JP7453035B2 - Crimping head, mounting device using the same, and mounting method - Google Patents

Crimping head, mounting device using the same, and mounting method Download PDF

Info

Publication number
JP7453035B2
JP7453035B2 JP2020060779A JP2020060779A JP7453035B2 JP 7453035 B2 JP7453035 B2 JP 7453035B2 JP 2020060779 A JP2020060779 A JP 2020060779A JP 2020060779 A JP2020060779 A JP 2020060779A JP 7453035 B2 JP7453035 B2 JP 7453035B2
Authority
JP
Japan
Prior art keywords
pressing member
head
substrate
mounting
crimping head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020060779A
Other languages
Japanese (ja)
Other versions
JP2021163774A (en
Inventor
宏一 今井
敏行 陣田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Engineering Co Ltd
Original Assignee
Toray Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Engineering Co Ltd filed Critical Toray Engineering Co Ltd
Priority to JP2020060779A priority Critical patent/JP7453035B2/en
Publication of JP2021163774A publication Critical patent/JP2021163774A/en
Application granted granted Critical
Publication of JP7453035B2 publication Critical patent/JP7453035B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector

Description

本発明は、シリコン基板、ガラスエポキシ基板、ガラス基板、等の種々の基板に半導体チップ等の電子部品を多段積層して実装するための圧着ヘッド、これを用いた実装装置および実装方法に関する。 The present invention relates to a pressure bonding head for stacking and mounting electronic components such as semiconductor chips in multiple stages on various substrates such as silicon substrates, glass epoxy substrates, glass substrates, etc., a mounting apparatus using the same, and a mounting method.

半導体チップをはじめとする電子部品を基板に実装する手法として、フリップチップ実装が良く知られている。フリップチップ実装は、半導体チップに形成されたバンプを回路基板の電極パッドと位置合わせしてから熱圧着するものである。 Flip chip mounting is a well-known method for mounting electronic components such as semiconductor chips on a substrate. In flip-chip mounting, bumps formed on a semiconductor chip are aligned with electrode pads on a circuit board and then bonded by thermocompression.

従来のフリップチップ実装では熱圧着により主にハンダからなるバンプを溶融させながら基板の電極パッドと接合した後に、半導体チップと基板の隙間に液状封止樹脂接着剤を注入して硬化させることが一般的であった。これに対して、昨今では半導体チップのバンプ面に熱硬化性接着剤を主成分とする非導電性フィルム(Non Conductive Film、以下「NCF」と記す)を付着させた状態で、基板に仮固定(仮圧着)してから熱圧着(本圧着)する方法(例えば特許文献1)が注目されている。 In conventional flip-chip mounting, the bumps, which are mainly made of solder, are melted and bonded to electrode pads on the board using thermocompression bonding, and then a liquid sealing resin adhesive is injected into the gap between the semiconductor chip and the board and allowed to harden. It was a target. In contrast, in recent years, a non-conductive film (hereinafter referred to as "NCF") whose main component is a thermosetting adhesive is attached to the bump surface of a semiconductor chip, and then it is temporarily fixed to a substrate. A method (for example, Patent Document 1) of performing thermal compression bonding (main compression bonding) after (temporary compression bonding) is attracting attention.

NCFを用いて仮固定してから熱圧着する手法では、基板S上の全面に半導体チップCを仮固定(図6(a))してから熱圧着することも可能であり、図6(b)のように複数の半導体チップCを同時に熱圧着することが可能である。 In the method of temporarily fixing using NCF and then thermocompression bonding, it is also possible to temporarily fix the semiconductor chip C on the entire surface of the substrate S (FIG. 6(a)) and then thermocompression bonding. ) It is possible to bond a plurality of semiconductor chips C at the same time by thermocompression.

また半導体チップCとして、貫通電極によりバンプ面と反対側に電極を有するものを用いれば、図7(a)のように、半導体チップCをNCFを介して多段積層状態で仮固定してから図7(b)のように熱圧着することもでき、所謂3D実装を高効率に行うことが出来る。 Furthermore, if the semiconductor chip C has an electrode on the side opposite to the bump surface using a through electrode, as shown in FIG. 7(b), thermocompression bonding can also be performed, and so-called 3D mounting can be performed with high efficiency.

特開2016-9850号公報Unexamined Japanese Patent Publication No. 2016-9850

NCFを用いた実装において、NCFの硬化状態とバンプの溶融タイミングとの関係が重要であり、熱圧着時のNCF昇温カーブを適切にする必要がある。すなわち、NCFの硬化が不十分な状態でバンプが溶融するとバンプ潰れが生じ、NCFの硬化が進んでからバンプ溶融温度に達するとバンプと基板(または半導体チップ)の電極が接近し難くなり接合不良となる。 In mounting using NCF, the relationship between the hardening state of NCF and the melting timing of the bump is important, and it is necessary to set an appropriate NCF temperature rise curve during thermocompression bonding. In other words, if the bump melts while the NCF is insufficiently hardened, the bump will collapse, and if the NCF hardens and reaches the bump melting temperature, it becomes difficult for the bump and the electrodes of the substrate (or semiconductor chip) to approach each other, resulting in poor bonding. becomes.

そこで、NCFが適度に硬化した状態でバンプが溶融するようなNCF昇温カーブが得られるように、図6および図7におけるアタッチメント40を加熱するヘッド本体3に内蔵されたヒータ31の温度や、基板ステージ2の温度を適切に設定する必要がある。特に、図7のように半導体チップCが多段積層されている場合は、多段積層された全ての半導体チップにおけるNCF昇温カーブが許容範囲内になるような設定を行う必要がある。 Therefore, the temperature of the heater 31 built into the head body 3 that heats the attachment 40 in FIGS. 6 and 7 is adjusted so as to obtain an NCF temperature increase curve that melts the bump while the NCF is appropriately hardened. It is necessary to appropriately set the temperature of the substrate stage 2. In particular, when the semiconductor chips C are stacked in multiple stages as shown in FIG. 7, it is necessary to perform settings such that the NCF temperature rise curves of all the semiconductor chips stacked in multiple stages fall within an allowable range.

ところが、ヒータ31や基板ステージ2の温度の設定を行っても基板Sの種類が異なると昇温カーブが大きく変わることが判った。すなわち、図8の基板Aのような適正なNCF昇温カーブが得られたときと同じ条件下で、基板を基板Bとした場合、バンプ溶融温度Tmに達するまでにNCFが硬化してしまい接合不良が生じた。これは、基板Aと基板Bの材質の熱伝導の違いによって生じており、熱伝導率の高い基板Aに比べて熱伝導率の低い基板Bを用いた方がNCFの昇温が早い。 However, it has been found that even if the temperatures of the heater 31 and the substrate stage 2 are set, the temperature increase curve changes greatly if the type of substrate S is different. In other words, if the substrate is used as substrate B under the same conditions as when an appropriate NCF temperature rise curve such as substrate A in FIG. A defect has occurred. This is caused by the difference in thermal conductivity between the materials of substrate A and substrate B, and the temperature of the NCF increases faster when substrate B, which has low thermal conductivity, is used compared to substrate A, which has high thermal conductivity.

更に、多段積層された半導体チップ間におけるNCF昇温カーブの違いが基板Aでは抑えられていたのに対して、基板Bでは広がっている。このため、基板Bにおいて、多段積層された全ての半導体チップにおけるNCF昇温カーブを許容範囲とすることは困難であった。 Furthermore, while the difference in NCF temperature rise curves between multi-layered semiconductor chips was suppressed for substrate A, it widened for substrate B. For this reason, in the substrate B, it is difficult to set the NCF temperature rise curves of all the semiconductor chips stacked in multiple stages within an allowable range.

本発明は、上記問題に鑑みてなされたものであり、半導体チップ等の電子部品を熱硬化性接着剤を介して基板に積層状態で仮固定してから熱圧着を行うのに際して、基板の材質が異なっても、夫々の条件で接合品質に優れた実装が行える圧着ヘッド、これを用いた実装装置および実装方法を提供するものである。 The present invention has been made in view of the above-mentioned problems, and when thermocompression bonding is performed after electronic components such as semiconductor chips are temporarily fixed to a substrate in a laminated state via a thermosetting adhesive, the material of the substrate is The present invention provides a crimping head, a mounting device using the same, and a mounting method that can perform mounting with excellent bonding quality under various conditions even if the bonding conditions are different.

上記課題を解決するために、請求項1に記載の発明は、
電子部品を基板に実装する圧着ヘッドであって、
温度一定のコンスタントヒータを内蔵するヘッド本体と、前記ヘッド本体の下部に装着された電子部品を押圧する押圧部材と、前記ヘッド本体と前記押圧部材との間に介在する弾性部材とを有するアタッチメントを備え、
前記押圧部材の前記電子部品と対向する面に、前記押圧部材とは異なる材料の積層体を設けた圧着ヘッドである。
In order to solve the above problem, the invention according to claim 1,
A crimping head for mounting electronic components on a board,
An attachment comprising a head body incorporating a constant heater with a constant temperature , a pressing member that presses an electronic component mounted on a lower part of the head body, and an elastic member interposed between the head body and the pressing member. Prepare,
The pressure bonding head is provided with a laminate made of a material different from that of the pressing member on a surface of the pressing member facing the electronic component.

請求項2に記載の発明は、電子部品を基板に実装する圧着ヘッドであって、
温度一定のコンスタントヒータを内蔵するヘッド本体と、前記ヘッド本体の下部に装着された電子部品を押圧する押圧部材と、前記ヘッド本体と前記押圧部材との間に介在する弾性部材とを有するアタッチメントを備え、
前記押圧部材と前記電子部品との間に、前記押圧部材とは異なる材料のシート材を配置する圧着ヘッドである。
The invention according to claim 2 is a crimping head for mounting electronic components on a substrate,
An attachment comprising a head body incorporating a constant heater with a constant temperature , a pressing member that presses an electronic component mounted on a lower part of the head body, and an elastic member interposed between the head body and the pressing member. Prepare,
The crimping head is a crimping head in which a sheet material made of a material different from that of the pressing member is arranged between the pressing member and the electronic component.

請求項4に記載の発明は、請求項3に記載の圧着ヘッドであって、
前記押圧部材が金属で、前記押圧部材と異なる材料がガラス、セラミックス、または耐熱樹脂である圧着ヘッドである。
The invention according to claim 4 is the crimping head according to claim 3,
In the crimping head, the pressing member is made of metal, and a material different from the pressing member is glass, ceramics, or heat-resistant resin.

請求項5に記載の発明は、請求項1から請求項4の何れかに記載の圧着ヘッドであって、
複数個の電子部品を同時に実装することが可能な圧着ヘッドである。
The invention according to claim 5 is the crimping head according to any one of claims 1 to 4,
This is a crimping head that can simultaneously mount multiple electronic components.

請求項6に記載の発明は、請求項1から請求項5の何れかに記載の圧着ヘッドと、
前記圧着ヘッドを上下移動可能とし、前記基板に向けた加圧力を付与する加圧手段と、
前記アタッチメントの加圧面を前記基板側から支持する基板ステージとを備えた実装装置である。
The invention according to claim 6 includes the crimping head according to any one of claims 1 to 5;
Pressure means that allows the pressure bonding head to move up and down and applies pressure toward the substrate;
The mounting apparatus includes a substrate stage that supports the pressure surface of the attachment from the substrate side.

請求項7に記載の発明は、請求項6に記載の実装装置であって、
前記圧着ヘッドと前記基板の間に、前記基板と平行にアタッチメント保護フィルムを配置する構成の実装装置である。
The invention according to claim 7 is the mounting device according to claim 6,
The mounting apparatus has a configuration in which an attachment protection film is arranged between the pressure bonding head and the substrate in parallel with the substrate.

請求項8に記載の発明は、請求項6または請求項7に記載の実装装置を用いて、
電極面に熱硬化性接着剤層が形成された前記電子部品を前記基板に実装する実装方法である。
The invention according to claim 8 uses the mounting apparatus according to claim 6 or claim 7,
This is a mounting method for mounting the electronic component, which has a thermosetting adhesive layer formed on the electrode surface, on the board.

請求項9に記載の発明は、請求項8に記載の実装方法であって、
前記基板の種類に応じて、前記押圧部材と異なる材料の材料または/および厚みを変化させる実装方法である。
The invention according to claim 9 is the mounting method according to claim 8,
In this mounting method, a material and/or a thickness of a different material from the pressing member are changed depending on the type of the substrate.

本発明により、半導体チップ等の電子部品を熱硬化性接着剤を介して基板に積層状態で仮固定してから熱圧着を行うのに際して、基板の材質が異なっても、夫々の条件で接合品質に優れた実装が行えるようになった。 According to the present invention, when electronic components such as semiconductor chips are temporarily fixed to a board in a laminated state via a thermosetting adhesive and then thermocompression bonded, the bonding quality can be maintained under each condition even if the material of the board is different. It has become possible to perform excellent implementations.

本発明の実施形態に係る圧着ヘッドを用いて多段積層状態で仮固定された半導体チップを実装する様子を説明するものであり、(a)位置合わせ後の状態を示す図であり、(b)熱圧着中の状態を示す図である。This is a diagram illustrating how semiconductor chips temporarily fixed in a multi-stage stacked state are mounted using a crimping head according to an embodiment of the present invention, and (a) is a diagram showing a state after alignment, and (b) is a diagram showing a state after alignment. It is a figure which shows the state during thermocompression bonding. 本発明の実施形態に係る圧着ヘッドの変形例を示す図である。It is a figure which shows the modification of the crimping head based on embodiment of this invention. 本発明の実施形態に係る圧着ヘッドの効果を説明するための昇温カーブである。3 is a temperature increase curve for explaining the effect of the crimping head according to the embodiment of the present invention. 本発明を実施形態とは異なる構成で実現する例を示す図である。FIG. 2 is a diagram illustrating an example of implementing the present invention with a configuration different from the embodiment. 本発明と同様な効果を実施形態とは異なる手法で実現した例を説明する図である。FIG. 3 is a diagram illustrating an example in which the same effect as the present invention is achieved using a method different from that of the embodiment. 複数の半導体チップを基板に実装可能な圧着ヘッドについて説明するものであり、(a)位置合わせ後の状態を示す図であり、(b)熱圧着中の状態を示す図である。A pressure bonding head capable of mounting a plurality of semiconductor chips on a substrate will be described, and FIG. 3A is a diagram showing a state after alignment, and FIG. 3B is a diagram showing a state during thermocompression bonding. 複数の半導体チップを基板に実装可能な圧着ヘッドを用いて多段積層状態で仮固定された半導体チップを実装する様子を説明するものであり、(a)位置合わせ後の状態を示す図であり、(b)熱圧着中の状態を示す図である。This is a diagram illustrating how semiconductor chips temporarily fixed in a multi-stage stacked state are mounted using a pressure bonding head capable of mounting a plurality of semiconductor chips on a substrate, and (a) is a diagram showing a state after alignment; (b) A diagram showing a state during thermocompression bonding. 同じ圧着ヘッドを用いても、基板が異なれば昇温カーブが異なる例を示す図である。FIG. 7 is a diagram illustrating an example in which the temperature rise curves differ for different substrates even when the same pressure bonding head is used.

本発明の実施形態を図面を用いて説明する。図1は本発明の実施形態に係る圧着ヘッド1を用いて積層状態の半導体チップCを基板Sに実装する例を示すものである。図1(a)において、電子部品である半導体チップCは未硬化のNCFを介して基板S上に多段積層状態で仮固定されている。ここでNCFはエポキシ等の熱硬化性接着剤を主成分として絶縁微粒子が分散された非導電性フィルである。また、図示していないが、半導体チップCのバンプと対向する位置には電極パッドが設けてある。なお、図1では半導体チップCを4段積層した例を示しているが、積層段数はこれに限定されるものではなく、これよりも少なくても良いが、本発明の効果は4段以上積層した場合に有益である。 Embodiments of the present invention will be described using the drawings. FIG. 1 shows an example in which stacked semiconductor chips C are mounted on a substrate S using a pressure bonding head 1 according to an embodiment of the present invention. In FIG. 1A, a semiconductor chip C, which is an electronic component, is temporarily fixed on a substrate S in a stacked state in multiple stages via uncured NCF. Here, NCF is a non-conductive film containing a thermosetting adhesive such as epoxy as a main component and insulating fine particles dispersed therein. Further, although not shown, electrode pads are provided at positions facing the bumps of the semiconductor chip C. Note that although FIG. 1 shows an example in which the semiconductor chips C are stacked in four stages, the number of stacked stages is not limited to this, and may be less than this, but the effect of the present invention is achieved when the semiconductor chips C are stacked in four or more stages. It is beneficial if

図1(a)は圧着ヘッド1と、基板Sに仮固定された(多段積層状態の)半導体チップCを位置合わせした状態を示してある。 FIG. 1A shows a state in which the pressure bonding head 1 and the semiconductor chips C temporarily fixed to the substrate S (in a multi-stage stacked state) are aligned.

圧着ヘッド1は、ヘッド本体3とアタッチメント4によって構成されている。図1の例において、ヘッド本体3はヘッド筐体30とヒータ31を有し、アタッチメント4は弾性部材41、押圧部材42、支持ホルダ43および積層体44を有している。 The crimping head 1 includes a head body 3 and an attachment 4. In the example of FIG. 1, the head main body 3 has a head housing 30 and a heater 31, and the attachment 4 has an elastic member 41, a pressing member 42, a support holder 43, and a laminate 44.

圧着ヘッド1は図示しない加圧手段により、上下動するとともに、半導体チップCに所定の加圧力を印加するように駆動される。 The crimping head 1 is driven by a pressure means (not shown) to move up and down and to apply a predetermined pressure to the semiconductor chip C.

圧着ヘッド1は、基板S上の複数個所の半導体チップCを同時に熱圧着するものであり、半導体チップCの厚みバラツキやバンプBの高さバラツキに対応するため、同時に押圧する数に応じた弾性部材41、押圧部材42、および積層体44を有しており、耐熱性ゴム等から成る弾性部材41が押圧時の高さバラツキ吸収を担っている。 The crimping head 1 is used to thermocompress multiple semiconductor chips C on a substrate S at the same time, and in order to cope with variations in the thickness of the semiconductor chips C and variations in the height of the bumps B, the crimping head 1 has an elasticity that corresponds to the number of simultaneous presses. It has a member 41, a pressing member 42, and a laminate 44, and the elastic member 41 made of heat-resistant rubber or the like absorbs height variations during pressing.

熱圧着に際して、ヘッド本体3に内蔵されたヒータ31により発せられた熱は、ヘッド筐体31と、弾性部材41、押圧部材42を経て積層体44に伝わる。ここで、弾性部材41の材質は一般的に熱伝導度が低いため、押圧部材42には伝熱性の高い材質が用いられる。具体的には、アルミや銅があげられるが、これに限定されるものではなく熱伝導性、加工性、寸法安定性、価格等を考慮して選定すればよい。 During thermocompression bonding, heat generated by the heater 31 built into the head body 3 is transmitted to the laminate 44 via the head housing 31, the elastic member 41, and the pressing member 42. Here, since the material of the elastic member 41 generally has low thermal conductivity, the pressing member 42 is made of a material with high heat conductivity. Specifically, aluminum and copper may be used, but the material is not limited to these and may be selected in consideration of thermal conductivity, workability, dimensional stability, price, etc.

支持ホルダ43は、弾性部材41の変形によってよって生じる加圧面の傾きを抑制して平行度を保つものである。 The support holder 43 suppresses the inclination of the pressurizing surface caused by the deformation of the elastic member 41 and maintains parallelism.

積層体44は、図6、図7に示した構成にはなく、本発明が有する構成要素である。積層体44は圧着ヘッド1の加圧面を構成するものであり、押圧部材42を経由した熱流を規制する役割を担う。このため、積層体44の材質は、熱伝導率を押圧部材42より小さくする必要があり、厚みを薄くすることを考慮するなら1/30以下が望ましい。具体的な材質としては、ガラス、セラミックス、耐熱樹脂がある。 The laminate 44 is not present in the configurations shown in FIGS. 6 and 7, but is a component included in the present invention. The laminate 44 constitutes a pressurizing surface of the crimping head 1 and plays a role in regulating heat flow via the pressing member 42. Therefore, the material of the laminate 44 needs to have a thermal conductivity lower than that of the pressing member 42, and in consideration of reducing the thickness, the thermal conductivity is preferably 1/30 or less. Specific materials include glass, ceramics, and heat-resistant resin.

基板ステージ2は、圧着ヘッド1によって加圧される範囲を基板S側から支持するものであり、ヒーターを内蔵していてもよい。 The substrate stage 2 supports the area pressurized by the pressure bonding head 1 from the substrate S side, and may have a built-in heater.

ところで、アタッチメント4が直接半導体チップCを加熱しながら加圧すると、加熱されて軟化したNCFが周囲にはみ出して、アタッチメント4の加圧面を汚すことがある。アタッチメント4の加圧面が汚れると加圧面に凹凸や傾きが生じて、次回以降の加圧時に不都合を生じることがある。そこで、アタッチメント保護フィルム5が、NCFがアタッチメント4の表面に付着することを防ぐために用いられる。アタッチメント保護フィルム5は加圧面と平行に配置され、図示していない搬送機構により、順次搬送される。 By the way, when the attachment 4 directly pressurizes the semiconductor chip C while heating it, the heated and softened NCF may protrude to the surroundings and stain the pressurizing surface of the attachment 4. If the pressurizing surface of the attachment 4 becomes dirty, unevenness or inclination may occur on the pressurizing surface, which may cause inconvenience during subsequent pressurization. Therefore, the attachment protection film 5 is used to prevent NCF from adhering to the surface of the attachment 4. The attachment protection film 5 is arranged parallel to the pressure surface and is sequentially transported by a transport mechanism (not shown).

アタッチメント保護フィルム5は、耐熱性とNCFに対する離型性からフッ素フィルムが好ましい。また、アタッチメント保護フィルムの厚みは搬送時、熱圧着時において破れない最低限度の厚みを有している必要があり、具体的には20μm以上である。 The attachment protective film 5 is preferably a fluorine film from the viewpoint of heat resistance and releasability against NCF. Further, the attachment protective film must have a minimum thickness that does not break during transportation or thermocompression bonding, and specifically, it is 20 μm or more.

以上の、圧着ヘッド1、基板ステージ2、アタッチメント保護フィルム5を供給する機構および圧着ヘッド1を駆動する加圧手段は実装装置の構成要素である。 The above-mentioned crimping head 1, substrate stage 2, mechanism for supplying the attachment protective film 5, and pressure means for driving the crimping head 1 are constituent elements of the mounting apparatus.

図1(b)は、図1(a)に示した実装装置の構成において、圧着ツール1により熱圧着を行っている状態を示すものである。図1(b)においてT1は基板Sから1段目の半導体チップCの測定温度を示し、T4は4段目の半導体チップCの測定温度を示している。ここで、各半導体チップCの測定温度は、各半導体チップCのNCF温度とほぼ等しい。 FIG. 1(b) shows a state in which thermocompression bonding is performed using the crimping tool 1 in the configuration of the mounting apparatus shown in FIG. 1(a). In FIG. 1B, T1 indicates the measured temperature of the semiconductor chip C in the first stage from the substrate S, and T4 indicates the measured temperature of the semiconductor chip C in the fourth stage. Here, the measured temperature of each semiconductor chip C is approximately equal to the NCF temperature of each semiconductor chip C.

ところで、図1において、ヒータ31として温度一定のコンスタントヒータを用いており、基板Sとしてシリコン基板を用い適正化した条件になっている。このような条件で、基板Sとしてガラスエポキシ基板を用いたときの、各半導体チップCの測定温度をグラフ化したのが図3である。 By the way, in FIG. 1, a constant heater with a constant temperature is used as the heater 31, and a silicon substrate is used as the substrate S, so that the conditions are optimized. FIG. 3 is a graph showing the measured temperature of each semiconductor chip C when a glass epoxy substrate was used as the substrate S under such conditions.

図3において、T1AおよびT4Aは、積層体44を有しない、従来構成のアタッチメント40を用いたときのT1およびT4を示したものであり、バンプの溶融温度Tmに到達するまでの時間が短く、バンプ潰れが生じている。更に、T1AとT4Aのカーブに違いが生じており、NCF昇温カーブにも違いが生じている。 In FIG. 3, T1A and T4A indicate T1 and T4 when using an attachment 40 with a conventional configuration that does not have the laminate 44, and the time it takes to reach the melting temperature Tm of the bump is short. Bump collapse has occurred. Furthermore, there are differences in the curves of T1A and T4A, and there are also differences in the NCF temperature increase curves.

一方、図3において、T1BおよびT4Bは、積層体44として厚み880μmのガラスを用いたときのT1およびT4を示したものである。T1BおよびT4Bは、カーブの違いはT1AとT4Aに比べて小さくなっていることに加えて、熱圧着開始で温度上昇が始まってからバンプ溶融温度Tmに達するまでの時間が(T1A、T4Aの約2秒に比べて)長くなり、約4.5秒になった。これは、基板Sとしてシリコン基板を用いた場合とほぼ同じになり、1段目の半導体チップCから4段目の半導体チップCの何れもが、バンプ潰れも接続不良もない良好な接合となった。 On the other hand, in FIG. 3, T1B and T4B indicate T1 and T4 when glass with a thickness of 880 μm is used as the laminate 44. In addition to the fact that the difference in the curves of T1B and T4B is smaller than that of T1A and T4A, the time from the temperature rise at the start of thermocompression bonding until the bump melting temperature Tm is reached (approximately (compared to 2 seconds) and became approximately 4.5 seconds. This is almost the same as when a silicon substrate is used as the substrate S, and all of the semiconductor chips C from the first stage to the fourth stage have good bonding without crushed bumps or poor connections. Ta.

また、図3において、T1CおよびT4Cは、積層体44として厚み300μmのフッ素樹脂を用いたときのT1およびT4を示したものである。T1CおよびT4Cは、T1BとT4Bと温度上昇のカーブは異なるものの熱圧着開始で温度上昇が始まってからバンプ溶融温度Tmに達するまでの時間が約4.5秒になった。この結果、1段目の半導体チップCから4段目の半導体チップCの何れもが、バンプ潰れも接続不良もない良好な接合が得られた。 Further, in FIG. 3, T1C and T4C indicate T1 and T4 when a fluororesin having a thickness of 300 μm is used as the laminate 44. Although T1C and T4C had different temperature rise curves from T1B and T4B, the time from the temperature rise at the start of thermocompression bonding until the bump melting temperature Tm was reached was about 4.5 seconds. As a result, good bonding was obtained for all of the semiconductor chips C from the first stage to the semiconductor chips C from the fourth stage, with no bump collapse or poor connection.

以上のように、従来のアタッチメントの加圧面に、アタッチメントの押圧部材と異なる材料の積層体を設けることにより、基板Sの種類が異なっても、ヒータ温度等の条件を変えずとも、多段の半導体チップCを品質バラツキなく接合することが可能ななる。 As described above, by providing a laminate made of a material different from that of the pressing member of the attachment on the pressing surface of a conventional attachment, even if the type of substrate S is different, it is possible to process multi-stage semiconductors without changing conditions such as heater temperature. It becomes possible to bond the chips C without quality variations.

なお、押圧部材に積層体を設けるのに際しては、耐熱性接着剤を用いることが出来るが、接着強度に優れるだけではなく、長期耐久性も考慮して選定する必要がある。 Note that when providing the laminate on the pressing member, a heat-resistant adhesive can be used, but it is necessary to select one that not only has excellent adhesive strength but also takes long-term durability into consideration.

図1の実施形態において積層体44としてフッ素樹脂を用いると、フッ素樹脂の柔軟性が活かせるので、個々の押圧部材42毎に個別に積層体44を設けるのではなく、図2の変形例のように複数の押圧部材42を覆うように、押圧部材と異なる材質のシート材45を配置してもよい。この場合、押圧部材42にシート材45を積層する必要はなく、熱圧着を行う都度、押圧部材44の下にシート材45を配置する構成としてもよい。 If a fluororesin is used as the laminate 44 in the embodiment of FIG. 1, the flexibility of the fluororesin can be utilized, so instead of providing a laminate 44 for each pressing member 42, the modified example of FIG. A sheet material 45 made of a material different from that of the pressing members may be arranged so as to cover the plurality of pressing members 42 as shown in FIG. In this case, it is not necessary to laminate the sheet material 45 on the pressing member 42, and the sheet material 45 may be arranged under the pressing member 44 each time thermocompression bonding is performed.

また、図1、図2の例では、1つのヘッド本体3が複数の半導体チップCを加圧する構成となるアタッチメント4を有しているが、図4のように1つのヘッド本体3毎に1つの半導体チップCを加圧するアタッチメント4として、複数のヘッド本体3を有する圧着ヘッドとする構成でもよい。 In the examples shown in FIGS. 1 and 2, one head body 3 has an attachment 4 configured to press a plurality of semiconductor chips C, but as shown in FIG. The attachment 4 for pressurizing one semiconductor chip C may be configured as a crimping head having a plurality of head bodies 3.

ところで、積層体44またはシート材45がフッ素樹脂の場合、アタッチメント保護フィルム5と同材料の積層、すなわち厚みが増したのと同等な状態となる。そこで、アタッチメント保護フィルム5の厚みによる効果を検証したのが図5である。図6および図7に示したアタッチメント40を用いてアタッチメント保護フィルム5(図における表記は「断熱シート」)の厚みが30μmとした場合の温度カーブが図5(a)であるのに対して、厚みを360μmとした場合の温度カーブが図5(b)となることから、積層体44の厚みを300μmとした場合と同様な傾向が現れることが判った。ただし、アタッチメント保護フィルム5は1回の熱圧着毎に搬送する必要がある消耗品であるため、プロセスコストの上昇を伴う。 By the way, when the laminate 44 or the sheet material 45 is made of fluororesin, the state is equivalent to a laminate of the same material as the attachment protective film 5, that is, an increased thickness. Therefore, the effect of the thickness of the attachment protective film 5 was examined in FIG. 5. While the temperature curve shown in FIG. 5(a) is obtained when the attachment 40 shown in FIGS. 6 and 7 is used and the thickness of the attachment protective film 5 (denoted as "insulation sheet" in the figures) is 30 μm, Since the temperature curve when the thickness was set to 360 μm was as shown in FIG. 5(b), it was found that a similar tendency appeared when the thickness of the laminate 44 was set to 300 μm. However, since the attachment protective film 5 is a consumable item that needs to be transported for each thermocompression bonding process, the process cost increases.

1 圧着ヘッド
2 基板ステージ
3 ヘッド本体
4、40 アタッチメント
5 アタッチメント保護フィルム
30 ヘッド筐体
31 ヒータ
41 弾性部材
42 押圧部材
43 支持ホルダ
44 積層体
45 シート材
B バンプ
C 半導体チップ
S 基板
NCF 熱硬化性接着フィルム
T1 基板側から1段目の半導体チップの温度
T4 基板側から4段目の半導体チップの温度
1 Crimp head 2 Substrate stage 3 Head body 4, 40 Attachment
5 Attachment protective film 30 Head housing 31 Heater 41 Elastic member 42 Pressing member 43 Support holder 44 Laminated body 45 Sheet material B Bump C Semiconductor chip S Substrate NCF Thermosetting adhesive film T1 Temperature of the first semiconductor chip from the substrate side T4 Temperature of the fourth semiconductor chip from the substrate side

Claims (9)

電子部品を基板に実装する圧着ヘッドであって、
温度一定のコンスタントヒータを内蔵するヘッド本体と、
前記ヘッド本体の下部に装着された電子部品を押圧する押圧部材と、
前記ヘッド本体と前記押圧部材との間に介在する弾性部材とを有するアタッチメントを備え、
前記押圧部材の前記電子部品と対向する面に、前記押圧部材とは異なる材料の積層体を設けた圧着ヘッド。
A crimping head for mounting electronic components on a board,
The head body has a built-in constant heater that maintains a constant temperature ,
a pressing member that presses an electronic component mounted on the lower part of the head main body;
an attachment having an elastic member interposed between the head main body and the pressing member;
A crimping head, wherein a laminate made of a material different from that of the pressing member is provided on a surface of the pressing member facing the electronic component.
電子部品を基板に実装する圧着ヘッドであって、
温度一定のコンスタントヒータを内蔵するヘッド本体と、
前記ヘッド本体の下部に装着された電子部品を押圧する押圧部材と、
前記ヘッド本体と前記押圧部材との間に介在する弾性部材とを有するアタッチメントを備え、
前記押圧部材と前記電子部品との間に、前記押圧部材とは異なる材料のシート材を配置する圧着ヘッド。
A crimping head for mounting electronic components on a board,
The head body has a built-in constant heater that maintains a constant temperature ,
a pressing member that presses an electronic component mounted on the lower part of the head main body;
an attachment having an elastic member interposed between the head main body and the pressing member;
A crimping head in which a sheet material made of a material different from that of the pressing member is arranged between the pressing member and the electronic component.
請求項1または請求項2に記載の圧着ヘッドであって、
前記押圧部材と異なる材料の熱伝導率が、前記押圧部材の1/30以下である圧着ヘッド。
The crimping head according to claim 1 or 2,
A crimping head, wherein the thermal conductivity of a material different from that of the pressing member is 1/30 or less of that of the pressing member.
請求項3に記載の圧着ヘッドであって、
前記押圧部材が金属で、前記押圧部材と異なる材料がガラス、セラミックス、または耐熱樹脂である圧着ヘッド。
The crimping head according to claim 3,
The pressure bonding head is characterized in that the pressing member is made of metal, and the material different from the pressing member is glass, ceramics, or heat-resistant resin.
請求項1から請求項4の何れかに記載の圧着ヘッドであって、
複数個の電子部品を同時に実装することが可能な圧着ヘッド。
The crimping head according to any one of claims 1 to 4,
A crimping head that can mount multiple electronic components at the same time.
請求項1から請求項5の何れかに記載の圧着ヘッドと、
前記圧着ヘッドを上下移動可能とし、前記基板に向けた加圧力を付与する加圧手段と、
前記アタッチメントの加圧面を前記基板側から支持する基板ステージとを備えた実装装置。
A crimping head according to any one of claims 1 to 5,
Pressure means that allows the pressure bonding head to move up and down and applies pressure toward the substrate;
A mounting device comprising: a substrate stage that supports a pressure surface of the attachment from the substrate side.
請求項6に記載の実装装置であって、
前記圧着ヘッドと前記基板の間に、前記基板と平行にアタッチメント保護フィルムを配置する構成の実装装置。
The mounting device according to claim 6,
A mounting apparatus configured to arrange an attachment protection film between the pressure bonding head and the substrate in parallel with the substrate.
請求項6または請求項7に記載の実装装置を用いて、
電極面に熱硬化性接着剤層が形成された前記電子部品を前記基板に実装する実装方法。
Using the mounting apparatus according to claim 6 or claim 7,
A mounting method for mounting the electronic component having a thermosetting adhesive layer formed on the electrode surface on the substrate.
請求項8に記載の実装方法であって、
前記基板の種類に応じて、前記押圧部材と異なる材料の材料または/および厚みを変化させる実装方法。
The mounting method according to claim 8,
A mounting method that changes a material and/or a thickness of a different material from the pressing member depending on the type of the substrate.
JP2020060779A 2020-03-30 2020-03-30 Crimping head, mounting device using the same, and mounting method Active JP7453035B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020060779A JP7453035B2 (en) 2020-03-30 2020-03-30 Crimping head, mounting device using the same, and mounting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020060779A JP7453035B2 (en) 2020-03-30 2020-03-30 Crimping head, mounting device using the same, and mounting method

Publications (2)

Publication Number Publication Date
JP2021163774A JP2021163774A (en) 2021-10-11
JP7453035B2 true JP7453035B2 (en) 2024-03-19

Family

ID=78003718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020060779A Active JP7453035B2 (en) 2020-03-30 2020-03-30 Crimping head, mounting device using the same, and mounting method

Country Status (1)

Country Link
JP (1) JP7453035B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003100807A (en) 2001-09-27 2003-04-04 Nitto Denko Corp Conductive connection method and mold release sheet therefor
JP2010034423A (en) 2008-07-30 2010-02-12 Fujitsu Ltd Pressure-heating apparatus and method
JP2010245418A (en) 2009-04-09 2010-10-28 Toray Ind Inc Electronic element, method of mounting the electronic element, and method of manufacturing electronic device
JP2017123423A (en) 2016-01-08 2017-07-13 東レエンジニアリング株式会社 Semiconductor mounting device and semiconductor mounting method
JP2019050341A (en) 2017-09-12 2019-03-28 東レエンジニアリング株式会社 Crimp head and mounting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003100807A (en) 2001-09-27 2003-04-04 Nitto Denko Corp Conductive connection method and mold release sheet therefor
JP2010034423A (en) 2008-07-30 2010-02-12 Fujitsu Ltd Pressure-heating apparatus and method
JP2010245418A (en) 2009-04-09 2010-10-28 Toray Ind Inc Electronic element, method of mounting the electronic element, and method of manufacturing electronic device
JP2017123423A (en) 2016-01-08 2017-07-13 東レエンジニアリング株式会社 Semiconductor mounting device and semiconductor mounting method
JP2019050341A (en) 2017-09-12 2019-03-28 東レエンジニアリング株式会社 Crimp head and mounting device

Also Published As

Publication number Publication date
JP2021163774A (en) 2021-10-11

Similar Documents

Publication Publication Date Title
CN109103117B (en) Apparatus for bonding semiconductor chips and method of bonding semiconductor chips
JP6591426B2 (en) Mounting head and mounting apparatus using the same
JP4692101B2 (en) Part joining method
TWI681478B (en) Installation device and installation method
US20120045869A1 (en) Flip chip bonder head for forming a uniform fillet
US10847434B2 (en) Method of manufacturing semiconductor device, and mounting apparatus
JP3835556B2 (en) Semiconductor device manufacturing method and semiconductor device manufacturing apparatus
JP3914431B2 (en) Manufacturing method of semiconductor device
JP7453035B2 (en) Crimping head, mounting device using the same, and mounting method
JP2005142397A (en) Bonding method and its device
KR102372519B1 (en) mounting device
CN110476236B (en) Mounting device and mounting system
WO2010134230A1 (en) Semiconductor device and method for manufacturing same
JP2008192725A (en) Semiconductor device, and method and apparatus for manufacturing the same
JP4640380B2 (en) Mounting method of semiconductor device
TW201712827A (en) Heating header of semiconductor mounting apparatus and bonding method for semiconductor
KR100936781B1 (en) Flip chip bonding apparatus and bonding method using the same
JP2002026250A (en) Manufacturing method of laminated circuit module
JP4628234B2 (en) Crimping apparatus and crimping method
JP3872763B2 (en) Bonding method
JP2008205068A (en) Pressure head and component pressure bonding device
JP2006179811A (en) Method of packaging semiconductor device and its packaging device
JP3960076B2 (en) Electronic component mounting method
JP2005183561A (en) Method for manufacturing semiconductor device
JP4389696B2 (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240307

R150 Certificate of patent or registration of utility model

Ref document number: 7453035

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150