JP4208364B2 - Spherical surface generating device and spherical surface generating method - Google Patents

Spherical surface generating device and spherical surface generating method Download PDF

Info

Publication number
JP4208364B2
JP4208364B2 JP33215199A JP33215199A JP4208364B2 JP 4208364 B2 JP4208364 B2 JP 4208364B2 JP 33215199 A JP33215199 A JP 33215199A JP 33215199 A JP33215199 A JP 33215199A JP 4208364 B2 JP4208364 B2 JP 4208364B2
Authority
JP
Japan
Prior art keywords
grindstone
workpiece
spherical surface
moving mechanism
work
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33215199A
Other languages
Japanese (ja)
Other versions
JP2001150323A (en
Inventor
政司 坂本
真司 横山
幸治 石崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP33215199A priority Critical patent/JP4208364B2/en
Publication of JP2001150323A publication Critical patent/JP2001150323A/en
Application granted granted Critical
Publication of JP4208364B2 publication Critical patent/JP4208364B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、微小径な光学素子等の被加工物(以下、ワークという)に対して球面を創成する球面創成装置及び球面創成方法に関する。
【0002】
【従来の技術】
図7及び図8は、光学素子等のワークに球面を創成するため、特公平7−35009号公報に開示された装置である。
【0003】
図7に示すように、レンズホルダ52のレンズ51の保持部の反対側には、レンズホルダ52をその回転軸52aに平行に移動させる制御モータ55が設けられている。加工を行う砥石53には、その回転軸53aに対して砥石53を直角方向に移動させる制御モータ56が設けられている。砥石53と制御モータ56とは、ほぼ扇形状のべース57上に載置されている。ベース57はレンズ51と砥石53の先端との当接位置近傍の回転中心57aを中心として制御モータ58により回転自在となっている。さらに、前記各制御モータ55、56、58は、それぞれ制御装置59に接続されており、制御装置59による制御により、砥石53のレンズ51に対する相対角度や移動方向等が適宜、設定される。
【0004】
この構造の装置によって、レンズ31に凸面を形成する場合には、図8に示すように、砥石53の先端を回転軸53a上で当接するように位置させ、レンズ51を保持しているレンズホルダ52を回転せながら砥石53を回転させることにより凸面51aを創成する。
【0005】
【発明が解決しようとする課題】
上述した球面創成装置においては、ワーク51の外径およびワークに創成する球面の曲率半径が微小(例えば外径が2mm以下、特に1mm以下)になるのに従い、砥石53の外径も小さくする必要がある。例えば外径1mm、曲率半径1mmの凸球面を創成する場合には、外径0.7mm程度の砥石が必要となる。このように砥石径の小さい砥石で加工を行うと、加工中に砥石53に撓みが生じるため、所望の球面形状を得ることができない問題がある。
【0006】
また、砥石径の小さい砥石で加工を行うと、砥石がすぐに摩耗し、その結果、ワークの加工寸法がすぐに変化して安定しない問題も有している。
【0007】
本発明はこのような従来の問題点を考慮してなされたものであり、微小径なワークに曲率半径が小さい球面でも1基の砥石で高精度に加工することができる球面創成装置及び球面創成方法を提供することを目的とする。
【課題を解決するための手段】
上記目的を達成するため、請求項1の発明の球面創成装置は、ワークを保持するワークホルダを回転自在に設け、前記ワークホルダに保持されたワークのワーク表面に当接して研削加工するように回転駆動される砥石を設けた球面創成装置において、前記ワークホルダを支持すると共に、その回転軸に平行に移動させる第1の移動機構部と、前記砥石を支持すると共に、その回転軸に直角に移動させる第2の移動機構部と、前記砥石をその回転軸方向に移動させる第3の移動機構部と、前記砥石、第2の移動機構部及び第3の移動機構部が載置される旋回ベースを前記ワーク及び砥石の当接位置近傍を中心として旋回させる駆動モータと、前記第1、第2および第3の移動機構部及び駆動モータを制御する制御装置とを具備し、前記砥石は前記ワーク表面に当接して加工を行う外周面に、粗加工を行うための凹曲面形状の曲面形状部と仕上げ加工を行うための円柱部とが形成された円盤形状となっていることを特徴とする。
【0008】
この発明では、円盤形状の砥石の曲面形状部によってワークに対して曲面形状に近い粗加工を行い、砥石の円柱部によって仕上げ加工を行う。円盤形状の砥石を用いるため、砥石径を微小にする必要がなく、砥石の撓みを小さくすることができ、高精度な球面創成加工が可能となる。また、砥石の曲面形状部で粗加工を行ってから円柱部で仕上げ加工を行うため、仕上げ加工時の仕上げ代が均一となり、加工時の負荷が安定し、より高精度な加工が可能となる。
【0009】
請求項2の発明は、請求項1記載の発明であって、前記砥石は、前記曲面形状部と円柱部とが異なった砥石材であることを特徴とする。
【0010】
この発明では、砥石が異なった砥石材の組み合わせからなるため、加工条件に合わせた砥石材を用いることができ、面精度が向上した高精度な加工を行うことができる。
【0011】
請求項3の発明の球面創成方法は、ワークホルダに保持されたワークを回転しながら、回転する砥石をワーク表面に当接させてワークに球面創成を行う球面創成方法において、前記砥石の外周面における回転軸方向に粗加工を行うための凹曲面形状の曲面形状部と仕上げ加工を行うための円柱部とを形成し、ワークホルダに保持されたワークの回転軸と前記砥石の回転軸とを直交させた状態でワークと砥石とをそれぞれ回転し、ワークの回転軸上の頂部と砥石の外周面における曲面形状部とを当接させてワークの頂部に曲面形状部による球面形状を加工し、次いで、ワークと砥石とを相対移動させてワークの回転軸に対して砥石の円柱部が対向するように位置決めし、前記球面形状が加工されたワークの頂部と砥石の円柱部とを当接して、当接位置近傍を中心として砥石を旋回し、ワークに球面を創成することを特徴とする。
【0012】
この発明では、第1ステップとして、円盤形状からなる砥石の曲面形状部をワークに当接させて、所望の曲面形状に近い曲面寸法に粗加工を行う。第2ステップとして、砥石の円柱部をワークに当接させ、所望の曲面形状に仕上げ加工を行う。このように円盤形状の砥石を使うことにより、砥石径を微小にする必要がなくなるため、砥石の撓みを小さくすることができ、高精度な球面創成加工が可能となる。また、砥石の曲面形状部で粗加工を行ってから円柱部で仕上げ加工を行うため、仕上げ加工時の仕上げ代が均一となり、加工時の負荷が安定し、より高精度な加工が可能となる。
【0013】
【発明の実施の形態】
以下、本発明を図示する実施の形態により具体的に説明する。なお、各実施の形態において、同一の要素は同一の符号を付して対応させてある。
(実施の形態1)
図1〜図3は、本発明の実施の形態1を示し、図1は球面創成装置の平面図、図2及び図3は加工部分を拡大した平面図である。
【0014】
この実施の形態では、レンズは光学ガラス素材からなるワーク1から創成される。加工前において、ワーク1の形状は円柱状であって、その外径は0.1mm〜3mm程度となっている。
【0015】
図1及び図2において、ワーク1はワークホルダ2に形成した凹部内に接着(あるいは吸引)により保持されている。ワークホルダ2はその回転軸2a方向に移動させる第1の移動機構部3に取り付けられた回転スピンドル4の先端部に支持されていると共に、回転自在となっている。回転スピンドル4の他端側にはプーリ5が取り付けられており、第1の移動機構部3を構成する移動テーブル3a上に設置されたモータ6とは、プーリ7、ベルト8を介して接続されており、これによりモータ6の回転を回転スピンドル4に伝達することができる。
【0016】
第1の移動機構部3はワークホルダ2の回転軸2aと平行な方向に回転スピンドル4の移動及び位置決めを行う機構である。この第1の移動機構部3は、回転スピンドル4を取り付けた移動テーブル3aと、移動テーブル3aを回転軸2aの方向に案内するガイド3bと、移動テーブル3aの下部と螺合して移動テーブル3aを送る送りネジ3cと、送りネジ3cを回転する駆動モータ3dとから構成されている。
【0017】
砥石9は円盤形状に成形されたものが使用される。円盤形状からなる砥石9は、曲面形状部としての曲面形状の溝部9bと円柱部9cとを外周部に有している。砥石9はワークホルダ2の回転軸2aに対して直交する向きで回転する回転軸9aを有した砥石スピンドル10の先端部に取り付けられている。砥石9の曲面形状の溝部9bは、創成するレンズ球面の所望の凸の曲面形状に近い凹の曲面寸法に形成されている。
【0018】
砥石スピンドル10は図示せぬ駆動手段によって高速回転(10,000rpm〜70,000rpm)可能な構成になっている。砥石スピンドル10は第2の移動機構部11を構成する移動テーブル11a上に設置されている。
【0019】
第2の移動機構部11は砥石スピンドル10を砥石9の回転軸9aに対して直角な方向に移動及び位置決めを行う機構である。この第2の移動機構部11は、砥石スピンドル10を取り付けた移動テーブル11aと、移動テーブル11aを回転軸9aに対して直角な方向に案内するガイド11bと、移動テーブル11aと螺合して移動テーブル11aを送る送りネジ11cと、送りネジ11cを回転させる駆動モータ11dとから構成されている。
【0020】
砥石スピンドル10は砥石スピンドル10と第2の移動機構部11の移動テーブル11aとの間に設けられた図示せぬ第3の移動機構部によって砥石9の回転軸9aの方向に移動及び位置決め可能な構成になっている。なお、第3の移動機構部は、図示する形態では、砥石スピンドル10によって隠れて見えないが、回転軸9aの方向に対となって延在するガイドに沿って駆動モータによって砥石スピンドル10を進退動させる機構であり、第2の移動機構部11と同様な構成となっている。
【0021】
第2の移動機構部11は、略長方形板状の旋回ベース12上に固定されている。旋回ベース12はその板状の下部に設けられた駆動モータ13(図示において点線の円で示す)によって、ワーク1及び砥石9の当接位置近傍の回転中心12a(ワーク1の球面の曲率中心と一致する位置)を中心として回転運動可能となっている。
【0022】
以上の各駆動モータ3d、11d、13及び第1〜第3の移動機構部のそれぞれは制御装置14に接続され、制御装置14の制御により、各移動機構部の位置や速度の設定ができるようになっている。
【0023】
このような構成からなる球面創成装置は、まず、円柱状のワーク1をワークホルダ2に保持し、制御装置14により第1の移動機構部3の駆動モータ3dを駆動させ、ワーク1を砥石9側の所定の位置まで移動させる。このとき、ワーク1と向き合う位置には、砥石9の曲面形状の溝部9bが位置している。
【0024】
次に、ワーク1及び砥石9を回転させ、第1ステップとして、第2の移動機構部11の駆動モータ11dを駆動させて、砥石9の曲面形状の溝部9bをワーク1に当接させ、所望の曲面形状に近い凸形状の曲面寸法に粗加工を行う(図2参照)。
【0025】
その後、第2の移動機構部11の駆動モータ11dを駆動させて、砥石9をワーク1から一旦離し、第3の移動機構部によって砥石9を回転軸9a方向に移動させ、砥石9の円柱部9cをワーク1と対向させる。
【0026】
第2ステップとして、第2の移動機構部11の駆動モータ11dを駆動させて砥石9を凸形状のワーク1の頂部に接触させていく。この実施の形態では、ワーク1と砥石9との加工点と、旋回ベース12の回転中心12aとの距離曲面R(図3参照)が曲率半径となるため、この距離Rが所望の曲率半径となるように砥石9を移動させながら、ワークの頂部を加工することになる。
【0027】
次に、所望の距離Rとなったとき、ワーク1と砥石9の位置を固定した状態で、旋回ベース12を駆動モータ13によって所定角度θへ所定速度で回転させて(即ち、回転中心12aを中心として砥石9を回転軸2aに対し、角度θ分移動(旋回)させて)球面創成を行う。
【0028】
このような実施の形態によれば、円盤形状の砥石9を用いて加工を行うため、砥石9の径を小さくする必要がなくなり、砥石9の撓みを小さくすることができ、高精度な球面創成加工が可能となる。また、砥石9の曲面形状の溝部9bで粗加工を行ってから円柱部9cで仕上げ加工を行うため、仕上げ加工時の仕上げ代が均一となり、加工時の負荷か少なくなって砥石9による球面創成が安定し、より高精度な加工が可能となる。
【0029】
(実施の形態2)
図4〜図6は、実施の形態2を加工順序で示す拡大平面図である。この実施の形態における砥石9は、曲面形状の溝部9bと円柱部9cとが異なる砥石材によって形成されるものである。例えば、曲面形状の溝部9bは砥粒粒度#400(約50μ)の砥粒をメタルボンドで結合した粗加工用砥石材、円柱部9cは曲面形状の溝部9bより目の細かい砥粒とやわらかい結合剤から形成された、例えば砥粒粒度#800(約20μ)の砥粒をレジンボンドで結合した仕上げ用砥石材が使用される。
【0030】
この実施の形態では、実施の形態1のワークホルダ2の形状を変更しており、ワークホルダ2とワーク1の接触部分の外径に対し、ワーク1の外径よりもワークホルダ2の外径を小さくした形状になっている。
【0031】
この実施の形態の球面創成装置では、まず、ワーク1をワークホルダ2に接着剤で保持し、制御装置14により第1の移動機構部3の駆動モータ3dを駆動させ、ワーク1を砥石9側の所定の位置まで移動させる。このとき、ワーク1と向き合う位置には、砥石9の曲面形状の溝部9bが位置している(即ち、ワーク1の回転軸上には砥石9の曲面形状の溝部9bの曲面中心が一致している)。
【0032】
次に、ワーク1及び砥石9を回転させ、第1ステップとして、第2の移動機構部11の駆動モータ11dを駆動させて、砥石9の曲面形状の溝部9bをワーク1に当接させ、ワーク1に対して所望の曲面形状に近い曲面寸法の粗加工を行う(図4参照)。
【0033】
次に、第2の移動機構11の駆動モータ11dを駆動させて砥石9をワーク1から一旦離し、図示せぬ第3の移動機構部によって砥石9を回転軸9a方向に移動させ、砥石9の円柱部9cをワーク1と対向させる(即ち、ワーク1の回転軸上に砥石9の円柱部9cを位置させる。)
【0034】
その後、第2ステップとして、第2の移動機構11の駆動モータ11dを駆動させて砥石9をワーク1に接触させてワーク1を加工していく。この実施の形態では、ワーク1と砥石9との加工点と、旋回ベース12の回転中心12aとの距離R(図5参照)が曲率半径となるため、この距離Rが所望の曲率半径となるように砥石9を移動させることになる。この移動は駆動モータ11dの駆動によって回転軸9aに対して直角な方向にガイド11bで案内し、ワーク1を加工しながら行う。
【0035】
そして、所望の距離Rになったとき、ワーク1と砥石9の位置を固定した状態で、旋回ベース12を駆動モータ13によって所定角度θへ所定速度で回転させて(図5に示すように、砥石9を2点鎖線で示す角度θ分移動させて)、仕上げの球面創成加工を行う。この加工では、ワーク1の表面が第1ステップで予め凸形状に形成されており、第2ステップでの加工量が少ないので、砥石9の一度の回転(移動)で所望の球面を創成できる。
【0036】
球面創成加工後、一旦ワーク1の表面から砥石9を離し、次いでワークホルダ2の回転軸2aと砥石9の回転軸9aが平行になる位置(図6で砥石9が回転軸2aに対し直交する実線で示す位置)まで駆動モータ13を駆動させて旋回ベース12を旋回させる。
【0037】
次に、第2の移動機構部11の駆動モータ11dを駆動させて砥石9の円柱部9cをワーク1の接触側外周部に接触させ、次いで、ワーク1の外周部に対して駆動モータ11dにより砥石9を送り込んでワーク1の外周部の研削加工とともに第1の移動機構部3の駆動モータ3dを駆動させて、ワークホルダ2の回転軸2aと平行にワーク1を移動させることによって、ワーク1の外径加工を行う(図6参照)。
【0038】
このように駆動モータ3dを駆動することによって長尺なレンズの外径を成形することができる。なお、砥石9の円柱部9cの長さが、レンズ外周面の長さに対して十分であれば、駆動モータ3dによりワーク1を移動させる必要がなくなる。
【0039】
このような実施の形態によれば、砥石9の曲面形状の溝部9bを粗加工用砥石、円柱部9cを仕上用砥石としているので、より効率良く、より面粗さを向上させた高精度な加工を行うことができる。また、この実施の形態では、球面創成加工だけでなく、外径加工も1台の装置上で行うことができる。
【0040】
【発明の効果】
請求項1の発明によれば、円盤形状の砥石を用いるため、砥石径を微小にする必要がなく、砥石の撓みを小さくすることができ、高精度な球面創成加工が可能となり、しかも、砥石の曲面形状部で粗加工を行ってから円柱部で仕上げ加工を行うため、仕上げ加工時の仕上げ代が均一となり、加工時の負荷が安定し、より高精度な加工が可能となる。
【0041】
請求項2の発明によれば、加工条件に合わせた砥石材を用いることができ、面精度が向上した高精度な加工を行うことができる。
【0042】
請求項3の発明によれば、砥石の撓みを小さくすることができ、高精度な球面創成加工が可能となり、しかも、仕上げ加工時の仕上げ代が均一となり、加工時の負荷が安定し、より高精度な加工が可能となる。
【図面の簡単な説明】
【図1】本発明の実施の形態1の全体を示す平面図である。
【図2】 実施の形態1の第1ステップを示す平面図である。
【図3】実施の形態1の第2ステップを示す平面図である。
【図4】実施の形態2の第1ステップを示す平面図である。
【図5】実施の形態2の第2ステップを示す平面図である。
【図6】実施の形態2の最終ステップを示す平面図である。
【図7】従来の球面創成装置の平面図である。
【図8】従来の球面創成装置による加工部分の拡大平面図である。
【符号の説明】
1 ワーク
2 ワークホルダ
3 第1の移動機構部
9 砥石
11 第2の移動機構部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a spherical surface generating apparatus and a spherical surface generating method for generating a spherical surface with respect to a workpiece (hereinafter referred to as a workpiece) such as a small-diameter optical element.
[0002]
[Prior art]
7 and 8 show an apparatus disclosed in Japanese Patent Publication No. 7-35009 for creating a spherical surface on a work such as an optical element.
[0003]
As shown in FIG. 7, a control motor 55 that moves the lens holder 52 in parallel with the rotation shaft 52 a is provided on the opposite side of the lens holder 52 from the holding portion of the lens 51. The grindstone 53 to be processed is provided with a control motor 56 that moves the grindstone 53 in a direction perpendicular to the rotation shaft 53a. The grindstone 53 and the control motor 56 are mounted on a substantially fan-shaped base 57. The base 57 is rotatable by a control motor 58 around a rotation center 57a in the vicinity of the contact position between the lens 51 and the tip of the grindstone 53. Further, each of the control motors 55, 56, 58 is connected to a control device 59, and the control device 59 controls the relative angle and the moving direction of the grindstone 53 with respect to the lens 51 as appropriate.
[0004]
When a convex surface is formed on the lens 31 by the apparatus having this structure, as shown in FIG. 8, the lens holder that holds the lens 51 by positioning the tip of the grindstone 53 so as to abut on the rotating shaft 53 a. The convex surface 51 a is created by rotating the grindstone 53 while rotating the 52.
[0005]
[Problems to be solved by the invention]
In the spherical surface generating apparatus described above, the outer diameter of the work piece 51 and the outer diameter of the grindstone 53 need to be reduced as the radius of curvature of the spherical surface created on the work becomes smaller (for example, the outer diameter is 2 mm or less, particularly 1 mm or less). There is. For example, when creating a convex spherical surface having an outer diameter of 1 mm and a curvature radius of 1 mm, a grindstone having an outer diameter of about 0.7 mm is required. When processing is performed with a grindstone having a small grindstone diameter as described above, there is a problem that a desired spherical shape cannot be obtained because the grindstone 53 is bent during the processing.
[0006]
In addition, when processing is performed with a grindstone having a small grindstone diameter, the grindstone is quickly worn out. As a result, there is also a problem that the processing dimension of the workpiece is immediately changed and is not stable.
[0007]
The present invention has been made in consideration of such conventional problems, and a spherical surface generating device and a spherical surface generating device capable of processing a spherical surface with a small curvature radius on a small diameter workpiece with high accuracy with a single grindstone. It aims to provide a method.
[Means for Solving the Problems]
In order to achieve the above object, the spherical surface generating device of the invention of claim 1 is provided with a work holder for holding a work so as to be rotatable, and abutting on a work surface of the work held by the work holder for grinding. In a spherical surface generating device provided with a grindstone that is driven to rotate, a first moving mechanism unit that supports the work holder and moves parallel to the rotation axis, and supports the grindstone, and is perpendicular to the rotation axis. A second moving mechanism unit to be moved, a third moving mechanism unit to move the grindstone in the direction of its rotation axis, and a turn on which the grindstone, the second moving mechanism unit, and the third moving mechanism unit are placed. comprising a drive motor for turning the base about a contact position proximate the workpiece and the grinding wheel, the first, and a control unit for controlling the second and third moving mechanism and the drive motor of the grinding wheel, Wherein the serial to the outer peripheral surface to perform contact with a workpiece surface, and has a disk shape and a cylindrical portion is formed for performing curved surface portion and the finishing of the concave curved surface shape for performing roughing And
[0008]
In the present invention, rough processing close to the curved surface shape is performed on the workpiece by the curved surface shape portion of the disk-shaped grindstone, and finishing processing is performed by the cylindrical portion of the grindstone. Since the disc-shaped grindstone is used, it is not necessary to make the grindstone diameter minute, the bending of the grindstone can be reduced, and a highly accurate spherical surface creation process is possible. Also, since roughing is performed on the curved surface of the grinding wheel and then finishing is performed on the cylindrical portion, the finishing allowance during finishing is uniform, the load during processing is stable, and higher-precision processing is possible. .
[0009]
A second aspect of the present invention is the first aspect of the present invention, wherein the grindstone is a grindstone material in which the curved surface portion and the cylindrical portion are different.
[0010]
In this invention, since the grindstone is composed of a combination of different grindstone materials, it is possible to use a grindstone material suited to the machining conditions, and it is possible to perform highly accurate machining with improved surface accuracy.
[0011]
According to a third aspect of the present invention, there is provided a spherical surface generating method in which a rotating grindstone is brought into contact with the work surface while the work held by the work holder is rotated to create a spherical surface on the work. Forming a concave curved surface shape portion for roughing in the direction of the rotation axis and a cylindrical portion for finishing , and a workpiece rotation axis held by a work holder and a rotation axis of the grindstone The workpiece and the grindstone are respectively rotated in a state of being orthogonal to each other, and the top of the workpiece on the rotation axis and the curved surface shape portion on the outer peripheral surface of the grindstone are brought into contact with each other to process the spherical shape by the curved shape portion on the top of the workpiece. Next, the workpiece and the grindstone are moved relative to each other and positioned so that the cylindrical portion of the grindstone faces the rotation axis of the workpiece, and the top portion of the workpiece on which the spherical shape is processed and the cylindrical portion of the grindstone are brought into contact with each other. This The grinding wheel pivots about a location near, characterized by creating a spherical surface part.
[0012]
In the present invention, as a first step, a curved surface portion of a grindstone having a disk shape is brought into contact with a workpiece, and rough machining is performed to a curved surface size close to a desired curved surface shape. As a second step, the cylindrical portion of the grindstone is brought into contact with the workpiece, and finish processing is performed into a desired curved surface shape. By using a disk-shaped grindstone in this way, it is not necessary to make the grindstone diameter minute, so that the bending of the grindstone can be reduced, and high-precision spherical surface creation processing becomes possible. Also, since roughing is performed on the curved surface of the grinding wheel and then finishing is performed on the cylindrical portion, the finishing allowance during finishing is uniform, the load during processing is stable, and higher-precision processing is possible. .
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be specifically described with reference to embodiments shown in the drawings. In each embodiment, the same elements are associated with the same reference numerals.
(Embodiment 1)
1 to 3 show a first embodiment of the present invention, FIG. 1 is a plan view of a spherical surface generating device, and FIGS. 2 and 3 are plan views in which a processed portion is enlarged.
[0014]
In this embodiment, the lens is created from a workpiece 1 made of an optical glass material. Before processing, the shape of the workpiece 1 is a columnar shape, and the outer diameter thereof is about 0.1 mm to 3 mm.
[0015]
1 and 2, the workpiece 1 is held in a recess formed in the workpiece holder 2 by adhesion (or suction). The work holder 2 is supported by the tip of the rotary spindle 4 attached to the first moving mechanism 3 that moves in the direction of the rotation axis 2a, and is rotatable. A pulley 5 is attached to the other end of the rotary spindle 4, and is connected to a motor 6 installed on a moving table 3 a constituting the first moving mechanism unit 3 via a pulley 7 and a belt 8. Thus, the rotation of the motor 6 can be transmitted to the rotating spindle 4.
[0016]
The first moving mechanism unit 3 is a mechanism for moving and positioning the rotating spindle 4 in a direction parallel to the rotating shaft 2 a of the work holder 2. The first moving mechanism unit 3 includes a moving table 3a to which a rotating spindle 4 is attached, a guide 3b for guiding the moving table 3a in the direction of the rotating shaft 2a, and a lower part of the moving table 3a. And a drive motor 3d that rotates the feed screw 3c.
[0017]
The grindstone 9 is formed in a disk shape. The grindstone 9 having a disc shape has a curved groove portion 9b and a cylindrical portion 9c as curved surface portions on the outer peripheral portion. The grindstone 9 is attached to the tip of a grindstone spindle 10 having a rotating shaft 9 a that rotates in a direction orthogonal to the rotating shaft 2 a of the work holder 2. The curved groove 9b of the grindstone 9 is formed to have a concave curved surface size close to a desired convex curved surface shape of the lens spherical surface to be created.
[0018]
The grindstone spindle 10 can be rotated at high speed (10,000 rpm to 70,000 rpm) by a driving means (not shown). The grindstone spindle 10 is installed on a moving table 11 a constituting the second moving mechanism unit 11.
[0019]
The second moving mechanism 11 is a mechanism that moves and positions the grindstone spindle 10 in a direction perpendicular to the rotation axis 9 a of the grindstone 9. The second moving mechanism unit 11 is moved by being screwed to the moving table 11a, a moving table 11a to which the grindstone spindle 10 is attached, a guide 11b for guiding the moving table 11a in a direction perpendicular to the rotating shaft 9a. The feed screw 11c feeds the table 11a and a drive motor 11d that rotates the feed screw 11c.
[0020]
The grindstone spindle 10 can be moved and positioned in the direction of the rotating shaft 9a of the grindstone 9 by a third movement mechanism (not shown) provided between the grindstone spindle 10 and the movement table 11a of the second movement mechanism 11. It is configured. In the illustrated embodiment, the third moving mechanism section is hidden by the grindstone spindle 10 and cannot be seen. However, the third moving mechanism is moved forward and backward by the drive motor along a guide extending in pairs in the direction of the rotating shaft 9a. It is a mechanism to be moved, and has the same configuration as the second moving mechanism unit 11.
[0021]
The second moving mechanism unit 11 is fixed on a swivel base 12 having a substantially rectangular plate shape. The swivel base 12 is driven by a drive motor 13 (shown by a dotted circle in the figure) provided at the lower part of the plate shape, so that the rotation center 12a (the center of curvature of the spherical surface of the work 1 and the center of curvature of the work 1) Rotating motion is possible around the matching position).
[0022]
Each of the drive motors 3d, 11d, 13 and the first to third moving mechanism units described above is connected to the control device 14 so that the position and speed of each moving mechanism unit can be set by the control of the control device 14. It has become.
[0023]
In the spherical surface generating device having such a configuration, first, the cylindrical workpiece 1 is held by the workpiece holder 2, the driving motor 3 d of the first moving mechanism unit 3 is driven by the control device 14, and the workpiece 1 is moved to the grindstone 9. Move to a predetermined position on the side. At this time, the curved groove 9 b of the grindstone 9 is located at a position facing the workpiece 1.
[0024]
Next, the workpiece 1 and the grindstone 9 are rotated, and as a first step, the drive motor 11d of the second moving mechanism portion 11 is driven to bring the curved groove portion 9b of the grindstone 9 into contact with the workpiece 1 to obtain a desired value. Rough processing is performed to a convex curved surface dimension close to the curved surface shape (see FIG. 2).
[0025]
Thereafter, the drive motor 11d of the second moving mechanism unit 11 is driven to once separate the grindstone 9 from the work 1, and the third moving mechanism unit moves the grindstone 9 in the direction of the rotation axis 9a. 9c is opposed to the workpiece 1.
[0026]
As a second step, the driving motor 11 d of the second moving mechanism unit 11 is driven to bring the grindstone 9 into contact with the top of the convex workpiece 1. In this embodiment, since the distance curved surface R (see FIG. 3) between the processing point of the workpiece 1 and the grindstone 9 and the rotation center 12a of the swivel base 12 is the radius of curvature, this distance R is the desired radius of curvature. The top part of the workpiece is processed while moving the grindstone 9 as described above.
[0027]
Next, when the desired distance R is reached, the position of the workpiece 1 and the grindstone 9 is fixed, and the turning base 12 is rotated to a predetermined angle θ at a predetermined speed by the drive motor 13 (that is, the rotation center 12a is moved). A spherical surface is created by moving (turning) the grindstone 9 by an angle θ with respect to the rotation shaft 2a as the center.
[0028]
According to such an embodiment, since processing is performed using the disk-shaped grindstone 9, it is not necessary to reduce the diameter of the grindstone 9, the bending of the grindstone 9 can be reduced, and a highly accurate spherical surface is created. Processing becomes possible. Further, since roughing is performed with the curved groove portion 9b of the grindstone 9 and then finishing is performed with the cylindrical portion 9c, the finishing allowance during finishing is uniform, and the load during processing is reduced, creating a spherical surface by the grindstone 9 Is stable and more accurate machining is possible.
[0029]
(Embodiment 2)
4 to 6 are enlarged plan views showing the second embodiment in the processing order. The grindstone 9 in this embodiment is formed by a grindstone material in which the curved groove portion 9b and the cylindrical portion 9c are different. For example, the curved groove portion 9b is a roughing grindstone material in which abrasive grains having a grain size of # 400 (about 50 μ) are bonded by metal bond, and the cylindrical portion 9c is softly bonded to finer abrasive grains than the curved groove portion 9b. For example, a finishing grindstone material made of an agent and having, for example, abrasive grains having an abrasive grain size of # 800 (about 20 μm) bonded with a resin bond is used.
[0030]
In this embodiment, the shape of the work holder 2 of the first embodiment is changed, and the outer diameter of the work holder 2 is larger than the outer diameter of the work 1 with respect to the outer diameter of the contact portion between the work holder 2 and the work 1. The shape is made smaller.
[0031]
In the spherical surface generating apparatus of this embodiment, first, the work 1 is held on the work holder 2 with an adhesive, and the drive motor 3d of the first moving mechanism unit 3 is driven by the control device 14 so that the work 1 is moved to the grindstone 9 side. To a predetermined position. At this time, the curved groove portion 9b of the grindstone 9 is located at a position facing the workpiece 1 (that is, the curved surface center of the curved groove portion 9b of the grindstone 9 coincides with the rotation axis of the workpiece 1). )
[0032]
Next, the work 1 and the grindstone 9 are rotated, and as a first step, the drive motor 11d of the second moving mechanism 11 is driven to bring the curved groove 9b of the grindstone 9 into contact with the work 1, 1 is subjected to rough machining with a curved surface size close to a desired curved surface shape (see FIG. 4).
[0033]
Next, the driving motor 11d of the second moving mechanism 11 is driven to once separate the grindstone 9 from the workpiece 1, and the third moving mechanism portion (not shown) moves the grindstone 9 in the direction of the rotation axis 9a. The cylindrical portion 9c is opposed to the workpiece 1 (that is, the cylindrical portion 9c of the grindstone 9 is positioned on the rotation axis of the workpiece 1).
[0034]
Thereafter, as a second step, the drive motor 11d of the second moving mechanism 11 is driven to bring the grindstone 9 into contact with the workpiece 1 and the workpiece 1 is processed. In this embodiment, since the distance R (see FIG. 5) between the processing point of the workpiece 1 and the grindstone 9 and the rotation center 12a of the turning base 12 becomes the curvature radius, this distance R becomes the desired curvature radius. Thus, the grindstone 9 is moved. This movement is performed while the workpiece 1 is being processed by being guided by the guide 11b in a direction perpendicular to the rotation shaft 9a by driving the drive motor 11d.
[0035]
When the desired distance R is reached, the turning base 12 is rotated to a predetermined angle θ at a predetermined speed by the drive motor 13 with the positions of the workpiece 1 and the grindstone 9 fixed (as shown in FIG. 5). The grindstone 9 is moved by an angle θ indicated by a two-dot chain line), and finishing spherical surface creation is performed. In this processing, the surface of the workpiece 1 is previously formed in a convex shape in the first step, and the processing amount in the second step is small, so that a desired spherical surface can be created by one rotation (movement) of the grindstone 9.
[0036]
After the spherical surface generating process, the grindstone 9 is once separated from the surface of the work 1, and then the position where the rotation shaft 2a of the work holder 2 and the rotation shaft 9a of the grindstone 9 are parallel (the grindstone 9 is orthogonal to the rotation shaft 2a in FIG. 6). The drive motor 13 is driven to the position indicated by the solid line) to turn the turning base 12.
[0037]
Next, the drive motor 11d of the second moving mechanism unit 11 is driven to bring the cylindrical portion 9c of the grindstone 9 into contact with the contact-side outer peripheral portion of the workpiece 1, and then the drive motor 11d makes contact with the outer peripheral portion of the workpiece 1. By feeding the grindstone 9 and grinding the outer peripheral portion of the workpiece 1 and driving the drive motor 3d of the first moving mechanism portion 3 to move the workpiece 1 in parallel with the rotating shaft 2a of the workpiece holder 2, the workpiece 1 is moved. Is processed (see FIG. 6).
[0038]
By driving the drive motor 3d in this manner, the outer diameter of the long lens can be formed. If the length of the cylindrical portion 9c of the grindstone 9 is sufficient with respect to the length of the lens outer peripheral surface, it is not necessary to move the workpiece 1 by the drive motor 3d.
[0039]
According to such an embodiment, since the curved groove portion 9b of the grindstone 9 is a roughing grindstone and the cylindrical portion 9c is a finishing grindstone, the surface roughness is improved more efficiently and with higher accuracy. Processing can be performed. Further, in this embodiment, not only spherical surface generation processing but also outer diameter processing can be performed on one apparatus.
[0040]
【The invention's effect】
According to the first aspect of the present invention, since the disc-shaped grindstone is used, it is not necessary to make the grindstone diameter minute, the wobbling of the grindstone can be reduced, and high-precision spherical surface creation processing is possible. Since rough machining is performed on the curved surface shape portion and finishing processing is performed on the cylindrical portion, the finishing allowance during finishing is uniform, the load during machining is stable, and higher-precision machining is possible.
[0041]
According to invention of Claim 2, the grindstone material matched with the process conditions can be used, and the highly accurate process which the surface precision improved can be performed.
[0042]
According to the invention of claim 3, it is possible to reduce the bending of the grindstone, to enable high-precision spherical surface creation processing, to make the finishing allowance uniform during finishing processing, and to stabilize the load during processing. High-precision processing is possible.
[Brief description of the drawings]
FIG. 1 is a plan view showing the entirety of a first embodiment of the present invention.
FIG. 2 is a plan view showing a first step of the first embodiment.
FIG. 3 is a plan view showing a second step of the first embodiment.
4 is a plan view showing a first step of the second embodiment. FIG.
FIG. 5 is a plan view showing a second step of the second embodiment.
FIG. 6 is a plan view showing a final step in the second embodiment.
FIG. 7 is a plan view of a conventional spherical surface generating device.
FIG. 8 is an enlarged plan view of a processed portion by a conventional spherical surface generating device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Work 2 Work holder 3 1st moving mechanism part 9 Grinding wheel 11 2nd moving mechanism part

Claims (3)

ワークを保持するワークホルダを回転自在に設け、前記ワークホルダに保持されたワークのワーク表面に当接して研削加工するように回転駆動される砥石を設けた球面創成装置において、
前記ワークホルダを支持すると共に、その回転軸に平行に移動させる第1の移動機構部と、
前記砥石を支持すると共に、その回転軸に直角に移動させる第2の移動機構部と、
前記砥石をその回転軸方向に移動させる第3の移動機構部と、
前記砥石、第2の移動機構部及び第3の移動機構部が載置される旋回ベースを前記ワーク及び砥石の当接位置近傍を中心として旋回させる駆動モータと、
前記第1、第2および第3の移動機構部及び駆動モータを制御する制御装置とを具備し、
前記砥石は前記ワーク表面に当接して加工を行う外周面に、粗加工を行うための凹曲面形状の曲面形状部と仕上げ加工を行うための円柱部とが形成された円盤形状となっていることを特徴とする球面創成装置。
In a spherical surface generating device provided with a grindstone that is rotatably provided so as to rotate a work holder in contact with the work surface of the work held by the work holder, and a work holder that holds the work.
A first moving mechanism for supporting the work holder and moving the work holder in parallel with the rotation axis;
A second moving mechanism for supporting the grindstone and moving it at a right angle to its rotational axis;
A third moving mechanism for moving the grindstone in the direction of its rotational axis;
A drive motor for turning a turning base on which the grindstone, the second moving mechanism part and the third moving mechanism part are placed around a contact position of the workpiece and the grindstone;
A controller for controlling the first, second and third moving mechanism units and the drive motor;
The grinding wheel, the an outer peripheral surface to perform contact with a workpiece surface, so the cylindrical portion for performing curved surface portion and the finishing of the concave curved surface shape for performing roughing a disc shape is formed A spherical surface generating device characterized by having
前記砥石は、前記曲面形状部と円柱部とが異なった砥石材であることを特徴とする請求項1記載の球面創成装置。  2. The spherical surface generating device according to claim 1, wherein the grindstone is a grindstone material in which the curved surface shape portion and the cylindrical portion are different. ワークホルダに保持されたワークを回転しながら、回転する砥石をワーク表面に当接させてワークに球面創成を行う球面創成方法において、
前記砥石の外周面における回転軸方向に粗加工を行うための凹曲面形状の曲面形状部と仕上げ加工を行うための円柱部とを形成し、ワークホルダに保持されたワークの回転軸と前記砥石の回転軸とを直交させた状態でワークと砥石とをそれぞれ回転し、ワークの回転軸上の頂部と砥石の外周面における曲面形状部とを当接させてワークの頂部に曲面形状部による球面形状を加工し、次いで、ワークと砥石とを相対移動させてワークの回転軸に対して砥石の円柱部が対向するように位置決めし、前記球面形状が加工されたワークの頂部と砥石の円柱部とを当接して、当接位置近傍を中心として砥石を旋回し、ワークに球面を創成することを特徴とする球面創成方法。
In the spherical surface creation method of creating a spherical surface on the workpiece by rotating the workpiece held by the workpiece holder and bringing the rotating grindstone into contact with the workpiece surface,
Forming a concave curved surface shape portion for roughing in the direction of the rotation axis on the outer peripheral surface of the grindstone and a cylindrical portion for performing finishing , the work rotation shaft held by a work holder and the grindstone The workpiece and the grindstone are rotated in a state where the rotation axis of the workpiece is orthogonal to each other, the top of the workpiece on the rotation axis and the curved surface shape portion on the outer peripheral surface of the grindstone are brought into contact with each other, and the spherical surface formed by the curved shape portion on the top of the workpiece The shape is processed, and then the workpiece and the grindstone are moved relative to each other so that the cylindrical portion of the grindstone faces the rotation axis of the workpiece. And creating a spherical surface on the workpiece by turning the grindstone around the vicinity of the contact position.
JP33215199A 1999-11-24 1999-11-24 Spherical surface generating device and spherical surface generating method Expired - Fee Related JP4208364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33215199A JP4208364B2 (en) 1999-11-24 1999-11-24 Spherical surface generating device and spherical surface generating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33215199A JP4208364B2 (en) 1999-11-24 1999-11-24 Spherical surface generating device and spherical surface generating method

Publications (2)

Publication Number Publication Date
JP2001150323A JP2001150323A (en) 2001-06-05
JP4208364B2 true JP4208364B2 (en) 2009-01-14

Family

ID=18251728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33215199A Expired - Fee Related JP4208364B2 (en) 1999-11-24 1999-11-24 Spherical surface generating device and spherical surface generating method

Country Status (1)

Country Link
JP (1) JP4208364B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4550773B2 (en) * 2006-06-05 2010-09-22 株式会社三井ハイテック Profile grinding machine
JP5103506B2 (en) * 2010-06-30 2012-12-19 株式会社三井ハイテック Grinding method
CN103128627B (en) * 2013-02-18 2016-06-08 洛阳轴研科技股份有限公司 A kind of ball head pin bulb grinding processing method and device
CN107962495A (en) * 2017-11-24 2018-04-27 中山复盛机电有限公司 Float the polishing jig sold
TWI738574B (en) * 2020-11-25 2021-09-01 美商永續有限公司 Polishing equipment for a spherical body

Also Published As

Publication number Publication date
JP2001150323A (en) 2001-06-05

Similar Documents

Publication Publication Date Title
JPH02109672A (en) Device and method for grinding and polishing
JP4208364B2 (en) Spherical surface generating device and spherical surface generating method
JP2000084852A (en) Dressing device for grinding machine
JPS618273A (en) Grinding liquid feeder
JP2901875B2 (en) Truing method of super abrasive grinding wheel
JP2883706B2 (en) Cylindrical grinding machine
JP3630950B2 (en) Manufacturing method of spherical lens
JP2005153129A (en) Chamfering method of notch part of notched wafer
JP4650678B2 (en) Truing method of chamfering grindstone
JP3855744B2 (en) Superfinishing method and apparatus
JP2875344B2 (en) Processing apparatus and processing method for toric and aspheric lenses
JP2001150324A (en) Spherical surface generating device and spherical surface generating method
JP2003340704A (en) Face creating device and method
JP2003025207A (en) Curved surface creating device
JP2574278B2 (en) Toric surface processing equipment
JP7462818B2 (en) Workpiece machining device, grinding wheel, and workpiece machining method
JP3452619B2 (en) Spherical surface grinding method
JPH08118213A (en) Internal cylindrical grinding machine and grinding method
JP2690797B2 (en) Grinding fluid supply device
JP2750756B2 (en) Wheel repair device
JPS63260754A (en) Chamfering device
JP2000263407A (en) Method and device for grinding peripheral spherical surface part and grinding wheel
JPS618270A (en) Curved-face polishing apparatus
JP2002144199A (en) Surface grinding method and surface grinding machine for sheet disc-like workpiece
JPH07195275A (en) End edge part grinding-polishing method of grinding wheel and glass plate and device thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081021

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees