞれの曲率半径R1,R2と、それぞれの円弧状部分から繋がる直線的な傾斜面部分の長さY1,Y2と、これらの傾斜面部分のワーク2の表面に対する角度θ1,θ2と、1対の円弧状部分の間の直線部分の長さC0と、図7(A)には示されていない砥石5の凹状研削部分5bの円弧状部分5eの曲率半径とに基づく計算によって求められた移動条件に従って加工が行われる。図8に示すR形状のワーク2の場合、外周部の半円状の部分の半径Rと、半円状の部分から両側にそれぞれ繋がる直線的な傾斜面部分の長さY1,Y2と、これらの傾斜面部分のワーク2の表面に対する角度θ1,θ2と、図8には示されていない砥石5の凹状研削部分5bの円弧状部分5eの曲率半径とに基づく計算によって求められた移動条件に従って加工が行われる。このように、図7(A)に示すT形状のワーク2も、図8に示すR形状のワーク2も、図示されている所望の断面形状の各部の寸法と、砥石5の凹状研削部分5bの円弧状部分5eの曲率半径とに基づく計算によって求めた移動条件に従う数値制御により、精度良く加工することができる。 According to the processing device and processing method of this embodiment, as shown in Fig. 7 (A), a so-called T-shaped workpiece 2 whose outer periphery is formed by a pair of arc-shaped parts and a straight part connecting them, as shown in Fig. 8, can be formed with high accuracy. In the case of the T-shaped workpiece 2 shown in Fig. 7 (A), processing is performed according to the movement conditions obtained by calculation based on the respective radii of curvature R1, R2 of the pair of arc-shaped parts of the outer periphery, the lengths Y1, Y2 of the linear inclined surface parts connected to the respective arc-shaped parts, the angles θ1, θ2 of these inclined surface parts with respect to the surface of the workpiece 2, the length C0 of the straight part between the pair of arc-shaped parts, and the radius of curvature of the arc-shaped part 5e of the concave grinding part 5b of the grinding wheel 5 not shown in Fig. 7 (A). In the case of the R-shaped workpiece 2 shown in Figure 8, machining is performed according to movement conditions calculated based on the radius R of the semicircular portion of the outer periphery, the lengths Y1, Y2 of the linear inclined surface portions connected to both sides of the semicircular portion, the angles θ1, θ2 of these inclined surface portions relative to the surface of the workpiece 2, and the radius of curvature of the arc-shaped portion 5e of the concave grinding portion 5b of the grinding wheel 5, not shown in Figure 8. In this way, both the T-shaped workpiece 2 shown in Figure 7 (A) and the R-shaped workpiece 2 shown in Figure 8 can be machined with high precision by numerical control according to movement conditions calculated based on the dimensions of each part of the desired cross-sectional shape shown in the figure and the radius of curvature of the arc-shaped portion 5e of the concave grinding portion 5b of the grinding wheel 5.

本実施形態では、砥石支持機構7が、ワーク2の半径方向における、面取り加工開始前の砥石5の位置、すなわち砥石5がワーク2に接触開始する位置と、面取り加工終了時の砥石5の位置、すなわち砥石5のワーク2との接触が終了する位置とを調整することにより、面取り部2aの大きさを調整することができる。また、このように調整された面取り部2aの大きさと、砥石5によってワーク2が研削される速度とを考慮した上で、砥石支持機構7が、砥石5を上昇または下降させる速度と、ワーク2の半径方向に移動させる速度とを調整することによって、ワーク2の面取り部2aの角度や形状等を調整することができる。さらに、砥石5の外周部の曲線部のうちのどの部分をワークに接触させて研削するかによって、砥石5のワーク2に対する接触角度が変わるため、ワーク2の面取り部2aの角度や形状等を調整することができる。このように、主に砥石支持機構7による砥石5の移動の制御によって、ワーク2の面取り部2aの所望の形状や寸法を実現することができる。そのために、砥石支持機構7は、砥石5を数値制御(NC制御)によって駆動することが好ましい。 In this embodiment, the grindstone support mechanism 7 adjusts the position of the grindstone 5 before the start of chamfering in the radial direction of the workpiece 2, i.e., the position where the grindstone 5 starts to contact the workpiece 2, and the position of the grindstone 5 at the end of the chamfering, i.e., the position where the contact of the grindstone 5 with the workpiece 2 ends, thereby adjusting the size of the chamfered portion 2a. In addition, taking into consideration the size of the chamfered portion 2a adjusted in this way and the speed at which the workpiece 2 is ground by the grindstone 5, the grindstone support mechanism 7 adjusts the speed at which the grindstone 5 is raised or lowered and the speed at which the grindstone 5 is moved in the radial direction of the workpiece 2, thereby adjusting the angle, shape, etc. of the chamfered portion 2a of the workpiece 2. Furthermore, since the contact angle of the grindstone 5 with the workpiece 2 changes depending on which part of the curved portion of the outer periphery of the grindstone 5 is brought into contact with the workpiece for grinding, the angle, shape, etc. of the chamfered portion 2a of the workpiece 2 can be adjusted. In this way, the desired shape and dimensions of the chamfered portion 2a of the workpiece 2 can be realized mainly by controlling the movement of the grindstone 5 by the grindstone support mechanism 7. For this reason, it is preferable that the grindstone support mechanism 7 drives the grindstone 5 using numerical control (NC control).

本実施形態の砥石5は凹状研削部分5bを有しており、この凹状研削部分5bによってワーク2の面取り等の研削を行うため、安定的に円滑な研削が可能であるとともに、砥石5の低コスト化および長寿命化が可能である。例えば、図示しないが特許文献11に記載された構成のように砥石が凸状研削部分を有し、この凸状研削部分によってワークの面取り等の研削を行う場合には、凸状研削部分をワークに当接させた状態で、砥石の中心(回転軸)とワークの中心(回転軸)とが互いに近づくように相対移動させながら研削を行う。これは、砥石とワークとが衝突する方向の相対移動であるため、研削中の衝撃および振動が大きく、砥石およびワークにそれぞれ加わる負荷が大きい。また、凸状研削部分を有する砥石は比較的重量が大きく慣性モーメントも大きい。これに対し、本実施形態の砥石5は凹状研削部分5bを有しており、凹状研削部分5bをワーク2に当接させた状態で、砥石5の中心(回転軸6)とワーク2の中心(回転軸3)とが互いに離れる方向に相対移動させながら研削を行う。これは、砥石5とワーク2とが衝突する方向への相対移動に比べて、研削中の衝撃や振動が小さく、砥石5およびワーク2にそれぞれ加わる負荷が小さく、研削面が綺麗になる。また、凸状研削部分と比べて、研削に実際に使用される部分が同程度の大きさを有する凹状研削部分5bは小型化および軽量化でき、慣性モーメントも小さくすることができる。このことも研削中の振動低減に寄与する。このように砥石5の凹状研削部分5bによってワーク2の面取り等の研削を行う構成では、振動や負荷が小さいため劣化が遅く長寿命化する。このことは、砥石5の製作コストの低下にもつながる。 The grinding wheel 5 of this embodiment has a concave grinding portion 5b, and the grinding such as chamfering of the workpiece 2 is performed by this concave grinding portion 5b, so that stable and smooth grinding is possible, and the grinding wheel 5 can be reduced in cost and extended in life. For example, as in the configuration described in Patent Document 11 (not shown), when the grinding wheel has a convex grinding portion and grinds the workpiece such as chamfering by this convex grinding portion, grinding is performed while the center (rotation axis) of the grinding wheel and the center (rotation axis) of the workpiece are moved relatively to approach each other while the convex grinding portion is in contact with the workpiece. Since this is a relative movement in the direction in which the grinding wheel and the workpiece collide with each other, the impact and vibration during grinding are large, and the load applied to the grinding wheel and the workpiece is large. In addition, a grinding wheel having a convex grinding portion is relatively heavy and has a large moment of inertia. In contrast, the grinding wheel 5 of this embodiment has a concave grinding portion 5b, and grinding is performed while the center of the grinding wheel 5 (rotation axis 6) and the center of the workpiece 2 (rotation axis 3) are moved relatively in a direction away from each other while the concave grinding portion 5b is in contact with the workpiece 2. This reduces the impact and vibration during grinding compared to the relative movement in the direction in which the grinding wheel 5 and the workpiece 2 collide, reduces the load applied to the grinding wheel 5 and the workpiece 2, and results in a clean ground surface. In addition, compared to the convex grinding portion, the concave grinding portion 5b, which has a portion that is actually used for grinding and has the same size, can be made smaller and lighter, and the moment of inertia can also be reduced. This also contributes to reducing vibration during grinding. In this configuration in which grinding, such as chamfering, of the workpiece 2 is performed by the concave grinding portion 5b of the grinding wheel 5, the vibration and load are small, so deterioration is slow and the life is extended. This also leads to a reduction in the manufacturing cost of the grinding wheel 5.

例えば特許文献11に記載された構成のように砥石の凸状研削部分によってワークの面取り等の研削を行う場合には、凸状研削部分とワークとの接触部分はほぼ点接触である。しかし、本実施形態のように砥石5の凹状研削部分5bによってワークの面取り等の研削を行う場合には、凹状研削部分5bとワーク2との接触部分は面接触であり、効率良く安定して研削でき、研削面が綺麗になる。 For example, when grinding the chamfer of a workpiece using the convex grinding portion of a grinding wheel as in the configuration described in Patent Document 11 , the contact portion between the convex grinding portion and the workpiece is substantially point contact. However, when grinding the chamfer of a workpiece 2 using the concave grinding portion 5b of the grinding wheel 5 as in this embodiment, the contact portion between the concave grinding portion 5b and the workpiece 2 is surface contact, which allows efficient and stable grinding and produces a clean ground surface.

また、砥石が凸状研削部分を有し、この凸状研削部分によってワークの研削を行う場合には、研削を円滑に行うために砥石とワークとの接触部分に研削水(クーラント)を供給しても、研削水が砥石とワークとの接触部分に保持され難い。従って、効率良く円滑な研削を行うことは容易でなく、多量の研削水が必要になる。それに対し、本実施形態では砥石5が凹状研削部分5bを有しており、この凹状研削部分5bによってワーク2の研削を行う場合には、砥石5とワーク2との接触部分に供給された研削水が凹状研削部分5bの内側において砥石5とワーク2との接触部分に保持される。そのため、効率良く円滑な研削を容易に行え、研削水の使用量は少なくて済み、目詰まりや過剰な摩擦や発熱を生じることなく円滑に研削できる。 In addition, when the grinding wheel has a convex grinding portion and the workpiece is ground by this convex grinding portion, even if grinding water (coolant) is supplied to the contact portion between the grinding wheel and the workpiece in order to perform grinding smoothly, the grinding water is difficult to be retained in the contact portion between the grinding wheel and the workpiece . Therefore, it is not easy to perform efficient and smooth grinding, and a large amount of grinding water is required. In contrast, in this embodiment, the grinding wheel 5 has a concave grinding portion 5b, and when the workpiece 2 is ground by this concave grinding portion 5b, the grinding water supplied to the contact portion between the grinding wheel 5 and the workpiece 2 is retained inside the concave grinding portion 5b at the contact portion between the grinding wheel 5 and the workpiece 2. Therefore, efficient and smooth grinding can be easily performed, the amount of grinding water required is small, and grinding can be performed smoothly without clogging, excessive friction, or heat generation.

このように、本実施形態の砥石5は凸状研削部分ではなく凹状研削部分5bを有していることにより、数々の利点を有している。従来、凹状の研削部分を有している砥石が用いられることはあったが、従来の凹状の研削部分は、図9に示すように、所望の研削後のワークの形状と相補的な形状の溝、いわゆる総形溝16aを有するものであった。従来の総形溝16aを有する砥石16を用いる加工方法の場合、砥石16の特定の部位、例えば総形溝16aの内周面においてワーク2が最初に当接する部分P3に摩耗や損傷を生じる可能性が高い。多数のワーク2の加工を行うと、この部分P3に摩耗や損傷を生じて総形溝16aの形状が変化するため、その砥石16を用いてワーク2を加工すると加工精度が低くなる。その場合、砥石16の交換や整形が必要である。それに対し、本実施形態では、ワーク2に比べてはるかに大きい凹状研削部分5bを有しており、砥石5の凹状研削部分5bの様々な部位がワーク2に当接して研削するため、特定の部位のみが特別に摩耗または損傷しやすいわけではない。従って、砥石5の寿命が比較的長い。さらに、本実施形態では、凹状研削部分5bとは別に断面長方形状研削部分5gが設けられており、この断面長方形状研削部分5gを用いて、ワーク2の大きさを所望の大きさに近づけるための粗い研削を行っている。それにより、凹状研削部分5bの直線部分5fの過剰な摩耗や損傷が抑えられ、砥石5の長寿命化が図られる。ただし、断面長方形状研削部分5gは本発明の必須の構成要件ではなく、ワーク2を所望の直径にするための研削を凹状研削部分5bの直線部分5fのみによって行う構成にすることも可能である。 In this way, the grinding wheel 5 of this embodiment has a number of advantages by having a concave grinding portion 5b rather than a convex grinding portion. Conventionally, grinding wheels having a concave grinding portion have been used, but the conventional concave grinding portion has a groove, so-called formed groove 16a, that has a shape complementary to the shape of the desired workpiece after grinding, as shown in FIG. 9. In the case of a machining method using a grinding wheel 16 having a conventional formed groove 16a, there is a high possibility that wear and damage will occur in a specific part of the grinding wheel 16, for example, part P3 on the inner surface of the formed groove 16a where the workpiece 2 first abuts. When machining a large number of workpieces 2, wear and damage will occur in this part P3, changing the shape of the formed groove 16a, and the machining accuracy will be reduced if the grinding wheel 16 is used to machine the workpiece 2. In that case, it is necessary to replace or reshape the grinding wheel 16. In contrast, in this embodiment, the grinding wheel 5 has a concave grinding portion 5b that is much larger than the workpiece 2, and various parts of the concave grinding portion 5b of the grinding wheel 5 come into contact with the workpiece 2 to grind it, so that only certain parts are not particularly prone to wear or damage. Therefore, the life of the grinding wheel 5 is relatively long. Furthermore, in this embodiment, a grinding portion 5g having a rectangular cross section is provided in addition to the concave grinding portion 5b, and this grinding portion 5g having a rectangular cross section is used to perform rough grinding to bring the size of the workpiece 2 closer to the desired size. This prevents excessive wear and damage to the straight portion 5f of the concave grinding portion 5b, and extends the life of the grinding wheel 5. However, the rectangular cross section grinding portion 5g is not an essential component of the present invention, and it is also possible to configure the grinding to make the workpiece 2 have a desired diameter to be performed only by the straight portion 5f of the concave grinding portion 5b.

なお、前述した実施形態の構成は、砥石支持機構7が砥石5を回転させつつ移動させ、ワーク支持機構4はワーク2を回転させるが移動させない構成であるが、そのような構成に限定されない。すなわち、砥石支持機構7は砥石5を回転させるのみで移動させず、ワーク支持機構4がワーク2を回転させるとともに、数値制御によってワーク2を移動させる構成にすることもできる。その場合、ワーク支持機構4は、砥石5およびワーク2に対して平行な面内(回転軸3および回転軸6に直交する面内)で、ワーク2が砥石5に対して近づく方向にも砥石5から離れる方向にもワーク2を移動させることができ、かつ砥石5およびワーク2に対して直交する面内(回転軸3および回転軸6に平行な面内)で、ワーク2が砥石5に対して近づく方向にも砥石5から離れる方向にもワーク2を移動させることができる。従って、ワーク2は、砥石支持機構7によって、少なくとも回転軸3,6を含む面内で、砥石5に対して任意の方向から接近することができ、かつ任意の方向に離れることができる。この構成でも、ワーク2と砥石5とが図3~6に示す各工程と同様の位置関係になるようにワーク2と砥石5とを相対的に移動させることができ、図3~6に示す加工方法と同様の加工を実施することができる。 In the above-described embodiment, the grindstone support mechanism 7 moves the grindstone 5 while rotating it, and the work support mechanism 4 rotates but does not move the workpiece 2, but the present invention is not limited to such a configuration. In other words, the grindstone support mechanism 7 can only rotate the grindstone 5 without moving it, and the work support mechanism 4 can rotate the workpiece 2 and move it by numerical control. In that case, the work support mechanism 4 can move the workpiece 2 in a direction in which the workpiece 2 approaches the grindstone 5 and in a direction in which the workpiece 2 moves away from the grindstone 5 in a plane parallel to the grindstone 5 and the workpiece 2 (in a plane perpendicular to the rotation axis 3 and the rotation axis 6), and can move the workpiece 2 in a direction in which the workpiece 2 approaches the grindstone 5 and in a direction in which the workpiece 2 moves away from the grindstone 5 in a plane perpendicular to the grindstone 5 and the workpiece 2 (in a plane parallel to the rotation axis 3 and the rotation axis 6). Therefore, the grindstone support mechanism 7 allows the workpiece 2 to approach the grindstone 5 from any direction and move away from it in any direction within a plane including at least the rotation axes 3 and 6. Even with this configuration, the workpiece 2 and the grindstone 5 can be moved relative to each other so that they are in the same positional relationship as in each step shown in Figures 3 to 6, and processing can be performed in the same manner as in the processing method shown in Figures 3 to 6.

本実施形態では、砥石5とワーク2とを、互いに直交する方向ではなく同一または正反対の方向に回転させるため、砥石5の回転とワーク2の回転とは相乗効果を生じ、砥石5自体の回転速度はさほど高速にする必要はない。従って、砥石支持機構7は、高速回転駆動可能なものでなくてよく、構造の簡略化や低コスト化が図れる。また、ワーク2を砥石5と平行に回転させながら研削を行うため、ワーク2の面取り部の表面粗さを小さくすることができる。 In this embodiment, the grinding wheel 5 and the workpiece 2 are rotated in the same or opposite directions rather than perpendicular to each other, so that the rotation of the grinding wheel 5 and the rotation of the workpiece 2 produce a synergistic effect, and the rotation speed of the grinding wheel 5 itself does not need to be very high. Therefore, the grinding wheel support mechanism 7 does not need to be capable of high-speed rotation, which simplifies the structure and reduces costs. In addition, because grinding is performed while rotating the workpiece 2 parallel to the grinding wheel 5, the surface roughness of the chamfered portion of the workpiece 2 can be reduced.

本実施形態によると、砥石5はワーク2に対して平行に配置されるため、砥石5がワーク支持機構4に干渉することなく砥石5を大きくすることができる。それにより、砥石支持機構7を含むワーク加工装置1の構成を複雑にすることなく、大型の砥石5を用いてワーク2の外周部を任意の断面形状に形成することができる。また、大型の砥石5を用いることにより加工効率が良く加工時間を短くできるとともに、砥石5の外周部の広い範囲を利用して加工できるため砥石5の寿命が長くなる。さらに、完成状態のワーク2の形状に対応した形状の溝16a(総形溝)が形成された砥石16を用いて加工する場合には、面取り加工前のワークのエッジと当接する溝16aの内周面(特に傾斜面P3の部分)の摩耗や破損を生じやすいが、本実施形態では、面取り加工前のワークのエッジに対して砥石5の特定の1個所のみが当接し続ける構成ではないため、砥石5の破損を生じにくく寿命が長い。 According to this embodiment, the grindstone 5 is arranged parallel to the workpiece 2, so that the grindstone 5 can be made large without interfering with the workpiece support mechanism 4. As a result, the outer periphery of the workpiece 2 can be formed into any cross-sectional shape using a large grindstone 5 without complicating the configuration of the workpiece processing device 1 including the grindstone support mechanism 7. In addition, by using a large grindstone 5, the processing efficiency can be improved and the processing time can be shortened, and since a wide range of the outer periphery of the grindstone 5 can be used for processing, the life of the grindstone 5 is extended. Furthermore, when processing is performed using a grindstone 16 in which a groove 16a (formed groove) having a shape corresponding to the shape of the completed workpiece 2 is formed, the inner periphery of the groove 16a (particularly the portion of the inclined surface P3 ) that abuts against the edge of the workpiece 2 before chamfering is likely to wear or break, but in this embodiment, since the grindstone 5 is not configured so that only one specific point thereof continues to abut against the edge of the workpiece 2 before chamfering, the grindstone 5 is less likely to be broken and has a long life.

砥石16に設けられた総形溝16a内にワークを挿入して加工する場合には、特定の形状および寸法の面取り部を形成できるが、異なる形状および寸法の面取り部を形成するためには、異なる溝16aを有する砥石16に交換する必要がある。しかし、本実施形態によると、凹状研削部分5bを有する砥石5をワーク2に対して相対的に移動させて面取りを行うため、数値制御によって砥石5の移動の経路を変更することにより、形成される面取り部2aの形状や寸法を変更することができる。すなわち、単一の砥石5によって、様々な形状および寸法の面取り部2aを形成することができる。 When the workpiece 2 is inserted into the formed groove 16a provided in the grinding wheel 16 for machining, a chamfered portion of a specific shape and size can be formed, but in order to form a chamfered portion of a different shape and size, it is necessary to replace the grinding wheel 16 with one having a different groove 16a . However, according to this embodiment, the grinding wheel 5 having the concave grinding portion 5b is moved relative to the workpiece 2 to perform chamfering, so that the shape and size of the chamfered portion 2a to be formed can be changed by changing the path of movement of the grinding wheel 5 by numerical control. In other words, chamfered portions 2a of various shapes and sizes can be formed by a single grinding wheel 5.

図1~2に模式的に示す砥石5および砥石支持機構7の詳細な構成例を図10に示している。この変形例の砥石5は、例えば金属製のベース円板部5aと、その外周部に位置するレジンボンド砥石からなる凹状研削部分5bと、凹状研削部分5bと厚さ方向に並んで設けられている断面長方形状研削部分5gと、を有している。ベース円板部5aは、アルミニウムやステンレス等の合金からなり、回転軸6が挿通される取付穴5cと、凹部5dとが設けられている。凹状研削部分5bは外周側から内周側に向かって窪む凹状であり、厚さ方向の両端部の円弧状部分5eと、円弧状部分5eの間に位置しワーク2の厚さ以上の厚さを有する直線部分5fと、を有する。断面長方形状研削部分5gは、砥石5の厚さ方向において凹状研削部分5bよりもさらに外側に位置し、ワーク2と対向する面が砥石5の厚さ方向と平行な直線状である。 A detailed configuration example of the grinding wheel 5 and grinding wheel support mechanism 7 shown in Figs. 1 and 2 is shown in Fig. 10. The grinding wheel 5 of this modified example has, for example, a base disk portion 5a made of metal, a concave grinding portion 5b made of a resin-bonded grinding wheel located on the outer periphery of the base disk portion 5a, and a grinding portion 5g having a rectangular cross section arranged in line with the concave grinding portion 5b in the thickness direction. The base disk portion 5a is made of an alloy such as aluminum or stainless steel, and has a mounting hole 5c through which the rotating shaft 6 is inserted and a recess 5d. The concave grinding portion 5b is concave from the outer periphery to the inner periphery, and has arc-shaped portions 5e at both ends in the thickness direction and a straight portion 5f located between the arc-shaped portions 5e and having a thickness greater than the thickness of the workpiece 2. The rectangular cross-sectional grinding portion 5g is located further outboard than the concave grinding portion 5b in the thickness direction of the grinding wheel 5, and the surface facing the workpiece 2 is straight and parallel to the thickness direction of the grinding wheel 5.

図10に示す砥石支持機構7は、ケース7aと、回転ベアリング部7bと、スピンドル7cと、フランジ部7dと、ボルト7eとを有している。ケース7a内に配置された回転ベアリング部7bによってスピンドル7cが回転可能に支持されている。ケース7aの外側に突出するスピンドル7cの先端にフランジ部7dが取り付けられ、ボルト7eによってフランジ部7dがスピンドル7cに固定されている。そして、砥石5の凹部5dにケース7aが挿通され、砥石5の取付穴5cがフランジ部7dに固定されている。図示しない駆動手段によってスピンドル7cが回転すると、フランジ部7dおよび砥石5がスピンドル7cと一体的に回転する。すなわち、スピンドル7cが砥石支持機構7の回転軸6になる。その砥石5が取り付けられている取付位置であるフランジ部7dと、スピンドル7cを支持する回転ベアリング部7bとの間に砥石5の重心が位置するように、砥石5が支持されている。このように、砥石5の取付位置(フランジ部7d)と回転ベアリング部7bとの間に砥石5の重心が位置していることにより、砥石5の支持および回転が安定する。 The grindstone support mechanism 7 shown in FIG. 10 has a case 7a, a rotary bearing portion 7b, a spindle 7c, a flange portion 7d, and a bolt 7e. The spindle 7c is rotatably supported by the rotary bearing portion 7b arranged in the case 7a. The flange portion 7d is attached to the tip of the spindle 7c protruding outside the case 7a, and the flange portion 7d is fixed to the spindle 7c by the bolt 7e. The case 7a is inserted into the recess 5d of the grindstone 5, and the mounting hole 5c of the grindstone 5 is fixed to the flange portion 7d. When the spindle 7c is rotated by a driving means (not shown), the flange portion 7d and the grindstone 5 rotate integrally with the spindle 7c. That is, the spindle 7c becomes the rotation axis 6 of the grindstone support mechanism 7. The grindstone 5 is supported so that the center of gravity of the grindstone 5 is located between the flange portion 7d, which is the mounting position where the grindstone 5 is attached, and the rotary bearing portion 7b that supports the spindle 7c. In this way, since the center of gravity of the grindstone 5 is located between the attachment position of the grindstone 5 (flange portion 7d) and the rotation bearing portion 7b, the support and rotation of the grindstone 5 are stabilized.

本実施形態では、ワーク2の半径を小さくするための研削と、ワーク2を所望の断面形状に形成するためにワーク2の外周部の両面の面取りを行う研削との2段階の研削工程を行う。一般的に、前者の研削は粗研削、後者の研削は精密研削である。精密研削と粗研削とは相対的な表現であり、精密研削は、粗研削に比べて、形状寸法精度が良く、研削された面の表面粗さが小さくなる研削のことである。本実施形態の砥石5には、ベース円板部5aの外周部に、主にワーク2を所望の断面形状に形成するための研削に用いられる凹状研削部分(精密研削部分)5bと、主にワーク2の半径を小さくするための研削に用いられる断面長方形状研削部分(粗研削部分)5gとが設けられている。 In this embodiment, a two-stage grinding process is performed: grinding to reduce the radius of the workpiece 2, and grinding to chamfer both sides of the outer periphery of the workpiece 2 to form the workpiece 2 into a desired cross-sectional shape. Generally, the former grinding is rough grinding, and the latter grinding is precision grinding. Precision grinding and rough grinding are relative terms, and precision grinding is grinding that has better shape and dimensional accuracy and less surface roughness than rough grinding. In this embodiment, the grinding wheel 5 is provided on the outer periphery of the base disk portion 5a with a concave grinding portion (precision grinding portion) 5b that is mainly used for grinding to form the workpiece 2 into a desired cross-sectional shape, and a cross-sectional rectangular grinding portion (coarse grinding portion) 5g that is mainly used for grinding to reduce the radius of the workpiece 2.

本実施形態では、未加工のワーク2をワーク支持機構4にセットして回転させ、砥石支持機構7に取り付けられた砥石5を、回転軸6(スピンドル7c)を中心として回転させながら、図3(A)に示すように断面長方形状研削部分5gをワーク2の外周部に当接させる。これにより、ワーク2の外周部を粗研削し、ワーク2の外径を所望の大きさにする。次いで、図3(B)に示すように、砥石5の凹状研削部分5bの直線部分5fをワーク2の外周部に当接させてワーク2の外周部を精密研削し、ワーク2の外周部の厚さ方向の中間部を平滑にする。それから、図3(C)~3(D)に示すように、砥石5の凹状研削部分5bの円弧状部分5eをワーク2の外周部に当接させてワーク2の両面のエッジの面取りを行い、ワーク2を所望の断面形状に形成する。本実施形態の断面長方形状研削部分5gは砥石粒度が粗い部分であって、凹状研削部分5bは砥石粒度が細かく、断面長方形状研削部分5gによるワーク2の半径を小さくするための研削よりも精密な研削を行う部分である。本実施形態では、前述した効果に加えて、2段階の研削工程によって面取り部を行う場合に単一の砥石5のみによって両工程を容易に行うことができ、製造工程が簡単で低コストであるという効果が得られる。 In this embodiment, the unmachined workpiece 2 is set on the workpiece support mechanism 4 and rotated, and the grindstone 5 attached to the grindstone support mechanism 7 is rotated around the rotation axis 6 (spindle 7c) while the cross-sectionally rectangular grinding portion 5g is abutted against the outer periphery of the workpiece 2 as shown in FIG. 3(A). This roughly grinds the outer periphery of the workpiece 2 to make the outer diameter of the workpiece 2 the desired size. Next, as shown in FIG. 3(B), the straight line portion 5f of the concave grinding portion 5b of the grindstone 5 is abutted against the outer periphery of the workpiece 2 to precisely grind the outer periphery of the workpiece 2, and the middle portion in the thickness direction of the outer periphery of the workpiece 2 is smoothed. Then, as shown in FIGS. 3(C) to 3(D), the arc-shaped portion 5e of the concave grinding portion 5b of the grindstone 5 is abutted against the outer periphery of the workpiece 2 to chamfer the edges of both sides of the workpiece 2, and the workpiece 2 is formed into the desired cross-sectional shape. In this embodiment, the grinding portion 5g having a rectangular cross section is a portion where the grinding stone has a coarse grain size, and the grinding portion 5b having a concave shape is a portion where the grinding stone has a fine grain size, and where more precise grinding is performed than the grinding performed by the grinding portion 5g having a rectangular cross section to reduce the radius of the workpiece 2. In addition to the above-mentioned effects, this embodiment has the effect that when chamfering is performed by a two-stage grinding process, both steps can be easily performed using only a single grinding stone 5, and the manufacturing process is simple and low cost.

一般に半導体ウェーハ等のワーク2の面取りを行う場合、砥石によってワーク2の外周面を研削して半径を小さくし、ワーク2の不要部分を除去しながら所望の大きさにしつつ外形を整えるとともに、中心合わせを行う。その後に、砥石によってワーク2に面取り部2aを形成する。仮に1つの凹状研削部分によってこれらの研削を行う場合には、前段階のワーク2の半径を小さくするための研削(粗研削)は、主に、砥石の凹状研削部分の、厚さ方向の中心付近の部位をワークに当接させることによって行う。後段階の面取り部2aを形成するための研削(精密研削)は、凹状研削部分の、厚さ方向の両端の円弧状部分をワークに当接させることによって行う。通常、ワーク2の半径を小さくするための研削は、面取り部2aを形成するための研削よりも研削量(研削する体積)が大きい。従って、凹状研削部分の、厚さ方向の中心付近の部位は、厚さ方向の両端の円弧状部分よりも摩耗が激しく、凹状研削部分の全体形状が崩れる。その結果、ワーク2の加工精度が低下するおそれがある。それに対し、本実施形態では、ワーク2の半径を小さくするための研削は、主に断面長方形状研削部分5gによって行い、半径が小さくなったワーク2の外周面を平滑にするための研削は、凹状研削部分5bの直線部分5fによって行い、ワーク2の面取り部2aを形成するための研削は、凹状研削部分5bの円弧状部分5eによって行うことができる。すなわち、ワーク2の半径を小さくするための研削と、ワーク2の外周面を平滑にするための研削と、面取り部2aを形成するための研削とを、砥石5の別の部位によって行うことができる。断面長方形状研削部分5gの形状および寸法と、凹状研削部分5bの直線部分5fおよび円弧状部分5eの形状および寸法とはそれぞれ独立して管理でき、それぞれの摩耗量が異なっていても、加工条件を適宜に調整することにより、良好な加工が行える。そして、凹状研削部分5bの円弧状部分5eは、主に面取り部2aを形成するための研削のみに用いられ、一部分(例えば厚さ方向の中心付近の部位)のみが他の部分に比べて著しく大きな摩耗を生じることはなく、比較的均等に摩耗する。従って、砥石の凹状研削部分5bの形状はさほど大きく変化せず、ワーク2の加工精度の低下を抑えることができる。断面長方形状研削部分5gは大きく摩耗するが、ワーク2と対向する面は砥石5の厚さ方向と平行な直線状であって単純な形状であるため、摩耗を生じても加工精度がさほど低下しない。 In general, when chamfering a workpiece 2 such as a semiconductor wafer, the outer peripheral surface of the workpiece 2 is ground with a grindstone to reduce the radius, and unnecessary parts of the workpiece 2 are removed to a desired size while arranging the outer shape and centering. Then, a chamfered portion 2a is formed on the workpiece 2 with a grindstone. If these grinding operations are performed with one concave grinding portion, the grinding (rough grinding) for reducing the radius of the workpiece 2 in the previous stage is mainly performed by abutting the concave grinding portion of the grindstone near the center in the thickness direction against the workpiece 2. The grinding (precise grinding) for forming the chamfered portion 2a in the later stage is performed by abutting the arc-shaped portions at both ends in the thickness direction of the concave grinding portion against the workpiece 2. Usually, the grinding for reducing the radius of the workpiece 2 has a larger grinding amount (grinding volume) than the grinding for forming the chamfered portion 2a. Therefore, the part of the concave ground part near the center in the thickness direction is worn more severely than the arc-shaped parts at both ends in the thickness direction, and the overall shape of the concave ground part is distorted. As a result, the machining accuracy of the workpiece 2 may be reduced. In contrast, in this embodiment, grinding to reduce the radius of the workpiece 2 is mainly performed by the cross-sectionally rectangular ground part 5g, grinding to smooth the outer peripheral surface of the workpiece 2 whose radius has been reduced is performed by the straight line part 5f of the concave ground part 5b, and grinding to form the chamfered part 2a of the workpiece 2 can be performed by the arc-shaped part 5e of the concave ground part 5b. In other words, grinding to reduce the radius of the workpiece 2, grinding to smooth the outer peripheral surface of the workpiece 2, and grinding to form the chamfered part 2a can be performed by different parts of the grinding wheel 5. The shape and dimensions of the cross-sectionally rectangular ground portion 5g and the straight portion 5f and the arcuate portion 5e of the concave ground portion 5b can be managed independently, and even if the wear amount of each is different, good processing can be performed by appropriately adjusting the processing conditions. The arcuate portion 5e of the concave ground portion 5b is mainly used only for grinding to form the chamfered portion 2a, and wears relatively evenly without a significant wear in only one portion (for example, a portion near the center in the thickness direction) compared to other portions. Therefore, the shape of the concave ground portion 5b of the grindstone does not change significantly, and the deterioration of the processing accuracy of the workpiece 2 can be suppressed. Although the cross-sectionally rectangular ground portion 5g wears significantly, the surface facing the workpiece 2 is a straight line parallel to the thickness direction of the grindstone 5 and has a simple shape, so that even if it wears, the processing accuracy does not decrease significantly.

なお、図示しないが、フランジ部を用いることなく、回転軸6を構成するスピンドル7cのテーパ状部分を、砥石5に設けられたテーパ形状の取付穴5c内に挿入し、ベース円板部5aから突出するスピンドル7cの先端にナット等の固定部材を取り付けることにより、砥石5を、回転軸6を構成するスピンドル7cに固定し、スピンドル7cとともに回転可能に支持することができる。このようにすると、本実施形態の砥石支持機構7において、フランジ部を省略して、砥石5を、回転軸6を構成するスピンドル7cに安定的に固定でき、しかも、砥石5が回転軸6(スピンドル7c)に対して偏心することを抑制することができる。 Although not shown, the tapered portion of the spindle 7c that constitutes the rotating shaft 6 can be inserted into the tapered mounting hole 5c provided in the grinding wheel 5 without using a flange portion, and a fixing member such as a nut can be attached to the tip of the spindle 7c protruding from the base disk portion 5a, thereby fixing the grinding wheel 5 to the spindle 7c that constitutes the rotating shaft 6 and supporting it rotatably together with the spindle 7c. In this way, in the grinding wheel support mechanism 7 of this embodiment, the flange portion can be omitted, and the grinding wheel 5 can be stably fixed to the spindle 7c that constitutes the rotating shaft 6, and eccentricity of the grinding wheel 5 with respect to the rotating shaft 6 (spindle 7c) can be suppressed.

図1,3に示すように、本実施形態のワーク支持機構4は、ワーク2の片側の面(例えば鉛直方向下面)2bのみを吸着する吸着部材10を有している。従って、図3(B),3(C),3(D)に示すように砥石5の凹状研削部分5bの円弧状部分5eによってワーク2の面取りのための研削を行う際に、吸着部材10が円弧状部分5eに当接することを避けなければならない。吸着部材10の平面形状は、ワーク2の半径よりも小さい半径の円形状であり、円形状の吸着部材10の外周部分は、外側に向かうにつれて厚さが薄くなる先薄形状10aを有している。吸着部材10の半径r1は、ワーク2の所望の断面形状の半径r2とワーク2の厚さtとによって表すと、r2-10t≦r1≦r2-5tであることが好ましい。吸着部材10の先薄形状10aの角度θ1は、ワーク2の所望の断面形状の面取り部2aの角度θ2によって表すと、θ2-10≦θ1≦θ2+5であることが好ましい。ワーク2の吸着部材10によって吸着される面(例えば鉛直方向下面)2b側に位置する円弧状部分5eの長さは、図11に模式的に示すように、砥石5の回転軸6に沿う断面において、その円弧状部分5eの接線が吸着部材10の先薄形状10aの角度θ3と一致する角度θ3で延びる位置(図11の点A)においてワーク2の前述した面(例えば鉛直方向下面)2b側の端部と接する状態で、吸着部材10の先薄形状10aに当接する長さ未満である。図11に模式的に示す状態で、円弧状部分5eの点Aにおける接線は、水平方向からθ3だけ傾いており、吸着部材10の先薄形状10aの下面と平行である。この状態で、仮に、吸着部材10の先薄形状10aの下面が円弧状部分5eと当接する点Dまで円弧状部分5eが延びていると、それ以上の研削工程ができない。従って、円弧状部分5eの長さは、点Dまで至る長さ未満である。この点Dにおける接線の水平方向からの傾き角度をθ4として、円弧状部分5eの曲率半径をrとする。図11には、円弧状部分5eの点A,Dを通る半径(各点における接線に直交する半径)が垂直方向に対してそれぞれなす角度として、角度θ3,θ4をそれぞれ示している。ここで、角度θ3は吸着部材10の先薄形状10aの寸法として既知である。そこで、砥石5の円弧状部分5eの曲率半径rと、円弧状部分5eの長さの限界点を示す角度θ4との関係は以下のように表される。なお、円弧状部分5eの点Aにおける接線に平行で、すなわち点Aを通る半径に直交し点Dを通る直線を引いた際に、その直線から、点Aを通る半径に沿って点Aまでの距離をr’とする。
rcos(θ3-θ4)=r-r’
θ3-θ4=cos-1[(r-r’)/r]
θ4=θ3-cos-1[(r-r’)/r]
このような計算によって、円弧状部分5eが、その円弧状部分5eの接線が吸着部材10の先薄形状10aの角度θ3と一致する角度θ3で延びる位置においてワーク2の下面側の端部と接する状態で、吸着部材10の先薄形状10aに当接する長さ未満の長さを有するための条件を設定することができる。
As shown in Figures 1 and 3, the work support mechanism 4 of this embodiment has an attraction member 10 that attracts only one side surface (e.g., the lower surface in the vertical direction) 2b of the work 2. Therefore, as shown in Figures 3(B), 3(C), and 3(D), when grinding for chamfering the work 2 with the arc-shaped portion 5e of the concave grinding portion 5b of the grinding wheel 5, the attraction member 10 must be prevented from abutting against the arc-shaped portion 5e. The planar shape of the attraction member 10 is a circle with a radius smaller than the radius of the work 2, and the outer peripheral portion of the circular attraction member 10 has a tapered shape 10a whose thickness becomes thinner toward the outside. When the radius r1 of the attraction member 10 is expressed by the radius r2 of the desired cross-sectional shape of the work 2 and the thickness t of the work 2, it is preferable that r2-10t≦r1≦r2-5t. The angle θ1 of the tapered shape 10a of the suction member 10 is preferably θ2-10≦θ1≦θ2+5 when expressed by the angle θ2 of the chamfered portion 2a of the desired cross-sectional shape of the workpiece 2. The length of the arc-shaped portion 5e located on the side of the surface (e.g., the vertical lower surface) 2b of the workpiece 2 to be sucked by the suction member 10 is less than the length at which the tangent of the arc-shaped portion 5e abuts against the tapered shape 10a of the suction member 10 in a cross section along the rotation axis 6 of the grindstone 5 when the tangent of the arc-shaped portion 5e abuts against the end of the surface (e.g., the vertical lower surface) 2b of the workpiece 2 at a position (point A in FIG. 11) that extends at an angle θ3 that coincides with the angle θ3 of the tapered shape 10a of the suction member 10. In the state shown in FIG. 11, the tangent of the arc-shaped portion 5e at point A is inclined by θ3 from the horizontal direction and is parallel to the lower surface of the tapered shape 10a of the suction member 10. In this state, if the arc-shaped portion 5e extends to point D where the lower surface of the tapered shape 10a of the attraction member 10 abuts against the arc-shaped portion 5e, the grinding process cannot be performed any further. Therefore, the length of the arc-shaped portion 5e is less than the length to point D. The inclination angle of the tangent at point D from the horizontal direction is θ4, and the radius of curvature of the arc-shaped portion 5e is r. In FIG. 11, angles θ3 and θ4 are shown as angles that the radii passing through points A and D of the arc-shaped portion 5e (radii perpendicular to the tangent at each point) make with the vertical direction. Here, the angle θ3 is known as the dimension of the tapered shape 10a of the attraction member 10. Therefore, the relationship between the radius of curvature r of the arc-shaped portion 5e of the grinding wheel 5 and the angle θ4 indicating the limit point of the length of the arc-shaped portion 5e is expressed as follows. In addition, when a straight line is drawn that is parallel to the tangent at point A of the arc-shaped portion 5e, i.e., perpendicular to the radius that passes through point A and passes through point D, the distance from that straight line to point A along the radius that passes through point A is r'.
r cos(θ3-θ4) = r-r'
θ3-θ4=cos −1 [(r−r′)/r]
θ4=θ3−cos −1 [(r−r′)/r]
By such calculations, it is possible to set the conditions for the arc-shaped portion 5e to have a length less than the length at which it abuts against the tapered shape 10a of the suction member 10, when the tangent to the arc-shaped portion 5e contacts the end portion on the underside of the workpiece 2 at a position where it extends at an angle θ3 that coincides with the angle θ3 of the tapered shape 10a of the suction member 10.

このように角度θ4を求める計算では、円弧状部分5eの点Aにおける接線に平行で(点Aを通る半径に直交し)点Dを通る直線から、点Aを通る半径に沿って点Aまでの距離r’を用いている。この距離r’を以下のように求めることができる。ここでは、所望の断面形状のワーク2の半径と吸着部材10の半径との差をLとする。そして、この距離Lを3分割し、円弧状部分5eの点Aを通る半径との交点よりも外周側の長さをR2とする。これは、図7(A),8に示すワーク2の所望の断面形状の下側の曲線部の曲率半径と一致している。そして、距離Lから長さR2を除いた部分を、円弧状部分5eの点Aにおける接線に平行で(点Aを通る半径に直交し)点Dを通る直線との交点を中心として2分割し、その内周側の部分の長さをx1、外周側の部分の長さをx2とする。長さx1の部分と長さx2の部分との区切りになる交点からワーク2の下面までの距離をB2とする。吸着部材10の、ワーク2の下面と接する面から、その下方の先薄形状10aまでの距離をTとする。図7(A),8に示すワーク2の所望の断面形状の下面側の円弧状部分5eの開始点から、ワーク2の下面までの距離をB2とする。
x1tanθ3=T+B2
x1=(T+B2)/tanθ3
x2=L-R2-x1=L-R2-(T+B2)/tanθ3
r’=R2+x2sinθ3=R2+[L-R2-(T+B2)/tanθ3]sinθ3
こうして求めたr’を、前述した角度θ4を求める式に代入することにより、図7(A),8に示すワーク2の所望の断面形状の寸法である曲率半径R2および距離B2と、吸着部材10の既知の寸法である距離Tおよび先薄形状10aの角度θ3と、ワーク2の所望の断面形状の寸法と吸着部材10の既知の寸法とから求められる距離Lと、砥石5の円弧状部分5eの曲率半径rとに基づいて、円弧状部分5eの長さの上限を決めるための角度θ4が求められる。
In the calculation for obtaining the angle θ4, the distance r' from a straight line that is parallel to the tangent at point A of the arc-shaped portion 5e (orthogonal to the radius that passes through point A) and passes through point D to point A along the radius that passes through point A is used. This distance r' can be obtained as follows. Here, the difference between the radius of the workpiece 2 having the desired cross-sectional shape and the radius of the suction member 10 is L. Then, this distance L is divided into three parts, and the length on the outer periphery side from the intersection point with the radius that passes through point A of the arc-shaped portion 5e is R2. This coincides with the radius of curvature of the lower curved portion of the desired cross-sectional shape of the workpiece 2 shown in Figures 7(A) and 8. Then, the part obtained by subtracting the length R2 from the distance L is divided into two parts with the intersection point with the straight line that is parallel to the tangent at point A of the arc-shaped portion 5e (orthogonal to the radius that passes through point A) and passes through point D as the center, and the length of the inner periphery side is x1, and the length of the outer periphery side is x2. The distance from the intersection point that separates the part of length x1 and the part of length x2 to the bottom surface of the workpiece 2 is B2. The distance from the surface of the suction member 10 that contacts the bottom surface of the workpiece 2 to the tapered shape 10a below it is defined as T. The distance from the starting point of the arc-shaped portion 5e on the bottom surface side of the desired cross-sectional shape of the workpiece 2 shown in Figures 7(A) and 8 to the bottom surface of the workpiece 2 is defined as B2.
x1 tan θ3 = T + B2
x1 = (T + B2) / tan θ3
x2 = L - R2 - x1 = L - R2 - (T + B2) / tan θ3
r' = R2 + x2 sin θ3 = R2 + [L - R2 - (T + B2) / tan θ3] sin θ3
By substituting r' thus determined into the equation for determining angle θ4 described above, angle θ4 for determining the upper limit of the length of arc-shaped portion 5e can be determined based on radius of curvature R2 and distance B2, which are the dimensions of the desired cross-sectional shape of workpiece 2 shown in Figures 7(A) and 8, distance T and angle θ3 of tapered shape 10a, which are known dimensions of attraction member 10, distance L determined from the dimensions of the desired cross-sectional shape of workpiece 2 and the known dimensions of attraction member 10, and radius of curvature r of arc-shaped portion 5e of grinding wheel 5.

一方、図7(A),8に示すように、ワーク2の面取り部2aの、水平方向に投影した長さA2を形成するために必要な円弧状部分5eの長さを求める。円弧状部分5eの長さが必要最小限である場合の角度θmaxを、ワーク2の面取り部2aの水平方向に対してなす角度θ2と、曲線部分の曲率半径R2とを用いて表すと以下の通りである。
A2=R2-R2sinθ2+rtan(θ2-θmax)×cosθ2=R2(1-sinθ2)+rtan(θ2-θmax)×cosθ2
[A2-R2(1-sinθ2)]/rcosθ2=tan(θ2-θmax
θ2-θmax=tan-1{[A2-R2(1-sinθ2)]/rcosθ2}
θmax=θ2-tan-1{[A2-R2(1-sinθ2)]/rcosθ2}
このような計算によって、円弧状部分5eが、所望の断面形状のワーク2の下面側の面取り部2aの長さ以上の長さを有するための条件を設定することができる。図7(A),8に示すワーク2の所望の断面形状の寸法である曲率半径R2と角度θ2と距離A2とに基づいて、円弧状部分5eの長さの下限を決めるための角度θmaxが求められる。
7(A) and 8, the length of the arc-shaped portion 5e required to form the length A2 of the chamfered portion 2a of the workpiece 2 projected in the horizontal direction is calculated. The angle θ max when the length of the arc-shaped portion 5e is the minimum required is expressed as follows using the angle θ2 that the chamfered portion 2a of the workpiece 2 makes with respect to the horizontal direction and the radius of curvature R2 of the curved portion.
A2 = R2 - R2 sin θ2 + r tan (θ2 - θ max ) × cos θ2 = R2 (1 - sin θ2) + r tan (θ2 - θ max ) × cos θ2
[A2-R2(1-sinθ2)]/rcosθ2=tan(θ2- θmax )
θ2- θmax = tan -1 {[A2-R2(1-sinθ2)]/rcosθ2}
θ max =θ 2 - tan -1 {[A 2 - R 2 (1 - sin θ 2)] / r cos θ 2}
By such calculation, it is possible to set the condition for the arc-shaped portion 5e to have a length equal to or greater than the length of the chamfered portion 2a on the underside of the workpiece 2 having a desired cross-sectional shape. Angle θmax for determining the lower limit of the length of the arc-shaped portion 5e can be obtained based on the radius of curvature R2, angle θ2, and distance A2, which are the dimensions of the desired cross-sectional shape of the workpiece 2 shown in Figures 7(A) and 8 .

砥石の円弧状部分5eは、以上のように計算して求めた、垂直方向からの角度θmaxと角度θ4との間の範囲内で終端する構成により、ワーク2を精度良く良好に所望の断面形状に加工することができる。この関係は、角度θ2と角度θ3との大小関係にかかわらずあてはまる。なお、以上の説明は、吸着部材10によってワーク2の下面を吸着する構成において、砥石5によってワーク2の下面を良好に研削するための条件を、所望の断面形状のワーク2の下側の各部の寸法と、砥石5の下側の円弧状部分5eの各部の寸法とに基づいて求めるものである。吸着部材10によってワーク2の上面を吸着する構成に関しては、所望の断面形状のワーク2の下側ではなく上側の各部の寸法と、砥石5の下側ではなく上側の円弧状部分5eの各部の寸法とに基づいて、前述した計算と実質的に同様な方法で、砥石5によってワーク2の上面を良好に研削するための条件を求めるとよい。 The arc-shaped portion 5e of the grindstone is configured to end within the range between the angle θmax and the angle θ4 from the vertical direction, as calculated above, so that the workpiece 2 can be accurately and satisfactorily machined into the desired cross-sectional shape. This relationship applies regardless of the magnitude relationship between the angle θ2 and the angle θ3. The above description is for determining the conditions for satisfactorily grinding the lower surface of the workpiece 2 with the grindstone 5 in a configuration in which the lower surface of the workpiece 2 is attracted by the attraction member 10, based on the dimensions of each part of the lower side of the workpiece 2 having the desired cross-sectional shape and the dimensions of each part of the lower arc-shaped portion 5e of the grindstone 5. Regarding the configuration in which the upper surface of the workpiece 2 is attracted by the attraction member 10, it is preferable to determine the conditions for satisfactorily grinding the upper surface of the workpiece 2 with the grindstone 5 in a manner substantially similar to the calculation described above, based on the dimensions of each part of the upper side, not the lower side, of the workpiece 2 having the desired cross-sectional shape, and the dimensions of each part of the upper arc-shaped portion 5e of the grindstone 5 in the lower side, not the lower side.

次に、本発明の第2の実施形態について説明する。図12は、本実施形態のワーク加工装置1の砥石5を示す断面図である。本実施形態の砥石5は、第1の実施形態の砥石5と同様に、ベース円板部5aと、ベース円板部5aの外周部に位置する凹状研削部分5bと、凹状研削部分5bと厚さ方向に並んで設けられている断面長方形状研削部分5gと、を有している。ベース円板部5aおよび断面長方形状研削部分5gは、第1の実施形態のベース円板部5aおよび断面長方形状研削部分5gと実質的に同じ構成であるため、説明を省略する。凹状研削部分5bの、砥石5の回転軸6に沿う断面における断面形状は、半径方向外側(外周側)から内側(内周側)に向かって窪む凹状であり、少なくとも厚さ方向の両端部にそれぞれ円弧状部分5eと、円弧状部分5eよりも厚さ方向外側に位置して円弧状部分5eと連続的に繋がっている斜面部分5hと、を有する。両端部の円弧状部分5eの間にはワーク2の厚さ以上の厚さを有する直線部分5fが設けられている。円弧状部分5eの接線が水平方向に対して傾く角度が、所望の断面形状のワーク2の面取り部2aの水平方向に対してなす角度θ2と一致する点Bにおいて、円弧状部分5eから斜面部分5hに移行している。従って、斜面部分5hは水平方向に対して角度θ2で延びている。 Next, a second embodiment of the present invention will be described. FIG. 12 is a cross-sectional view showing the grinding wheel 5 of the workpiece processing device 1 of this embodiment. The grinding wheel 5 of this embodiment has a base disk portion 5a, a concave grinding portion 5b located on the outer periphery of the base disk portion 5a, and a cross-sectionally rectangular grinding portion 5g arranged in line with the concave grinding portion 5b in the thickness direction, similar to the grinding wheel 5 of the first embodiment. The base disk portion 5a and the cross-sectionally rectangular grinding portion 5g have substantially the same configuration as the base disk portion 5a and the cross-sectionally rectangular grinding portion 5g of the first embodiment, so their description will be omitted. The cross-sectional shape of the concave grinding portion 5b in the cross section along the rotation axis 6 of the grinding wheel 5 is a concave shape recessed from the radially outer side (outer periphery side) to the inner side (inner periphery side), and has at least an arc-shaped portion 5e at each end in the thickness direction and a slope portion 5h located outside the arc-shaped portion 5e in the thickness direction and continuously connected to the arc-shaped portion 5e. Between the arc-shaped portions 5e at both ends, there is a straight portion 5f having a thickness equal to or greater than that of the workpiece 2. At point B, where the angle at which the tangent of the arc-shaped portion 5e inclines relative to the horizontal direction coincides with the angle θ2 that the chamfered portion 2a of the workpiece 2 having the desired cross-sectional shape makes relative to the horizontal direction, the arc-shaped portion 5e transitions to a sloped portion 5h. Therefore, the sloped portion 5h extends at an angle θ2 relative to the horizontal direction.

本実施形態において、吸着部材10によってワーク2の片側の面(例えば鉛直方向下面)を吸着した状態で、その面を砥石5に当接させて良好に研削を行うための条件を求める。ワーク2の吸着部材10によって吸着される面(例えば鉛直方向下面)側に位置する斜面部分5hの長さは、図13に模式的に示すように、砥石5の回転軸6に沿う断面において、その円弧状部分5eの接線が吸着部材10の先薄形状10aの角度θ3と一致する角度θ3で延びる位置(図13の点A)においてワーク2の前述した面(例えば鉛直方向下面)2b側の端部と接する状態で、斜面部分5hが吸着部材10の先薄形状10aに当接する長さ未満である。図13に模式的に示す状態で、円弧状部分5eの点Aにおける接線は、水平方向からθ3だけ傾いており、吸着部材10の先薄形状10aの下面と平行である。この状態で、吸着部材10の先薄形状10aの下面が斜面部分5hと当接する点Eまで斜面部分5hが延びていると、それ以上の研削ができない。従って、斜面部分5hの長さは、点Eまで至る長さ未満である。円弧状部分5eの曲率中心から点Eまで延びる直線が垂直方向に対してなす角度をθ5とする。円弧状部分5eの点Aにおける接線に平行で、すなわち点Aを通る半径に直交し点Eを通る直線を引いた際に、その直線から、点Bを通る半径に沿って点Bまでの距離をx5とする。また、この直線に沿って、点Aを通る半径と点Bを通る半径との間の距離をx4とする。
x5=r’-x4tan[(θ3-θ2)/2]
x4=(r-r’)tan(θ3-θ2)
x3=rtan(θ2-θ5)=x5/tan(θ3-θ2)
θ5=θ2-tan-1[x5/rtan(θ3-θ2)]
このような計算によって、斜面部分5hが、円弧状部分5eの接線が吸着部材10の先薄形状10aの角度θ3と一致する角度θ3で延びる位置において凹状研削部分5bがワーク2の下面側の端部と接する状態で、斜面部分5hが吸着部材10の先薄形状10aに当接する長さ未満の長さを有するための条件を設定することができる。従って、砥石5の斜面部分5hが、前述した垂直方向からの角度θmaxと角度θ5との間の範囲内で終端する構成により、ワーク2を精度良く良好に所望の断面形状に加工することができる。
In this embodiment, a condition is found for a surface (e.g., a vertical lower surface) of the workpiece 2 to be brought into contact with the grinding wheel 5 and ground satisfactorily when the surface is attracted by the attracting member 10. The length of the inclined surface 5h located on the surface (e.g., the vertical lower surface) of the workpiece 2 to be attracted by the attracting member 10 is less than the length at which the inclined surface 5h abuts against the tapered shape 10a of the attracting member 10 in a cross section along the rotation axis 6 of the grinding wheel 5 when the tangent of the arc-shaped portion 5e extends at an angle θ3 that coincides with the angle θ3 of the tapered shape 10a of the attracting member 10 (point A in FIG. 13). In the state shown in FIG. 13, the tangent of the arc-shaped portion 5e at point A is inclined by θ3 from the horizontal direction and is parallel to the lower surface of the tapered shape 10a of the attracting member 10. In this state, if the inclined portion 5h extends to point E where the lower surface of the tapered shape 10a of the suction member 10 abuts against the inclined portion 5h, further grinding is not possible. Therefore, the length of the inclined portion 5h is less than the length to point E. The angle that a straight line extending from the center of curvature of the arc-shaped portion 5e to point E makes with the vertical direction is defined as θ5. When a straight line is drawn that is parallel to the tangent at point A of the arc-shaped portion 5e, i.e., perpendicular to the radius that passes through point A and passes through point E, the distance from this line to point B along the radius that passes through point B is defined as x5. Also, the distance along this straight line between the radius that passes through point A and the radius that passes through point B is defined as x4.
x5 = r' - x4 tan [(θ3 - θ2) / 2]
x4 = (r - r') tan (θ3 - θ2)
x3 = r tan(θ2 - θ5) = x5 / tan(θ3 - θ2)
θ5=θ2−tan −1 [x5/r tan(θ3−θ2)]
By such calculation, it is possible to set a condition for the inclined surface portion 5h to have a length less than the length at which the inclined surface portion 5h abuts against the tapered shape 10a of the attraction member 10 in a state in which the concave ground portion 5b abuts against the end portion on the lower surface side of the workpiece 2 at a position where a tangent to the arc-shaped portion 5e extends at an angle θ3 that coincides with the angle θ3 of the tapered shape 10a of the attraction member 10. Therefore, by configuring the inclined surface portion 5h of the grinding wheel 5 to terminate within the range between the angle θmax and the angle θ5 from the vertical direction as described above, the workpiece 2 can be accurately and satisfactorily machined into a desired cross-sectional shape.

次に、本発明の第3の実施形態について説明する。図14は、本実施形態のワーク加工装置を模式的に示す正面図である。本実施形態のワーク加工装置は、第1の実施形態の砥石5と類似しているが上面側にのみ断面長方形状研削部分5gを有している砥石5と、円板状のワーク2の外周の接線方向に対して斜めに配置された円板状の溝付き砥石12と、を有している。溝付き砥石12は、溝付き砥石支持機構13によって支持されるとともに回転軸14を中心として回転可能である。このワーク加工装置は、2段階の研削工程によって面取りを行うものであり、前段の粗研削工程を、第1の実施形態と同様な砥石5の断面長方形状研削部分5gと凹状研削部分5bとを用いて、前述した加工方法を実施することによって行う。そして、後段の精密研削工程を、ワーク2の外周の接線方向に対して斜めに配置された溝付き砥石12によって行う。溝付き砥石12の外周部には凹形状の溝12aが設けられており、この溝12a内にワーク2の外周部を挿入することにより、溝12aの内周面をワーク2の外周部に当接させて研削し、面取り部を形成することができる。本実施形態によると、表面粗さが小さいなどのヘリカル方式の加工方法による効果が得られるとともに、回転しながら移動する砥石によって粗研削を行うことにより、その後に行う溝付き砥石12を用いたヘリカル方式の精密研削をより短時間で効率良く行うことができるという効果も得られる。 Next, a third embodiment of the present invention will be described. FIG. 14 is a front view showing a workpiece machining apparatus of this embodiment. The workpiece machining apparatus of this embodiment has a grindstone 5 similar to the grindstone 5 of the first embodiment, but having a rectangular cross-sectional grinding portion 5g only on the upper surface side, and a disk-shaped grooved grindstone 12 arranged at an angle to the tangent direction of the outer periphery of a disk-shaped workpiece 2. The grooved grindstone 12 is supported by a grooved grindstone support mechanism 13 and can rotate around a rotation shaft 14. This workpiece machining apparatus performs chamfering by a two-stage grinding process, and the rough grinding process in the first stage is performed by implementing the above-mentioned processing method using the rectangular cross-sectional grinding portion 5g and the concave grinding portion 5b of the grindstone 5 similar to the first embodiment. Then, the precision grinding process in the latter stage is performed by the grooved grindstone 12 arranged at an angle to the tangent direction of the outer periphery of the workpiece 2. A concave groove 12a is provided on the outer periphery of the grooved grindstone 12, and by inserting the outer periphery of the workpiece 2 into this groove 12a, the inner periphery of the groove 12a is brought into contact with the outer periphery of the workpiece 2 and ground to form a chamfered portion. According to this embodiment, the effects of the helical processing method, such as low surface roughness, can be obtained, and the effect of performing rough grinding with the grindstone 5 that moves while rotating can be obtained so that the subsequent precision grinding by the helical method using the grooved grindstone 12 can be performed more efficiently in a shorter time.

本実施形態のワーク加工装置は、ワーク2の代わりにワーク支持機構4に取り付けることができ回転軸3を中心として回転可能な、溝付き砥石12のツルーイング用のツルーイング砥石11を有している。ツルーイング砥石11は、例えばレジンボンド砥石からなる溝付き砥石12よりも硬いGC砥石等からなり、ワーク2とほぼ同等な直径と厚さを有する砥石である。GC砥石等からなるツルーイング砥石11を、通常はメタルボンド砥石からなる砥石5を用いてワーク2の加工と同様な方法で加工して、傾斜した溝付き砥石12に転写したい断面形状(予め設定された溝12aの形状に対応する形状)に形成する。ワーク2の加工と同様な方法とは、砥石5の凹状研削部分5bとツルーイング砥石11との接触部分が、予め設定された溝12aの形状に対応する形状に沿って移動する移動条件を、砥石5の円弧状部分5eの曲率半径に基づいて算出しておき、その移動条件に従って、ツルーイング砥石11を砥石5に対して相対的に移動させることによって、ツルーイング砥石11の外形を形成することである。予め設定された溝12aの形状とは、溝12aの内周面に当接するワーク2を所望の断面形状に形成するために適した形状である。このようにして断面形状が形成されたツルーイング砥石11を、回転軸3を中心として回転させながら、溝が形成または整形される前の傾斜した溝付き砥石12の外周部に押し当てて、ツルーイング砥石11の外形を溝付き砥石12の外周部に転写して、溝12aを形成または整形する。こうして、溝付き砥石12のツルーイングを容易に行うことができる。なお、ツルーイング砥石11は、傾斜した溝付き砥石12のツルーイング時に生じるわずかな断面形状の変化を経験的に予想した上で、予想される断面形状の変化を予め含めた形状に形成される。 The workpiece processing device of this embodiment has a truing grindstone 11 for truing the grooved grindstone 12, which can be attached to the workpiece support mechanism 4 instead of the workpiece 2 and can rotate around the rotation axis 3. The truing grindstone 11 is made of a GC grindstone or the like which is harder than the grooved grindstone 12 made of a resin bond grindstone, and has a diameter and thickness approximately equal to those of the workpiece 2. The truing grindstone 11 made of a GC grindstone or the like is processed in the same manner as the processing of the workpiece 2 using a grindstone 5 which is usually made of a metal bond grindstone, and is formed into a cross-sectional shape (a shape corresponding to the shape of the preset groove 12a) to be transferred to the inclined grooved grindstone 12. The method similar to the processing of the workpiece 2 is to calculate the movement conditions under which the contact portion between the concave grinding portion 5b of the grinding wheel 5 and the truing grinding wheel 11 moves along a shape corresponding to the shape of the groove 12a set in advance based on the radius of curvature of the arc-shaped portion 5e of the grinding wheel 5, and to form the outer shape of the truing grinding wheel 11 by moving the truing grinding wheel 11 relative to the grinding wheel 5 according to the movement conditions. The shape of the groove 12a set in advance is a shape suitable for forming the workpiece 2 that abuts on the inner peripheral surface of the groove 12a into a desired cross-sectional shape. The truing grinding wheel 11 having the cross-sectional shape formed in this way is pressed against the outer peripheral portion of the inclined grooved grinding wheel 12 before the groove is formed or shaped while rotating around the rotation axis 3, and the outer shape of the truing grinding wheel 11 is transferred to the outer peripheral portion of the grooved grinding wheel 12 to form or shape the groove 12a. In this way, truing of the grooved grinding wheel 12 can be easily performed. The truing grindstone 11 is formed to a shape that takes into account the slight changes in cross-sectional shape that occur during truing of the inclined grooved grindstone 12, based on an empirical prediction.

なお、砥石の摩耗強さは、例えば粒度が#3000のレジンボンド砥石よりも粒度が#320のGC砥石の方が強く、粒度が#320のGC砥石よりも粒度が#800のメタルボンド砥石の方が強い。従って、粒度が#800のメタルボンド砥石で粒度が#320のGC砥石を研削して所望の断面形状に形成することができる。また、粒度が#320のGC砥石を、粒度が#3000のレジンボンド砥石に設けられた溝の内周面に押し付けることで、溝の形状を整形することができる。なお、以下に記載する各砥石は、基本的に、前述した粒度をそれぞれ有するものである。メタルボンド砥石からなり総形溝を有する砥石を用いて粗研削を行い、レジンボンド砥石からなる傾斜した溝付き砥石を用いて精密研削を行う従来のワーク加工装置では、GC砥石からなるツルーイング砥石を、メタルボンド砥石の総形溝の内周面に当接させて総形溝の形状を転写する。その後に、GC砥石からなるツルーイング砥石を、傾斜したレジンボンド砥石に当接させて溝の形成または整形を行う。こうして形成されたレジンボンド砥石からなる傾斜した溝付き砥石の溝によって、ワーク(ウェーハ)の精密研削を行う。そのため、ワークは、メタルボンド砥石の総形溝の形状に依存した断面形状にしか形成できず、異なる断面形状に形成することはできない。 In addition, the wear resistance of the grinding wheel is, for example, stronger for a GC grinding wheel with a grain size of #320 than for a resin-bonded grinding wheel with a grain size of #3000, and stronger for a metal-bonded grinding wheel with a grain size of #800 than for a GC grinding wheel with a grain size of #320. Therefore, a GC grinding wheel with a grain size of #320 can be ground with a metal-bonded grinding wheel with a grain size of #800 to form a desired cross-sectional shape. In addition, the shape of the groove can be shaped by pressing a GC grinding wheel with a grain size of #320 against the inner peripheral surface of a groove provided in a resin-bonded grinding wheel with a grain size of #3000. In addition, each grinding wheel described below basically has the grain size described above. In a conventional workpiece processing device that performs rough grinding using a metal-bonded grinding wheel with a formed groove and precision grinding using a resin-bonded grinding wheel with an inclined groove, a truing grinding wheel made of a GC grinding wheel is brought into contact with the inner peripheral surface of the formed groove of the metal-bonded grinding wheel to transfer the shape of the formed groove. The truing wheel made of a GC grinding wheel is then brought into contact with the inclined resin-bonded grinding wheel to form or shape the groove. The groove of the inclined grooved grinding wheel made of a resin-bonded grinding wheel thus formed is used to perform precision grinding of the workpiece (wafer). As a result, the workpiece can only be formed into a cross-sectional shape that depends on the shape of the formed groove of the metal-bonded grinding wheel, and cannot be formed into a different cross-sectional shape.

これに対し、本発明では、GC砥石からなるツルーイング砥石11は、メタルボンド砥石からなる砥石5の凹状研削部分5bによって任意の断面形状に形成できるため、このツルーイング砥石11によってツルーイングされる溝付き砥石12に、任意の断面形状の溝12aを形成できる。それにより、砥石を交換することなく、様々な断面形状のワーク2の加工を行うことができる。また、溝付き砥石12をツルーイングした後に、ワーク2の加工を一度行い、加工したワーク2の断面形状を実際に測定して、目標の形状と比較してフィードバックすることができる。仮に、加工したワーク2の断面形状が目標の形状と相違している場合には、砥石5の凹状研削部分5bによって整形するツルーイング砥石11の断面形状を変更(補正)し、変更した断面形状を有するツルーイング砥石11によって溝付き砥石12を再ツルーイングする。このようにして、溝付き砥石12によって整形するワーク2の断面形状を、目標の形状に近づけることができる。前述した従来のワーク加工装置では、総形溝を有するメタルボンド砥石を用いているため、加工したワークの断面形状が目標の形状から相違していても、ツルーイング砥石11の断面形状の変更(補正)は不可能である。しかし、本発明の方法によると、加工したワークの断面形状の精度、すなわち、ワーク2の加工精度を格段に向上させることが可能である。 In contrast, in the present invention, the truing grindstone 11 made of a GC grindstone can be formed into any cross-sectional shape by the concave grinding portion 5b of the grindstone 5 made of a metal bond grindstone, so that a groove 12a of any cross-sectional shape can be formed in the grooved grindstone 12 trued by the truing grindstone 11. This makes it possible to process workpieces 2 of various cross-sectional shapes without replacing the grindstone. In addition, after truing the grooved grindstone 12, the workpiece 2 can be processed once, and the cross-sectional shape of the processed workpiece 2 can be actually measured and compared with the target shape for feedback. If the cross-sectional shape of the processed workpiece 2 differs from the target shape, the cross-sectional shape of the truing grindstone 11 that is shaped by the concave grinding portion 5b of the grindstone 5 is changed (corrected), and the grooved grindstone 12 is re-trued by the truing grindstone 11 having the changed cross-sectional shape. In this way, the cross-sectional shape of the workpiece 2 shaped by the grooved grindstone 12 can be made closer to the target shape. The conventional workpiece processing device described above uses a metal-bonded grinding wheel with a formed groove, so even if the cross-sectional shape of the processed workpiece differs from the target shape, it is impossible to change (correct) the cross-sectional shape of the truing grinding wheel 11. However, with the method of the present invention, it is possible to significantly improve the accuracy of the cross-sectional shape of the processed workpiece, i.e., the processing accuracy of the workpiece 2.

次に、本発明の第4の実施形態について説明する。図15は、本実施形態のワーク加工装置を模式的に示す正面図である。本実施形態のワーク加工装置は、第3の実施形態と同様な、円板状のワーク2の外周の接線方向に対して斜めに配置された溝付き砥石12を有している。第3の実施形態と同様な砥石5が砥石支持機構7に取り付けられ、回転軸6を中心として回転可能である。ワーク2がワーク支持機構4に取り付けられ、回転軸3を中心として回転可能であるとともに、ワーク2および砥石5に対して平行な面内(回転軸3および回転軸6に直交する面内)で砥石5に対して近づく方向にも砥石5から離れる方向にも移動可能であり、かつ砥石5およびワーク2に対して直交する面内(回転軸3および回転軸6に平行な面内)で砥石5に対して近づく方向にも砥石5から離れる方向にも移動可能である。図15に示すように、ワーク支持機構4は、X方向移動ステージ4aと、Y方向移動ステージ4bと、Z方向移動ステージ4cと、モータ4dと、を有している。X方向移動ステージ4aは、砥石5およびワーク2に対して平行な面内で、砥石5およびワーク2の幅方向(図15の紙面に直交する方向)に移動可能である。Y方向移動ステージ4bは、X方向移動ステージ4a上に搭載され、砥石5およびワーク2に対して平行な面内で、砥石5およびワーク2の接離方向(図15の左右方向)に移動可能である。Z方向移動ステージ4cは、Y方向移動ステージ4b上に搭載され、砥石5およびワーク2に対して直交する面内で高さ方向(図15の上下方向)に移動可能である。詳述しないが、X方向移動ステージ4aと、Y方向移動ステージ4bと、Z方向移動ステージ4cとは、公知の案内手段(例えばLMガイド)と移動手段(例えばボールねじおよびナットと回転駆動手段)とをそれぞれ有し、前述した各方向に移動可能である。モータ4dは、Z方向移動ステージ4c上に搭載され、回転軸3を介してワーク2を支持するとともに、回転軸3を回転させる駆動手段である。モータ4dは発熱する部材であり、このモータ4dおよび回転軸3の少なくとも一方を覆うように温度調整機構15が設けられている。温度調整機構15は、図示しない流路に液体または気体が流されて、モータ4dおよび回転軸3の少なくとも一方の温度を調整する。 Next, a fourth embodiment of the present invention will be described. FIG. 15 is a front view showing a schematic diagram of a workpiece machining device of this embodiment. The workpiece machining device of this embodiment has a grooved grindstone 12 arranged obliquely with respect to the tangent direction of the outer periphery of a disk-shaped workpiece 2, similar to the third embodiment. A grindstone 5 similar to the third embodiment is attached to a grindstone support mechanism 7 and can rotate around a rotation axis 6. The workpiece 2 is attached to a workpiece support mechanism 4 and can rotate around a rotation axis 3, and can move in a plane parallel to the workpiece 2 and the grindstone 5 (in a plane perpendicular to the rotation axis 3 and the rotation axis 6) in both a direction approaching the grindstone 5 and a direction away from the grindstone 5, and can move in a plane perpendicular to the grindstone 5 and the workpiece 2 (in a plane parallel to the rotation axis 3 and the rotation axis 6) in both a direction approaching the grindstone 5 and a direction away from the grindstone 5. As shown in FIG. 15 , the workpiece support mechanism 4 has an X-direction moving stage 4a, a Y-direction moving stage 4b, a Z-direction moving stage 4c, and a motor 4d. The X-direction moving stage 4a is movable in the width direction of the grindstone 5 and the workpiece 2 (direction perpendicular to the paper surface of FIG. 15) in a plane parallel to the grindstone 5 and the workpiece 2. The Y-direction moving stage 4b is mounted on the X-direction moving stage 4a and is movable in the approaching and separating direction of the grindstone 5 and the workpiece 2 (left and right direction in FIG. 15) in a plane parallel to the grindstone 5 and the workpiece 2. The Z-direction moving stage 4c is mounted on the Y-direction moving stage 4b and is movable in the height direction (up and down direction in FIG. 15) in a plane perpendicular to the grindstone 5 and the workpiece 2. Although not described in detail, the X-direction moving stage 4a, the Y-direction moving stage 4b, and the Z-direction moving stage 4c each have a known guide means (e.g., LM guide) and a moving means (e.g., a ball screw, a nut, and a rotation driving means), and are movable in each of the directions described above. The motor 4d is mounted on the Z-direction moving stage 4c, and is a driving means for supporting the workpiece 2 via the rotating shaft 3 and rotating the rotating shaft 3. The motor 4d is a heat generating member, and a temperature adjustment mechanism 15 is provided to cover at least one of the motor 4d and the rotating shaft 3. The temperature adjustment mechanism 15 adjusts the temperature of at least one of the motor 4d and the rotating shaft 3 by allowing a liquid or gas to flow through a flow path (not shown).

このワーク加工装置によると、前述した第1~3の実施形態のそれぞれの効果を奏することができる。また、図示しないが、第3の実施形態と同様なツルーイング砥石11を回転させながら溝付き砥石12に当接するように移動させて、溝付き砥石12のツルーイングを容易かつ効率良く高精度に行うこともできる。 This workpiece processing device can achieve the effects of each of the first to third embodiments described above. In addition, although not shown, a truing grindstone 11 similar to that of the third embodiment can be moved so as to come into contact with the grooved grindstone 12 while rotating, thereby truing the grooved grindstone 12 easily, efficiently, and with high precision.

ワーク支持機構4は、ワーク2を常に高速回転させるわけではなく、低速回転させる場合や、ワーク2の回転を行わない場合もある。具体的には、砥石5の凹状研削部分5bや断面長方形状研削部分5gによってワーク2の研削を行う時には、ワーク2は高速回転される。円板状のワーク2の外周の接線方向に対して斜めに配置された溝付き砥石12によってワーク2の研削を行う時には、ワーク2は低速回転される。そして、ワーク2の交換時には、ワーク支持機構4は回転運動を行う必要がない。従来、複数のワーク2を連続的に加工する場合には、ワーク支持機構4は、回転軸3を中心とするワーク2の高速回転と、ワーク2の低速回転と、回転運動停止状態とを繰り返す。ワーク支持機構4は、ワーク2の高速回転の際には発熱して高温になり、ワーク2の低速回転時には高速回転時よりも低温になり、回転運動停止状態にはさらに低温になる。ワーク支持機構4がこのような温度変化を繰り返す結果、特に回転軸3が伸縮等の変形を生じる。ワーク2が取り付けられる回転軸3が変形し、ワーク2の厚さ方向の位置が変化すると、前述したように数値制御してワーク2と砥石とを相対移動させても加工精度が大幅に低下する。 The work support mechanism 4 does not always rotate the work 2 at high speed, but may rotate it at low speed or may not rotate the work 2 at all. Specifically, when grinding the work 2 with the concave grinding portion 5b or the cross-sectionally rectangular grinding portion 5g of the grinding wheel 5, the work 2 is rotated at high speed. When grinding the work 2 with the grooved grinding wheel 12 arranged diagonally with respect to the tangent direction of the outer periphery of the disk-shaped work 2, the work 2 is rotated at low speed. When replacing the work 2, the work support mechanism 4 does not need to perform rotational motion. Conventionally, when multiple workpieces 2 are continuously processed, the work support mechanism 4 repeats high-speed rotation of the work 2 around the rotating shaft 3, low-speed rotation of the work 2, and a state in which the rotational motion is stopped. The work support mechanism 4 heats up and becomes high temperature when the work 2 rotates at high speed, becomes lower than when the work 2 rotates at low speed, and becomes even lower when the rotational motion is stopped. As a result of the work support mechanism 4 repeating such temperature changes, deformation such as expansion and contraction occurs, especially in the rotating shaft 3. If the rotating shaft 3 on which the workpiece 2 is attached deforms and the position of the workpiece 2 in the thickness direction changes, the machining accuracy will decrease significantly even if the workpiece 2 and the grinding wheel are moved relative to each other using numerical control as described above.

そこで、本発明の各実施形態では、ワーク支持機構4に付属する温度調整機構15が設けられている。温度調整機構15は、液体または気体の流れを発生させて、ワーク支持機構4の回転軸3の温度の変動を小さくして、回転軸3の変形を抑える。こうして、ワーク2の加工時に、回転軸3の熱による変形を抑えることにより、ワーク2の加工精度の低下を防ぐ。 Therefore, in each embodiment of the present invention, a temperature adjustment mechanism 15 is provided that is attached to the work support mechanism 4. The temperature adjustment mechanism 15 generates a flow of liquid or gas to reduce temperature fluctuations in the rotating shaft 3 of the work support mechanism 4 and suppress deformation of the rotating shaft 3. In this way, by suppressing deformation of the rotating shaft 3 due to heat when machining the workpiece 2, a decrease in the machining accuracy of the workpiece 2 is prevented.

また、回転軸3の温度をできるだけ一定に保つためには、回転軸3を中心とする回転運動を行い続けることが好ましい。例えば、ワーク2の交換や補充の際や作業工程上の問題でワーク2の加工が中断している時であっても、ワーク支持機構4は回転軸3を中心とする回転運動を続行することが好ましい。こうして、ワーク支持機構4を、ワーク2が取り付けられておらずワーク2の加工を行っていない状態で回転軸3を中心とする回転運動を行っている状態(便宜上、アイドリング状態または予備回転動作と称する)に保つことによって、温度の変動を小さく抑えて、短時間で温度が安定し易くなるようにすることができる。さらに、この予備回転動作では、高速回転のみ、または低速回転のみを行うのではなく、実際のワーク2の加工時と同様に高速回転(砥石による加工中のワーク2の高速回転時と同じ速度での回転)と、低速回転(砥石による加工中のワーク2の低速回転時と同じ速度での回転)と、を交互に繰り返すことが、温度変動を小さく抑えられる点で好ましい。それにより、予備回転動作からワーク2の加工に移行する際に、直ちに、回転軸3の温度を安定させることができ、高精度の加工が行える。特に、予備回転動作における高速回転の継続時間と低速回転の継続時間との比を、実際のワーク2の加工における高速回転の継続時間と低速回転の継続時間との比と一致させると、実際のワーク2の加工時に準じた温度管理が可能であるため好ましい。ただし、予備回転動作の高速回転の継続時間と低速回転の継続時間が長時間であると、実際のワーク2の加工を開始する際に、予備回転動作を終了してワーク2の加工に移行するのに適したタイミング(例えば予備回転動作の回転速度が切り替わるタイミング)を待つための待機時間が長くなり、作業効率が低下する可能性がある。そこで、前述したように予備回転動作における高速回転の継続時間と低速回転の継続時間との比を、実際のワーク2の加工における高速回転の継続時間と低速回転の継続時間との比と一致させつつ、予備回転動作における高速回転の継続時間および低速回転の継続時間を、実際のワーク2の加工における高速回転の継続時間と低速回転の継続時間よりもそれぞれ短くすることが好ましい。それにより、実際のワーク2の加工時に準じた温度管理により回転軸3の温度変化を小さく抑えて加工精度の低下を抑えるとともに、さらに、予備回転動作からワーク2の加工に移行する際の待機時間を短くして作業効率の低下を抑えることができる。 In addition, in order to keep the temperature of the rotating shaft 3 as constant as possible, it is preferable to continue the rotational motion around the rotating shaft 3. For example, even when the workpiece 2 is replaced or replenished or the processing of the workpiece 2 is interrupted due to a problem in the work process, it is preferable for the workpiece support mechanism 4 to continue the rotational motion around the rotating shaft 3. In this way, by keeping the workpiece support mechanism 4 in a state in which the workpiece 2 is not attached and the workpiece 2 is not being processed and the rotational motion around the rotating shaft 3 is being performed (for convenience, referred to as an idling state or preliminary rotation operation), it is possible to suppress temperature fluctuations to a small level and make it easier for the temperature to stabilize in a short time. Furthermore, in this preliminary rotation operation, instead of performing only high-speed rotation or only low-speed rotation, it is preferable to alternate between high-speed rotation (rotation at the same speed as when the workpiece 2 is rotated at high speed during processing by the grindstone) and low-speed rotation (rotation at the same speed as when the workpiece 2 is rotated at low speed during processing by the grindstone) as in the actual processing of the workpiece 2, in order to suppress temperature fluctuations to a small level. As a result, when the preliminary rotation operation is switched to the processing of the workpiece 2, the temperature of the rotating shaft 3 can be immediately stabilized, and high-precision processing can be performed. In particular, it is preferable to match the ratio of the duration of high-speed rotation to the duration of low-speed rotation in the preliminary rotation operation with the ratio of the duration of high-speed rotation to the duration of low-speed rotation in the actual processing of the workpiece 2, since this allows temperature management similar to that during the actual processing of the workpiece 2. However, if the duration of high-speed rotation to the duration of low-speed rotation in the preliminary rotation operation is long, when the actual processing of the workpiece 2 is started, the waiting time for waiting for the appropriate timing (for example, the timing when the rotation speed of the preliminary rotation operation is switched) to end the preliminary rotation operation becomes long, and the working efficiency may decrease. Therefore, it is preferable to match the ratio of the duration of high-speed rotation to the duration of low-speed rotation in the preliminary rotation operation with the ratio of the duration of high-speed rotation to the duration of low-speed rotation in the actual processing of the workpiece 2, as described above, and make the duration of high-speed rotation and the duration of low-speed rotation in the preliminary rotation operation shorter than the duration of high-speed rotation and the duration of low-speed rotation in the actual processing of the workpiece 2. This allows temperature control similar to that used when actually machining the workpiece 2 to keep temperature changes in the rotating shaft 3 to a minimum, preventing a decrease in machining accuracy, and also shortens the waiting time when transitioning from the preliminary rotation operation to machining the workpiece 2, preventing a decrease in work efficiency.

本発明の砥石5は、凹状研削部分5bの、砥石5の回転軸6を通る断面における断面形状が、厚さ方向の両端部に位置する1対の円弧状部分5eが直線部分5fによって接続された断面形状を有する構成である。砥石5の厚さ方向の一方の端部の円弧状部分5eと、他方の端部の円弧状部分5eとは、それぞれの曲率半径の平均値が所望の大きさになるように個別に形成された部分であることが好ましい。それにより、凹状研削部分5b全体を同一の曲率半径になるように加工する場合よりも、厚さ方向の一方の端部と他方の端部のいずれも高精度に良好に形成できる。そして、厚さ方向の一方の端部の円弧状部分5eの曲率半径と、他方の端部の円弧状部分5eの曲率半径のそれぞれの誤差を、ある程度小さくすることが好ましい。例えば、厚さ方向の一方の端部の円弧状部分5eの曲率半径の最大値と最小値の差と、他方の端部の円弧状部分5eの曲率半径の最大値と最小値の差とが、いずれも許容範囲内に入る、すなわち予め設定された所定の数値(第1の所定値)以下になるようにする。また、厚さ方向の一方の端部の円弧状部分5eの曲率半径の平均値と、他方の端部の円弧状部分5eの曲率半径の平均値との差が許容範囲内に入る、すなわち予め設定された所定の数値(第2の所定値)以下になるようにする。 The grinding wheel 5 of the present invention has a cross-sectional shape in which the concave grinding portion 5b in a cross section passing through the rotation axis 6 of the grinding wheel 5 has a cross-sectional shape in which a pair of arc-shaped portions 5e located at both ends in the thickness direction are connected by a straight portion 5f. It is preferable that the arc-shaped portion 5e at one end in the thickness direction of the grinding wheel 5 and the arc-shaped portion 5e at the other end are individually formed so that the average value of the respective radii of curvature is a desired size. As a result, both the one end and the other end in the thickness direction can be formed with high accuracy and good quality compared to the case where the entire concave grinding portion 5b is processed to have the same radius of curvature. It is preferable to reduce the respective errors in the radius of curvature of the arc-shaped portion 5e at one end in the thickness direction and the arc-shaped portion 5e at the other end. For example, the difference between the maximum and minimum values of the radius of curvature of the arc-shaped portion 5e at one end in the thickness direction and the difference between the maximum and minimum values of the radius of curvature of the arc-shaped portion 5e at the other end are both within the allowable range, i.e., are less than a predetermined value (first predetermined value). Also, the difference between the average value of the radius of curvature of the arc-shaped portion 5e at one end in the thickness direction and the average value of the radius of curvature of the arc-shaped portion 5e at the other end is both within the allowable range, i.e., are less than a predetermined value (second predetermined value).

本発明では、前述した通り、外周部に凹状研削部分5bを有する砥石5であって、凹状研削部分5bが、厚さ方向の両端部の円弧状部分5eと、両端部の円弧状部分5eの間の直線部分5fとを有する形状である砥石5を用いて、円板状のワーク2を所望の断面形状に形成する。このワーク加工方法は、ワーク2と砥石5とを互いに平行に配置するステップと、砥石5を回転させるとともに、砥石5の回転軸6と平行な回転軸3を中心としてワーク2を回転させつつ、凹状研削部分5bとワーク2との接触部分がワーク2の所望の断面形状に沿って移動するように砥石5の円弧状部分5eの曲率半径に基づいて算出された移動条件に従って、砥石5をワークに対して相対的に移動させるステップとを含む。砥石5をワークに対して相対的に移動させるステップは、ワーク2と砥石5とを回転させつつ、砥石5の凹状研削部分5bの円弧状部分5eをワーク2の外周端面から一方の面に向かって、前記移動条件に従って予め算出された角度だけワーク2に対して相対的に曲線的に移動させることにより、ワーク2の一方の面側の外周部を研削することと、砥石5をワーク2の外周端面に沿って一方の面側から他方の面側へワーク2に対して相対的に移動させることと、ワーク2と砥石5とを回転させつつ、砥石5の凹状研削部分5bの円弧状部分5eをワーク2の外周端面から他方の面に向かって、前記移動条件に従って予め算出された角度だけワーク2に対して相対的に曲線的に移動させることにより、ワーク2の他方の面側の外周部を研削することと、を含む。ワーク2の一方の面側または他方の面側の外周部の粗い研削を行う際には、ワーク2と砥石5とを回転させつつ、砥石5の凹状研削部分5bの円弧状部分5eをワーク2の外周端面から一方の面または他方の面に向かって、砥石5の回転軸6とワーク2の回転軸3とが同一平面内に位置するように(図16の矢印F1に沿って)、前記移動条件に従って予め算出された角度だけワーク2に対して相対的に曲線的に移動させたら、砥石5のワークに対する相対的な移動を停止させる。それに対し、ワーク2の一方の面側または他方の面側の外周部の精密な研削を行う際には、ワーク2と砥石5とを回転させつつ、砥石5の凹状研削部分5bの円弧状部分5eをワーク2の外周端面から一方の面または他方の面に向かって、砥石5の回転軸6とワーク2の回転軸3とが同一平面内に位置するように(図16の矢印F1に沿って)、前記移動条件に従って予め算出された角度だけワーク2に対して相対的に曲線的に移動させた後に、曲線的な移動の際に砥石5の回転軸6とワーク2の回転軸3とが位置していた平面に対して垂直または斜めに交差する方向に延びる平面内において砥石5の回転軸6とワークの回転軸3とが相対的に移動するように(例えば図16の矢印F2,F3,F4,F5のいずれかに沿って)、砥石5をワーク2に対して相対的に直線的に移動させる。 In the present invention, as described above, a grindstone 5 having a concave ground portion 5b on its outer periphery, the concave ground portion 5b having arc-shaped portions 5e at both ends in the thickness direction and a straight portion 5f between the arc-shaped portions 5e at both ends, is used to form a disk-shaped workpiece 2 into a desired cross-sectional shape. This workpiece machining method includes a step of arranging the workpiece 2 and the grindstone 5 parallel to each other, and a step of rotating the grindstone 5 and rotating the workpiece 2 about a rotation axis 3 parallel to the rotation axis 6 of the grindstone 5, while moving the grindstone 5 relatively to the workpiece 2 according to a movement condition calculated based on the radius of curvature of the arc-shaped portion 5e of the grindstone 5 so that the contact portion between the concave ground portion 5b and the workpiece 2 moves along the desired cross-sectional shape of the workpiece 2. The step of moving the grinding wheel 5 relative to the workpiece 2 includes: rotating the workpiece 2 and the grinding wheel 5, while moving the arc-shaped portion 5e of the concave grinding portion 5b of the grinding wheel 5 in a curved manner relative to the workpiece 2 from the outer peripheral end face of the workpiece 2 toward one side by an angle calculated in advance in accordance with the movement conditions, thereby grinding the outer periphery of one side of the workpiece 2; moving the grinding wheel 5 along the outer peripheral end face of the workpiece 2 from one side to the other side by a curved manner relative to the workpiece 2 while rotating the workpiece 2 and the grinding wheel 5, while moving the arc-shaped portion 5e of the concave grinding portion 5b of the grinding wheel 5 in a curved manner relative to the workpiece 2 from the outer peripheral end face of the workpiece 2 toward the other side by an angle calculated in advance in accordance with the movement conditions, thereby grinding the outer periphery of the other side of the workpiece 2. When rough grinding the outer periphery of one side or the other side of the workpiece 2, while rotating the workpiece 2 and the grinding wheel 5, the arc-shaped portion 5e of the concave grinding portion 5b of the grinding wheel 5 is moved curvedly relative to the workpiece 2 from the outer peripheral end face of the workpiece 2 toward one side or the other side by an angle calculated in advance in accordance with the movement conditions so that the rotation axis 6 of the grinding wheel 5 and the rotation axis 3 of the workpiece 2 are positioned in the same plane (along the arrow F1 in Figure 16), and then the relative movement of the grinding wheel 5 with respect to the workpiece 2 is stopped. On the other hand, when performing precise grinding of the outer periphery of one side or the other side of the workpiece 2, while rotating the workpiece 2 and the grinding wheel 5, the arc-shaped portion 5e of the concave grinding portion 5b of the grinding wheel 5 is moved curvilinearly relative to the workpiece 2 from the outer peripheral end face toward one side or the other side of the workpiece 2 by an angle calculated in advance in accordance with the above-mentioned movement conditions so that the rotation axis 6 of the grinding wheel 5 and the rotation axis 3 of the workpiece 2 are positioned in the same plane (along the arrow F1 in Figure 16), and then the grinding wheel 5 is moved linearly relative to the workpiece 2 so that the rotation axis 6 of the grinding wheel 5 and the rotation axis 3 of the workpiece 2 move relatively in a plane extending in a direction perpendicular or obliquely intersecting the plane in which the rotation axis 6 of the grinding wheel 5 and the rotation axis 3 of the workpiece 2 were positioned during the curvilinear movement (for example, along any of the arrows F2, F3, F4, or F5 in Figure 16).

この方法によると、ワーク2の研削された部分の粗さが良好になる(より平滑になる)。その理由について説明すると、砥石5の表面(研削に用いられる面)にはダイヤモンド等の砥粒が突出する部分が点在している。ワーク2の砥石5との接触部分において、砥石5のダイヤモンド等の砥粒が突出する部分がワーク2に接触した個所が、他の個所よりも深く刻まれる。その後に砥石5をワーク2に対して相対的に直線的に移動させることで、ワーク2の深く刻まれた部分を含む領域全体を、砥石5の凹状研削部分5bの円弧状部分5eが改めて研削する。それにより、前工程においてダイヤモンド等の砥粒との接触により深く刻まれた部分がそのまま残ることなく、砥石5の凹状研削部分5bの円弧状部分5eに接触して研削されて平滑になる。特に、前工程とは砥石5の回転軸6とワークの回転軸3との相対的な移動方向を変えて、曲線的な移動の際の砥石5とワーク2との相対移動方向に対して垂直または斜めに交差する方向であって、かつワーク2の回転方向に斜めまたは直交する方向に相対移動させることで、前工程においてダイヤモンド等の砥粒との接触により深く刻まれた部分を含む領域を改めて研削することができ、しかもワーク2が砥石5の凹状研削部分5bの円弧状部分5eによって過剰に研削され過ぎて角度が小さくなりすぎることが抑制できる。 According to this method, the roughness of the ground portion of the workpiece 2 is improved (becomes smoother). The reason for this is that the surface of the grindstone 5 (the surface used for grinding) is dotted with portions where abrasive grains such as diamonds protrude. In the contact portion of the workpiece 2 with the grindstone 5, the portion where the portion of the grindstone 5 where abrasive grains such as diamonds protrude contacts the workpiece 2 is engraved deeper than other portions. Then, the grindstone 5 is moved linearly relative to the workpiece 2, so that the entire area including the deeply engraved portion of the workpiece 2 is ground again by the arc-shaped portion 5e of the concave grinding portion 5b of the grindstone 5. As a result, the portion deeply engraved by contact with the abrasive grains such as diamonds in the previous process is not left as it is, but is ground and smoothed by contacting the arc-shaped portion 5e of the concave grinding portion 5b of the grindstone 5. In particular, by changing the relative movement direction between the rotation axis 6 of the grinding wheel 5 and the rotation axis 3 of the workpiece from the previous process, and moving the workpiece 2 relative to the grinding wheel 5 in a direction that intersects perpendicularly or obliquely with the relative movement direction between the grinding wheel 5 and the workpiece 2 during the curved movement, and in a direction that is obliquely or perpendicular to the rotation direction of the workpiece 2, it is possible to re-grind areas including those that were deeply engraved by contact with abrasive grains such as diamonds in the previous process, and it is also possible to prevent the workpiece 2 from being excessively ground by the arc-shaped portion 5e of the concave grinding portion 5b of the grinding wheel 5, resulting in an angle that becomes too small.

また、本発明において、外周部に凹状研削部分5bを有する砥石5であって、凹状研削部分5bが、厚さ方向の両端部に、円弧状部分5eと、円弧状部分5eよりも厚さ方向外側に位置して円弧状部分5eと連続的に繋がっている斜面部分5hと、を有し、両端部の円弧状部分5eの間の直線部分5fとを有する形状である砥石5を用いて、円板状のワーク2を所望の断面形状に形成する場合もある。このワーク加工方法は、ワーク2と砥石5とを互いに平行に配置するステップと、砥石5を回転させるとともに、砥石5の回転軸6と平行な回転軸3を中心としてワーク2を回転させつつ、凹状研削部分5bとワーク2との接触部分がワーク2の所望の断面形状に沿って移動するように砥石5の円弧状部分5eの曲率半径に基づいて算出された移動条件に従って、砥石5をワークに対して相対的に移動させるステップとを含む。砥石5をワークに対して相対的に移動させるステップは、ワーク2と砥石5とを回転させつつ、砥石5の凹状研削部分5bの円弧状部分5eをワーク2の外周端面から一方の面に向かって、前記移動条件に従って予め算出された角度だけワーク2に対して相対的に曲線的に移動させることにより、ワーク2の一方の面側の外周部を研削することと、砥石5をワーク2の外周端面に沿って一方の面側から他方の面側へワーク2に対して相対的に移動させることと、ワーク2と砥石5とを回転させつつ、砥石5の凹状研削部分5bの円弧状部分5eをワーク2の外周端面から他方の面に向かって、前記移動条件に従って予め算出された角度だけワーク2に対して相対的に曲線的に移動させることにより、ワーク2の他方の面側の外周部を研削することと、を含む。ワーク2の一方の面側または他方の面側の外周部の粗い研削を行う際には、ワーク2と砥石5とを回転させつつ、砥石5の凹状研削部分5bの円弧状部分5eをワーク2の外周端面から一方の面または他方の面に向かって、砥石5の回転軸6とワーク2の回転軸3とが同一平面内に位置するように(図16の矢印F1に沿って)、前記移動条件に従って予め算出された角度だけワーク2に対して相対的に曲線的に移動させたら、砥石5のワークに対する相対的な移動を停止させる。それに対し、ワーク2の一方の面側または他方の面側の外周部の精密な研削を行う際には、ワーク2と砥石5とを回転させつつ、砥石5の凹状研削部分5bの円弧状部分5eをワーク2の外周端面から一方の面または他方の面に向かって、砥石5の回転軸6とワーク2の回転軸3とが同一平面内に位置するように(図16の矢印F1に沿って)、前記移動条件に従って予め算出された角度だけワーク2に対して相対的に曲線的に移動させた後に、曲線的な移動の際に砥石5の回転軸6とワーク2の回転軸3とが位置していた平面内に砥石5の回転軸6とワーク2の回転軸3とが位置する状態を維持したまま(引き続き図16の矢印F1に沿って)、砥石5をワークに対して相対的に直線的に移動させる。 In the present invention, a disk-shaped workpiece 2 may be formed into a desired cross-sectional shape by using a grindstone 5 having a concave grinding portion 5b on its outer periphery, the concave grinding portion 5b having an arc-shaped portion 5e at both ends in the thickness direction, an inclined surface portion 5h located outside the arc-shaped portion 5e in the thickness direction and continuously connected to the arc-shaped portion 5e, and a straight portion 5f between the arc-shaped portions 5e at both ends. This workpiece machining method includes a step of arranging the workpiece 2 and the grindstone 5 parallel to each other, and a step of rotating the grindstone 5 and rotating the workpiece 2 about a rotation axis 3 parallel to the rotation axis 6 of the grindstone 5, while moving the grindstone 5 relatively to the workpiece 2 according to a moving condition calculated based on the radius of curvature of the arc-shaped portion 5e of the grindstone 5 so that the contact portion between the concave grinding portion 5b and the workpiece 2 moves along the desired cross-sectional shape of the workpiece 2. The step of moving the grinding wheel 5 relative to the workpiece 2 includes: rotating the workpiece 2 and the grinding wheel 5, while moving the arc-shaped portion 5e of the concave grinding portion 5b of the grinding wheel 5 in a curved manner relative to the workpiece 2 from the outer peripheral end face of the workpiece 2 toward one side by an angle calculated in advance in accordance with the movement conditions, thereby grinding the outer periphery of one side of the workpiece 2; moving the grinding wheel 5 along the outer peripheral end face of the workpiece 2 from one side to the other side by a curved manner relative to the workpiece 2, while rotating the workpiece 2 and the grinding wheel 5, while moving the arc-shaped portion 5e of the concave grinding portion 5b of the grinding wheel 5 in a curved manner relative to the workpiece 2 from the outer peripheral end face of the workpiece 2 toward the other side by an angle calculated in advance in accordance with the movement conditions, thereby grinding the outer periphery of the other side of the workpiece 2. When rough grinding the outer periphery of one side or the other side of the workpiece 2, while rotating the workpiece 2 and the grinding wheel 5, the arc-shaped portion 5e of the concave grinding portion 5b of the grinding wheel 5 is moved curvedly relative to the workpiece 2 from the outer peripheral end face of the workpiece 2 toward one side or the other side by an angle calculated in advance in accordance with the above-mentioned movement conditions so that the rotation axis 6 of the grinding wheel 5 and the rotation axis 3 of the workpiece 2 are positioned in the same plane (along the arrow F1 in Figure 16), and then the relative movement of the grinding wheel 5 with respect to the workpiece 2 is stopped. On the other hand, when performing precise grinding of the outer periphery of one side or the other side of the workpiece 2, while rotating the workpiece 2 and the grinding wheel 5, the arc-shaped portion 5e of the concave grinding portion 5b of the grinding wheel 5 is moved in a curved manner relative to the workpiece 2 from the outer peripheral end face toward one side or the other side of the workpiece 2 by an angle calculated in advance in accordance with the above-mentioned movement conditions so that the rotation axis 6 of the grinding wheel 5 and the rotation axis 3 of the workpiece 2 are located in the same plane (along the arrow F1 in Figure 16), and then the grinding wheel 5 is moved linearly relative to the workpiece 2 while maintaining the state in which the rotation axis 6 of the grinding wheel 5 and the rotation axis 3 of the workpiece 2 are located in the plane in which the rotation axis 6 of the grinding wheel 5 and the rotation axis 3 of the workpiece 2 were located during the curved movement (continuing to move along the arrow F1 in Figure 16).

この方法によると、砥石5の凹状研削部分5bに斜面部分5hが設けられているため、ダイヤモンド等の砥粒との接触により深く刻まれた部分を含む領域が、砥石5の斜面部分5hによって改めて研削されるため、前工程においてダイヤモンド等の砥粒との接触により深く刻まれた部分がそのまま残ることなく平滑になる。そして、ワーク2は最後に斜面部分5hにより研削されるため、過剰に研削されすぎて角度が小さくなるおそれがない。従って、砥石5とワーク2の曲線的な相対移動と、その後の直線的な相対移動とで移動方向を変える必要はなく、平面的に見てワークを真っ直ぐに引き抜いても構わない。 According to this method, since the concave grinding portion 5b of the grindstone 5 is provided with a slope portion 5h, the area including the portion deeply engraved by contact with abrasive grains such as diamond is ground again by the slope portion 5h of the grindstone 5, and the portion deeply engraved by contact with abrasive grains such as diamond in the previous process is smoothed without remaining as it is. And, since the workpiece 2 is ground by the slope portion 5h at the end, there is no risk of the angle becoming small due to excessive grinding. Therefore, there is no need to change the moving direction between the curved relative movement of the grindstone 5 and the workpiece 2 and the subsequent linear relative movement, and the workpiece 2 may be pulled out straight when viewed in a plane.

また、本発明において、外周部に凹状研削部分5bを有する砥石5であって、凹状研削部分5bが、厚さ方向の両端部の円弧状部分5eと、両端部の円弧状部分5eの間の直線部分5fとを有する形状である砥石5を用いて、円板状のワーク2を所望の断面形状に形成するワーク加工方法はワーク2と砥石5とを互いに平行に配置するステップと、砥石5を回転させるとともに、砥石5の回転軸6と平行な回転軸3を中心としてワーク2を回転させつつ、凹状研削部分5bとワーク2との接触部分がワーク2の所望の断面形状に沿って移動するように砥石5の円弧状部分5eの曲率半径に基づいて算出された移動条件に従って、砥石5をワークに対して相対的に移動させるステップとを含む。砥石5をワークに対して相対的に移動させるステップは、ワーク2と砥石5とを回転させつつ、砥石5の凹状研削部分5bの円弧状部分5eをワーク2の外周端面から一方の面に向かって、前記移動条件に従って予め算出された角度だけワーク2に対して相対的に曲線的に移動させることにより、ワーク2の一方の面側の外周部を研削することと、砥石5をワーク2の外周端面に沿って一方の面側から他方の面側へワーク2に対して相対的に移動させることと、ワーク2と砥石5とを回転させつつ、砥石5の凹状研削部分5bの円弧状部分5eをワーク2の外周端面から他方の面に向かって、前記移動条件に従って予め算出された角度だけワーク2に対して相対的に曲線的に移動させることにより、ワーク2の他方の面側の外周部を研削することと、を含む。ワーク2の一方の面側または他方の面側の外周部の粗い研削を行う際には、ワーク2と砥石5とを回転させつつ、砥石5の凹状研削部分5bの円弧状部分5eをワーク2の外周端面から一方の面または他方の面に向かって、前記移動条件に従って予め算出された角度だけワーク2に対して相対的に曲線的に移動させたら、砥石5のワークに対する相対的な移動を停止させる。ワーク2の一方の面側の外周部の精密な研削を行う際には、ワーク2と砥石5とを回転させつつ、ワーク2の回転時に生じる厚さ方向の位置誤差を考慮してワーク2が回転時に通過する厚さ方向の一方の面側において最も外側の位置(例えば図18のHmax)を基準にして、砥石5の凹状研削部分5bの円弧状部分5eをワーク2の外周端面から一方の面に向かって、前記移動条件に従って予め算出された角度だけワーク2に対して相対的に曲線的に移動させた後に、移動を停止させ、砥石5がワーク2の一方の面側の面取り部2aの斜面に接する位置で、ワーク2の厚さ方向の位置を調整しながらワーク2の回転速度を遅くして少なくとも1回転以上回転させることで、ワーク2の回転時の位置誤差を打ち消しながらワーク2の一方の面側を研削する。ワーク2の他方の面側の外周部の精密な研削を行う際には、ワーク2と砥石5とを回転させつつ、ワーク2の回転時に生じる厚さ方向の位置誤差を考慮してワーク2が回転時に通過する厚さ方向の他方の面側において最も外側の位置(例えば図18のHmin)を基準にして、砥石5の凹状研削部分5bの円弧状部分5eをワーク2の外周端面から他方の面に向かって、前記移動条件に従って予め算出された角度だけワーク2に対して相対的に曲線的に移動させた後に、移動を停止させ、砥石5がワーク2の他方の面側の面取り部2aの斜面に接する位置で、ワーク2の厚さ方向の位置を調整しながらワーク2の回転速度を遅くして少なくとも1回転以上回転させることで、ワーク2の回転時の位置誤差を打ち消しながらワーク2の他方の面側を研削する。 In addition, in the present invention, a workpiece processing method for forming a disk-shaped workpiece 2 into a desired cross-sectional shape using a grinding wheel 5 having a concave grinding portion 5b on its outer periphery, in which the concave grinding portion 5b has a shape having arc-shaped portions 5e at both ends in the thickness direction and a straight portion 5f between the arc-shaped portions 5e at both ends , includes the steps of arranging the workpiece 2 and the grinding wheel 5 parallel to each other, and rotating the grinding wheel 5 and rotating the workpiece 2 about a rotation axis 3 parallel to the rotation axis 6 of the grinding wheel 5, while moving the grinding wheel 5 relative to the workpiece 2 in accordance with movement conditions calculated based on the radius of curvature of the arc-shaped portion 5e of the grinding wheel 5 so that the contact portion between the concave grinding portion 5b and the workpiece 2 moves along the desired cross-sectional shape of the workpiece 2. The step of moving the grinding wheel 5 relative to the workpiece 2 includes: rotating the workpiece 2 and the grinding wheel 5, while moving the arc-shaped portion 5e of the concave grinding portion 5b of the grinding wheel 5 in a curved manner relative to the workpiece 2 from the outer peripheral end face of the workpiece 2 toward one side by an angle calculated in advance in accordance with the movement conditions, thereby grinding the outer periphery of one side of the workpiece 2; moving the grinding wheel 5 along the outer peripheral end face of the workpiece 2 from one side to the other side by a curved manner relative to the workpiece 2 while rotating the workpiece 2 and the grinding wheel 5, while moving the arc-shaped portion 5e of the concave grinding portion 5b of the grinding wheel 5 in a curved manner relative to the workpiece 2 from the outer peripheral end face of the workpiece 2 toward the other side by an angle calculated in advance in accordance with the movement conditions, thereby grinding the outer periphery of the other side of the workpiece 2. When rough grinding the outer periphery of one side or the other side of the workpiece 2, while rotating the workpiece 2 and the grinding wheel 5, the arc-shaped portion 5e of the concave grinding portion 5b of the grinding wheel 5 is moved in a curved manner relative to the workpiece 2 from the outer peripheral end face of the workpiece 2 toward one side or the other side by an angle calculated in advance in accordance with the movement conditions, and then the relative movement of the grinding wheel 5 with respect to the workpiece 2 is stopped. When performing precise grinding of the outer periphery on one side of the workpiece 2, while rotating the workpiece 2 and the grinding wheel 5, taking into account the positional error in the thickness direction that occurs when the workpiece 2 rotates, the arc-shaped portion 5e of the concave grinding portion 5b of the grinding wheel 5 is moved curvedly relative to the workpiece 2 from the outer peripheral end face of the workpiece 2 toward one side by an angle calculated in advance in accordance with the movement conditions, and then the movement is stopped.At a position where the grinding wheel 5 contacts the slope of the chamfered portion 2a on one side of the workpiece 2, the rotational speed of the workpiece 2 is slowed down while adjusting the position in the thickness direction of the workpiece 2, and the workpiece 2 is rotated at least one rotation, thereby grinding one side of the workpiece 2 while canceling out the positional error during rotation of the workpiece 2. When precisely grinding the outer periphery of the other side of the workpiece 2, while rotating the workpiece 2 and the grinding wheel 5, taking into account the positional error in the thickness direction that occurs when the workpiece 2 rotates, the arc-shaped portion 5e of the concave grinding portion 5b of the grinding wheel 5 is moved in a curved manner relative to the workpiece 2 from the outer peripheral end face of the workpiece 2 toward the other side by an angle that is calculated in advance in accordance with the above-mentioned movement conditions, and then the movement is stopped.At a position where the grinding wheel 5 contacts the slope of the chamfered portion 2a on the other side of the workpiece 2, the rotational speed of the workpiece 2 is slowed down while adjusting the position in the thickness direction of the workpiece 2, and the workpiece 2 is rotated at least one rotation, thereby grinding the other side of the workpiece 2 while canceling out the positional error during rotation of the workpiece 2.

この方法の技術的意義について説明すると、前述した各実施形態のようにワーク2および砥石5を回転させる場合、回転中に回転軸に平行な方向(厚さ方向)の位置がぶれる可能性がある。一般的には、厚さ方向の位置には±1.5μm~±3μm程度の誤差が生じる。このような厚さ方向の誤差に起因して、研削後のワーク2の平面形状も大きく変動する。特に、図7(A),8に示すワーク2の角度θ1,θ2が小さい場合、厚さ方向の位置ずれは水平方向(面内方向)の大きな位置ずれを生じさせる。具体的には、図7(B)に模式的に示すように、上側の厚さ方向の位置ずれO1を対辺、水平方向の位置ずれK1を底辺とする直角三角形を想定すると、tanθ1=O1/K1、すなわちK1=O1/tanθ1である。同様に、図7(C)に模式的に示すように、下側の厚さ方向の位置ずれO2を対辺、水平方向の位置ずれK2を底辺とする直角三角形を想定すると、tanθ2=O2/K2、すなわちK2=O2/tanθ2である。例えば角度θ1,θ2が22°であると、水平方向の位置ずれK1,K2は厚さ方向の位置ずれO1,O2の約2.5倍である。従って、厚さ方向の位置ずれO1,O2が±3μmである時に水平方向の位置ずれK1,K2は約±7.5μmである。図8に示すR形状のワーク2においても、図7(A)に示すT形状のワーク2と同様な水平方向の位置ずれK1,K2と厚さ方向の位置ずれO1,O2との関係(図7(B)~7(C)参照)が生じる。前述したように、ワーク2の上面と下面の寸法(例えば図7(A),8に示す寸法A1,A2)にそれぞれ最大7.5μm程度の誤差が生じる可能性がある。角度θ1,θ2がより小さい場合には、ワーク2の上面と下面の寸法(例えば寸法A1,A2)の誤差はさらに大きくなる。そこで、ワーク2の回転中の厚さ方向の位置のぶれの傾向を調べ、ワーク支持機構4に図示しない圧電素子等を内蔵させて、ワーク2の回転中に圧電素子を高速で細かく作動させて、厚さ方向の位置のぶれを打ち消すようにワーク2を厚さ方向に移動させることが考えられる。しかし、その場合、ワーク支持機構4の構成が非常に複雑になり、高コスト化を招くとともに故障しやすくなる。ワーク2の高速回転に合わせて高速でワーク2を上下動させると、研削後のワーク2の形状が平滑でなくなり、ワークの寸法(例えば図7(A),8に示す曲率半径R1,R2等)の精度が悪くなる可能性がある。ワーク2の回転速度を遅くすることによってこれらの問題を解決しようとすると、作業効率が低下して加工コストが高くなる。 The technical significance of this method is that when the workpiece 2 and grinding wheel 5 are rotated as in the above-mentioned embodiments, the position in the direction parallel to the rotation axis (thickness direction) may be displaced during rotation. Generally, an error of about ±1.5 μm to ±3 μm occurs in the thickness direction position. Due to such an error in the thickness direction, the planar shape of the workpiece 2 after grinding also varies greatly. In particular, when the angles θ1 and θ2 of the workpiece 2 shown in Figures 7(A) and 8 are small, the positional deviation in the thickness direction causes a large positional deviation in the horizontal direction (in-plane direction). Specifically, as shown in Figure 7(B) as a schematic diagram, assuming a right-angled triangle with the upper thickness direction positional deviation O1 as the opposite side and the horizontal direction positional deviation K1 as the base, tan θ1 = O1/K1, i.e., K1 = O1/tan θ1. Similarly, as shown in FIG. 7C, assuming a right-angled triangle with the lower thickness misalignment O2 as the opposite side and the horizontal misalignment K2 as the base, tan θ2=O2/K2, i.e., K2=O2/tan θ2. For example, when the angles θ1 and θ2 are 22°, the horizontal misalignments K1 and K2 are about 2.5 times the thickness misalignments O1 and O2. Therefore, when the thickness misalignments O1 and O2 are ±3 μm, the horizontal misalignments K1 and K2 are about ±7.5 μm. The R-shaped workpiece 2 shown in FIG. 8 also has a relationship between the horizontal misalignments K1 and K2 and the thickness misalignments O1 and O2 (see FIGS. 7B to 7C) similar to that of the T-shaped workpiece 2 shown in FIG. 7A. As mentioned above, there is a possibility that an error of up to about 7.5 μm may occur in the dimensions of the upper and lower surfaces of the workpiece 2 (for example, the dimensions A1 and A2 shown in FIGS. 7A and 8). If the angles θ1 and θ2 are smaller, the error in the dimensions (e.g., dimensions A1 and A2) of the upper and lower surfaces of the workpiece 2 becomes even larger. Therefore, it is possible to investigate the tendency of the positional deviation in the thickness direction of the workpiece 2 during rotation, incorporate a piezoelectric element (not shown) in the workpiece support mechanism 4, and move the workpiece 2 in the thickness direction so as to cancel the positional deviation in the thickness direction by operating the piezoelectric element at high speed and finely while the workpiece 2 is rotating. However, in this case, the structure of the workpiece support mechanism 4 becomes very complicated, which leads to high costs and is prone to failure. If the workpiece 2 is moved up and down at high speed in accordance with the high-speed rotation of the workpiece 2, the shape of the workpiece 2 after grinding will no longer be smooth, and the accuracy of the workpiece dimensions (e.g., radii of curvature R1 and R2 shown in Figures 7(A) and 8) may deteriorate. If these problems are solved by slowing down the rotation speed of the workpiece 2, the work efficiency decreases and the processing cost increases.

従って、作業効率をあまり低下させないように、ワーク2を上下動させる装置の作動と、それに伴うワーク2を厚さ方向の移動を、ワーク2の回転中に常時行うのでは無く、必要最小限だけ行うようにすることが好ましい。具体的には、ワーク2の一方の面側(上面側)および他方の面側(下面側)の外周部の精密な研削を行う前に、ワーク支持機構4によるワーク2の回転時の厚さ方向の位置ずれ状態を調べる。すなわち、ワーク支持機構4によってワーク2を実際に回転させながら、例えば図17に示す8つの点H1~H8の高さ方向のばらつきを測定する。そして、各点H1~H8の高さのうち、それらの高さの中間点からの差が最も大きい正の値Hmax(一例としては+3μm程度)と、差が最も大きい負の値Hmin(一例としては-3μm程度)とを求める。そして、ワーク2と砥石5とを回転させつつ、厚さ方向の最高点Hmaxを基準にして、砥石5の凹状研削部分5bの円弧状部分5eをワーク2の外周端面から上面に向かって、移動条件に従って予め算出された角度だけワーク2に対して相対的に曲線的に移動させた後に、移動を停止させる。そして、砥石5がワーク2の上面側の面取り部2aの斜面に接する位置で、ワーク2の厚さ方向の位置を調整しながらワーク2の回転速度を遅くして少なくとも1回転以上回転させることで、ワーク2の回転時の位置誤差を打ち消しながらワーク2の上面側を研削する。同様に、ワーク2と砥石5とを回転させつつ、厚さ方向の最低点Hminを基準にして、砥石5の凹状研削部分5bの円弧状部分5eをワーク2の外周端面から下面に向かって、移動条件に従って予め算出された角度だけワーク2に対して相対的に曲線的に移動させた後に、移動を停止させる。そして、砥石5がワーク2の下面側の面取り部2aの斜面に接する位置で、ワーク2の厚さ方向の位置を調整しながらワーク2の回転速度を遅くして少なくとも1回転以上回転させることで、ワーク2の回転時の位置誤差を打ち消しながらワーク2の下面側を研削する。 Therefore, in order not to reduce the work efficiency too much, it is preferable to operate the device for moving the work 2 up and down and the associated movement of the work 2 in the thickness direction only as necessary, rather than constantly while the work 2 is rotating. Specifically, before performing precision grinding of the outer periphery of one surface side (upper surface side) and the other surface side (lower surface side) of the work 2, the positional deviation state in the thickness direction when the work 2 is rotated by the work support mechanism 4 is checked. That is, while actually rotating the work 2 by the work support mechanism 4, for example, the variation in the height direction of eight points H1 to H8 shown in FIG. 17 is measured. Then, among the heights of the points H1 to H8, the positive value H max (for example, about +3 μm) that is the largest difference from the midpoint of those heights and the negative value H min (for example, about −3 μm) that is the largest difference are obtained. Then, while rotating the workpiece 2 and the grinding wheel 5, the circular arc portion 5e of the concave grinding portion 5b of the grinding wheel 5 is moved in a curved manner relative to the workpiece 2 from the outer peripheral end surface of the workpiece 2 toward the upper surface thereof by an angle calculated in advance according to the movement conditions, based on the highest point H max in the thickness direction, and then the movement is stopped. Then, at a position where the grinding wheel 5 contacts the slope of the chamfered portion 2a on the upper surface side of the workpiece 2, the rotation speed of the workpiece 2 is slowed down while adjusting the position in the thickness direction of the workpiece 2, and the workpiece 2 is rotated at least one revolution, thereby grinding the upper surface side of the workpiece 2 while canceling out the position error during the rotation of the workpiece 2. Similarly, while rotating the workpiece 2 and the grinding wheel 5, the circular arc portion 5e of the concave grinding portion 5b of the grinding wheel 5 is moved in a curved manner relative to the workpiece 2 from the outer peripheral end surface of the workpiece 2 toward the lower surface thereof by an angle calculated in advance according to the movement conditions, based on the lowest point H min in the thickness direction, and then the movement is stopped. Then, at a position where the grinding wheel 5 contacts the slope of the chamfered portion 2a on the underside of the workpiece 2, the rotational speed of the workpiece 2 is slowed down and the workpiece 2 is rotated at least one revolution while adjusting the position in the thickness direction of the workpiece 2, thereby grinding the underside of the workpiece 2 while canceling out positional errors occurring during rotation of the workpiece 2.

この方法によると、研削工程の最終段階において、ワーク2の回転時の位置誤差を打ち消すようにワーク2を厚さ方向に移動させながらワーク2を研削することにより、研削面が平滑になり、所望の断面形状に精度良く形成することができる。しかも、このワーク2の厚さ方向の移動およびワーク2の低速回転は、研削工程の最終段階である1回転または数回転のみであってよく、その前の段階ではワーク2の厚さ方向の移動は行わずワーク2を高速回転させながら研削を行う。従って、厚さ方向のわずかな位置ずれにより生じる断面形状で最も重要な水平方向(面内方向)の寸法での大きな位置ずれを防ぎ、凹状形状砥石による効果と鈍角的接続で断面Rと斜面部のつなぎ目の影響がほとんど無視できることで、高精度の加工が可能であって、しかも作業効率はあまり低下せず、装置の故障は生じにくい。ワーク2の厚さ方向の移動は、ワーク2の低速回転時に行うため、圧電素子等の高価な装置は必要なく、ボールネジ等を用いて行うことができる。このように、この方法によると、ワーク2の加工精度が良く、作業効率が良好で加工コストがあまり高くならない。なお、この方法を、砥石5とワーク2の曲線的な相対移動とその後の直線的な相対移動とを行いつつ研削を行う前述した方法と組み合わせて実施することもできる。 According to this method, in the final stage of the grinding process, the work 2 is ground while moving it in the thickness direction so as to cancel out the position error during the rotation of the work 2, so that the ground surface becomes smooth and the desired cross-sectional shape can be formed with high accuracy. Moreover, the movement of the work 2 in the thickness direction and the low-speed rotation of the work 2 may be only one or several rotations, which is the final stage of the grinding process, and in the previous stage, the work 2 is not moved in the thickness direction and is ground while rotating at high speed. Therefore, it is possible to prevent a large positional deviation in the horizontal direction (in-plane direction), which is the most important dimension in the cross-sectional shape caused by a slight positional deviation in the thickness direction, and the effect of the concave-shaped grindstone and the obtuse angle connection make it possible to almost ignore the influence of the joint between the cross-section R and the inclined surface portion, so that high-precision processing is possible, and the work efficiency does not decrease much and the device is unlikely to break down. Since the movement of the work 2 in the thickness direction is performed when the work 2 is rotating at a low speed, expensive devices such as piezoelectric elements are not required, and it can be performed using ball screws or the like. Thus, according to this method, the processing precision of the work 2 is good, the work efficiency is good, and the processing cost is not very high. This method can also be combined with the previously described method in which grinding is performed while performing a curvilinear relative movement between the grinding wheel 5 and the workpiece 2, followed by a linear relative movement.

[付記1]
円板状のワークを所望の断面形状に形成するためのワーク加工装置であって、
前記ワークを支持するワーク支持機構と、前記ワークに対して平行に配置される円板状の砥石と、前記砥石を支持する砥石支持機構と、を有し、
前記ワーク支持機構は前記ワークを回転させ、前記砥石支持機構は前記砥石を回転させ、前記ワーク支持機構による前記ワークの回転の中心となる回転軸と、前記砥石支持機構による前記砥石の回転の中心となる回転軸とは互いに平行であり、
前記ワーク支持機構は、前記ワークの片側の面のみを吸着する吸着部材を有し、前記吸着部材の平面形状は、前記ワークの半径よりも小さい半径の円形状であり、円形状の前記吸着部材の外周部分は、外側に向かうにつれて厚さが薄くなる先薄形状を有し、
前記砥石は外周部に凹状研削部分を有しており、前記凹状研削部分の、前記砥石の前記回転軸に沿う断面における断面形状は、外周側から内周側に向かって窪む凹状であり、少なくとも厚さ方向の両端部にそれぞれ円弧状部分を有し、前記両端部の前記円弧状部分の間に、前記ワークの厚さ以上の厚さを有する直線部分を有する形状であり、
前記砥石と前記ワークは、前記砥石支持機構または前記ワーク支持機構によって互いに接近したり離れたりするように相対的に移動可能であり、
前記砥石支持機構または前記ワーク支持機構は、前記凹状研削部分と前記ワークとの接触部分が前記ワークの前記所望の断面形状に沿って移動するように前記砥石の前記円弧状部分の曲率半径に基づいて算出された移動条件に従って、前記砥石を前記ワークに対して相対的に移動させ、
前記砥石の前記円弧状部分が、前記ワークの前記所望の断面形状の面取り部との間に実質的に隙間が生じることなく前記ワークに当接するように、前記砥石の前記円弧状部分の曲率半径は少なくとも前記ワークの厚さの10倍以上であり、
前記ワークの前記吸着部材によって吸着される前記片側の面側に位置する前記円弧状部分は、前記砥石の前記回転軸に沿う断面において、当該円弧状部分の接線が前記吸着部材の前記先薄形状の角度と一致する角度で延びる位置において前記ワークの前記片側の面側の端部と接する状態で前記吸着部材の前記先薄形状に当接する長さ未満であって、かつ、前記所望の断面形状の前記ワークの前記片側の面側の前記面取り部の長さ以上の長さを有していることを特徴とする、ワーク加工装置。
[Appendix 1]
A workpiece machining apparatus for forming a disk-shaped workpiece into a desired cross-sectional shape,
The grinding machine includes a workpiece support mechanism that supports the workpiece, a disk-shaped grinding wheel that is arranged parallel to the workpiece, and a grinding wheel support mechanism that supports the grinding wheel,
the workpiece support mechanism rotates the workpiece, the grindstone support mechanism rotates the grindstone, a rotation axis about which the workpiece is rotated by the workpiece support mechanism and a rotation axis about which the grindstone is rotated by the grindstone support mechanism are parallel to each other,
the workpiece support mechanism has an adsorption member that adsorbs only one side of the workpiece, the adsorption member having a planar shape that is a circle having a radius smaller than the radius of the workpiece, and an outer peripheral portion of the circular adsorption member having a tapered shape that becomes thinner toward the outside,
the grinding wheel has a concave grinding portion on its outer periphery, the cross-sectional shape of the concave grinding portion in a cross section along the rotation axis of the grinding wheel is concave from the outer periphery toward the inner periphery, has an arc-shaped portion at least at both ends in a thickness direction, and has a straight portion having a thickness equal to or greater than the thickness of the workpiece between the arc-shaped portions at both ends;
The grindstone and the workpiece can be moved relatively toward or away from each other by the grindstone support mechanism or the workpiece support mechanism,
the grindstone support mechanism or the workpiece support mechanism moves the grindstone relative to the workpiece in accordance with a movement condition calculated based on a radius of curvature of the arc-shaped portion of the grindstone so that a contact portion between the concave grinding portion and the workpiece moves along the desired cross-sectional shape of the workpiece;
a radius of curvature of the arc-shaped portion of the grindstone is at least 10 times the thickness of the workpiece so that the arc-shaped portion of the grindstone abuts against the workpiece without generating a substantial gap between the arc-shaped portion and the chamfered portion of the desired cross-sectional shape of the workpiece;
A workpiece machining apparatus characterized in that the arc-shaped portion located on the one side of the workpiece that is adsorbed by the suction member has a length that is less than the length at which it abuts the tapered shape of the suction member when it is in contact with the end of the one side of the workpiece at a position where a tangent to the arc-shaped portion extends at an angle that matches the angle of the tapered shape of the suction member in a cross section along the rotation axis of the grinding wheel, and has a length that is greater than or equal to the length of the chamfered portion on the one side of the workpiece having the desired cross-sectional shape.

[付記2]
円板状のワークを所望の断面形状に形成するためのワーク加工装置であって、
前記ワークを支持するワーク支持機構と、前記ワークに対して平行に配置される円板状の砥石と、前記砥石を支持する砥石支持機構と、を有し、
前記ワーク支持機構は前記ワークを回転させ、前記砥石支持機構は前記砥石を回転させ、前記ワーク支持機構による前記ワークの回転の中心となる回転軸と、前記砥石支持機構による前記砥石の回転の中心となる回転軸とは互いに平行であり、
前記ワーク支持機構は、前記ワークの片側の面のみを吸着する吸着部材を有し、前記吸着部材の平面形状は、前記ワークの半径よりも小さい半径の円形状であり、円形状の前記吸着部材の外周部分は、外側に向かうにつれて厚さが薄くなる先薄形状を有し、
前記砥石は外周部に凹状研削部分を有しており、前記凹状研削部分の、前記砥石の前記回転軸に沿う断面における断面形状は、外周側から内周側に向かって窪む凹状であり、少なくとも厚さ方向の両端部にそれぞれ円弧状部分と、前記円弧状部分よりも厚さ方向外側に位置して前記円弧状部分と連続的に繋がっている斜面部分と、を有し、前記両端部の前記円弧状部分の間に前記ワークの厚さ以上の厚さを有する直線部分を有する形状であり、
前記砥石と前記ワークは、前記砥石支持機構または前記ワーク支持機構によって互いに接近したり離れたりするように相対的に移動可能であり、
前記砥石支持機構または前記ワーク支持機構は、前記凹状研削部分と前記ワークとの接触部分が前記ワークの前記所望の断面形状に沿って移動するように前記砥石の前記円弧状部分の曲率半径に基づいて算出された移動条件に従って、前記砥石を前記ワークに対して相対的に移動させ、
前記砥石の前記円弧状部分の曲率半径は少なくとも前記ワークの厚さの10倍以上であり、
前記ワークの前記吸着部材によって吸着される前記片側の面側に位置する前記斜面部分は、前記砥石の前記回転軸に沿う断面において、前記円弧状部分の接線が前記吸着部材の前記先薄形状の角度と一致する角度で延びる位置において前記ワークの前記片側の面側の端部と接する状態で当該斜面部分が前記吸着部材の前記先薄形状に当接する長さ未満であって、かつ、前記所望の断面形状の前記ワークの前記片側の面側の前記面取り部の長さ以上の長さを有していることを特徴とする、ワーク加工装置。
[Appendix 2]
A workpiece machining apparatus for forming a disk-shaped workpiece into a desired cross-sectional shape,
The grinding machine includes a workpiece support mechanism that supports the workpiece, a disk-shaped grinding wheel that is arranged parallel to the workpiece, and a grinding wheel support mechanism that supports the grinding wheel,
the workpiece support mechanism rotates the workpiece, the grindstone support mechanism rotates the grindstone, a rotation axis about which the workpiece is rotated by the workpiece support mechanism and a rotation axis about which the grindstone is rotated by the grindstone support mechanism are parallel to each other,
the workpiece support mechanism has an adsorption member that adsorbs only one side of the workpiece, the adsorption member having a planar shape that is a circle having a radius smaller than the radius of the workpiece, and an outer peripheral portion of the circular adsorption member having a tapered shape that becomes thinner toward the outside,
the grinding wheel has a concave grinding portion on its outer periphery, the cross-sectional shape of the concave grinding portion in a cross section along the rotation axis of the grinding wheel is concave from the outer periphery toward the inner periphery, and has at least an arc-shaped portion at each end in the thickness direction, and an inclined surface portion located outside the arc-shaped portion in the thickness direction and continuously connected to the arc-shaped portion, and has a straight portion having a thickness equal to or greater than the thickness of the workpiece between the arc-shaped portions at each end,
The grindstone and the workpiece can be moved relatively toward or away from each other by the grindstone support mechanism or the workpiece support mechanism,
the grindstone support mechanism or the workpiece support mechanism moves the grindstone relative to the workpiece in accordance with a movement condition calculated based on a radius of curvature of the arc-shaped portion of the grindstone so that a contact portion between the concave grinding portion and the workpiece moves along the desired cross-sectional shape of the workpiece;
The radius of curvature of the arc-shaped portion of the grinding wheel is at least 10 times the thickness of the workpiece,
a chamfered portion on the one side of the workpiece that is attracted by the suction member, the chamfered portion having a length that is less than the length at which the sloping portion abuts the tapered shape of the suction member when it contacts the end of the one side of the workpiece at a position where a tangent to the arc-shaped portion extends at an angle that matches the angle of the tapered shape of the suction member in a cross section along the rotation axis of the grinding wheel, and the chamfered portion has a length that is greater than or equal to the length of the chamfered portion on the one side of the workpiece having the desired cross-sectional shape.

[付記3]
前記砥石の外周部に、前記凹状研削部分と、前記ワークと対向する面が前記回転軸に沿う断面において前記砥石の厚さ方向と平行な直線状である断面長方形状研削部分とが、厚さ方向に並んで設けられており、前記砥石の前記断面長方形状研削部分は、前記凹状研削部分による研削が行われる前の前記ワークの外周部に当接して、前記砥石が前記ワークの半径方向外側から内側に向けて移動することにより前記ワークの半径を小さくするように前記ワークを研削する部分である、付記1または2に記載のワーク加工装置。
[Appendix 3]
The workpiece processing device described in Appendix 1 or 2, wherein the concave grinding portion and a grinding portion having a rectangular cross section, whose surface facing the workpiece is linear and parallel to the thickness direction of the grinding wheel in a cross section along the rotation axis, are arranged side by side in the thickness direction on the outer periphery of the grinding wheel, and the grinding portion having a rectangular cross section of the grinding wheel abuts against the outer periphery of the workpiece before grinding is performed by the concave grinding portion, and grinds the workpiece so as to reduce the radius of the workpiece by moving the grinding wheel from the radial outside to the inside of the workpiece.

[付記4]
前記吸着部材の半径r1は、前記ワークの前記所望の断面形状の半径r2と前記ワークの厚さtとによって表すと、r2-10t≦r1≦r2-5tであり、
前記吸着部材の前記先薄形状の角度θ1は、前記ワークの前記所望の断面形状の前記面取り部の角度θ2によって表すと、θ2-10≦θ1≦θ2+5である、付記1から3のいずれかに記載のワーク加工装置。
[Appendix 4]
The radius r1 of the attraction member is expressed by the radius r2 of the desired cross-sectional shape of the workpiece and the thickness t of the workpiece, and is given by r2-10t≦r1≦r2-5t,
The workpiece machining device according to any one of appendices 1 to 3, wherein the angle θ1 of the tapered shape of the suction member is expressed in terms of the angle θ2 of the chamfered portion of the desired cross-sectional shape of the workpiece, such that θ2-10≦θ1≦θ2+5.

[付記5]
前記砥石支持機構は、前記砥石が直接または間接的に取り付けられるスピンドルと、前記スピンドルを回転可能に支持する回転ベアリング部とを有し、前記砥石を、当該砥石の重心が当該砥石の取り付け位置と前記回転ベアリング部との間に位置するように支持する、付記1から4のいずれかに記載のワーク加工装置。
[Appendix 5]
A workpiece processing device described in any one of appendix 1 to 4, wherein the grinding wheel support mechanism has a spindle to which the grinding wheel is directly or indirectly attached, and a rotary bearing portion that rotatably supports the spindle, and supports the grinding wheel so that the center of gravity of the grinding wheel is located between the mounting position of the grinding wheel and the rotary bearing portion.

[付記6]
前記砥石支持機構および前記ワーク支持機構は、前記ワークの一方の面側の外周部を研削する際には、前記ワークと前記砥石とを回転させつつ、前記砥石の前記凹状研削部分の前記円弧状部分を前記ワークの外周端面から一方の面に向かって、前記移動条件に従って予め算出された角度だけ前記ワークに対して相対的に曲線的に移動させ、前記ワークの前記他方の面側の外周部を研削する際には、前記ワークと前記砥石とを回転させつつ、前記砥石の前記凹状研削部分の前記円弧状部分を前記ワークの外周端面から前記他方の面に向かって、前記移動条件に従って予め算出された角度だけ前記ワークに対して相対的に曲線的に移動させ、
前記砥石支持機構および前記ワーク支持機構は、前記ワークの前記一方の面側または前記他方の面側の外周部の粗い研削を行う際には、前記ワークと前記砥石とを回転させつつ、前記砥石の前記凹状研削部分の前記円弧状部分を前記ワークの外周端面から前記一方の面または前記他方の面に向かって、前記移動条件に従って予め算出された角度だけ前記ワークに対して相対的に曲線的に移動させたら、前記砥石の前記ワークに対する相対的な移動を停止させ、
前記砥石支持機構および前記ワーク支持機構は、前記ワークの前記一方の面側または前記他方の面側の外周部の精密な研削を行う際には、前記ワークと前記砥石とを回転させつつ、前記砥石の前記凹状研削部分の前記円弧状部分を前記ワークの外周端面から前記一方の面または前記他方の面に向かって、前記移動条件に従って予め算出された角度だけ前記ワークに対して相対的に曲線的に移動させた後に、前記砥石を前記ワークに対して相対的に直線的に移動させる、付記1から5のいずれかに記載のワーク加工装置。
[Appendix 6]
When grinding the outer periphery on one surface side of the workpiece, the grindstone support mechanism and the workpiece support mechanism rotate the workpiece and the grindstone, while moving the arc-shaped portion of the concave grinding portion of the grindstone in a curved manner relative to the workpiece from the outer periphery end face of the workpiece toward the one surface by an angle calculated in advance in accordance with the movement conditions, and when grinding the outer periphery on the other surface side of the workpiece, while rotating the workpiece and the grindstone, move the arc-shaped portion of the concave grinding portion of the grindstone in a curved manner relative to the workpiece from the outer periphery end face of the workpiece toward the other surface by an angle calculated in advance in accordance with the movement conditions,
When performing rough grinding of the outer periphery of the one surface side or the other surface side of the workpiece, the grindstone support mechanism and the workpiece support mechanism rotate the workpiece and the grindstone, move the arc-shaped portion of the concave grinding portion of the grindstone in a curved manner relative to the workpiece from the outer periphery end face of the workpiece toward the one surface side or the other surface by an angle calculated in advance in accordance with the movement conditions, and then stop the relative movement of the grindstone with respect to the workpiece;
A workpiece processing device as described in any of Appendix 1 to 5, wherein, when performing precise grinding of the outer periphery of the one surface side or the other surface side of the workpiece, the grinding wheel support mechanism and the workpiece support mechanism rotate the workpiece and the grinding wheel, move the arc-shaped portion of the concave grinding portion of the grinding wheel in a curved manner relative to the workpiece from the outer periphery end face of the workpiece toward the one surface side or the other surface by an angle calculated in advance in accordance with the movement conditions, and then move the grinding wheel in a linear manner relative to the workpiece.

[付記7]
前記凹状研削部分を有する前記砥石に加えて、前記ワークの外周の接線方向に対して斜めに配置されて前記砥石の前記凹状研削部分による研削よりも精密な研削に用いられる円板状の溝付き砥石と、前記溝付き砥石を支持する溝付き砥石支持機構と、をさらに有し、
前記溝付き砥石支持機構は前記溝付き砥石を回転させる、付記1から6のいずれかに記載のワーク加工装置。
[Appendix 7]
In addition to the grindstone having the concave grinding portion, the grindstone further includes a disk-shaped grooved grindstone disposed obliquely with respect to a tangent direction of the outer periphery of the workpiece and used for grinding more precisely than grinding by the concave grinding portion of the grindstone, and a grooved grindstone support mechanism for supporting the grooved grindstone,
The workpiece processing device according to any one of claims 1 to 6, wherein the grooved grindstone support mechanism rotates the grooved grindstone.

[付記8]
前記ワークに代えて前記ワーク支持機構に取り付け可能なツルーイング砥石をさらに有し、
前記ツルーイング砥石は、前記砥石支持機構または前記ワーク支持機構により、前記移動条件に従って前記砥石に対して相対的に移動させられることによって外形が形成されており、
前記溝付き砥石は、前記ツルーイング砥石に押し当てられて前記ツルーイング砥石の外形が転写されることによって溝が形成または整形されていることを特徴とする、付記7に記載のワーク加工装置。
[Appendix 8]
Further comprising a truing grindstone that can be attached to the work support mechanism in place of the work,
The truing grindstone is moved relative to the grindstone in accordance with the movement conditions by the grindstone support mechanism or the work support mechanism to form an outer shape,
The workpiece processing device described in Appendix 7, characterized in that the grooved grindstone is pressed against the truing grindstone and the outer shape of the truing grindstone is transferred to form or shape a groove.

[付記9]
前記ワーク支持機構は、前記ワーク支持機構の前記回転軸の温度を一定に保つための液体または気体の流れを発生させる温度調整機構を有する、付記1から8のいずれかに記載のワーク加工装置。
[Appendix 9]
A workpiece processing apparatus described in any one of appendix 1 to 8, wherein the workpiece support mechanism has a temperature adjustment mechanism that generates a flow of liquid or gas to keep the temperature of the rotation shaft of the workpiece support mechanism constant.

[付記10]
付記1または2に記載のワーク加工装置に含まれている前記砥石であって、
前記直線部分は前記円弧状部分よりも砥石粒度が粗い部分であって、前記円弧状部分は前記直線部分による研削よりも精密な研削に用いられる部分であることを特徴とする、砥石。
[Appendix 10]
The grinding wheel included in the workpiece processing apparatus according to claim 1 or 2,
A grinding wheel, characterized in that the straight portion has a coarser grinding grain size than the arc-shaped portion, and the arc-shaped portion is used for more precise grinding than grinding by the straight portion.

[付記11]
付記3に記載のワーク加工装置に含まれている前記砥石であって、
前記断面長方形状研削部分は前記凹状研削部分よりも砥石粒度が粗い部分であって、前記凹状研削部分は前記断面長方形状研削部分による研削よりも精密な研削に用いられる部分であることを特徴とする、砥石。
[Appendix 11]
The grinding wheel included in the workpiece processing apparatus according to claim 3,
A grinding wheel characterized in that the grinding portion having a rectangular cross section has a coarser grinding grain size than the grinding portion having a concave cross section, and the concave grinding portion is used for more precise grinding than grinding by the grinding portion having a rectangular cross section.

[付記12]
付記1から9のいずれかに記載のワーク加工装置に含まれている前記砥石であって、
厚さ方向の一方の端部の前記円弧状部分と他方の端部の前記円弧状部分とは、それぞれの曲率半径の平均値が所望の大きさになるように個別に形成された部分であることを特徴とする、砥石。
[Appendix 12]
The grinding wheel included in the workpiece processing apparatus according to any one of appendixes 1 to 9,
A grinding wheel, characterized in that the arc-shaped portion at one end in the thickness direction and the arc-shaped portion at the other end are individually formed so that the average value of the radius of curvature of each is a desired size.

[付記13]
付記1から9のいずれかに記載のワーク加工装置に含まれている前記砥石であって、
厚さ方向の一方の端部の前記円弧状部分の曲率半径の最大値と最小値の差と、他方の端部の前記円弧状部分の曲率半径の最大値と最小値の差とが、いずれも第1の所定値以下であり、
厚さ方向の一方の端部の前記円弧状部分の曲率半径の平均値と、他方の端部の前記円弧状部分の曲率半径の平均値との差が、第2の所定値以下であることを特徴とする、砥石。
[Appendix 13]
The grinding wheel included in the workpiece processing apparatus according to any one of appendixes 1 to 9,
a difference between a maximum value and a minimum value of a radius of curvature of the arc-shaped portion at one end in a thickness direction and a difference between a maximum value and a minimum value of a radius of curvature of the arc-shaped portion at the other end are both equal to or smaller than a first predetermined value;
A grinding wheel, characterized in that the difference between the average value of the radius of curvature of the arc-shaped portion at one end in the thickness direction and the average value of the radius of curvature of the arc-shaped portion at the other end is a second predetermined value or less.

[付記14]
付記1から9のいずれかに記載のワーク加工装置に含まれている前記砥石であって、
厚さ方向に延びるストレート状またはテーパ状の取付穴を有することを特徴とする、砥石。
[Appendix 14]
The grinding wheel included in the workpiece processing apparatus according to any one of appendixes 1 to 9,
A grinding wheel having a straight or tapered mounting hole extending in the thickness direction.

[付記15]
外周部に凹状研削部分を有しており回転可能な円板状の砥石であって、前記凹状研削部分の、前記砥石の回転軸に沿う断面における断面形状は、外周側から内周側に向かって窪む凹状であり、少なくとも厚さ方向の両端部にそれぞれ円弧状部分を有し、前記両端部の前記円弧状部分の間に、前記ワークの厚さ以上の厚さを有する直線部分を有する形状である砥石を用いて、円板状のワークを所望の断面形状に形成するためのワーク加工方法であって、
前記ワークと前記砥石とを互いに平行に配置するステップと、
前記砥石を回転させるとともに、前記砥石の前記回転軸と平行な回転軸を中心として前記ワークを回転させつつ、前記凹状研削部分と前記ワークとの接触部分が前記ワークの前記所望の断面形状に沿って移動するように前記砥石の前記円弧状部分の曲率半径に基づいて算出された移動条件に従って、前記砥石を前記ワークに対して相対的に移動させるステップと、を含み、
前記砥石を前記ワークに対して相対的に移動させるステップは、
前記ワークと前記砥石とを回転させつつ、前記砥石の前記凹状研削部分の前記円弧状部分を前記ワークの外周端面から一方の面に向かって、前記移動条件に従って予め算出された角度だけ前記ワークに対して相対的に曲線的に移動させることにより、前記ワークの前記一方の面側の外周部を研削することと、
前記砥石を前記ワークの外周端面に沿って前記一方の面側から他方の面側へ前記ワークに対して相対的に移動させることと、
前記ワークと前記砥石とを回転させつつ、前記砥石の前記凹状研削部分の前記円弧状部分を前記ワークの外周端面から前記他方の面に向かって、前記移動条件に従って予め算出された角度だけ前記ワークに対して相対的に曲線的に移動させることにより、前記ワークの前記他方の面側の外周部を研削することと、を含み、
前記ワークの前記一方の面側または前記他方の面側の外周部の粗い研削を行う際には、前記ワークと前記砥石とを回転させつつ、前記砥石の前記凹状研削部分の前記円弧状部分を前記ワークの外周端面から前記一方の面または前記他方の面に向かって、前記砥石の前記回転軸と前記ワークの前記回転軸とが同一平面内に位置するように、前記移動条件に従って予め算出された角度だけ前記ワークに対して相対的に曲線的に移動させたら、前記砥石の前記ワークに対する相対的な移動を停止させ、
前記ワークの前記一方の面側または前記他方の面側の外周部の精密な研削を行う際には、前記ワークと前記砥石とを回転させつつ、前記砥石の前記凹状研削部分の前記円弧状部分を前記ワークの外周端面から前記一方の面または前記他方の面に向かって、前記砥石の前記回転軸と前記ワークの前記回転軸とが同一平面内に位置するように、前記移動条件に従って予め算出された角度だけ前記ワークに対して相対的に曲線的に移動させた後に、曲線的な移動の際に前記砥石の前記回転軸と前記ワークの前記回転軸とが位置していた前記平面に対して垂直または斜めに交差する方向に延びる平面内において前記砥石の前記回転軸と前記ワークの前記回転軸とが相対的に移動するように、前記砥石を前記ワークに対して相対的に直線的に移動させることを特徴とする、ワーク加工方法。
[Appendix 15]
A method for machining a workpiece for forming a disc-shaped workpiece into a desired cross-sectional shape using a rotatable disc-shaped grinding wheel having a concave grinding portion on its outer periphery, the concave grinding portion having a cross-sectional shape recessed from the outer periphery toward the inner periphery in a cross section along a rotation axis of the grinding wheel, the concave grinding portion having an arc-shaped portion at least at both ends in a thickness direction, and a straight portion having a thickness equal to or greater than the thickness of the workpiece between the arc-shaped portions at both ends, the method comprising the steps of:
placing the workpiece and the grindstone parallel to each other;
and rotating the grindstone and the workpiece about a rotation axis parallel to the rotation axis of the grindstone, while moving the grindstone relative to the workpiece in accordance with a movement condition calculated based on a radius of curvature of the arc-shaped portion of the grindstone such that a contact portion between the concave grinding portion and the workpiece moves along the desired cross-sectional shape of the workpiece,
The step of moving the grindstone relative to the workpiece includes:
While rotating the workpiece and the grindstone, the arc-shaped portion of the concave grinding portion of the grindstone is moved in a curved manner relative to the workpiece from the outer peripheral end face of the workpiece toward one surface by an angle calculated in advance according to the movement conditions, thereby grinding the outer peripheral portion of the one surface side of the workpiece;
Moving the grindstone relative to the workpiece from the one surface side to the other surface side along an outer peripheral end surface of the workpiece;
and rotating the workpiece and the grindstone, and moving the arc-shaped portion of the concave grinding portion of the grindstone in a curved manner from the outer peripheral end face of the workpiece toward the other surface by an angle calculated in advance according to the movement conditions, thereby grinding the outer peripheral portion of the other surface side of the workpiece,
When performing rough grinding of the outer periphery of the one surface side or the other surface side of the workpiece, while rotating the workpiece and the grindstone, the arc-shaped portion of the concave grinding portion of the grindstone is moved in a curved manner relative to the workpiece from the outer periphery end face of the workpiece toward the one surface or the other surface by an angle calculated in advance according to the movement conditions so that the rotation axis of the grindstone and the rotation axis of the workpiece are positioned in the same plane, and then the relative movement of the grindstone with respect to the workpiece is stopped;
A workpiece machining method, characterized in that, when performing precise grinding of the outer periphery of the one surface side or the other surface side of the workpiece, while rotating the workpiece and the grinding wheel, the arc-shaped portion of the concave grinding portion of the grinding wheel is moved curvilinearly relative to the workpiece from the outer periphery end face of the workpiece toward the one surface side or the other surface side by an angle calculated in advance in accordance with the movement conditions so that the rotation axis of the grinding wheel and the rotation axis of the workpiece are positioned in the same plane, and then the grinding wheel is moved linearly relative to the workpiece so that the rotation axis of the grinding wheel and the rotation axis of the workpiece move relatively in a plane extending in a direction intersecting perpendicularly or obliquely to the plane in which the rotation axis of the grinding wheel and the rotation axis of the workpiece were positioned during the curvilinear movement.

[付記16]
外周部に凹状研削部分を有しており回転可能な円板状の砥石であって、前記凹状研削部分の、前記砥石の回転軸に沿う断面における断面形状は、外周側から内周側に向かって窪む凹状であり、少なくとも厚さ方向の両端部にそれぞれ円弧状部分と、前記円弧状部分よりも厚さ方向外側に位置して前記円弧状部分と連続的に繋がっている斜面部分と、を有し、前記両端部の前記円弧状部分の間に前記ワークの厚さ以上の厚さを有する直線部分を有する形状である砥石を用いて、円板状のワークを所望の断面形状に形成するためのワーク加工方法であって、
前記ワークと前記砥石とを互いに平行に配置するステップと、
前記砥石を回転させるとともに、前記砥石の前記回転軸と平行な回転軸を中心として前記ワークを回転させつつ、前記凹状研削部分と前記ワークとの接触部分が前記ワークの前記所望の断面形状に沿って移動するように前記砥石の前記円弧状部分の曲率半径に基づいて算出された移動条件に従って、前記砥石を前記ワークに対して相対的に移動させるステップと、を含み、
前記砥石を前記ワークに対して相対的に移動させるステップは、
前記ワークと前記砥石とを回転させつつ、前記砥石の前記凹状研削部分の前記円弧状部分を前記ワークの外周端面から一方の面に向かって、前記移動条件に従って予め算出された角度だけ前記ワークに対して相対的に曲線的に移動させることにより、前記ワークの前記一方の面側の外周部を研削することと、
前記砥石を前記ワークの外周端面に沿って前記一方の面側から他方の面側へ前記ワークに対して相対的に移動させることと、
前記ワークと前記砥石とを回転させつつ、前記砥石の前記凹状研削部分の前記円弧状部分を前記ワークの外周端面から前記他方の面に向かって、前記移動条件に従って予め算出された角度だけ前記ワークに対して相対的に曲線的に移動させることにより、前記ワークの前記他方の面側の外周部を研削することと、を含み、
前記ワークの前記一方の面側または前記他方の面側の外周部の粗い研削を行う際には、前記ワークと前記砥石とを回転させつつ、前記砥石の前記凹状研削部分の前記円弧状部分を前記ワークの外周端面から前記一方の面または前記他方の面に向かって、前記砥石の前記回転軸と前記ワークの前記回転軸とが同一平面内に位置するように、前記移動条件に従って予め算出された角度だけ前記ワークに対して相対的に曲線的に移動させたら、前記砥石の前記ワークに対する相対的な移動を停止させ、
前記ワークの前記一方の面側または前記他方の面側の外周部の精密な研削を行う際には、前記ワークと前記砥石とを回転させつつ、前記砥石の前記凹状研削部分の前記円弧状部分を前記ワークの外周端面から前記一方の面または前記他方の面に向かって、前記砥石の前記回転軸と前記ワークの前記回転軸とが同一平面内に位置するように、前記移動条件に従って予め算出された角度だけ前記ワークに対して相対的に曲線的に移動させた後に、曲線的な移動の際に前記砥石の前記回転軸と前記ワークの前記回転軸とが位置していた前記平面内に前記砥石の前記回転軸と前記ワークの前記回転軸とが位置する状態を維持したまま、前記砥石を前記ワークに対して相対的に直線的に移動させることを特徴とする、ワーク加工方法。
[Appendix 16]
A workpiece machining method for forming a disc-shaped workpiece into a desired cross-sectional shape using a grinding wheel having a rotatable disc-shaped grinding portion on its outer periphery, the cross-sectional shape of the concave grinding portion in a cross section along the rotation axis of the grinding wheel being concave recessed from the outer periphery toward the inner periphery, the grinding wheel having at least an arc-shaped portion at each end in the thickness direction, and an inclined surface portion located outside the arc-shaped portion in the thickness direction and continuously connected to the arc-shaped portion, and a straight portion having a thickness equal to or greater than the thickness of the workpiece between the arc-shaped portions at each end,
placing the workpiece and the grindstone parallel to each other;
and rotating the grindstone and the workpiece about a rotation axis parallel to the rotation axis of the grindstone, while moving the grindstone relative to the workpiece in accordance with a movement condition calculated based on a radius of curvature of the arc-shaped portion of the grindstone such that a contact portion between the concave grinding portion and the workpiece moves along the desired cross-sectional shape of the workpiece,
The step of moving the grindstone relative to the workpiece includes:
While rotating the workpiece and the grindstone, the arc-shaped portion of the concave grinding portion of the grindstone is moved in a curved manner relative to the workpiece from the outer peripheral end face of the workpiece toward one surface by an angle calculated in advance according to the movement conditions, thereby grinding the outer peripheral portion of the one surface side of the workpiece;
Moving the grindstone relative to the workpiece from the one surface side to the other surface side along an outer peripheral end surface of the workpiece;
and rotating the workpiece and the grindstone, and moving the arc-shaped portion of the concave grinding portion of the grindstone in a curved manner from the outer peripheral end face of the workpiece toward the other surface by an angle calculated in advance according to the movement conditions, thereby grinding the outer peripheral portion of the other surface side of the workpiece,
When performing rough grinding of the outer periphery of the one surface side or the other surface side of the workpiece, while rotating the workpiece and the grindstone, the arc-shaped portion of the concave grinding portion of the grindstone is moved in a curved manner relative to the workpiece from the outer periphery end face of the workpiece toward the one surface or the other surface by an angle calculated in advance according to the movement conditions so that the rotation axis of the grindstone and the rotation axis of the workpiece are positioned in the same plane, and then the relative movement of the grindstone with respect to the workpiece is stopped;
A workpiece machining method, characterized in that, when performing precise grinding of the outer periphery of the one surface side or the other surface side of the workpiece, while rotating the workpiece and the grinding wheel, the arc-shaped portion of the concave grinding portion of the grinding wheel is moved curvilinearly relative to the workpiece from the outer periphery end face of the workpiece toward the one surface side or the other surface side by an angle calculated in advance in accordance with the movement conditions so that the rotation axis of the grinding wheel and the rotation axis of the workpiece are positioned in the same plane, and then the grinding wheel is moved linearly relative to the workpiece while maintaining the state in which the rotation axis of the grinding wheel and the rotation axis of the workpiece are positioned within the plane in which the rotation axis of the grinding wheel and the rotation axis of the workpiece were positioned during the curvilinear movement.

[付記17]
外周部に凹状研削部分を有しており回転可能な円板状の砥石であって、前記凹状研削部分の、前記砥石の回転軸に沿う断面における断面形状は、外周側から内周側に向かって窪む凹状であり、少なくとも厚さ方向の両端部にそれぞれ円弧状部分を有し、前記両端部の前記円弧状部分の間に、前記ワークの厚さ以上の厚さを有する直線部分を有する形状である砥石を用いて、円板状のワークを所望の断面形状に形成するためのワーク加工方法であって、
前記ワークと前記砥石とを互いに平行に配置するステップと、
前記砥石を回転させるとともに、前記砥石の前記回転軸と平行な回転軸を中心として前記ワークを回転させつつ、前記凹状研削部分と前記ワークとの接触部分が前記ワークの前記所望の断面形状に沿って移動するように前記砥石の前記円弧状部分の曲率半径に基づいて算出された移動条件に従って、前記砥石を前記ワークに対して相対的に移動させるステップと、を含み、
前記砥石を前記ワークに対して相対的に移動させるステップは、
前記ワークと前記砥石とを回転させつつ、前記砥石の前記凹状研削部分の前記円弧状部分を前記ワークの外周端面から一方の面に向かって、前記移動条件に従って予め算出された角度だけ前記ワークに対して相対的に曲線的に移動させることにより、前記ワークの前記一方の面側の外周部を研削することと、
前記砥石を前記ワークの外周端面に沿って前記一方の面側から他方の面側へ前記ワークに対して相対的に移動させることと、
前記ワークと前記砥石とを回転させつつ、前記砥石の前記凹状研削部分の前記円弧状部分を前記ワークの外周端面から前記他方の面に向かって、前記移動条件に従って予め算出された角度だけ前記ワークに対して相対的に曲線的に移動させることにより、前記ワークの前記他方の面側の外周部を研削することと、を含み、
前記ワークの前記一方の面側または前記他方の面側の外周部の粗い研削を行う際には、前記ワークと前記砥石とを回転させつつ、前記砥石の前記凹状研削部分の前記円弧状部分を前記ワークの外周端面から前記一方の面または前記他方の面に向かって、前記移動条件に従って予め算出された角度だけ前記ワークに対して相対的に曲線的に移動させたら、前記砥石の前記ワークに対する相対的な移動を停止させ、
前記ワークの前記一方の面側または前記他方の面側の外周部の精密な研削を行う際には、前記ワークと前記砥石とを回転させつつ、前記砥石の前記凹状研削部分の前記円弧状部分を前記ワークの外周端面から前記一方の面または前記他方の面に向かって、前記移動条件に従って予め算出された角度だけ前記ワークに対して相対的に曲線的に移動させた後に、移動を停止させ、
前記ワークの前記一方の面側の外周部の精密な研削を行う際には、前記ワークと前記砥石とを回転させつつ、前記ワークの回転時に生じる厚さ方向の位置誤差を考慮して前記ワークが回転時に通過する厚さ方向の前記一方の面側において最も外側の位置を基準にして、前記砥石の前記凹状研削部分の前記円弧状部分を前記ワークの外周端面から前記一方の面に向かって、前記移動条件に従って予め算出された角度だけ前記ワークに対して相対的に曲線的に移動させた後に、移動を停止させ、前記砥石が前記ワークの前記一方の面側の面取り部の斜面に接する位置で、前記ワークの厚さ方向の位置を調整しながら前記ワークの回転速度を遅くして少なくとも1回転以上回転させることで、前記ワークの回転時の位置誤差を打ち消しながら前記ワークの前記一方の面側を研削し、
前記ワークの前記他方の面側の外周部の精密な研削を行う際には、前記ワークと前記砥石とを回転させつつ、前記ワークの回転時に生じる厚さ方向の位置誤差を考慮して前記ワークが回転時に通過する厚さ方向の前記他方の面側において最も外側の位置を基準にして、前記砥石の前記凹状研削部分の前記円弧状部分を前記ワークの外周端面から前記他方の面に向かって、前記移動条件に従って予め算出された角度だけ前記ワークに対して相対的に曲線的に移動させた後に、移動を停止させ、前記砥石が前記ワークの前記他方の面側の面取り部の斜面に接する位置で、前記ワークの厚さ方向の位置を調整しながら前記ワークの回転速度を遅くして少なくとも1回転以上回転させることで、前記ワークの回転時の位置誤差を打ち消しながら前記ワークの前記他方の面側を研削することを特徴とする、ワーク加工方法。
[Appendix 17]
A method for machining a workpiece for forming a disc-shaped workpiece into a desired cross-sectional shape using a rotatable disc-shaped grinding wheel having a concave grinding portion on its outer periphery, the concave grinding portion having a cross-sectional shape recessed from the outer periphery toward the inner periphery in a cross section along a rotation axis of the grinding wheel, the concave grinding portion having an arc-shaped portion at least at both ends in a thickness direction, and a straight portion having a thickness equal to or greater than the thickness of the workpiece between the arc-shaped portions at both ends, the method comprising the steps of:
placing the workpiece and the grindstone parallel to each other;
and rotating the grindstone and the workpiece about a rotation axis parallel to the rotation axis of the grindstone, while moving the grindstone relative to the workpiece in accordance with a movement condition calculated based on a radius of curvature of the arc-shaped portion of the grindstone such that a contact portion between the concave grinding portion and the workpiece moves along the desired cross-sectional shape of the workpiece,
The step of moving the grindstone relative to the workpiece includes:
While rotating the workpiece and the grindstone, the arc-shaped portion of the concave grinding portion of the grindstone is moved in a curved manner relative to the workpiece from the outer peripheral end face of the workpiece toward one surface by an angle calculated in advance according to the movement conditions, thereby grinding the outer peripheral portion of the one surface side of the workpiece;
Moving the grindstone relative to the workpiece from the one surface side to the other surface side along an outer peripheral end surface of the workpiece;
and rotating the workpiece and the grindstone, and moving the arc-shaped portion of the concave grinding portion of the grindstone in a curved manner from the outer peripheral end face of the workpiece toward the other surface by an angle calculated in advance according to the movement conditions, thereby grinding the outer peripheral portion of the other surface side of the workpiece,
When performing rough grinding of the outer periphery of the one surface side or the other surface side of the workpiece, while rotating the workpiece and the grindstone, the arc-shaped portion of the concave grinding portion of the grindstone is moved in a curved manner relative to the workpiece from the outer periphery end face of the workpiece toward the one surface side or the other surface by an angle calculated in advance according to the movement condition, and then the movement of the grindstone relative to the workpiece is stopped;
When performing precision grinding of the outer periphery of the one surface side or the other surface side of the workpiece, while rotating the workpiece and the grindstone, the arc-shaped portion of the concave grinding portion of the grindstone is moved in a curved manner relative to the workpiece from the outer periphery end face of the workpiece toward the one surface side or the other surface by an angle calculated in advance according to the movement conditions, and then the movement is stopped;
When performing precise grinding of the outer periphery of the one surface side of the workpiece, while rotating the workpiece and the grindstone, the arc-shaped portion of the concave grinding portion of the grindstone is moved in a curved manner relative to the workpiece from the outer peripheral end face of the workpiece toward the one surface by an angle calculated in advance according to the movement conditions, taking into account a position error in the thickness direction that occurs when the workpiece rotates, and then the movement is stopped. At a position where the grindstone contacts the slope of the chamfered portion of the one surface side of the workpiece, the rotation speed of the workpiece is slowed down and the workpiece is rotated at least one revolution while adjusting the position in the thickness direction of the workpiece, thereby grinding the one surface side of the workpiece while canceling out the position error during the rotation of the workpiece.
a grinding wheel that is rotated in a direction parallel to the outer periphery of the workpiece and a grinding wheel that is moved in a curved manner relative to the workpiece by an angle calculated in advance in accordance with the movement conditions from the outer periphery end face of the workpiece toward the other surface of the workpiece, based on the outermost position on the other surface side in the thickness direction through which the workpiece passes when rotating, taking into account a positional error in the thickness direction that occurs when the workpiece rotates, and then the movement is stopped.The rotation speed of the workpiece is slowed down and the workpiece is rotated at least one revolution while adjusting the position in the thickness direction of the workpiece at a position where the grinding wheel contacts the slope of the chamfered portion on the other surface side of the workpiece, thereby grinding the other surface side of the workpiece while canceling out the positional error during rotation of the workpiece.

1 ワーク加工装置
2 ワーク
2a 面取り部
2b 片側の面(吸着される面)
3,6,14 回転軸
4 ワーク支持機構
4a X方向移動ステージ
4b Y方向移動ステージ
4c Z方向移動ステージ
4d モータ
5 砥石
5a ベース円板部
5b 凹状研削部分
5c 取付穴
5d 凹部
5e 円弧状部分
5f 直線部分
5g 断面長方形状研削部分
5h 斜面部分
7 砥石支持機構
7a ケース
7b 回転ベアリング部
7c スピンドル
7d フランジ部
7e ボルト
10 吸着部材
10a 先薄形状
11 ツルーイング砥石(ツルアー)
12 溝付き砥石
12a 溝
13 溝付き砥石支持機構
15 温度調整機構
16 砥石
16a 総形溝
1 Workpiece machining device 2 Workpiece 2a Chamfered portion 2b One side surface (surface to be adsorbed)
3, 6, 14 Rotation shaft 4 Workpiece support mechanism 4a X-direction moving stage 4b Y-direction moving stage 4c Z-direction moving stage 4d Motor 5 Grindstone 5a Base disk portion 5b Concave grinding portion 5c Mounting hole 5d Concave portion 5e Arc-shaped portion 5f Straight portion 5g Cross-sectionally rectangular grinding portion 5h Slope portion 7 Grindstone support mechanism
7a Case
7b Rotating bearing part
7c Spindle
7d Flange part
7e Bolt
10: Adsorption member 10a: Thin tip shape 11: Truing grindstone (truer)
12: grooved grindstone 12a: groove 13: grooved grindstone support mechanism 15: temperature adjustment mechanism 16: grindstone 16a: formed groove

Claims (17)

円板状のワークを所望の断面形状に形成するためのワーク加工装置であって、
前記ワークを支持するワーク支持機構と、前記ワークに対して平行に配置される円板状の砥石と、前記砥石を支持する砥石支持機構と、を有し、
前記ワーク支持機構は前記ワークを回転させ、前記砥石支持機構は前記砥石を回転させ、前記ワーク支持機構による前記ワークの回転の中心となる回転軸と、前記砥石支持機構による前記砥石の回転の中心となる回転軸とは互いに平行であり、
前記ワーク支持機構は、前記ワークの片側の面のみを吸着する吸着部材を有し、前記吸着部材の平面形状は、前記ワークの半径よりも小さい半径の円形状であり、円形状の前記吸着部材の外周部分は、外側に向かうにつれて厚さが薄くなる先薄形状を有し、
前記砥石は外周部に凹状研削部分を有しており、前記凹状研削部分の、前記砥石の前記回転軸に沿う断面における断面形状は、外周側から内周側に向かって窪む凹状であり、少なくとも厚さ方向の両端部にそれぞれ円弧状部分を有し、前記両端部の前記円弧状部分の間に、前記ワークの厚さ以上の厚さを有し前記ワークの直径を小さくすることと前記ワークの外周部の厚さ方向の中間部を平滑にすることとの少なくとも一方のための研削を行う直線部分を有する形状であり、
前記砥石と前記ワークは、前記砥石支持機構または前記ワーク支持機構によって互いに接近したり離れたりするように相対的に移動可能であり、
前記砥石支持機構または前記ワーク支持機構は、前記凹状研削部分と前記ワークとの接触部分が前記ワークの前記所望の断面形状に沿って移動するように前記砥石の前記円弧状部分の曲率半径に基づいて算出された移動条件に従って、前記砥石を前記ワークに対して相対的に移動させ、
前記砥石の前記円弧状部分が、前記ワークの前記所望の断面形状の面取り部との間に実質的に隙間が生じることなく前記ワークに当接するように、前記砥石の前記円弧状部分の曲率半径は少なくとも前記ワークの厚さの10倍以上であり、
前記ワークの前記吸着部材によって吸着される前記片側の面側に位置する前記円弧状部分は、前記砥石の前記回転軸に沿う断面において、前記所望の断面形状の前記ワークの、前記片側の面側の前記面取り部の長さ以上であって、かつ、当該円弧状部分の接線が前記吸着部材の前記先薄形状の角度と一致する角度で延びる位置において前記ワークの前記片側の面側の端部と接する状態で前記吸着部材の前記先薄形状に当接する長さ未満の長さを有していることを特徴とする、ワーク加工装置。
A workpiece machining apparatus for forming a disk-shaped workpiece into a desired cross-sectional shape,
The grinding machine includes a workpiece support mechanism that supports the workpiece, a disk-shaped grinding wheel that is arranged parallel to the workpiece, and a grinding wheel support mechanism that supports the grinding wheel,
the workpiece support mechanism rotates the workpiece, the grindstone support mechanism rotates the grindstone, a rotation axis about which the workpiece is rotated by the workpiece support mechanism and a rotation axis about which the grindstone is rotated by the grindstone support mechanism are parallel to each other,
the workpiece support mechanism has an adsorption member that adsorbs only one side of the workpiece, the adsorption member having a planar shape that is a circle having a radius smaller than the radius of the workpiece, and an outer peripheral portion of the circular adsorption member having a tapered shape that becomes thinner toward the outside,
the grinding wheel has a concave grinding portion on its outer periphery, the cross-sectional shape of the concave grinding portion in a cross section along the rotation axis of the grinding wheel is concave recessed from the outer periphery toward the inner periphery, and has an arc-shaped portion at least at both ends in the thickness direction, and has a straight portion between the arc-shaped portions at both ends, the straight portion having a thickness equal to or greater than the thickness of the workpiece and performing grinding for at least one of reducing the diameter of the workpiece and smoothing the middle portion of the outer periphery of the workpiece in the thickness direction ,
The grindstone and the workpiece can be moved relatively toward or away from each other by the grindstone support mechanism or the workpiece support mechanism,
the grindstone support mechanism or the workpiece support mechanism moves the grindstone relative to the workpiece in accordance with a movement condition calculated based on a radius of curvature of the arc-shaped portion of the grindstone so that a contact portion between the concave grinding portion and the workpiece moves along the desired cross-sectional shape of the workpiece;
a radius of curvature of the arc-shaped portion of the grindstone is at least 10 times the thickness of the workpiece so that the arc-shaped portion of the grindstone abuts against the workpiece without generating a substantial gap between the arc-shaped portion and the chamfered portion of the desired cross-sectional shape of the workpiece;
A workpiece machining apparatus characterized in that the arc-shaped portion located on the one side of the workpiece that is adsorbed by the suction member has a length, in a cross section along the rotation axis of the grinding wheel, that is greater than or equal to the length of the chamfered portion on the one side of the workpiece having the desired cross-sectional shape, and is less than the length at which the tangent of the arc-shaped portion abuts against the tapered shape of the suction member when in contact with the end of the one side of the workpiece at a position where it extends at an angle that matches the angle of the tapered shape of the suction member.
円板状のワークを所望の断面形状に形成するためのワーク加工装置であって、
前記ワークを支持するワーク支持機構と、前記ワークに対して平行に配置される円板状の砥石と、前記砥石を支持する砥石支持機構と、を有し、
前記ワーク支持機構は前記ワークを回転させ、前記砥石支持機構は前記砥石を回転させ、前記ワーク支持機構による前記ワークの回転の中心となる回転軸と、前記砥石支持機構による前記砥石の回転の中心となる回転軸とは互いに平行であり、
前記ワーク支持機構は、前記ワークの片側の面のみを吸着する吸着部材を有し、前記吸着部材の平面形状は、前記ワークの半径よりも小さい半径の円形状であり、円形状の前記吸着部材の外周部分は、外側に向かうにつれて厚さが薄くなる先薄形状を有し、
前記砥石は外周部に凹状研削部分を有しており、前記凹状研削部分の、前記砥石の前記回転軸に沿う断面における断面形状は、外周側から内周側に向かって窪む凹状であり、少なくとも厚さ方向の両端部にそれぞれ円弧状部分と、前記円弧状部分よりも厚さ方向外側に位置して前記円弧状部分と連続的に繋がっている斜面部分と、を有し、前記両端部の前記円弧状部分の間に前記ワークの厚さ以上の厚さを有し前記ワークの直径を小さくすることと前記ワークの外周部の厚さ方向の中間部を平滑にすることとの少なくとも一方のための研削を行う直線部分を有する形状であり、
前記斜面部分は、前記所望の断面形状の前記ワークの、前記片側の面側の面取り部の角度と一致する、前記円弧状部分と前記斜面部分との境界位置における前記円弧状部分の接線方向に沿って延びており、
前記砥石と前記ワークは、前記砥石支持機構または前記ワーク支持機構によって互いに接近したり離れたりするように相対的に移動可能であり、
前記砥石支持機構または前記ワーク支持機構は、前記凹状研削部分と前記ワークとの接触部分が前記ワークの前記所望の断面形状に沿って移動するように前記砥石の前記円弧状部分の曲率半径に基づいて算出された移動条件に従って、前記砥石を前記ワークに対して相対的に移動させ、
前記砥石の前記円弧状部分の曲率半径は少なくとも前記ワークの厚さの10倍以上であり、
前記ワークの前記吸着部材によって吸着される前記片側の面側に位置する前記斜面部分は、前記砥石の前記回転軸に沿う断面において、前記所望の断面形状の前記ワークの、前記片側の面側の前記面取り部の長さ以上であって、かつ、前記ワークの前記片側の面に対して当該斜面部分が延びる方向がなす角度が、前記ワークの前記片側の面に対して前記吸着部材の前記先薄形状がなす角度よりも小さい場合に、前記円弧状部分の接線が前記吸着部材の前記先薄形状の角度と一致する角度で延びる位置において前記ワークの前記片側の面側の端部と接する状態で当該斜面部分が前記吸着部材の前記先薄形状に当接する長さ未満の長さを有していることを特徴とする、ワーク加工装置。
A workpiece machining apparatus for forming a disk-shaped workpiece into a desired cross-sectional shape,
The grinding machine includes a workpiece support mechanism that supports the workpiece, a disk-shaped grinding wheel that is arranged parallel to the workpiece, and a grinding wheel support mechanism that supports the grinding wheel,
the workpiece support mechanism rotates the workpiece, the grindstone support mechanism rotates the grindstone, a rotation axis about which the workpiece is rotated by the workpiece support mechanism and a rotation axis about which the grindstone is rotated by the grindstone support mechanism are parallel to each other,
the workpiece support mechanism has an adsorption member that adsorbs only one side of the workpiece, the adsorption member having a planar shape that is a circle having a radius smaller than the radius of the workpiece, and an outer peripheral portion of the circular adsorption member having a tapered shape that becomes thinner toward the outside,
the grinding wheel has a concave grinding portion on its outer periphery, the cross-sectional shape of the concave grinding portion in a cross section along the rotation axis of the grinding wheel is concave recessed from the outer periphery toward the inner periphery, and has at least an arc-shaped portion at each end in the thickness direction, and an inclined surface portion located outside the arc-shaped portion in the thickness direction and continuously connected to the arc-shaped portion, and has a straight portion between the arc-shaped portions at each end , the straight portion having a thickness equal to or greater than the thickness of the workpiece, and for grinding to at least one of reduce the diameter of the workpiece and smooth a middle portion of the outer periphery of the workpiece in the thickness direction ,
the inclined surface portion extends along a tangent direction of the arc-shaped portion at a boundary position between the arc-shaped portion and the inclined surface portion, the angle of which coincides with an angle of a chamfer on one surface of the workpiece having the desired cross-sectional shape;
The grindstone and the workpiece can be moved relatively toward or away from each other by the grindstone support mechanism or the workpiece support mechanism,
the grindstone support mechanism or the workpiece support mechanism moves the grindstone relative to the workpiece in accordance with a movement condition calculated based on a radius of curvature of the arc-shaped portion of the grindstone so that a contact portion between the concave grinding portion and the workpiece moves along the desired cross-sectional shape of the workpiece;
The radius of curvature of the arc-shaped portion of the grinding wheel is at least 10 times the thickness of the workpiece,
a workpiece machining device, characterized in that the inclined portion located on the one side of the workpiece that is attracted by the suction member has a length that is greater than or equal to the length of the chamfered portion on the one side of the workpiece having the desired cross-sectional shape, in a cross section along the rotation axis of the grinding wheel, and when the angle in which the inclined portion extends with respect to the one side of the workpiece is smaller than the angle that the tapered shape of the suction member forms with respect to the one side of the workpiece, the inclined portion has a length that is less than the length at which the inclined portion abuts the tapered shape of the suction member when in contact with the end of the one side of the workpiece at a position where a tangent to the arc-shaped portion extends at an angle that matches the angle of the tapered shape of the suction member.
前記砥石の外周部に、前記凹状研削部分と、前記ワークと対向する面が前記回転軸に沿う断面において前記砥石の厚さ方向と平行な直線状である断面長方形状研削部分とが、厚さ方向に並んで設けられており、前記砥石の前記断面長方形状研削部分は、前記凹状研削部分による研削が行われる前の前記ワークの外周部に当接して、前記砥石が前記ワークの半径方向外側から内側に向けて移動することにより前記ワークの半径を小さくするように前記ワークを研削する部分である、請求項1または2に記載のワーク加工装置。 The workpiece machining device according to claim 1 or 2, wherein the concave grinding portion and a cross-sectionally rectangular grinding portion, the surface of which facing the workpiece is a straight line parallel to the thickness direction of the grinding wheel in a cross section along the rotation axis, are arranged side by side in the thickness direction on the outer periphery of the grinding wheel, and the cross-sectionally rectangular grinding portion of the grinding wheel abuts against the outer periphery of the workpiece before grinding is performed by the concave grinding portion, and the grinding wheel moves from the radial outside to the inside of the workpiece to grind the workpiece so as to reduce the radius of the workpiece. 前記吸着部材の半径r1は、前記ワークの前記所望の断面形状の半径r2と前記ワークの厚さtとによって表すと、r2-10t≦r1≦r2-5tであり、
前記吸着部材の前記先薄形状の角度θ1は、前記ワークの前記所望の断面形状の前記面取り部の角度θ2によって表すと、θ2-10≦θ1≦θ2+5である、請求項1または2に記載のワーク加工装置。
The radius r1 of the attraction member is expressed by the radius r2 of the desired cross-sectional shape of the workpiece and the thickness t of the workpiece, and is expressed as r2-10t≦r1≦r2-5t.
3. The workpiece machining device according to claim 1, wherein an angle θ1 of the tapered shape of the suction member is expressed in terms of an angle θ2 of the chamfered portion of the desired cross-sectional shape of the workpiece, such that θ2-10≦θ1≦θ2+5.
前記砥石支持機構は、前記砥石が直接または間接的に取り付けられるスピンドルと、前記スピンドルを回転可能に支持する回転ベアリング部とを有し、前記砥石を、当該砥石の重心が当該砥石の取り付け位置と前記回転ベアリング部との間に位置するように支持する、請求項1または2に記載のワーク加工装置。 The workpiece machining device according to claim 1 or 2, wherein the grindstone support mechanism has a spindle to which the grindstone is directly or indirectly attached, and a rotary bearing part that rotatably supports the spindle, and supports the grindstone so that the center of gravity of the grindstone is located between the attachment position of the grindstone and the rotary bearing part. 前記砥石支持機構および前記ワーク支持機構は、前記ワークの一方の面側の外周部を研削する際には、前記ワークと前記砥石とを回転させつつ、前記砥石の前記凹状研削部分の前記円弧状部分を前記ワークの外周端面から一方の面に向かって、前記移動条件に従って予め算出された角度だけ前記ワークに対して相対的に曲線的に移動させ、前記ワークの前記他方の面側の外周部を研削する際には、前記ワークと前記砥石とを回転させつつ、前記砥石の前記凹状研削部分の前記円弧状部分を前記ワークの外周端面から前記他方の面に向かって、前記移動条件に従って予め算出された角度だけ前記ワークに対して相対的に曲線的に移動させ、
前記砥石支持機構および前記ワーク支持機構は、前記ワークの前記一方の面側または前記他方の面側の外周部の粗い研削を行う際には、前記ワークと前記砥石とを回転させつつ、前記砥石の前記凹状研削部分の前記円弧状部分を前記ワークの外周端面から前記一方の面または前記他方の面に向かって、前記移動条件に従って予め算出された角度だけ前記ワークに対して相対的に曲線的に移動させたら、前記砥石の前記ワークに対する相対的な移動を停止させ、
前記砥石支持機構および前記ワーク支持機構は、前記ワークの前記一方の面側または前記他方の面側の外周部の精密な研削を行う際には、前記ワークと前記砥石とを回転させつつ、前記砥石の前記凹状研削部分の前記円弧状部分を前記ワークの外周端面から前記一方の面または前記他方の面に向かって、前記移動条件に従って予め算出された角度だけ前記ワークに対して相対的に曲線的に移動させた後に、前記砥石を前記ワークに対して相対的に直線的に移動させる、請求項1または2に記載のワーク加工装置。
When grinding the outer periphery on one surface side of the workpiece, the grindstone support mechanism and the workpiece support mechanism rotate the workpiece and the grindstone, while moving the arc-shaped portion of the concave grinding portion of the grindstone in a curved manner relative to the workpiece from the outer periphery end face of the workpiece toward the one surface by an angle calculated in advance in accordance with the movement conditions, and when grinding the outer periphery on the other surface side of the workpiece, while rotating the workpiece and the grindstone, move the arc-shaped portion of the concave grinding portion of the grindstone in a curved manner relative to the workpiece from the outer periphery end face of the workpiece toward the other surface by an angle calculated in advance in accordance with the movement conditions,
When performing rough grinding of the outer periphery of the one surface side or the other surface side of the workpiece, the grindstone support mechanism and the workpiece support mechanism rotate the workpiece and the grindstone, move the arc-shaped portion of the concave grinding portion of the grindstone in a curved manner relative to the workpiece from the outer periphery end face of the workpiece toward the one surface side or the other surface by an angle calculated in advance in accordance with the movement conditions, and then stop the relative movement of the grindstone with respect to the workpiece;
The workpiece processing device of claim 1 or 2, wherein, when performing precise grinding of the outer periphery of the one surface side or the other surface side of the workpiece, the grinding wheel support mechanism and the workpiece support mechanism rotate the workpiece and the grinding wheel, move the arc-shaped portion of the concave grinding portion of the grinding wheel in a curved manner relative to the workpiece from the outer periphery end face of the workpiece toward the one surface side or the other surface by an angle calculated in advance in accordance with the movement conditions, and then move the grinding wheel in a linear manner relative to the workpiece.
前記凹状研削部分を有する前記砥石に加えて、前記ワークの外周の接線方向に対して斜めに配置されて前記砥石の前記凹状研削部分による研削よりも精密な研削に用いられる円板状の溝付き砥石と、前記溝付き砥石を支持する溝付き砥石支持機構と、をさらに有し、
前記溝付き砥石支持機構は前記溝付き砥石を回転させる、請求項1または2に記載のワーク加工装置。
In addition to the grindstone having the concave grinding portion, the grindstone further includes a disk-shaped grooved grindstone disposed obliquely with respect to a tangent direction of the outer periphery of the workpiece and used for more precise grinding than grinding by the concave grinding portion of the grindstone, and a grooved grindstone support mechanism for supporting the grooved grindstone,
The workpiece machining device according to claim 1 or 2, wherein the grooved grindstone support mechanism rotates the grooved grindstone.
前記ワークに代えて前記ワーク支持機構に取り付け可能なツルーイング砥石をさらに有し、
前記ツルーイング砥石は、前記砥石支持機構または前記ワーク支持機構により、前記移動条件に従って前記砥石に対して相対的に移動させられることによって外形が形成されており、
前記溝付き砥石は、前記ツルーイング砥石に押し当てられて前記ツルーイング砥石の外形が転写されることによって溝が形成または整形されていることを特徴とする、請求項7に記載のワーク加工装置。
Further comprising a truing grindstone that can be attached to the work support mechanism in place of the work,
The truing grindstone is moved relative to the grindstone in accordance with the movement conditions by the grindstone support mechanism or the work support mechanism to form an outer shape,
8. The workpiece machining device according to claim 7, wherein the grooved grindstone is pressed against the truing grindstone so that an outer shape of the truing grindstone is transferred to the groove, thereby forming or shaping the groove.
前記ワーク支持機構は、前記ワーク支持機構の前記回転軸の温度を一定に保つための液体または気体の流れを発生させる温度調整機構を有する、請求項1または2に記載のワーク加工装置。 The workpiece processing device according to claim 1 or 2, wherein the workpiece support mechanism has a temperature adjustment mechanism that generates a flow of liquid or gas to keep the temperature of the rotation shaft of the workpiece support mechanism constant. 請求項1または2に記載のワーク加工装置に含まれている前記砥石であって、
前記直線部分は前記円弧状部分よりも砥石粒度が粗い部分であって、前記円弧状部分は前記直線部分による研削よりも精密な研削に用いられる部分であることを特徴とする、砥石。
The grinding wheel included in the workpiece processing device according to claim 1 or 2,
A grinding wheel, characterized in that the straight portion has a coarser grinding grain size than the arc-shaped portion, and the arc-shaped portion is used for more precise grinding than grinding by the straight portion.
請求項3に記載のワーク加工装置に含まれている前記砥石であって、
前記断面長方形状研削部分は前記凹状研削部分よりも砥石粒度が粗い部分であって、前記凹状研削部分は前記断面長方形状研削部分による研削よりも精密な研削に用いられる部分であることを特徴とする、砥石。
The grindstone included in the workpiece processing device according to claim 3,
A grinding wheel characterized in that the grinding portion having a rectangular cross section has a coarser grinding grain size than the grinding portion having a concave cross section, and the concave grinding portion is used for more precise grinding than grinding by the grinding portion having a rectangular cross section.
請求項1または2に記載のワーク加工装置に含まれている前記砥石であって、
厚さ方向の一方の端部の前記円弧状部分と他方の端部の前記円弧状部分とは、それぞれの曲率半径の平均値が所望の大きさになるように個別に形成された部分であることを特徴とする、砥石。
The grinding wheel included in the workpiece processing device according to claim 1 or 2,
A grinding wheel, characterized in that the arc-shaped portion at one end in the thickness direction and the arc-shaped portion at the other end are individually formed so that the average value of the radius of curvature of each is a desired size.
請求項1または2に記載のワーク加工装置に含まれている前記砥石であって、
厚さ方向の一方の端部の前記円弧状部分の曲率半径の最大値と最小値の差と、他方の端部の前記円弧状部分の曲率半径の最大値と最小値の差とが、いずれも第1の所定値以下であり、
厚さ方向の一方の端部の前記円弧状部分の曲率半径の平均値と、他方の端部の前記円弧状部分の曲率半径の平均値との差が、第2の所定値以下であることを特徴とする、砥石。
The grinding wheel included in the workpiece processing device according to claim 1 or 2,
a difference between a maximum value and a minimum value of a radius of curvature of the arc-shaped portion at one end in a thickness direction and a difference between a maximum value and a minimum value of a radius of curvature of the arc-shaped portion at the other end are both equal to or smaller than a first predetermined value;
A grinding wheel, characterized in that the difference between the average value of the radius of curvature of the arc-shaped portion at one end in the thickness direction and the average value of the radius of curvature of the arc-shaped portion at the other end is a second predetermined value or less.
請求項1または2に記載のワーク加工装置に含まれている前記砥石であって、
厚さ方向に延びるストレート状またはテーパ状の取付穴を有することを特徴とする、砥石。
The grinding wheel included in the workpiece processing device according to claim 1 or 2,
A grinding wheel having a straight or tapered mounting hole extending in the thickness direction.
外周部に凹状研削部分を有しており回転可能な円板状の砥石であって、前記凹状研削部分の、前記砥石の回転軸に沿う断面における断面形状は、外周側から内周側に向かって窪む凹状であり、少なくとも厚さ方向の両端部にそれぞれ円弧状部分を有し、前記両端部の前記円弧状部分の間に、前記ワークの厚さ以上の厚さを有し前記ワークの直径を小さくすることと前記ワークの外周部の厚さ方向の中間部を平滑にすることとの少なくとも一方のための研削を行う直線部分を有する形状である砥石を用いて、円板状のワークを所望の断面形状に形成するためのワーク加工方法であって、
前記ワークと前記砥石とを互いに平行に配置するステップと、
前記砥石を回転させるとともに、前記砥石の前記回転軸と平行な回転軸を中心として前記ワークを回転させつつ、前記凹状研削部分と前記ワークとの接触部分が前記ワークの前記所望の断面形状に沿って移動するように前記砥石の前記円弧状部分の曲率半径に基づいて算出された移動条件に従って、前記砥石を前記ワークに対して相対的に移動させるステップと、を含み、
前記砥石を前記ワークに対して相対的に移動させるステップは、
片側の面のみが吸着部材によって吸着された前記ワークと前記砥石とを回転させつつ、前記砥石の前記凹状研削部分の前記円弧状部分を前記ワークの外周端面から一方の面に向かって、前記移動条件に従って予め算出された角度だけ前記ワークに対して相対的に曲線的に移動させることにより、前記ワークの前記一方の面側の外周部を研削して前記ワークの前記所望の断面形状の面取り部を形成することと、
前記砥石を前記ワークの外周端面に沿って前記一方の面側から他方の面側へ前記ワークに対して相対的に移動させることと、
前記ワークと前記砥石とを回転させつつ、前記砥石の前記凹状研削部分の前記円弧状部分を前記ワークの外周端面から前記他方の面に向かって、前記移動条件に従って予め算出された角度だけ前記ワークに対して相対的に曲線的に移動させることにより、前記ワークの前記他方の面側の外周部を研削して前記ワークの前記所望の断面形状の面取り部を形成することと、を含み、
前記吸着部材の平面形状は、前記ワークの半径よりも小さい半径の円形状であり、円形状の前記吸着部材の外周部分は、外側に向かうにつれて厚さが薄くなる先薄形状を有し、前記砥石の前記円弧状部分が、前記ワークの前記所望の断面形状の前記面取り部との間に実質的に隙間が生じることなく前記ワークに当接するように、前記砥石の前記円弧状部分の曲率半径は少なくとも前記ワークの厚さの10倍以上であり、
前記ワークの前記吸着部材によって吸着される前記片側の面側に位置する前記円弧状部分は、前記砥石の前記回転軸に沿う断面において、前記所望の断面形状の前記ワークの、前記片側の面側の前記面取り部の長さ以上であって、かつ、当該円弧状部分の接線が前記吸着部材の前記先薄形状の角度と一致する角度で延びる位置において前記ワークの前記片側の面側の端部と接する状態で前記吸着部材の前記先薄形状に当接する長さ未満の長さを有しており、
前記ワークの前記一方の面側または前記他方の面側の外周部の粗い研削を行う際には、前記ワークと前記砥石とを回転させつつ、前記砥石の前記凹状研削部分の前記円弧状部分を前記ワークの外周端面から前記一方の面または前記他方の面に向かって、前記砥石の前記回転軸と前記ワークの前記回転軸とが同一平面内に位置するように、前記移動条件に従って予め算出された角度だけ前記ワークに対して相対的に曲線的に移動させたら、前記砥石の前記ワークに対する相対的な移動を停止させ、
前記ワークの前記一方の面側または前記他方の面側の外周部の精密な研削を行う際には、前記ワークと前記砥石とを回転させつつ、前記砥石の前記凹状研削部分の前記円弧状部分を前記ワークの外周端面から前記一方の面または前記他方の面に向かって、前記砥石の前記回転軸と前記ワークの前記回転軸とが同一平面内に位置するように、前記移動条件に従って予め算出された角度だけ前記ワークに対して相対的に曲線的に移動させた後に、曲線的な移動の際に前記砥石の前記回転軸と前記ワークの前記回転軸とが位置していた前記平面に対して垂直または斜めに交差する方向に延びる平面内において前記砥石の前記回転軸と前記ワークの前記回転軸とが相対的に移動するように、前記砥石を前記ワークに対して相対的に直線的に移動させることを特徴とする、ワーク加工方法。
A method for machining a workpiece for forming a disc-shaped workpiece into a desired cross-sectional shape using a grinding wheel having a concave grinding portion on its outer periphery, the concave grinding portion having a cross-sectional shape in a cross section along a rotation axis of the grinding wheel that is concave recessed from the outer periphery toward the inner periphery, the grinding wheel having an arc-shaped portion at least at both ends in a thickness direction, and a straight portion having a thickness equal to or greater than the thickness of the workpiece and performing grinding for at least one of reducing a diameter of the workpiece and smoothing an intermediate portion of the outer periphery of the workpiece in the thickness direction, the method comprising the steps of :
placing the workpiece and the grindstone parallel to each other;
and rotating the grindstone and the workpiece about a rotation axis parallel to the rotation axis of the grindstone, while moving the grindstone relative to the workpiece in accordance with a movement condition calculated based on a radius of curvature of the arc-shaped portion of the grindstone such that a contact portion between the concave grinding portion and the workpiece moves along the desired cross-sectional shape of the workpiece,
The step of moving the grindstone relative to the workpiece includes:
While rotating the workpiece , only one side of which is attracted by an attraction member , and the grindstone, the arc-shaped portion of the concave grinding portion of the grindstone is moved in a curved manner relative to the workpiece from the outer peripheral end face of the workpiece toward one side by an angle calculated in advance according to the movement conditions, thereby grinding the outer peripheral portion of the one side of the workpiece to form a chamfered portion of the workpiece having the desired cross-sectional shape ;
Moving the grindstone relative to the workpiece from the one surface side to the other surface side along an outer peripheral end surface of the workpiece;
and rotating the workpiece and the grindstone, and moving the arc-shaped portion of the concave grinding portion of the grindstone in a curved manner from the outer peripheral end face of the workpiece toward the other surface by an angle calculated in advance according to the movement conditions, thereby grinding the outer peripheral portion of the workpiece on the other surface side to form a chamfered portion of the workpiece having the desired cross-sectional shape ,
the planar shape of the attraction member is a circle having a radius smaller than the radius of the workpiece, the outer peripheral portion of the circular attraction member has a tapered shape that becomes thinner toward the outside, and the radius of curvature of the arc-shaped portion of the grindstone is at least 10 times the thickness of the workpiece so that the arc-shaped portion of the grindstone abuts against the workpiece without generating a substantial gap between the arc-shaped portion and the chamfered portion of the desired cross-sectional shape of the workpiece,
the arc-shaped portion located on the one surface side of the workpiece attracted by the attraction member has a length, in a cross section along the rotation axis of the grindstone, that is equal to or longer than the length of the chamfered portion on the one surface side of the workpiece having the desired cross-sectional shape, and is less than a length that abuts against the tapered shape of the attraction member in a state in which the tangent of the arc-shaped portion abuts against the tapered shape of the attraction member in a state in which the tangent of the arc-shaped portion abuts against the end of the one surface side of the workpiece at a position that extends at an angle that coincides with the angle of the tapered shape of the attraction member,
When performing rough grinding of the outer periphery of the one surface side or the other surface side of the workpiece, while rotating the workpiece and the grindstone, the arc-shaped portion of the concave grinding portion of the grindstone is moved in a curved manner relative to the workpiece from the outer periphery end face of the workpiece toward the one surface or the other surface by an angle calculated in advance according to the movement conditions so that the rotation axis of the grindstone and the rotation axis of the workpiece are positioned in the same plane, and then the relative movement of the grindstone with respect to the workpiece is stopped;
A workpiece machining method, characterized in that, when performing precise grinding of the outer periphery of the one surface side or the other surface side of the workpiece, while rotating the workpiece and the grinding wheel, the arc-shaped portion of the concave grinding portion of the grinding wheel is moved curvilinearly relative to the workpiece from the outer periphery end face of the workpiece toward the one surface side or the other surface side by an angle calculated in advance in accordance with the movement conditions so that the rotation axis of the grinding wheel and the rotation axis of the workpiece are positioned in the same plane, and then the grinding wheel is moved linearly relative to the workpiece so that the rotation axis of the grinding wheel and the rotation axis of the workpiece move relatively in a plane extending in a direction intersecting perpendicularly or obliquely to the plane in which the rotation axis of the grinding wheel and the rotation axis of the workpiece were positioned during the curvilinear movement.
外周部に凹状研削部分を有しており回転可能な円板状の砥石であって、前記凹状研削部分の、前記砥石の回転軸に沿う断面における断面形状は、外周側から内周側に向かって窪む凹状であり、少なくとも厚さ方向の両端部にそれぞれ円弧状部分と、前記円弧状部分よりも厚さ方向外側に位置して前記円弧状部分と連続的に繋がっている斜面部分と、を有し、前記両端部の前記円弧状部分の間に前記ワークの厚さ以上の厚さを有し前記ワークの直径を小さくすることと前記ワークの外周部の厚さ方向の中間部を平滑にすることとの少なくとも一方のための研削を行う直線部分を有する形状である砥石を用いて、円板状のワークを所望の断面形状に形成するためのワーク加工方法であって、
前記ワークと前記砥石とを互いに平行に配置するステップと、
前記砥石を回転させるとともに、前記砥石の前記回転軸と平行な回転軸を中心として前記ワークを回転させつつ、前記凹状研削部分と前記ワークとの接触部分が前記ワークの前記所望の断面形状に沿って移動するように前記砥石の前記円弧状部分の曲率半径に基づいて算出された移動条件に従って、前記砥石を前記ワークに対して相対的に移動させるステップと、を含み、
前記砥石を前記ワークに対して相対的に移動させるステップは、
片側の面のみが吸着部材によって吸着された前記ワークと前記砥石とを回転させつつ、前記砥石の前記凹状研削部分の前記円弧状部分を前記ワークの外周端面から一方の面に向かって、前記移動条件に従って予め算出された角度だけ前記ワークに対して相対的に曲線的に移動させることにより、前記ワークの前記一方の面側の外周部を研削して前記ワークの前記所望の断面形状の面取り部を形成することと、
前記砥石を前記ワークの外周端面に沿って前記一方の面側から他方の面側へ前記ワークに対して相対的に移動させることと、
前記ワークと前記砥石とを回転させつつ、前記砥石の前記凹状研削部分の前記円弧状部分を前記ワークの外周端面から前記他方の面に向かって、前記移動条件に従って予め算出された角度だけ前記ワークに対して相対的に曲線的に移動させることにより、前記ワークの前記他方の面側の外周部を研削して前記ワークの前記所望の断面形状の面取り部を形成することと、を含み、
前記吸着部材の平面形状は、前記ワークの半径よりも小さい半径の円形状であり、円形状の前記吸着部材の外周部分は、外側に向かうにつれて厚さが薄くなる先薄形状を有し、前記砥石の前記円弧状部分の曲率半径は少なくとも前記ワークの厚さの10倍以上であり、
前記斜面部分は、前記所望の断面形状の前記ワークの、前記片側の面側の前記面取り部の角度と一致する、前記円弧状部分と前記斜面部分との境界位置における前記円弧状部分の接線方向に沿って延びており、
前記ワークの前記吸着部材によって吸着される前記片側の面側に位置する前記斜面部分は、前記砥石の前記回転軸に沿う断面において、前記所望の断面形状の前記ワークの、前記片側の面側の前記面取り部の長さ以上であって、かつ、前記ワークの前記片側の面に対して当該斜面部分が延びる方向がなす角度が、前記ワークの前記片側の面に対して前記吸着部材の前記先薄形状がなす角度よりも小さい場合に、前記円弧状部分の接線が前記吸着部材の前記先薄形状の角度と一致する角度で延びる位置において前記ワークの前記片側の面側の端部と接する状態で当該斜面部分が前記吸着部材の前記先薄形状に当接する長さ未満の長さを有しており、
前記ワークの前記一方の面側または前記他方の面側の外周部の粗い研削を行う際には、前記ワークと前記砥石とを回転させつつ、前記砥石の前記凹状研削部分の前記円弧状部分を前記ワークの外周端面から前記一方の面または前記他方の面に向かって、前記砥石の前記回転軸と前記ワークの前記回転軸とが同一平面内に位置するように、前記移動条件に従って予め算出された角度だけ前記ワークに対して相対的に曲線的に移動させたら、前記砥石の前記ワークに対する相対的な移動を停止させ、
前記ワークの前記一方の面側または前記他方の面側の外周部の精密な研削を行う際には、前記ワークと前記砥石とを回転させつつ、前記砥石の前記凹状研削部分の前記円弧状部分を前記ワークの外周端面から前記一方の面または前記他方の面に向かって、前記砥石の前記回転軸と前記ワークの前記回転軸とが同一平面内に位置するように、前記移動条件に従って予め算出された角度だけ前記ワークに対して相対的に曲線的に移動させた後に、曲線的な移動の際に前記砥石の前記回転軸と前記ワークの前記回転軸とが位置していた前記平面内に前記砥石の前記回転軸と前記ワークの前記回転軸とが位置する状態を維持したまま、前記砥石を前記ワークに対して相対的に直線的に移動させることを特徴とする、ワーク加工方法。
A method for machining a workpiece for forming a disc-shaped workpiece into a desired cross-sectional shape using a grinding wheel having a concave grinding portion on its outer periphery, the concave grinding portion having a cross-sectional shape in a cross section along a rotation axis of the grinding wheel that is concave recessed from the outer periphery toward the inner periphery, the grinding wheel having an arc-shaped portion at least at both ends in the thickness direction , and a slope portion located outside the arc-shaped portion in the thickness direction and continuously connected to the arc-shaped portion, and a straight portion having a thickness equal to or greater than the thickness of the workpiece and performing grinding for at least one of reducing the diameter of the workpiece and smoothing an intermediate portion of the outer periphery of the workpiece in the thickness direction, the method comprising the steps of:
placing the workpiece and the grindstone parallel to each other;
and rotating the grindstone and the workpiece about a rotation axis parallel to the rotation axis of the grindstone, while moving the grindstone relative to the workpiece in accordance with a movement condition calculated based on a radius of curvature of the arc-shaped portion of the grindstone such that a contact portion between the concave grinding portion and the workpiece moves along the desired cross-sectional shape of the workpiece, the movement condition being calculated based on a radius of curvature of the arc-shaped portion of the grindstone.
The step of moving the grindstone relative to the workpiece includes:
While rotating the workpiece , only one side of which is attracted by an attraction member , and the grindstone, the arc-shaped portion of the concave grinding portion of the grindstone is moved in a curved manner relative to the workpiece from the outer peripheral end face of the workpiece toward one side by an angle calculated in advance according to the movement conditions, thereby grinding the outer periphery of the one side of the workpiece to form a chamfered portion of the workpiece having the desired cross-sectional shape ;
Moving the grindstone relative to the workpiece along an outer peripheral end surface of the workpiece from the one surface side to the other surface side;
and rotating the workpiece and the grindstone, and moving the arc-shaped portion of the concave grinding portion of the grindstone in a curved manner from the outer peripheral end face of the workpiece toward the other surface by an angle calculated in advance according to the movement conditions, thereby grinding the outer peripheral portion of the workpiece on the other surface side to form a chamfered portion of the workpiece having the desired cross-sectional shape ,
the planar shape of the attraction member is a circle having a radius smaller than the radius of the workpiece, the outer peripheral portion of the circular attraction member has a tapered shape that becomes thinner toward the outside, and the radius of curvature of the arc-shaped portion of the grindstone is at least 10 times the thickness of the workpiece,
the inclined surface portion extends along a tangent direction of the arc-shaped portion at a boundary position between the arc-shaped portion and the inclined surface portion, the angle of the inclined surface portion coinciding with an angle of the chamfered portion on the one surface side of the workpiece having the desired cross-sectional shape;
the inclined portion located on the one surface side of the workpiece that is attracted by the attraction member has a length that is equal to or longer than the length of the chamfered portion on the one surface side of the workpiece having the desired cross-sectional shape in a cross section along the rotation axis of the grindstone, and when the angle formed by the direction in which the inclined portion extends with respect to the one surface of the workpiece is smaller than the angle formed by the tapered shape of the attraction member with respect to the one surface of the workpiece, the inclined portion has a length that is less than the length at which the inclined portion abuts against the tapered shape of the attraction member in a state in which the inclined portion is in contact with the end portion on the one surface side of the workpiece at a position where a tangent to the arc-shaped portion extends at an angle that coincides with the angle of the tapered shape of the attraction member,
When performing rough grinding of the outer periphery of the one surface side or the other surface side of the workpiece, while rotating the workpiece and the grindstone, the arc-shaped portion of the concave grinding portion of the grindstone is moved in a curved manner relative to the workpiece from the outer periphery end face of the workpiece toward the one surface or the other surface by an angle calculated in advance according to the movement conditions so that the rotation axis of the grindstone and the rotation axis of the workpiece are positioned in the same plane, and then the relative movement of the grindstone with respect to the workpiece is stopped;
A workpiece machining method, characterized in that, when performing precise grinding of the outer periphery of the one surface side or the other surface side of the workpiece, while rotating the workpiece and the grinding wheel, the arc-shaped portion of the concave grinding portion of the grinding wheel is moved curvilinearly relative to the workpiece from the outer periphery end face of the workpiece toward the one surface side or the other surface side by an angle calculated in advance in accordance with the movement conditions so that the rotation axis of the grinding wheel and the rotation axis of the workpiece are positioned in the same plane, and then the grinding wheel is moved linearly relative to the workpiece while maintaining the state in which the rotation axis of the grinding wheel and the rotation axis of the workpiece are positioned within the plane in which the rotation axis of the grinding wheel and the rotation axis of the workpiece were positioned during the curvilinear movement.
外周部に凹状研削部分を有しており回転可能な円板状の砥石であって、前記凹状研削部分の、前記砥石の回転軸に沿う断面における断面形状は、外周側から内周側に向かって窪む凹状であり、少なくとも厚さ方向の両端部にそれぞれ円弧状部分を有し、前記両端部の前記円弧状部分の間に、前記ワークの厚さ以上の厚さを有し前記ワークの直径を小さくすることと前記ワークの外周部の厚さ方向の中間部を平滑にすることとの少なくとも一方のための研削を行う直線部分を有する形状である砥石を用いて、円板状のワークを所望の断面形状に形成するためのワーク加工方法であって、
前記ワークと前記砥石とを互いに平行に配置するステップと、
前記砥石を回転させるとともに、前記砥石の前記回転軸と平行な回転軸を中心として前記ワークを回転させつつ、前記凹状研削部分と前記ワークとの接触部分が前記ワークの前記所望の断面形状に沿って移動するように前記砥石の前記円弧状部分の曲率半径に基づいて算出された移動条件に従って、前記砥石を前記ワークに対して相対的に移動させるステップと、を含み、
前記砥石を前記ワークに対して相対的に移動させるステップは、
片側の面のみが吸着部材によって吸着された前記ワークと前記砥石とを回転させつつ、前記砥石の前記凹状研削部分の前記円弧状部分を前記ワークの外周端面から一方の面に向かって、前記移動条件に従って予め算出された角度だけ前記ワークに対して相対的に曲線的に移動させることにより、前記ワークの前記一方の面側の外周部を研削して前記ワークの前記所望の断面形状の面取り部を形成することと、
前記砥石を前記ワークの外周端面に沿って前記一方の面側から他方の面側へ前記ワークに対して相対的に移動させることと、
前記ワークと前記砥石とを回転させつつ、前記砥石の前記凹状研削部分の前記円弧状部分を前記ワークの外周端面から前記他方の面に向かって、前記移動条件に従って予め算出された角度だけ前記ワークに対して相対的に曲線的に移動させることにより、前記ワークの前記他方の面側の外周部を研削して前記ワークの前記所望の断面形状の面取り部を形成することと、を含み、
前記吸着部材の平面形状は、前記ワークの半径よりも小さい半径の円形状であり、円形状の前記吸着部材の外周部分は、外側に向かうにつれて厚さが薄くなる先薄形状を有し、前記砥石の前記円弧状部分が、前記ワークの前記所望の断面形状の前記面取り部との間に実質的に隙間が生じることなく前記ワークに当接するように、前記砥石の前記円弧状部分の曲率半径は少なくとも前記ワークの厚さの10倍以上であり、
前記ワークの前記吸着部材によって吸着される前記片側の面側に位置する前記円弧状部分は、前記砥石の前記回転軸に沿う断面において、前記所望の断面形状の前記ワークの、前記片側の面側の前記面取り部の長さ以上であって、かつ、当該円弧状部分の接線が前記吸着部材の前記先薄形状の角度と一致する角度で延びる位置において前記ワークの前記片側の面側の端部と接する状態で前記吸着部材の前記先薄形状に当接する長さ未満の長さを有しており、
前記ワークの前記一方の面側または前記他方の面側の外周部の粗い研削を行う際には、前記ワークと前記砥石とを回転させつつ、前記砥石の前記凹状研削部分の前記円弧状部分を前記ワークの外周端面から前記一方の面または前記他方の面に向かって、前記移動条件に従って予め算出された角度だけ前記ワークに対して相対的に曲線的に移動させたら、前記砥石の前記ワークに対する相対的な移動を停止させ、
前記ワークの前記一方の面側の外周部の精密な研削を行う際には、前記ワークと前記砥石とを回転させつつ、前記ワークの回転時に生じる厚さ方向の位置誤差を考慮して前記ワークが回転時に通過する厚さ方向の前記一方の面側において最も外側の位置を基準にして、前記砥石の前記凹状研削部分の前記円弧状部分を前記ワークの外周端面から前記一方の面に向かって、前記移動条件に従って予め算出された角度だけ前記ワークに対して相対的に曲線的に移動させた後に、移動を停止させ、前記砥石が前記ワークの前記一方の面側の前記面取り部の斜面に接する位置で、前記ワークの厚さ方向の位置を調整しながら前記ワークの回転速度を遅くして少なくとも1回転以上回転させることで、前記ワークの回転時の位置誤差を打ち消しながら前記ワークの前記一方の面側を研削し、
前記ワークの前記他方の面側の外周部の精密な研削を行う際には、前記ワークと前記砥石とを回転させつつ、前記ワークの回転時に生じる厚さ方向の位置誤差を考慮して前記ワークが回転時に通過する厚さ方向の前記他方の面側において最も外側の位置を基準にして、前記砥石の前記凹状研削部分の前記円弧状部分を前記ワークの外周端面から前記他方の面に向かって、前記移動条件に従って予め算出された角度だけ前記ワークに対して相対的に曲線的に移動させた後に、移動を停止させ、前記砥石が前記ワークの前記他方の面側の前記面取り部の斜面に接する位置で、前記ワークの厚さ方向の位置を調整しながら前記ワークの回転速度を遅くして少なくとも1回転以上回転させることで、前記ワークの回転時の位置誤差を打ち消しながら前記ワークの前記他方の面側を研削することを特徴とする、ワーク加工方法。
A method for machining a workpiece for forming a disc-shaped workpiece into a desired cross-sectional shape using a grinding wheel having a concave grinding portion on its outer periphery, the concave grinding portion having a cross-sectional shape in a cross section along a rotation axis of the grinding wheel that is concave recessed from the outer periphery toward the inner periphery, the grinding wheel having an arc-shaped portion at least at both ends in a thickness direction, and a straight portion having a thickness equal to or greater than the thickness of the workpiece and performing grinding for at least one of reducing a diameter of the workpiece and smoothing an intermediate portion of the outer periphery of the workpiece in the thickness direction, the method comprising the steps of :
placing the workpiece and the grindstone parallel to each other;
and rotating the grindstone and the workpiece about a rotation axis parallel to the rotation axis of the grindstone, while moving the grindstone relative to the workpiece in accordance with a movement condition calculated based on a radius of curvature of the arc-shaped portion of the grindstone such that a contact portion between the concave grinding portion and the workpiece moves along the desired cross-sectional shape of the workpiece, the movement condition being calculated based on a radius of curvature of the arc-shaped portion of the grindstone.
The step of moving the grindstone relative to the workpiece includes:
While rotating the workpiece , only one side of which is attracted by an attraction member , and the grindstone, the arc-shaped portion of the concave grinding portion of the grindstone is moved in a curved manner relative to the workpiece from the outer peripheral end face of the workpiece toward one side by an angle calculated in advance according to the movement conditions, thereby grinding the outer periphery of the one side of the workpiece to form a chamfered portion of the workpiece having the desired cross-sectional shape ;
Moving the grindstone relative to the workpiece from the one surface side to the other surface side along an outer peripheral end surface of the workpiece;
and rotating the workpiece and the grindstone, and moving the arc-shaped portion of the concave grinding portion of the grindstone in a curved manner from the outer peripheral end face of the workpiece toward the other surface by an angle calculated in advance according to the movement conditions, thereby grinding the outer peripheral portion of the workpiece on the other surface side to form a chamfered portion of the workpiece having the desired cross-sectional shape ,
the planar shape of the attraction member is a circle having a radius smaller than the radius of the workpiece, the outer peripheral portion of the circular attraction member has a tapered shape that becomes thinner toward the outside, and the radius of curvature of the arc-shaped portion of the grindstone is at least 10 times the thickness of the workpiece so that the arc-shaped portion of the grindstone abuts against the workpiece without generating a substantial gap between the arc-shaped portion and the chamfered portion of the desired cross-sectional shape of the workpiece,
the arc-shaped portion located on the one surface side of the workpiece that is attracted by the attraction member has a length that is equal to or longer than the length of the chamfered portion on the one surface side of the workpiece having the desired cross-sectional shape in a cross section along the rotation axis of the grindstone, and is less than a length that abuts against the tapered shape of the attraction member in a state in which the tangent of the arc-shaped portion abuts against the end of the one surface side of the workpiece at a position where the tangent extends at an angle that coincides with the angle of the tapered shape of the attraction member,
When performing rough grinding of the outer periphery of the one surface side or the other surface side of the workpiece, while rotating the workpiece and the grindstone, the arc-shaped portion of the concave grinding portion of the grindstone is moved in a curved manner relative to the workpiece from the outer periphery end face of the workpiece toward the one surface side or the other surface by an angle calculated in advance according to the movement condition, and then the movement of the grindstone relative to the workpiece is stopped;
When performing precise grinding of the outer periphery of the one surface side of the workpiece, while rotating the workpiece and the grindstone, the arc-shaped portion of the concave grinding portion of the grindstone is moved in a curved manner relative to the workpiece from the outer peripheral end face of the workpiece toward the one surface by an angle calculated in advance according to the movement conditions, taking into account a position error in the thickness direction that occurs when the workpiece rotates, and then the movement is stopped. At a position where the grindstone contacts the slope of the chamfered portion of the one surface side of the workpiece, the rotation speed of the workpiece is slowed down and the workpiece is rotated at least one revolution while adjusting the position in the thickness direction of the workpiece, thereby grinding the one surface side of the workpiece while canceling out the position error during the rotation of the workpiece.
a grinding wheel that is rotated in a direction parallel to the outer periphery of the workpiece and a grinding wheel that is moved in a curved manner relative to the workpiece by an angle calculated in advance in accordance with the movement conditions from the outer periphery end face of the workpiece toward the other surface of the workpiece, based on the outermost position on the other surface side in the thickness direction through which the workpiece passes when rotating, taking into account a positional error in the thickness direction that occurs when the workpiece rotates, and then the movement is stopped.The rotation speed of the workpiece is slowed down and the workpiece is rotated at least one revolution while adjusting the position in the thickness direction of the workpiece at a position where the grinding wheel contacts the slope of the chamfered portion on the other surface side of the workpiece, thereby grinding the other surface side of the workpiece while canceling out the positional error during rotation of the workpiece.
JP2023119334A 2023-07-21 2023-07-21 Workpiece machining device, grinding wheel, and workpiece machining method Active JP7462818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023119334A JP7462818B2 (en) 2023-07-21 2023-07-21 Workpiece machining device, grinding wheel, and workpiece machining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2023119334A JP7462818B2 (en) 2023-07-21 2023-07-21 Workpiece machining device, grinding wheel, and workpiece machining method

Publications (2)

Publication Number Publication Date
JP2023126661A JP2023126661A (en) 2023-09-07
JP7462818B2 true JP7462818B2 (en) 2024-04-05

Family

ID=87887776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023119334A Active JP7462818B2 (en) 2023-07-21 2023-07-21 Workpiece machining device, grinding wheel, and workpiece machining method

Country Status (1)

Country Link
JP (1) JP7462818B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000317789A (en) 1999-05-12 2000-11-21 Tokyo Seimitsu Co Ltd Wafer chamfering method and device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2876572B2 (en) * 1991-11-28 1999-03-31 株式会社東京精密 Semiconductor wafer chamfering method
JPH11207585A (en) * 1998-01-27 1999-08-03 Mitsubishi Materials Silicon Corp Wafer chamfering method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000317789A (en) 1999-05-12 2000-11-21 Tokyo Seimitsu Co Ltd Wafer chamfering method and device

Also Published As

Publication number Publication date
JP2023126661A (en) 2023-09-07

Similar Documents

Publication Publication Date Title
US9211631B2 (en) Grinding wheel truing tool and manufacturing method thereof, and truing apparatus, method for manufacturing grinding wheel and wafer edge grinding apparatus using the same
JP5352331B2 (en) Wafer chamfering method
JP5988765B2 (en) Wafer chamfering method, wafer chamfering apparatus, and jig for angle adjustment
KR20110098627A (en) Apparatus for chamfering of disk-shaped substrates
JP2010076013A (en) Polishing method of rotary grindstone and polishing apparatus, grinding grindstone and grinding apparatus using the grindstone
JP5112703B2 (en) Wafer chamfering method and apparatus
JP3830291B2 (en) Method for making a grinding wheel
JP5033066B2 (en) Polishing apparatus and polishing method for workpiece outer periphery
JP2007030119A (en) Wafer chamfering device and wafer chamfering method
JP7462818B2 (en) Workpiece machining device, grinding wheel, and workpiece machining method
JPH09168953A (en) Semiconductor wafer edge polishing method and device
JP2008034776A (en) Treatment method of work edge and treatment device
JP7158702B2 (en) chamfering grinder
KR100490684B1 (en) Sheet peripheral edge grinder
JP7093875B2 (en) Workpiece processing equipment, grindstone, and work processing method
JP2007061978A (en) Truing method for wafer chamfering grinding wheel and wafer chamfering device
JP4208364B2 (en) Spherical surface generating device and spherical surface generating method
JP2012143865A (en) Working method and working device for edge of workpiece
JP3630950B2 (en) Manufacturing method of spherical lens
JP4650678B2 (en) Truing method of chamfering grindstone
JP2005153129A (en) Chamfering method of notch part of notched wafer
US20230415293A1 (en) Method of forming truer
JP2024129178A (en) Semiconductor wafer grinding equipment
JP2001025943A (en) Outer-periphery surface grinding machine and grinding method for cylindrical work
JP5524996B2 (en) Wafer processing method and processing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230721

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240326

R150 Certificate of patent or registration of utility model

Ref document number: 7462818

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150