JP7452844B2 - 音響信号処理装置 - Google Patents

音響信号処理装置 Download PDF

Info

Publication number
JP7452844B2
JP7452844B2 JP2020057724A JP2020057724A JP7452844B2 JP 7452844 B2 JP7452844 B2 JP 7452844B2 JP 2020057724 A JP2020057724 A JP 2020057724A JP 2020057724 A JP2020057724 A JP 2020057724A JP 7452844 B2 JP7452844 B2 JP 7452844B2
Authority
JP
Japan
Prior art keywords
acoustic signal
signal processing
bandpass filter
processed
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020057724A
Other languages
English (en)
Other versions
JP2021153889A (ja
Inventor
潔 立石
卓央 吉田
俊一 里見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AIR WATER BIODESIGN INC.
Original Assignee
AIR WATER BIODESIGN INC.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AIR WATER BIODESIGN INC. filed Critical AIR WATER BIODESIGN INC.
Priority to JP2020057724A priority Critical patent/JP7452844B2/ja
Publication of JP2021153889A publication Critical patent/JP2021153889A/ja
Application granted granted Critical
Publication of JP7452844B2 publication Critical patent/JP7452844B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、音響信号処理装置に関する。
音を電気信号に変換してから処理する装置の一つに、電子聴診器などのモニタリング装置がある。このモニタリング装置に求められる処理の一つに、ノイズの除去がある。例えば特許文献1には、人体からの音響に基づいた信号を取得するとともに、外部騒音に基づいた信号を取得し、これら2つの信号を適用予測型能動騒音制御のアルゴリズムで処理することが記載されている。また特許文献2には、生体に対向するマイクの信号を、カバーの内面に取り付けられたマイクの信号で処理することにより、ノイズを除去することが記載されている。さらに特許文献3には、電子聴診器において、イヤースピーカー近傍に設けたマイクロホンで周囲雑音を集音し、この周囲雑音と逆位相の信号を加算することが記載されている。
特開2003-102725号公報 特開2008-142112号公報 特開平08-084728号公報
音を電気信号に変換してから処理する場合、上記したようにノイズを信号処理によって除去することが望まれている。除去すべきノイズには様々な種類がある。一例として、音を電気信号に変換する装置を人が保持する場合、その人の筋音であり、また、衣服などと筐体が擦れた音がノイズになる場合もある。これらのノイズは、特許文献3に記載の技術では除去できない。このため、新規な方法で音響信号からノイズを除去することが望まれている。
本発明が解決しようとする課題としては、音響信号からノイズを除去することが一例として挙げられる。
請求項1に記載の発明は、弾性体を介して筐体に固定されていて測定対象である生体に対向する第1音波センサ、及び、前記筐体に固定されている第2音波センサと共に使用され、
前記第1音波センサが生成した第1音響信号を処理することにより処理後第1音響信号を生成する第1信号処理部と、
前記第2音波センサが生成した第2音響信号を処理することにより処理後第2音響信号を生成する第2信号処理部と、
前記処理後第1音響信号と前記処理後第2音響信号の差を算出する演算部と、
を備え、
前記第1信号処理部は第1帯域フィルタを有しており、
前記第2信号処理部は第2帯域フィルタを有しており、
前記第1帯域フィルタの高周波側の第1カットオフ周波数は、前記第2帯域フィルタの高周波側の第2カットオフ周波数よりも高い音響信号処理装置である。
請求項15に記載の発明は、
弾性体を介して筐体に固定されていて測定対象に対向する第1音波センサ、及び、前記筐体に固定されている第2音波センサと共に使用され、
コンピュータに、
前記第1音波センサが生成した第1音響信号を処理することにより処理後第1音響信号を生成する第1信号処理機能と、
前記第2音波センサが生成した第2音響信号を処理することにより処理後第2音響信号を生成する第2信号処理機能と、
前記処理後第1音響信号と前記処理後第2音響信号の差を算出する演算機能と、
を持たせ、
前記第1信号処理機能に第1帯域フィルタ機能を持たせるとともに、前記第2信号処理機能に第2帯域フィルタ機能に持たせ、
前記第1帯域フィルタ機能の高周波側の第1カットオフ周波数を、前記第2帯域フィルタ機能の高周波側の第2カットオフ周波数よりも高くするプログラムである。
第1実施形態に係る音響信号処理装置の機能構成を示す図である。 音響信号生成部の変形例を説明するための図である。 第1帯域フィルタ及び第2帯域フィルタの周波数特性を示す図である。 (A)は音響信号生成部の裏面から第1音波センサ及び第2音波センサに伝搬する信号の強度の周波数依存性を示す図である。(B)は、第1信号処理部及び第2信号処理部を設けたことの効果を説明するための図である。 第1帯域フィルタ及び第2帯域フィルタの構成の一例を示す図である。 第1帯域フィルタ及び第2帯域フィルタそれぞれのタップ係数の一例を示す図である。 出力部の構成の一例を示す図である。 第2実施形態に係る音響信号処理部の構成を示す図である。 第3帯域フィルタ及び第4帯域フィルタの特性を説明するための図である。 第3帯域フィルタ及び第4帯域フィルタによる効果を説明するための図である。 第3実施形態に係る音響信号処理部の構成を示す図である。 第1増幅部の増幅率及び第2増幅部の増幅率を決定する方法を説明するための図である。 第1増幅部の増幅率及び第2増幅部の増幅率を決定するときの処理の流れを示すフローチャートである。 第4実施形態に係る音響信号処理部の構成を示す図である。 第3増幅率制御部が行う処理の一例を示すフローチャートである。 第5実施形態に係る音響信号処理部の構成を示す図である。 第6実施形態に係る音響信号処理部の構成を示す図である。
以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
[第1実施形態]
図1は、本実施形態に係る音響信号処理装置10の機能構成を示す図である。音響信号処理装置10は、例えば電子聴診器や測定対象(例えば生体の身体)に取り付けられる装置であり、音響信号処理部100を有している。音響信号処理部100は音響信号生成部200が生成した音響信号を処理し、処理後の音響信号を出力する。この音響信号は、例えば心音や呼吸音を示している。
[音響信号生成部200の構成]
音響信号生成部200は、第1音波センサ210及び第2音波センサ220を有している。第1音波センサ210及び第2音波センサ220は、いずれも筐体240に収容されている。本実施形態において、第1音波センサ210及び第2音波センサ220は、加速度センサである。第1音波センサ210及び第2音波センサ220として一軸の加速度センサを用いる場合、第1音波センサ210の軸方向は第2音波センサ220の軸方向と平行であるのが好ましい。言い換えると、第1音波センサ210の向きは、第2音波センサ220の向きと180°異なっている。ここでの「平行」において、組み立て時に生じる誤差は許容される。
第1音波センサ210の入力面すなわち振動が入力される面は、測定対象、例えば人や動物などの生体に対向している。そして第1音波センサ210は、測定対象を伝搬する音波を検出し、この検出結果を示す信号(以下、第1音響信号と記載)を音響信号処理部100に出力する。測定対象が生体である場合、第1音響信号は、生体に生じている呼吸音や心音を含んでいる。一方、第1音波センサ210には、筐体240を伝搬する振動も伝わる。このため、第1音響信号は、測定対象を伝搬する音波の他に、筐体240を伝搬する振動も含んでいる。この振動には様々なものが含まれる。一例として、音響信号生成部200の筐体240が人の手に把持されている状態で使用される場合、この振動は、音響信号生成部200を把持している人の筋音を含んでいる。また音響信号生成部200が身体に取り付けられる場合、この振動は、筐体240に衣服が擦れる音を含んでいる。
第2音波センサ220は筐体240に、固定部材を介して固定されている。第2音波センサ220は、筐体240を伝搬する振動を検出し、この検出結果を示す信号(以下、第2音響信号と記載)を音響信号処理部100に出力する。例えば、第2音波センサ220の入力面は、筐体240の内面に向いている。音響信号処理部100は、筐体240を伝搬する振動に起因したノイズを第1音響信号から除去するために、第2音響信号を用いる。
なお、第2音波センサ220の入力面は、直接、もしくは接着層又は粘着層を介して、筐体240の内面に対向しているのが好ましい。また、本図に示す例において、第2音波センサ220は、筐体240の裏面側、言い換えると筐体240のうち検査対象とは逆側の面に対向している。
第1音波センサ210及び第2音波センサ220は、例えば振動センサであり、互いに同一の製品であるのが好ましい。一例として、第2音波センサ220は、第1音波センサ210と同一の会社の同一の型番である。第1音波センサ210と第2音波センサ220は同一のロットであるのが好ましいが、これに限定されない。
筐体240は、測定対象に対向する面に開口を有している。そして平面視(例えば図1の下から上を見る方向)において、第1音波センサ210の入力面はこの開口の内側に位置している。本図に示す例において、第1音波センサ210の入力面は筐体240と面一またはこれより少し前後している。ただし筐体240の開口をダイヤフラム250(図2参照)で塞ぎ、このダイヤフラム250に第1音波センサ210の入力面を固定してもよい。そして第1音波センサ210(又はダイヤフラム)は測定対象に押し付けられる。これにより、第1音波センサ210は、測定対象を伝搬する振動を検出して第1音響信号を生成することができる。
上記したように、第2音響信号は、筐体240を伝搬する振動に起因したノイズを第1音響信号から除去するための信号である。ここで測定対象に起因した振動が第2音波センサ220に伝わると、音響信号処理部100が行う処理において、ノイズのみではなく必要な信号まで減ってしまうため、好ましくない。これに対して本実施形態では、第1音波センサ210は弾性部材230を介して筐体240の内面に固定されている。これにより、測定対象から第1音波センサ210に伝搬する振動が、筐体240を介して第2音波センサ220に伝わることを抑制できる。弾性部材230は、例えばゴムなどの弾性を有する樹脂を用いて形成されている。弾性部材230のばね定数は、生体の表面(例えば皮膚)のばね定数以下であるのが好ましい。
本図に示す例において、第1音波センサ210及び弾性部材230は、第2音波センサ220と同一側の面に固定されている。ただし、第1音波センサ210及び弾性部材230の固定方法は本図に示す例に限定されない。
本図に示す例において、音響信号処理装置10は音響信号生成部200も含んでいる。この場合、音響信号処理部100は音響信号生成部200の筐体240の中に収容されていてもよい。
[音響信号処理部100の構成]
音響信号処理部100は、第1信号処理部110、第2信号処理部120、及び演算部130を有している。第1信号処理部110は、第1音波センサ210が生成した第1音響信号を処理することにより処理後第1音響信号を生成する。第2信号処理部120は、第2音波センサ220が生成した第2音響信号を処理することにより処理後第2音響信号を生成する。演算部130は、処理後第1音響信号のノイズを減らすために、処理後第1音響信号と処理後第2音響信号の差を算出する。音響信号処理装置10は、この差を示す信号(以下、差分信号と記載)、又はこの差に所定の処理を加えた信号を、音響信号生成部200の検出結果として出力する。
ここで、第1信号処理部110は第1帯域フィルタ112を有しており、第2信号処理部120は第2帯域フィルタ122を有している。第1帯域フィルタ112の高周波側の第1カットオフ周波数は、第2帯域フィルタ122の高周波側の第2カットオフ周波数よりも高い。このようにすると、他の図を用いて詳細を後述するように、差分信号に含まれるノイズを少なくすることができる。なお、第1帯域フィルタ112及び第2帯域フィルタ122は一つの回路基板に設けられていてもよい。
なお、本図に示す例において、第1帯域フィルタ112及び第2帯域フィルタ122はデジタルフィルタである。このため、第1信号処理部110は、第1帯域フィルタ112より前に第1AD(Analog-Digital)変換部111を有しており、第2信号処理部120は、第2帯域フィルタ122より前に第2AD変換部121を有している。なお、第1AD変換部111及び第2AD変換部121は一つの回路基板に設けられていてもよい。また、第1AD変換部111及び第2AD変換部121は、第1帯域フィルタ112及び第2帯域フィルタ122と同一の回路基板に設けられていてもよいし、異なる回路基板に設けられていてもよい。
なお、本図に示す例において、音響信号処理部100は出力部140を有している。140は、差分信号、又は差分信号を処理した信号を出力する。出力部140の詳細については他の図を用いて後述する。
図2は、音響信号生成部200の変形例を説明するための図である。本図において、音響信号生成部200の弾性部材230は、筐体240の側面に固定されている。言い換えると、第1音波センサ210は、弾性部材230を介して、第2音波センサ220とは異なる面に固定されている。このように、第1音波センサ210及び弾性部材230を筐体240に固定する構造は様々である。図1の第1実施形態では、第1音波センサ210の検出面は直接、測定対象である生体に接触する構成を記述したが、図2の変形例では、ダイヤフラム250を介して生体に接触する構成を示す。ダイヤフラム250の側面は筐体230に固定され、密閉構造を有している点が、図1と異なっている。
図3は、第1帯域フィルタ112及び第2帯域フィルタ122の周波数特性を示す図である。本図に示す例において、第1帯域フィルタ112及び第2帯域フィルタ122はいずれもローパスフィルタである。そして第1帯域フィルタ112の高域側のカットオフ周波数(以下、第1カットオフ周波数fC1と記載)は、第2帯域フィルタ122の高域側のカットオフ周波数(以下、第2カットオフ周波数fC2と記載)よりも高い。例えば音響信号処理装置10が電子聴診器の場合、第1カットオフ周波数fC1は700Hz以上2kHz以下であり、第2カットオフ周波数fC2は150Hz以上600Hz以下である。
図4(A)は音響信号生成部200の裏面から第1音波センサ210及び第2音波センサ220に伝搬する信号の強度の周波数依存性を示す図である。上記したように、筐体240と第1音波センサ210の間には弾性部材230が設けられている。弾性部材230は、上記したように、高周波の振動を減衰するが、低周波の振動を伝える。このため、筐体240を伝わる振動(ノイズ)のうち、高周波の振動は、第1音波センサ210に伝わりにくいが、低周波の振動は第1音波センサ210及び第2音波センサ220の双方に伝わる。
図4(B)は、第1信号処理部110及び第2信号処理部120を設けたことの効果を説明するための図である。図4(A)に示したように、筐体240を伝わる振動(ノイズ)のうち、低周波の振動は第1音波センサ210及び第2音波センサ220の双方に伝わるが、高周波の振動は、第1音波センサ210に伝わりにくい。
このため、音響信号生成部200の裏面に振動が伝搬した場合に、第1音響信号から第2音響信号を単純に減算すると、本図4(B)の点線(比較例)で示したように、第1音響信号に含まれる低周波のノイズは減るが、高周波のノイズは逆に大きくなってしまう。
換言すれば、弾性部材230の伝達特性によりせっかく低減した高域ノイズを、単純な減算では、その効果を薄めるばかりでなく、減算によって、かえってノイズを増加させてしまいかねない。
一方、図4(B)において、減算前に、第2音響信号の帯域を、第1音響信号の帯域に比較して帯域制限した構成(図4(B)実線と、図3参照)により、高域において、図4(A)で示した、弾性部材によるノイズ低減効果を維持できており好ましい。また、図4(B)の低域においては、両者(点線と実線)の特性に差はなく、減算により、両者ともノイズを効果的に低減できていて好ましい。
したがって、本案は、弾性部材の伝達特性による機械的特性と、第2音響信号の帯域制限による信号処理特性と、の構成上の特徴から、ノイズの高域と、ノイズの低域と、の両者を同時に低減できる効果を有している。
図5は、第1帯域フィルタ112及び第2帯域フィルタ122の構成の一例を示す図である。本図に示す例において、第1帯域フィルタ112及び第2帯域フィルタ122はいずれもFIR(Finite Impulse Response)型のデジタルフィルタである。そして、第1帯域フィルタ112のタップ数は及び第2帯域フィルタ122のタップ数は互いに等しい。これにより、第1帯域フィルタ112の群遅延と第2帯域フィルタ122の群遅延を一致させることができる。また、両フィルタの通過帯域リップルを低減させることが可能なタップ係数を選定することが望ましい。
図6は、第1帯域フィルタ112及び第2帯域フィルタ122それぞれのタップ係数の一例を示す図である。第1帯域フィルタ112及び第2帯域フィルタ122のいずれにおいても、タップ位置が変わるとタップ係数は異なっている。そして少なくとも一つのタップにおいて、第1帯域フィルタ112のタップ係数は第2帯域フィルタ122のタップ係数と異なっている。このようにすると、第1帯域フィルタ112のカットオフ周波数と第2帯域フィルタ122のカットオフ周波数を異ならせることができる。本図に示す例においては、すべてのタップにおいて、第1帯域フィルタ112のタップ係数は第2帯域フィルタ122のタップ係数と異なっている。なお、第1帯域フィルタ112及び第2帯域フィルタ122のいずれにおいても、タップ係数は固定されている。
図7は、出力部140の構成の一例を示す図である。本図に示す例において、出力部140はイコライザ群141、選択部142、DAコンバータ143、アンプ144、端子145a、端子145b、及び通信部146を有している。
イコライザ群141は複数のイコライザを有している。これらのイコライザは、互いに並列に配置されており、かつ、互いに特性が異なる。より詳細には、あるイコライザと、他のイコライザは、強調する周波数が互いに異なる。一例として音響信号処理装置10が電子聴診器の場合、イコライザ群141は第1イコライザ141a、第2イコライザ141b、及び第3イコライザ141cを有している。第1イコライザ141aは、心音を強調するために、低域成分(例えば少なくとも20Hz以上200Hz以下の領域)を強調する。言い換えると、第1イコライザ141aは、機械式の聴診器におけるベルモードに相当する。第2イコライザ141bは、呼吸音や心雑音を強調するために、中域成分(例えば少なくとも100Hz以上500Hz以下を含む領域)を強調する。第2イコライザ141bは、機械式の聴診器におけるダイヤフラムモードに相当する。第3イコライザ141cは、呼吸音の副雑音(例えば断続性ラ音)を強調するために、中高域成分(例えば少なくとも100Hz以上1kHz以下を含む領域)を強調する。
選択部142はイコライザ群141の後ろに位置しており、イコライザ群141に含まれるイコライザの一つを選択してDAコンバータ143に接続する。DAコンバータ143は、選択部142によって選択されたイコライザの出力をアナログ信号に変換する。アンプ144は、DAコンバータ143が出力したアナログ信号を増幅して端子145aから出力する。
また、通信部146は、演算部130の出力成分データを規定の通信フォーマットに従い変換して、端子145bから出力する。
以上、本実施形態によれば、第2音波センサ220は筐体240を伝搬する振動を検出する。そして音響信号処理部100は、第1音波センサ210が出力する第1音響信号に含まれるノイズを、第2音波センサ220が出力する第2音響信号を用いて除去する。ここで、第1音波センサ210と筐体240の間に弾性部材230を設けることにより、測定対象(例えば生体)に起因した振動が第2音波センサ220に伝搬することが抑制できる。
一方、弾性部材230を設けたため、第1音響信号を第2音響信号で処理すると、低域のノイズは除去されるが、高域のノイズは強調されてしまう。これに対して本実施形態では、第1音響信号を第1帯域フィルタ112で処理し、第2音響信号を第2帯域フィルタ122で処理している。第1帯域フィルタ112の高域側のカットオフ周波数(第1カットオフ周波数fC1)は、第2帯域フィルタ122の高域側のカットオフ周波数(第2カットオフ周波数fC2)よりも高い。これにより、音響信号処理部100は、弾性部材230により低減された高域ノイズの抑圧特性を維持したまま、第1音響信号に含まれる低域側のノイズも除去できるので、結果的に、高域ノイズと低域ノイズの両者を同時に低減可能となる。
[第2実施形態]
図8は、本実施形態に係る音響信号処理部100の構成を示す図であり、第1実施形態における図1の一部に相当している。本実施形態に係る音響信号処理部100は、以下の点を除いて、第1実施形態に係る音響信号処理部100と同様である。なお、本実施形態において、音響信号生成部200は第1実施形態と同様の構成を有している。
まず、第1信号処理部110は、第1AD変換部111及び第1帯域フィルタ112より前に、第1増幅部113及び第3帯域フィルタ114を有している。また第2信号処理部120は、第2AD変換部121及び第2帯域フィルタ122より前に、第2増幅部123及び第4帯域フィルタ124を有している。
第1増幅部113は第1音波センサ210から出力された第1音響信号を増幅する。第3帯域フィルタ114は、低域側のカットオフ周波数(以下、第3カットオフ周波数と記載)及び高域側のカットオフ周波数(以下、第4カットオフ周波数と記載)を有しており、第1音響信号の帯域を制限する。そして第1音響信号は、第3帯域フィルタ114によって帯域が制限された後に、第1AD変換部111に入力される。
第2増幅部123は第2音波センサ220から出力された第2音響信号を増幅する。第4帯域フィルタ124は第3帯域フィルタ114と同一の特性を有している。言い換えると、第4帯域フィルタ124の低域側のカットオフ周波数(第5カットオフ周波数)は、第3帯域フィルタ114の低域側のカットオフ周波数(第3カットオフ周波数)と同一の値(ただし誤差がある場合もある)である。また、第4帯域フィルタ124の高域側のカットオフ周波数(第6カットオフ周波数)は、第3帯域フィルタ114の高域側のカットオフ周波数(第4カットオフ周波数)と同一の値(ただし誤差がある場合もある)である。そして第2音響信号は、第4帯域フィルタ124によって帯域が制限された後に、第2AD変換部121に入力される。
図9は、第3帯域フィルタ114及び第4帯域フィルタ124の特性を説明するための図である。上記したように、第4帯域フィルタ124は第3帯域フィルタ114と同一の特性を有している。これら2つのフィルタにおいて、低域側の第3カットオフ周波数fCLは、第2帯域フィルタ122の高域側の第2カットオフ周波数fC2よりも低い。また高域側の第4カットオフ周波数fCHは、第1帯域フィルタ112の高域側の第1カットオフ周波数fC1よりも高い。
図10は、第3帯域フィルタ114及び第4帯域フィルタ124による効果を説明するための図である。本図は、測定対象から第1音波センサ210及び第2音波センサ220までの振動の伝達特性の一例を示している。第2音波センサ220が検出する振動は、主に第1音波センサ210及び弾性部材230を介して第2音波センサ220に伝わる。
第2音波センサ220の出力(第2音響信号)を用いて第1音波センサ210の出力(第1音響信号)に含まれるノイズを除去するためには、測定対象からの振動が第2音響信号に含まれないようにするのが好ましい。これに対して本図に示す例では、測定対象からの振動のうち低周波の成分は、第2音波センサ220に伝わってしまう。この場合、演算部130が処理した後の処理後信号のうち低周波の成分のSN(Signal-Noise)比が低下してしまう。
これに対して本実施形態では、第4帯域フィルタ124は、低域側の第3カットオフ周波数fCLを有している。このため、第2信号処理部120は、第2音響信号から、測定対象から伝わる低周波の振動に起因した信号を除去することができる。また、第3帯域フィルタ114の特性は第4帯域フィルタ124の特性と等しい。したがって、第4帯域フィルタ124と第3帯域フィルタ114の追加によって、減算処理時の群遅延特性に、差は生じないので、処理後信号における低周波領域のSN比を改善できる。
[第3実施形態]
図11は、本実施形態に係る音響信号処理部100の構成を示す図であり、第1実施形態における図1の一部に相当している。本実施形態に係る音響信号処理部100は、以下の点を除いて、第1又は第2実施形態に係る音響信号処理部100と同様である。なお、本実施形態において、音響信号生成部200は第1実施形態と同様の構成を有している。
まず第1信号処理部110は、第1帯域フィルタ112より後ろに、第1増幅部115、第1平均値算出部116、及び第1増幅率制御部117を備えている。第1増幅部115は、第1帯域フィルタ112が出力した処理後第1音響信号を増幅する。第1平均値算出部116は、処理後第1音響信号の大きさの平均値を算出する。そして第1増幅率制御部117は、第1平均値算出部116の出力(すなわち処理後第1音響信号の平均強度)と第1基準値の比を用いて、第1増幅部115の増幅率を制御する。
また第2信号処理部120は、第2帯域フィルタ122より後ろに、第2増幅部125、第2平均値算出部126、及び第2増幅率制御部127を有している。第2増幅部125は、第2帯域フィルタ122が出力した処理後第2音響信号を増幅する。第2平均値算出部126は、処理後第2音響信号の大きさの平均値を算出する。そして第2増幅率制御部127は、第2平均値算出部126の出力(すなわち処理後第2音響信号の平均強度)と第2基準値の比を用いて、第2増幅部125の増幅率を制御する。
ここで第1増幅部115の増幅率及び第2増幅部125の増幅率は、音響信号処理装置10が測定対象を測定していないときに変更され、音響信号処理装置10が測定対象を測定している間は変化しない。
図12は、第1増幅部115の増幅率及び第2増幅部125の増幅率を決定する方法を説明するための図である。まず、第1増幅部115の増幅率を決定するとき、第1音波センサ210の入力面に、所定の振幅を有する第1調整音波が入力される。第1調整音波の周波数fadj1は、第1音波センサ210が検出すべき振動の周波数域に含まれている。具体的には、第1調整音波の周波数fadj1は、第1帯域フィルタ112の第1カットオフ周波数fC1より低く、かつ第2帯域フィルタ122の第2カットオフ周波数fC2より高い。すなわち第1調整音波は、第2帯域フィルタ122により抑圧されるが、第1帯域フィルタ112を通過する。そして第1増幅率制御部117は、第1音波センサ210に第1調整音波が入力された時の第1増幅部115の出力が基準の大きさである第1基準値となるように、第1増幅部115の増幅率を決定する。
一方、第2増幅部125の増幅率を決定するとき、筐体240に第2調整音波が入力される。第2調整音波の周波数fadj2は、ノイズとして想定される振動の周波数に対応している。具体的には、第2調整音波の周波数fadj2は、第2帯域フィルタ122の第2カットオフ周波数fC2より低い。すなわち第2調整音波は、第2帯域フィルタ122を通過する。そして第2増幅率制御部127は、第2音波センサ220に第2調整音波が入力された時の第2増幅部125の出力が基準の大きさである第2基準値となるように、第2増幅部125の増幅率を決定する。
図13は、調整後の第1増幅部115の増幅率及び調整後の第2増幅部125の増幅率を決定するときの処理の流れを示すフローチャートである。まず、第1音波センサ210の入力面に第1調整音波を入力する(ステップS10)。この状態で、第1信号処理部110の第1平均値算出部116は、第1帯域フィルタ112が出力する処理後第1音響信号としてのデジタル信号を規定数サンプリングし(ステップS20)、サンプリングした処理後第1音響信号を絶対値化、すなわち負の値については正の値に変換した後、その絶対値化後の値の平均値(以下、第1平均値と記載)を算出する(ステップS30)。
そして第1増幅率制御部117は、第1基準値を第1平均値で割った値、又はこの値に所定値を乗じた値を、調整後の第1増幅部115の増幅率として設定する(ステップS40)。
その後、第1調整音波の入力を停止し、その代わりに筐体240に第2調整音波を加える(ステップS50)。この状態で、第2信号処理部120の第2平均値算出部126は、第2帯域フィルタ122が出力する処理後第2音響信号としてのデジタル信号を規定数サンプリングし(ステップS60)、サンプリングした処理後第2音響信号を絶対値化、すなわち負の値については正の値に変換した後、その絶対値化後の値の平均値(以下、第2平均値と記載)を算出する(ステップS70)。
そして第2増幅率制御部127は、第2基準値を第2平均値で割った値、又はこの値に所定値を乗じた値を、調整後の第2増幅部125の増幅率として設定する(ステップS80)。
以上、本実施形態によれば、第1信号処理部110は第1増幅部115及び第1増幅率制御部117を有している。そして第1増幅率制御部117は、所定の振幅を有する第1調整音波が第1音波センサ210に入力された時の第1増幅部115の出力振幅が基準の振幅値となるように、調整後の第1増幅部115の増幅率を決定する。このため、第1信号処理部110の出力振幅は適切な値になる。
また、第2信号処理部120は第2増幅部125及び第2増幅率制御部127を有している。そして第2増幅率制御部127は、所定の振幅を有する第2調整音波が筐体240に入力された時の第2増幅部125の出力振幅が基準の振幅値となるように、調整後の第2増幅部125の増幅率を決定する。このため、第2信号処理部120の出力振幅は適切な値になる。また、第1信号処理部110の出力振幅も同時に適切な値になっているため、第1音波センサ210と、第2音波センサ220の検出感度が製品ばらつき等により、互いに異なる場合であっても、演算部130によるノイズ除去効果を高くできる。
[第4実施形態]
図14は、本実施形態に係る音響信号処理部100の構成を示す図であり、第1実施形態における図1の一部に相当している。本実施形態に係る音響信号処理部100は、第3増幅率制御部150を有している点を除いて、第3実施形態に係る音響信号処理部100と同様である。なお、本実施形態において、音響信号生成部200は第1実施形態と同様の構成を有している。
第3増幅率制御部150は、演算部130の出力を用いて第1増幅部115及び第2増幅部125の少なくとも一方の増幅率を微調制御する。例えば第3増幅率制御部150が第1増幅部115の出力を制御する場合、第1音波センサ210の入力をゼロとし、第1調整音波の入力を遮断することにより、本来の信号成分をゼロとする。同時に、筐体240に第2調整音波を入力することにより、第2音波センサ220にノイズに相当する信号成分を入力する。第3増幅率制御部150は、このときの演算部130の残留ノイズ出力が基準値以下となるように、第1増幅部115の増幅率を微調制御する。
同様に、第3増幅率制御部150が第2増幅部125の出力を微調制御する場合は、第1音波センサ210の入力をゼロとし、第1調整音波の入力を遮断することにより、本来の信号成分をゼロとする。同時に、筐体240に第2調整音波を入力することにより、第2音波センサ220にノイズに相当する信号成分を入力する。第3増幅率制御部150は、このときの演算部130の残留ノイズ出力が基準値以下となるように第2増幅部125の増幅率を微調制御する。
図15は、第3増幅率制御部150が行う処理の一例を示すフローチャートである。このフローにおいて、第3増幅率制御部150は第2増幅部125の増幅率を制御している。
まず、本来の信号成分である第1調整音波を遮断し、筐体240に第2調整音波のみをノイズ信号成分として入力する(ステップS110)。この状態で、第3増幅率制御部150は、演算部130の残留ノイズ出力を規定数サンプリングし(ステップS120)、サンプリングした出力の絶対値の平均値(以下、第3平均値と記載)を算出する(ステップS130)。
そして第3増幅率制御部150は、第3平均値が基準値を超える場合(ステップS140:No)、第2増幅部125の増幅率を、第3平均値が小さくなる方向に探索し再調整する(ステップS150)。例えば、第2増幅部125の増幅率を現在の値に対して、わずかに(規定の変化量)高く設定し、S120、S130、S140の処理を再度実施する。そして、S150にて第3平均値が前回値より上昇した場合、探索の方向を逆転し、増幅率を現在の値に対して、わずかに(規定の変化量)低く設定し、一連の探索動作を繰り返す。S150にて第3平均値が前回値より低下した場合、探索の方向は維持し、増幅率を現在の値に対して、わずかに(規定の変化量)高く設定し、一連の探索動作を繰り返す。S140にて、第3平均値が基準値以下場合、現在の第2増幅部125の増幅率は適切であり、残留ノイズは規定値以下に維持可能となり微調整を完了する。
一方、第3平均値が基準値以下の場合(ステップS140:Yes)、現在の第2増幅部125の増幅率は適切であり、残留ノイズは規定値以下に維持可能となり微調整を完了し、
第3増幅率制御部150は処理を終了する。
以上、本実施形態によれば、音響信号処理部100は第3増幅率制御部150を有している。第3増幅率制御部150は、演算部130の出力を用いて第1増幅部115の増幅率及び第2増幅部125の増幅率の少なくとも一方を微調制御する。このため、演算部130の出力から、筐体240を伝搬する振動に起因したノイズをさらに減らすことができる。
[第5実施形態]
図16は、本実施形態に係る音響信号処理部100の構成を示す図であり、第1実施形態における図1の一部に相当している。本実施形態に係る音響信号処理部100は、アナログ信号の状態で第1音波センサ210の出力と第2音波センサ220の出力の差を算出している。
具体的には、音響信号処理部100の第1信号処理部110は、第1ハイパス増幅部311及び第1ローパスフィルタ312を有しており、第2信号処理部120は、第2ハイパス増幅部321、第2ローパスフィルタ322、及び可変増幅部323を有している。
第1ハイパス増幅部311は、第1音波センサ210の出力を増幅するとともに、低周波域の信号をカットする。第1ハイパス増幅部311のカットオフ周波数は、第2実施形態に示した第3カットオフ周波数(第3帯域フィルタ114の低域側のカットオフ周波数fcL)と同様である。
第1ローパスフィルタ312は、第1ハイパス増幅部311の出力から、高周波域の信号をカットする。第1ローパスフィルタ312のカットオフ周波数は、第2実施形態に示した第1カットオフ周波数(第1帯域フィルタ112の高域側のカットオフ周波数fc1)と同様である。
第2ハイパス増幅部321は、第2音波センサ220の出力を増幅するとともに、低周波域の信号をカットする。第2ハイパス増幅部321のカットオフ周波数は、第1ハイパス増幅部311のカットオフ周波数fcLと同一である。
第2ローパスフィルタ322は、第2ハイパス増幅部321の出力から、高周波域の信号をカットする。第2ローパスフィルタ322のカットオフ周波数は、第2実施形態に示した第2カットオフ周波数(第2帯域フィルタ122のカットオフ周波数fc2)と同一である。
第1信号処理部110は、さらに演算回路330、AD変換部331、及びデジタルフィルタ332を備えている。
可変増幅部323は、第2ローパスフィルタ322の出力を増幅及び減衰する。可変増幅部323の増幅率(又は減衰率)は、例えば第4実施形態の第3増幅率制御部150と同様に、演算回路330の出力を用いて制御される。
演算回路330はアナログ回路であり、第1ローパスフィルタ312の出力及び可変増幅部323の出力の差を算出し、例えば差動増幅回路で構成される。なお、可変増幅部323の増幅率(又は減衰率)は、例えば第4実施形態の第3増幅率制御部150と同様に、演算回路330の出力を用いて制御される。
AD変換部331は、演算回路330の出力をデジタル信号に変換する。デジタルフィルタ332は、AD変換部331が出力したデジタル信号を処理する。ここで行われる処理は、電源ノイズ等の高域成分を除去である。そして出力部140は、デジタルフィルタ332の出力を処理する。出力部140の構成は、例えば図7に示した通りである。
本実施形態によっても、第2実施形態と同様の効果が得られる。
[第6実施形態]
図17は、本実施形態に係る音響信号処理部100の構成を示す図であり、第1実施形態における図1の一部に相当している。本実施形態に係る音響信号処理部100は、第3帯域フィルタ114及び第4帯域フィルタ124の機能をデジタルフィルタで実現している点を除いて、第2実施形態に係る音響信号処理部100と同様の構成である。
詳細には、音響信号処理部100の第1信号処理部110は、第1AD変換部111、デジタルフィルタ341、及びデジタルフィルタ342を有しており、第2信号処理部120は、第2AD変換部121、デジタルフィルタ343、及びデジタルフィルタ344を有している。第1AD変換部111及び第2AD変換部121は第2実施形態と同様である。
デジタルフィルタ341はハイパスフィルタである。デジタルフィルタ341のカットオフ周波数は、第2実施形態に示した第3カットオフ周波数(第3帯域フィルタ114の低域側のカットオフ周波数fcL)と同様である。そしてデジタルフィルタ342は、第2実施形態における第1帯域フィルタ112と同様の構成である。このため、デジタルフィルタ342のカットオフ周波数は、第1実施形態に示した第1帯域フィルタ112の高周波側の第1カットオフ周波数fc1と同様である。
また、デジタルフィルタ343はハイパスフィルタであり、デジタルフィルタ344はローパスフィルタである。デジタルフィルタ343のカットオフ周波数は、デジタルフィルタ341のカットオフ周波数fcLと同様である。一方、デジタルフィルタ344は、第2実施形態における第2帯域フィルタ122と同様の構成である。このため、デジタルフィルタ344のカットオフ周波数は、第2帯域フィルタ122の高周波側の第2カットオフ周波数fc2と同様であり、デジタルフィルタ342のカットオフ周波数fc1よりも低い。
本実施形態によっても、第2実施形態と同様の効果が得られる。
以上、図面を参照して実施形態及び実施例について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
10 音響信号処理装置10
100 音響信号処理部
110 第1信号処理部
112 第1帯域フィルタ
114 第3帯域フィルタ
116 第1平均値算出部
120 第2信号処理部
122 第2帯域フィルタ
124 第4帯域フィルタ
126 第2平均値算出部
130 演算部
140 出力部
141 イコライザ群
142 選択部
146 通信部
200 音響信号生成部
210 第1音波センサ
220 第2音波センサ
230 弾性部材
240 筐体
312 第1ローパスフィルタ
322 第2ローパスフィルタ
330 演算回路

Claims (13)

  1. 弾性体を介して筐体に固定されていて測定対象である生体に対向する第1音波センサ、及び、前記筐体に固定されている第2音波センサと共に使用され、
    前記第1音波センサが生成した第1音響信号を処理することにより処理後第1音響信号を生成する第1信号処理部と、
    前記第2音波センサが生成した第2音響信号を処理することにより処理後第2音響信号を生成する第2信号処理部と、
    前記処理後第1音響信号と前記処理後第2音響信号の差を算出する演算部と、
    を備え、
    前記第1信号処理部は第1帯域フィルタを有しており、
    前記第2信号処理部は第2帯域フィルタを有しており、
    前記第1帯域フィルタの高周波側の第1カットオフ周波数は、前記第2帯域フィルタの高周波側の第2カットオフ周波数よりも高く、
    前記第2音波センサは、直接、もしくは接着層又は粘着層を介して、前記筐体の内面に対向している音響信号処理装置。
  2. 弾性体を介して筐体に固定されていて測定対象である生体に対向する第1音波センサ、及び、前記筐体に固定されている第2音波センサと共に使用され、
    前記第1音波センサが生成した第1音響信号を処理することにより処理後第1音響信号を生成する第1信号処理部と、
    前記第2音波センサが生成した第2音響信号を処理することにより処理後第2音響信号を生成する第2信号処理部と、
    前記処理後第1音響信号と前記処理後第2音響信号の差を算出する演算部と、
    を備え、
    前記第1信号処理部は第1帯域フィルタを有しており、
    前記第2信号処理部は第2帯域フィルタを有しており、
    前記第1帯域フィルタの高周波側の第1カットオフ周波数は、前記第2帯域フィルタの高周波側の第2カットオフ周波数よりも高く、
    前記第1信号処理部は、
    前記処理後第1音響信号を増幅する第1増幅部と、
    前記第1帯域フィルタが出力した前記処理後第1音響信号の第1周波数における強度と第1基準値を用いて前記第1増幅部の増幅率を制御する第1増幅率制御部と
    を有しており、
    前記第1周波数は前記第2カットオフ周波数より高く、かつ前記第1カットオフ周波数より低い音響信号処理装置。
  3. 弾性体を介して筐体に固定されていて測定対象である生体に対向する第1音波センサ、及び、前記筐体に固定されている第2音波センサと共に使用され、
    前記第1音波センサが生成した第1音響信号を処理することにより処理後第1音響信号を生成する第1信号処理部と、
    前記第2音波センサが生成した第2音響信号を処理することにより処理後第2音響信号を生成する第2信号処理部と、
    前記処理後第1音響信号と前記処理後第2音響信号の差を算出する演算部と、
    を備え、
    前記第1信号処理部は第1帯域フィルタを有しており、
    前記第2信号処理部は第2帯域フィルタを有しており、
    前記第1帯域フィルタの高周波側の第1カットオフ周波数は、前記第2帯域フィルタの高周波側の第2カットオフ周波数よりも高く、
    前記第2信号処理部は、
    前記処理後第2音響信号を増幅する第2増幅部と、
    前記第2帯域フィルタが出力した前記処理後第2音響信号の第2周波数における強度と第2基準値を用いて前記第2増幅部の増幅率を制御する第2増幅率制御部と
    を有しており、
    前記第2周波数は前記第2カットオフ周波数よりも低い音響信号処理装置。
  4. 請求項に記載の音響信号処理装置において、
    前記第1信号処理部は、前記処理後第1音響信号を増幅する第1増幅部を有しており、
    前記第2信号処理部は、前記処理後第2音響信号を増幅する第2増幅部を有しており、
    さらに、前記演算部の出力を用いて前記第1増幅部及び前記第2増幅部の少なくとも一方の増幅率を制御する第3増幅率制御部を備える音響信号処理装置。
  5. 請求項1~のいずれか一項に記載の音響信号処理装置において、
    前記筐体、前記第1音波センサ、前記第2音波センサ、及び前記弾性体は電子聴診器の少なくとも一部である、音響信号処理装置。
  6. 請求項1~のいずれか一項に記載の音響信号処理装置において、
    前記演算部により、前記筐体を把持している人の筋音の少なくとも一部が除去される音響信号処理装置。
  7. 請求項1~のいずれか一項に記載の音響信号処理装置において、
    前記第1帯域フィルタ及び前記第2帯域フィルタは、FIR(Finite Impulse Response)型のデジタルフィルタであり、
    前記第1帯域フィルタ及び前記第2帯域フィルタのタップ数は互いに等しく、かつ、少なくとも一つのタップにおいて、前記第1帯域フィルタのタップ係数は前記第2帯域フィルタのタップ係数と異なる音響信号処理装置。
  8. 請求項1~のいずれか一項に記載の音響信号処理装置において、
    前記第1帯域フィルタ及び前記第2帯域フィルタはローパスフィルタであり、
    前記第1信号処理部は、前記第1帯域フィルタよりも前に第3帯域フィルタを有しており、
    前記第2信号処理部は、前記第2帯域フィルタよりも前に第4帯域フィルタを有しており、
    前記第3帯域フィルタ及び前記第4帯域フィルタは、低周波数側及び高周波数側のそれぞれに、互いに同一のカットオフ周波数を有しており、
    前記第3帯域フィルタ及び前記第4帯域フィルタの低周波数側の第3カットオフ周波数は、前記第2カットオフ周波数よりも低く、
    前記第3帯域フィルタ及び前記第4帯域フィルタの高周波数の第4カットオフ周波数は、前記第1カットオフ周波数よりも高い、音響信号処理装置。
  9. 請求項1~のいずれか一項に記載の音響信号処理装置において、
    前記第1帯域フィルタは低周波側の第3カットオフ周波数を有しており、
    前記第2帯域フィルタは低周波側の第4カットオフ周波数を有しており、
    前記第3カットオフ周波数と前記第4カットオフ周波数は同一の値である音響信号処理装置。
  10. 請求項1~のいずれか一項に記載の音響信号処理装置において、
    前記演算部より後に設けられ、互いに並列に配置されていて互いに伝達特性が異なる複数のイコライザと、
    前記複数のイコライザの一つを選択する選択部と、
    を備える音響信号処理装置。
  11. 請求項1~10のいずれか一項に記載の音響信号処理装置において、
    前記筐体、前記第1音波センサ、前記第2音波センサ、及び前記弾性体を有している音響信号処理装置。
  12. 弾性体を介して筐体に固定されていて測定対象に対向する第1音波センサ、及び、前記筐体に固定されている第2音波センサと共に使用され、
    コンピュータに、
    前記第1音波センサが生成した第1音響信号を処理することにより処理後第1音響信号を生成する第1信号処理機能と、
    前記第2音波センサが生成した第2音響信号を処理することにより処理後第2音響信号を生成する第2信号処理機能と、
    前記処理後第1音響信号と前記処理後第2音響信号の差を算出する演算機能と、
    を持たせ、
    前記第1信号処理機能に第1帯域フィルタ機能を持たせるとともに、前記第2信号処理機能に第2帯域フィルタ機能に持たせ、
    前記第1帯域フィルタ機能の高周波側の第1カットオフ周波数を、前記第2帯域フィルタ機能の高周波側の第2カットオフ周波数よりも高くし、
    前記第1信号処理機能は、
    前記処理後第1音響信号を増幅する第1増幅機能と、
    前記第1帯域フィルタ機能が出力した前記処理後第1音響信号の第1周波数における強度と第1基準値を用いて前記第1増幅機能の増幅率を制御する第1増幅率制御機能と
    を有しており、
    前記第1周波数は前記第2カットオフ周波数より高く、かつ前記第1カットオフ周波数より低い、プログラム。
  13. 弾性体を介して筐体に固定されていて測定対象に対向する第1音波センサ、及び、前記筐体に固定されている第2音波センサと共に使用され、
    コンピュータに、
    前記第1音波センサが生成した第1音響信号を処理することにより処理後第1音響信号を生成する第1信号処理機能と、
    前記第2音波センサが生成した第2音響信号を処理することにより処理後第2音響信号を生成する第2信号処理機能と、
    前記処理後第1音響信号と前記処理後第2音響信号の差を算出する演算機能と、
    を持たせ、
    前記第1信号処理機能に第1帯域フィルタ機能を持たせるとともに、前記第2信号処理機能に第2帯域フィルタ機能に持たせ、
    前記第1帯域フィルタ機能の高周波側の第1カットオフ周波数を、前記第2帯域フィルタ機能の高周波側の第2カットオフ周波数よりも高くし、
    前記第2信号処理機能は、
    前記処理後第2音響信号を増幅する第2増幅機能と、
    前記第2帯域フィルタ機能が出力した前記処理後第2音響信号の第2周波数における強度と第2基準値を用いて前記第2増幅機能の増幅率を制御する第2増幅率制御機能と
    を有しており、
    前記第2周波数は前記第2カットオフ周波数よりも低い、プログラム。
JP2020057724A 2020-03-27 2020-03-27 音響信号処理装置 Active JP7452844B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020057724A JP7452844B2 (ja) 2020-03-27 2020-03-27 音響信号処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020057724A JP7452844B2 (ja) 2020-03-27 2020-03-27 音響信号処理装置

Publications (2)

Publication Number Publication Date
JP2021153889A JP2021153889A (ja) 2021-10-07
JP7452844B2 true JP7452844B2 (ja) 2024-03-19

Family

ID=77916090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020057724A Active JP7452844B2 (ja) 2020-03-27 2020-03-27 音響信号処理装置

Country Status (1)

Country Link
JP (1) JP7452844B2 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008142112A (ja) 2006-12-06 2008-06-26 Konica Minolta Medical & Graphic Inc 生体音センサ
JP2013074916A (ja) 2011-09-29 2013-04-25 Jvc Kenwood Corp 生体音収集用マイクロホン、及び電子聴診装置
JP2014045917A (ja) 2012-08-31 2014-03-17 Jvc Kenwood Corp 胎児心音測定装置
WO2016076376A1 (ja) 2014-11-12 2016-05-19 京セラ株式会社 ウェアラブル装置
US20190253795A1 (en) 2016-10-21 2019-08-15 Nokia Technologies Oy Detecting the presence of wind noise

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5492129A (en) * 1993-12-03 1996-02-20 Greenberger; Hal Noise-reducing stethoscope
JP3319176B2 (ja) * 1994-09-14 2002-08-26 ソニー株式会社 電子聴診器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008142112A (ja) 2006-12-06 2008-06-26 Konica Minolta Medical & Graphic Inc 生体音センサ
JP2013074916A (ja) 2011-09-29 2013-04-25 Jvc Kenwood Corp 生体音収集用マイクロホン、及び電子聴診装置
JP2014045917A (ja) 2012-08-31 2014-03-17 Jvc Kenwood Corp 胎児心音測定装置
WO2016076376A1 (ja) 2014-11-12 2016-05-19 京セラ株式会社 ウェアラブル装置
US20190253795A1 (en) 2016-10-21 2019-08-15 Nokia Technologies Oy Detecting the presence of wind noise

Also Published As

Publication number Publication date
JP2021153889A (ja) 2021-10-07

Similar Documents

Publication Publication Date Title
US10332502B2 (en) Noise reducing device, noise reducing method, noise reducing program, and noise reducing audio outputting device
CN110291581B (zh) 头戴耳机离耳检测
JP5401759B2 (ja) 音声出力装置、音声出力方法、音声出力システムおよび音声出力処理用プログラム
US20170111734A1 (en) Controller for a haptic feedback element
CN111010646A (zh) 一种对耳机透传的方法、系统以及耳机
US11032631B2 (en) Headphone off-ear detection
JPH05161191A (ja) 雑音低減装置
Jatupaiboon et al. Electronic stethoscope prototype with adaptive noise cancellation
JP5811993B2 (ja) ヘッドホン、ヘッドホンのノイズ低減方法、ノイズ低減処理用プログラム
CN111696512A (zh) 双二阶前馈式主动抗噪系统及处理器
CN112468918A (zh) 主动降噪方法、装置、电子设备以及主动降噪耳机
JPWO2010087147A1 (ja) ハウリング抑圧装置、ハウリング抑圧方法、プログラム、及び集積回路
JP7452844B2 (ja) 音響信号処理装置
JP5546795B2 (ja) 対象波低減装置
JP2010276773A5 (ja)
JP2009015209A (ja) 音声明瞭度改善システム及び音声明瞭度改善方法
JP5880753B2 (ja) ヘッドホン、ヘッドホンのノイズ低減方法、ノイズ低減処理用プログラム
US20230419981A1 (en) Audio signal processing method and system for correcting a spectral shape of a voice signal measured by a sensor in an ear canal of a user
JP2004201033A (ja) ノイズ低減装置及び方法
US20230396939A1 (en) Method of suppressing undesired noise in a hearing aid
JP5036283B2 (ja) オートゲインコントロール装置、音響信号記録装置、映像・音響信号記録装置および通話装置
TWI656525B (zh) 高保真語音裝置
CN115798451A (zh) 自适应降噪方法、主动降噪电路、装置、耳机及存储介质
JP2010166477A (ja) ハウリング防止装置
JPH04120597A (ja) 能動消音装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20220512

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240229

R150 Certificate of patent or registration of utility model

Ref document number: 7452844

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150