JP7452760B2 - エレベーターの制御システムおよびエレベーターの制御方法 - Google Patents

エレベーターの制御システムおよびエレベーターの制御方法 Download PDF

Info

Publication number
JP7452760B2
JP7452760B2 JP2023514193A JP2023514193A JP7452760B2 JP 7452760 B2 JP7452760 B2 JP 7452760B2 JP 2023514193 A JP2023514193 A JP 2023514193A JP 2023514193 A JP2023514193 A JP 2023514193A JP 7452760 B2 JP7452760 B2 JP 7452760B2
Authority
JP
Japan
Prior art keywords
car
pattern
landing
speed
starting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023514193A
Other languages
English (en)
Other versions
JPWO2022219682A1 (ja
Inventor
英二 横山
英敬 石黒
浩行 榎嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2022219682A1 publication Critical patent/JPWO2022219682A1/ja
Application granted granted Critical
Publication of JP7452760B2 publication Critical patent/JP7452760B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/28Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
    • B66B1/30Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical effective on driving gear, e.g. acting on power electronics, on inverter or rectifier controlled motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/28Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
    • B66B1/285Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical with the use of a speed pattern generator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/34Details, e.g. call counting devices, data transmission from car to control system, devices giving information to the control system
    • B66B1/3492Position or motion detectors or driving means for the detector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/34Details, e.g. call counting devices, data transmission from car to control system, devices giving information to the control system
    • B66B1/36Means for stopping the cars, cages, or skips at predetermined levels
    • B66B1/40Means for stopping the cars, cages, or skips at predetermined levels and for correct levelling at landings

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Elevator Control (AREA)

Description

本開示は、エレベーターの制御システムおよびエレベーターの制御方法に関する。
特許文献1は、エレベーターの制御装置の例を開示する。制御装置は、制御信号の時間遅れに応じて着床制御中の加速度指令を生成する。
日本特許第5927838号
しかしながら、特許文献1の制御装置が生成する加速度指令は、遅れ時間tdelayの後に不連続に変化する。これにより、着床制御中にかごの振動が誘発されることで、乗り心地が悪化する場合がある。
本開示は、このような課題の解決に係るものである。本開示は、着床制御中のかごの振動による乗り心地の悪化を抑えられるエレベーターの制御システムおよびエレベーターの制御方法を提供する。
本開示に係るエレベーターの制御システムは、かごの走行方向における現在位置を検出する位置検出部と、前記かごの着床位置から予め設定された距離離れた起点位置における前記かごの通過を検知する起点検知部と、前記起点位置から前記着床位置までの前記かごが前記起点位置を通過する前から前記かごが停止するまで加速度が連続な走行パターンを、互いに異なるアルゴリズムに基づいて各々が生成する複数のパターン生成部と、前記位置検出部が検出する前記かごの現在位置に基づいて、前記かごの走行を前記複数のパターン生成部のいずれかが生成した走行パターンに追従させる走行制御部と、前記複数のパターン生成部の各々が生成する走行パターンのうちから、前記起点検知部が前記かごの通過を検知したタイミングにおける前記かごの速度に基づいて、前記起点位置から前記着床位置までの走行に要する着床時間が最も短い走行パターンを、前記走行制御部が前記かごの走行を追従させる走行パターンとして選択するパターン選択部と、を備える。
本開示に係るエレベーターの制御方法は、かごの着床位置から予め設定された距離離れた起点位置における前記かごの通過を検知する起点検知工程と、前記起点検知工程で前記かごの前記起点位置の通過が検知されたタイミングにおける前記かごの速度を取得する速度取得工程と、前記起点位置から前記着床位置までの、前記かごが前記起点位置を通過する前から前記かごが停止するまで加速度が連続な、互いに異なるアルゴリズムに基づく複数の走行パターンのうちから、前記速度取得工程において取得された前記かごの速度に基づいて、前記起点位置から前記着床位置までの走行に要する着床時間が最も短い走行パターンを選択するパターン選択工程と、前記かごの現在位置に基づいて、前記パターン選択工程において選択された走行パターンに前記かごの走行を追従させる走行制御工程と、を備える。
本開示に係る制御システムまたは制御方法であれば、エレベーターの着床制御中のかごの振動による乗り心地の悪化が抑えられる。
実施の形態1に係るエレベーターの構成図である。 実施の形態1に係る制御システムにおける走行パターンの例を示す図である。 実施の形態1に係る着床指令部の構成を示すブロック図である。 実施の形態1に係る第1パターン生成部の構成を示すブロック図である。 実施の形態1に係る定ジャークパターン生成部が生成する走行パターンの例を示す図である。 実施の形態1に係る補正パターン生成部が生成する走行パターンの例を示す図である。 実施の形態1に係る第1パターン生成部が生成する走行パターンの例を示す図である。 実施の形態1に係る第2パターン生成部が生成する走行パターンの例を示す図である。 実施の形態1に係るパターン生成部が生成する走行パターンにおける着床時間およびかごの速度の関係を示す図である。 実施の形態1に係る第1パターン生成部が生成する走行パターンの例を示す図である。 実施の形態1に係る第1パターン生成部が生成する走行パターンの例を示す図である。 実施の形態1に係る制御システムの動作の例を示すフローチャートである。 実施の形態1に係る制御システムの動作の例を示すフローチャートである。 実施の形態1に係る制御システムの動作の例を示すフローチャートである。 実施の形態1に係る制御システムの主要部のハードウェア構成図である。 実施の形態2に係るエレベーターの構成図である。
本開示の対象を実施するための形態について添付の図面を参照しながら説明する。各図において、同一または相当する部分には同一の符号を付して、重複する説明は適宜に簡略化または省略する。なお、本開示の対象は以下の実施の形態に限定されることなく、本開示の趣旨を逸脱しない範囲において、実施の形態の任意の構成要素の変形、または実施の形態の任意の構成要素の省略が可能である。
実施の形態1.
図1は、実施の形態1に係るエレベーター1の構成図である。
エレベーター1は、例えば複数の階床を有する建物に適用される。建物において、エレベーター1の昇降路2が設けられる。昇降路2は、複数の階床にわたる上下方向に長い空間である。エレベーター1は、モータ3と、シーブ4と、主ロープ5と、かご6と、釣合い錘7と、を備える。
モータ3は、例えば昇降路2の上部または下部などに設けられる。例えば昇降路2の上部にエレベーター1の機械室が設けられるときに、モータ3は、機械室に配置されてもよい。シーブ4は、モータ3の回転軸に接続される。主ロープ5は、シーブ4に巻きかけられる。主ロープ5は、シーブ4の一方側においてかご6の荷重を支持する。主ロープ5は、シーブ4の他方側において釣合い錘7の荷重を支持する。かご6は、昇降路2を上下方向に走行することによって利用者などを複数の階床の間で輸送する機器である。釣合い錘7は、主ロープ5を通じてシーブ4の両側に掛かる荷重の釣合いをかご6との間でとる機器である。かご6および釣合い錘7は、モータ3がシーブ4を回転駆動することで移動する主ロープ5に連動して、昇降路2において互いに反対方向に走行する。
エレベーター1は、制御システム8を含む。制御システム8は、エレベーター1の動作を制御するシステムである。制御システム8は、エンコーダ9と、位置計測部10と、起点検知部11と、制御装置12と、を備える。
エンコーダ9は、モータ3の回転角を検出する機器である。エンコーダ9は、モータ3に取り付けられる。エンコーダ9は、検出したモータ3の回転角x_mの信号を制御装置12に出力する。
位置計測部10は、かご6の走行方向における現在位置を計測によって検出する部分である。位置計測部10は、位置検出部の例である。この例において、位置計測部10は、APS(Absolute Positioning System)のセンサである。位置計測部10は、かご6に設けられる。位置計測部10について、APSのコードテープ13が昇降路2において上下方向に沿って設けられる。コードテープ13は、上下方向の位置を表す情報を符号化した画像が示されたテープである。位置計測部10は、コードテープ13上の情報を読み取ることでかご6の現在位置を検出する。位置計測部10は、検出したかご6の現在位置x_carの信号を制御装置12に出力する。
起点検知部11は、起点位置におけるかご6の通過を検知する部分である。起点検知部11は、かご6に設けられる。起点位置は、かご6の走行方向における予め定められた位置である。起点位置は、複数設定される。この例において、起点位置は、各々の階床の着床位置から予め設定された距離離れた地点に設定される。各々の階床の起点位置において、検知体14が昇降路2に設けられている。検知体14は、例えば着床プレートである。起点検知部11は、かご6がいずれかの起点位置を通過するときに、当該起点位置に設けられた検知体14を検知することで、当該起点位置の通過を検知する。起点検知部11は、起点位置の通過を検知するときに、検知信号LS_tを制御装置12に出力する。
制御装置12は、エレベーター1における制御の処理などを行う装置である。制御装置12は、例えば電気基板などにおいて構成される。制御装置12は、複数の装置から構成されていてもよい。制御装置12の一部または全部は、例えば昇降路2の上部または下部などに設けられる。あるいは、エレベーター1の機械室が設けられるときに、制御装置12の一部または全部は、機械室に配置されてもよい。制御装置12は、複数の制御モードによってかご6の走行を制御する。制御モードは、階間走行モードおよび着床モードを含む。階間走行モードは、かご6が出発階および目的階の間を走行するときの制御モードである。着床モードは、かご6が目的階の着床位置に着床するときの制御モードである。制御装置12における制御モードは、例えばかご6が目的階の着床位置に対応する起点位置を通過するときに、階間走行モードから着床モードに切り替えられる。制御装置12は、かご速度演算部15と、走行指令部16と、着床指令部17と、制御モード切替部18と、走行制御部19と、を備える。
かご速度演算部15は、位置計測部10から入力されるかご6の現在位置x_carの信号に基づいて、時間微分などによってかご6の速度を演算する。かご速度演算部15は、演算したかご6の速度v_carの信号を出力する。
走行指令部16は、出発階および目的階の間を走行するかご6の走行パターン、すなわち階間走行モードにおける走行パターンを生成する部分である。走行パターンは、例えばかご6の位置、速度、加速度、またはジャークなどの各時刻における値を表す波形などである。この例において、走行パターンは、かご6の位置の波形である。階間走行モードの走行パターンは、加速走行および減速走行などを含む。加速走行は、かご6が出発階から出発するときの、速度の絶対値が増加するような加速度が一定の走行である。減速走行は、かご6が目的階に到着するときの、速度の絶対値が減少するような加速度が一定の走行である。走行パターンは、加速走行および減速走行の間に、速度が一定の等速走行などを含んでもよい。走行指令部16は、階間走行モードの走行パターンx_ref0を表す信号を出力する。
着床指令部17は、目的階の着床位置に着床するときのかご6の走行パターン、すなわち着床モードにおける走行パターンを生成する部分である。ここで、制御モードは、階間走行モードにおける減速走行の間に、着床モードに切り替えられる。着床指令部17は、かご6の速度をかご速度演算部15が出力する速度v_carの信号に基づいて取得する。着床指令部17は、目的階の着床位置に対応する起点位置におけるかご6の通過のタイミングを、起点検知部11が出力する検知信号LS_tに基づいて判定する。着床指令部17は、当該起点位置をかご6が通過するときのかご6の速度に基づいて着床モードの走行パターンを生成する。着床指令部17は、着床モードの走行パターンx_refを表す信号を出力する。
制御モード切替部18は、制御装置12における制御モードを切り替える部分である。制御モード切替部18は、走行指令部16からの走行パターンx_ref0、および着床指令部17からの走行パターンx_refなどの入力される走行パターンのうちから、制御装置12における制御モードに応じたものを走行パターンx_ref1の信号として出力する。制御モード切替部18は、かご6が出発階から目的階に向けて出発するときに、制御モードを階間走行モードとする。このとき、制御モード切替部18は、走行指令部16からの走行パターンx_ref0を、制御モードに応じた走行パターンx_ref1の信号として出力する。制御モード切替部18は、目的階の着床位置に対応する起点位置におけるかご6の通過のタイミングを、起点検知部11が出力する検知信号LS_tに基づいて判定する。制御モード切替部18は、当該起点位置をかご6が通過するときに、制御モードを階間走行モードから着床モードに切り替える。このとき、制御モード切替部18は、着床指令部17からの走行パターンx_refを、制御モードに応じた走行パターンx_ref1の信号として出力する。
走行制御部19は、制御モードに応じた走行パターンにかご6の走行を追従させる部分である。走行制御部19は、かご位置制御部20と、モータ速度演算部21と、モータ速度制御部22と、モータ電流制御部23と、を備える。
かご位置制御部20は、制御モードに応じた走行パターンにかご6の位置を追従させる部分である。かご位置制御部20は、走行パターンにおける位置およびかご6の位置の差に基づいて、かご6の走行を走行パターンに追従させる制御信号x_contを出力する。この例において、かご位置制御部20は、かご6の走行を追従させる走行パターンx_ref1、および位置計測部10が検出するかご6の現在位置x_carの差x_errを表す信号を、当該差を演算する減算器24から受け入れる。この例において、かご位置制御部20は、制御信号x_contとして、モータ3の角速度目標v_refを表す信号を出力する。
モータ速度演算部21は、エンコーダ9から入力されるモータ3の回転角x_mの信号に基づいて、モータ3の角速度を演算する。モータ速度演算部21は、演算したモータ3の角速度v_mの信号を出力する。
モータ速度制御部22は、モータ3の角速度を角速度目標に追従させる部分である。モータ速度制御部22は、かご位置制御部20が出力する角速度目標v_ref、およびモータ速度演算部21が演算するモータ3の角速度v_mの差v_errを表す信号を、当該差を演算する減算器25から受け入れる。モータ速度制御部22は、差v_errの信号に基づいて、モータ3の必要な性能が安定して得られるように比例、積分、および微分などの制御演算を行うことで、モータ3のトルク電流目標iq_v_contを表す信号を出力する。
モータ電流制御部23は、入力されるトルク電流目標iq_v_contの信号に応じて、モータ3に駆動電流を供給する。モータ電流制御部23は、モータ3に設けられた電流検出器26が検出する電流iqを表す信号を、電流検出器26から受け入れる。モータ電流制御部23は、電流検出器26からの電流iqの信号のフィードバックを受けて、モータ3の駆動電流がトルク電流目標iq_v_contに合うように電流の供給を行う。
このように、速度の差v_errが予め設定された範囲内となるように、角速度目標v_refにモータ3の角速度v_mを追従させる速度制御系が実現される。また、位置の差x_errが予め設定された範囲内となるように、かご6の位置目標となる走行パターンx_ref1にかご6の位置x_carを追従させる位置制御系が実現される。なお、制御信号x_contとして角速度目標v_refが出力されることで、位置の差x_errが0に収束するような制御が行われる。このとき、かご6の位置は、走行パターンx_ref1に誤差なく追従する。特に、かご位置制御部20の構成を積分補償とすると、本制御は1型の位置制御ループとなるので、かご6の位置情報の観測遅れがあっても制御偏差の増加はなくなる。
ここで、APSによるかご6の位置の検出において、使用環境の温度によって誤差が生じうる。このような誤差の補正のために、昇降路2の下端部などにAPSのコードテープ13と建物との相対的な温度伸縮量を常時計測する計測器が設けられる場合がある。一方、このような計測器によって、エレベーター1の制御システム8のコストが増加することがある。制御システム8は、位置計測部10が検出するかご6の現在位置に誤差がある場合においても、APSのコードテープ13と建物との相対的な温度伸縮量を常時計測する計測器などを必要とせずに、当該誤差を補正した着床制御を行う。
続いて、図2を用いて、理想的な場合、すなわち、位置計測部10に検出されるかご6の現在位置に誤差がない場合の走行パターンの例を説明する。
図2は、実施の形態1に係る制御システム8における走行パターンの例を示す図である。
ここで、出発階から下方に走行して目的階に着床するときの走行パターンの例が示される。走行パターンの例は、4つのグラフによって示される。各々のグラフにおいて、横軸は時間を表す。時間の原点は、かご6が目的階の着床位置に対応する起点位置を通過した時刻に取る。下から1段目のグラフにおいて、縦軸はかご6の位置を表す。位置の原点は、かご6の目的階の着床位置に取る。下から2段目のグラフにおいて、縦軸はかご6の速度を表す。下から3段目のグラフにおいて、縦軸はかご6の加速度を表す。時刻0より前において、かご6は階間走行モードの減速走行によって走行している。このとき、加速度の大きさは予め設定された一定値となる。下から4段目のグラフにおいて、縦軸はかご6のジャークを表す。なお、この例において、速度の波形、加速度の波形、およびジャークの波形は、制御システム8において走行パターンの信号として出力されない。
時刻0において、かご6の位置は、目的階の着床位置に対応する起点位置に設けられた検知体14の位置であるx[m]である。また、このタイミングにおけるかご6の加速度は、予め設定された一定値a[m/s]である。ここで生成される走行パターンにおいて、起点位置の通過の前後でかご6の加速度が連続性を保つ。また、当該走行パターンは、かご6が着床位置に停止するまで一定のジャークを保つ。一定のジャークでかご6が減速することで、乗り心地の良さが確保される。この条件から、当該起点位置を通過するタイミングにおけるかご6の速度-v[m/s]、着床時間T[s]、および一定のジャーク-J[m/s]は、次の式(1)から式(3)によって表される。ここで、着床時間は、起点位置から着床位置までの走行に要する時間である。
Figure 0007452760000001
Figure 0007452760000002
Figure 0007452760000003
式(1)から式(3)は、位置計測部10が検出するかご6の現在位置に誤差がない場合において、起点位置に設けられた検知体14の位置x[m]および当該起点位置を通過するタイミングのかご6の加速度a[m/s]が決まれば、当該タイミングにおけるかご6の速度-v[m/s]、ジャーク-J[m/s]、および着床時間T[s]が一意に決まることを示している。ここで、減速走行においてかご6の速度は単調減少する。このため、位置計測部10が検出するかご6の現在位置に誤差がある場合に、式(1)で表される速度-v[m/s]ではない速度でかご6が走行しているタイミングで、かご6が起点位置を通過することとなる。かご6が起点位置を通過するタイミングにおけるかご6の速度-v[m/s]は、速度-v[m/s]と異なるので、図2に示される走行パターンがそのまま適用されると、結果として着床誤差が生じることがある。着床指令部17は、位置計測部10が検出するかご6の現在位置の誤差を補正した着床制御を行う。
図3は、実施の形態1に係る着床指令部17の構成を示すブロック図である。
着床指令部17は、サンプルホールド27と、第1パターン生成部28と、第2パターン生成部29と、パターン選択部30と、パターン切替部31と、を備える。
サンプルホールド27は、的階の着床位置に対応する起点位置におけるかご6の通過のタイミングを、起点検知部11が出力する検知信号LS_tに基づいて判定する。サンプルホールド27は、かご速度演算部15が出力するv_carの信号に基づいて、当該起点位置をかご6が通過するときのかご6の速度-v[m/s]を取得する。
第1パターン生成部28および第2パターン生成部29の各々は、複数のパターン生成部の例である。各々のパターン生成部は、起点位置から着床位置までの走行パターンを互いに異なるアルゴリズムに基づいて生成する部分である。各々のパターン生成部は、起点位置の通過の直前からかご6が停止するまでかご6の加速度が連続するように、かご6の位置の波形を走行パターンとして生成する。第1パターン生成部28は、生成した位置の波形を、走行パターンx_ref_ar1の信号として出力する。第2パターン生成部29は、生成した位置の波形を、走行パターンx_ref_ar2の信号として出力する。
パターン選択部30は、各々のパターン生成部が生成した走行パターンのうちから、走行パターンx_refとして着床指令部17から出力されるものを選択する部分である。ここで、着床指令部17から出力される走行パターンは、着床モードにおいて走行パターンx_ref1の信号として出力される。このため、パターン選択部30が選択する走行パターンは、着床モードにおいて走行制御部19がかご6の走行を追従させる走行パターンとなる。パターン選択部30は、各々のパターン生成部が生成した走行パターンのうちから、着床時間が最も短くなる走行パターンを選択する。
パターン切替部31は、各々のパターン生成部が生成した走行パターンのうちから、パターン選択部30の選択に基づいて、走行パターンx_refとして出力するものを切り替える部分である。
図4は、実施の形態1に係る第1パターン生成部28の構成を示すブロック図である。
第1パターン生成部28は、定ジャークパターン生成部32と、補正パターン生成部33と、を備える。
定ジャークパターン生成部32は、ジャークが一定の走行パターンを生成する部分である。定ジャークパターン生成部32は、走行パターンとしてかご6の位置の波形を生成する。定ジャークパターン生成部32は、生成したかご6の位置の波形を走行パターンx_ref_ar11の信号として出力する。定ジャークパターン生成部32は、サンプルホールド27が取得した速度-v[m/s]を初速度として、起点位置の通過の前後においてかご6の加速度が連続性を保ち、停止するまで一定のジャークを保つ走行パターンを生成する。このときの速度-vs[m/s]は、式(1)の速度-v[m/s]と異なることがある。ここで、式(1)から式(3)と同様の関係から、起点位置を通過するタイミングのかご6の加速度a[m/s]および当該タイミングにおけるかご6の速度-vs[m/s]が決まれば、ジャーク-J[m/s]、着床時間T[s]、およびかご6が停止するまでに走行する距離x′[m]は一意に決まる。したがって、速度-v[m/s]および速度-v[m/s]が異なる場合に、かご6の走行距離x′[m]は、起点位置および着床位置の間の距離x[m]に一致しない。結果として、距離x′[m]および距離x[m]の差x[m]だけの着床誤差が生じる。
補正パターン生成部33は、定ジャークパターン生成部32が生成する走行パターンにおける着床誤差を補正する走行パターンを生成する部分である。補正パターン生成部33は、走行パターンとしてかご6の位置の波形を生成する。補正パターン生成部33は、生成したかご6の位置の波形を走行パターンx_ref_ar12の信号として出力する。補正パターン生成部33は、定ジャークパターン生成部32が生成する走行パターンにおける着床時間のうちに着床誤差を補正する走行パターンを生成する。
第1パターン生成部28は、定ジャークパターン生成部32が生成する走行パターンx_ref_ar11および補正パターン生成部33が生成する走行パターンx_ref_ar12を、加算器34において時刻を同期して加算することで重ね合わせる。第1パターン生成部28は、重ね合わせた走行パターンx_ref_ar1の信号を出力する。
続いて、図5から図7を用いて、第1パターン生成部28によって生成される走行パターンの例を説明する。
図5は、実施の形態1に係る定ジャークパターン生成部32が生成する走行パターンの例を示す図である。
図6は、実施の形態1に係る補正パターン生成部33が生成する走行パターンの例を示す図である。
図7は、実施の形態1に係る第1パターン生成部28が生成する走行パターンの例を示す図である。
図5において、定ジャークパターン生成部32が生成するジャークが一定の走行パターンの例が示される。この走行パターンにおいて、かご6は、起点位置を通過してから着床時間T′[s]のうちに距離x′[m]だけ走行した後に停止する。着床時間T′[s]は、式(2)と同様に次の式(4)で表される。
Figure 0007452760000004
また、かご6の走行距離x′[m]は、次の式(5)で表される。
Figure 0007452760000005
定ジャークパターン生成部32が生成する走行パターンx_ref_ar11は、時刻t[s]の3次関数として、次の式(6)で表される。
Figure 0007452760000006
ここで、起点位置は、実際には着床位置から距離x[m]だけ離れているので、次の式(7)で表される着床誤差xe[m]が生じる。
Figure 0007452760000007
図6において、補正パターン生成部33が生成する、式(7)の着床誤差を補正する走行パターンの例が示される。補正パターン生成部33が生成する走行パターンにおいて、かご6は、定ジャークパターン生成部32が生成する走行パターンの着床時間T′[s]のうちに、距離-x′[m]だけ走行した後に停止する。当該走行パターンにおいて、着床時間T′[s]が経過するまでの期間は、第1期間、第2期間、および第3期間の3つの期間に分けられる。第1期間は、かご6が起点位置を通過してから着床時間T′[s]の1/4が経過するまでの期間である。第2期間は、第1期間の後から着床時間T′[s]の1/2が経過するまでの期間である。第3期間は、第2期間の後から着床時間T′[s]の1/4が経過するまでの期間である。
この例の補正パターン生成部33が生成する走行パターンにおいて、時間T′[s]にわたるジャークの積分値は0になる。当該走行パターンにおいて、ジャークは区分的に一定な値に設定される。当該走行パターンにおいて、ジャークは、第1期間、第2期間、および第3期間の各々で一定の値に設定される。第1期間のジャークの方向は、着床誤差を補償する方向に設定される。第2期間のジャークの方向は、第1期間のジャークの反対方向に設定される。第3期間のジャークの方向は、第1期間のジャークと同じ方向に設定される。第1期間、第2期間、および第3期間の各々のジャークの絶対値は、互いに同じ大きさに設定される。
この例の補正パターン生成部33が生成する走行パターンにおいて、時間T′[s]にわたる加速度の積分値は0になる。当該走行パターンにおいて、かご6が起点位置を通過するタイミングにおける加速度は0に設定される。当該走行パターンにおいて、かご6が起点位置を通過するタイミングにおける速度は0に設定される。
これらの条件から、第1期間において補正パターン生成部33が生成する走行パターンx_ref_ar12は、時刻t[s]の3次関数として、次の式(8)で表される。
Figure 0007452760000008
ここで、第1期間、第2期間、および第3期間におけるジャークの絶対値Je[m/s]は、着床時間T′[s]が経過するまでにかご6が距離-x′[m]だけ走行するように設定される。ジャークの絶対値J[m/s]は、次の式(9)によって表される。
Figure 0007452760000009
また、第2期間において補正パターン生成部33が生成する走行パターンx_ref_ar12は、時刻t[s]の3次関数として、次の式(10)で表される。
Figure 0007452760000010
また、第3期間において補正パターン生成部33が生成する走行パターンx_ref_ar12は、時刻t[s]の3次関数として、次の式(11)で表される。
Figure 0007452760000011
図7において、第1パターン生成部28が生成する走行パターンの例が示される。第1パターン生成部28は、走行パターンの生成において、定ジャークパターン生成部32が生成する走行パターンx_ref_ar11および補正パターン生成部33が生成する走行パターンx_ref_ar12を重ね合わせる。すなわち、第1パターン生成部28が生成する走行パターンにおけるかご6の位置x_ref_ar1は、時刻t[s]の関数として次の式(12)で表される。
Figure 0007452760000012
このように、第1パターン生成部28が生成する走行パターンにおいて、制御モードが階間走行モードから着床モードに切り替えられる前後、および着床モードの間で、かご6の加速度、速度、および位置の連続性は保たれている。このため、着床制御中のかご6の振動が誘発されにくくなる。また、補正パターン生成部33が生成する走行パターンによって着床誤差が補正されるので、第1パターン生成部28が生成する走行パターンにおける着床モードの間の走行距離はx[m]となる。また、第1パターン生成部28が生成する走行パターンの着床時間は、定ジャークパターン生成部32が生成する走行パターンの着床時間T′[s]に一致する。
続いて、図8を用いて、第2パターン生成部29によって生成される走行パターンの例を説明する。
図8は、実施の形態1に係る第2パターン生成部29が生成する走行パターンの例を示す図である。
第2パターン生成部29は、かご6が停止するまでジャークの絶対値が時間の一次関数として増加する走行パターンを生成する。当該走行パターンにおいて、かご6が停止するまでジャークの時間微分である加加加速度が一定に保たれる。当該走行パターンは、かご6の起点位置の通過のタイミングにおけるジャーク-α[m/s]およびかご6が停止するタイミングにおけるジャーク-β[m/s]の2つのパラメータによって設定される。すなわち、ジャークが一定の走行パターンに対してパラメータは1つ多い。このため、起点位置を通過するタイミングのかご6の加速度a[m/s]および当該タイミングにおけるかご6の速度-v[m/s]に加えてかご6の走行距離x[m]が決まると、着床時間T′′[s]ならびに2つのパラメータα[m/s]およびβ[m/s]が一意に決まる。
時刻0において、かご6の位置は、目的階の着床位置に対応する起点位置に設けられた検知体14の位置であるx[m]である。すなわち、着床誤差が生じないために、かご6が停止するまでに走行する距離はx[m]である必要がある。また、かご6が起点位置を通過するタイミングにおけるかご6の加速度は、起点位置の通過の前後において連続性が保たれるように、減速期間について予め設定された一定値a[m/s]である。また、当該タイミングにおけるかご6の速度は、サンプルホールド27が取得した速度-v[m/s]である。この条件から、着床時間T′′[s]ならびに2つのパラメータα[m/s]およびβ[m/s]は、次の式(13)から式(15)によって表される。
Figure 0007452760000013
Figure 0007452760000014
Figure 0007452760000015
これらを用いて、第2パターン生成部29が生成する走行パターンにおけるかご6の位置x_ref_ar2は、時刻t[s]の4次関数として次の式(16)で表される。
Figure 0007452760000016
このように、第2パターン生成部29が生成する走行パターンにおいて、制御モードが階間走行モードから着床モードに切り替えられる前後、および着床モードの間で、かご6の加速度、速度、および位置の連続性は保たれている。このため、着床制御中のかご6の振動が誘発されにくくなる。また、第2パターン生成部29が生成する走行パターンにおける走行距離は起点位置および着床位置の間の距離x[m]に一致するので、着床誤差は生じない。
続いて、図9から図11を用いて、第1パターン生成部28および第2パターン生成部29の各々が生成する走行パターンの着床時間について説明する。
図9は、実施の形態1に係るパターン生成部が生成する走行パターンにおける着床時間およびかご6の速度の関係を示す図である。
図10は、実施の形態1に係る第1パターン生成部28が生成する走行パターンの例を示す図である。
図11は、実施の形態1に係る第1パターン生成部28が生成する走行パターンの例を示す図である。
図9において、縦軸は、位置計測部10に検出されるかご6の現在位置に誤差がないとした場合の着床時間T[s]に対する、各々の走行パターンにおける着床時間T′[s]またはT′′[s]の比を表す。ここで、かご6が起点位置を通過するタイミングにおいてサンプルホールド27が取得した実際のかご6の速度の絶対値|v|を、第1速度と称する。位置計測部10に検出されるかご6の現在位置に誤差がないとした場合のかご6が起点位置を通過するタイミングの速度の絶対値|v|を、第2速度と称する。図9において、横軸は、第2速度|v|に対する第1速度|v|の比を表す。図9において、破線のグラフは、第1パターン生成部28が生成する走行パターンについての関係を表す。図9において、実線のグラフは、第2パターン生成部29が生成する走行パターンについての関係を表す。図9に示される関係において、起点位置x[m]および当該起点位置を通過するときのかご6の加速度a[m/s]は、予め設定された値に固定されている。
第1パターン生成部28が生成する走行パターンにおける着床時間T′[s]は、式(4)によって表される。このため、式(2)から、着床時間の比T′/Tは、速度の比|v|/|v|の増加に対して単調に増加する。第1速度|v|および第2速度|v|が一致する場合、すなわち|v|/|v|=1の場合に、着床時間の比はT′/T=1となる。このことから、第1速度|v|が第2速度|v|より小さい場合に、第1パターン生成部28が生成する走行パターンにおける着床時間T′[s]は、かご6が停止するまで一定のジャークが保たれる走行パターンにおける着床時間T[s]より短くなる。
第2パターン生成部29が生成する走行パターンにおける着床時間T′[s]は、式(13)によって表される。このため、式(2)から、着床時間の比T′/Tは、速度の比|v|/|v|の増加に対して単調に減少する。第1速度|v|および第2速度|v|が一致する場合、すなわち|v|/|v|=1の場合に、着床時間の比はT′/T=1となる。このことから、第1速度|v|が第2速度|v|より大きい場合に、第2パターン生成部29が生成する走行パターンにおける着床時間T′[s]は、かご6が停止するまで一定のジャークが保たれる走行パターンにおける着床時間T[s]より短くなる。
着床指令部17は、複数のパターン生成部として、第1パターン生成部28および第2パターン生成部29を備える。このため、パターン選択部30は、第1パターン生成部28および第2パターン生成部29の各々が生成した走行パターンのうちから、着床時間が短くなる方の走行パターンを選択する。パターン選択部30は、第1速度|v|が第2速度|v|より小さい場合に、第1パターン生成部28が生成する走行パターンを生成する。パターン選択部30は、第1速度|v|が第2速度|v|より大きい場合に、第2パターン生成部29が生成する走行パターンを生成する。これにより、かご6が停止するまでの着床時間は、第1速度|v|および第2速度|v|の大小によらずに、かご6が停止するまで一定のジャークが保たれる走行パターンにおける着床時間T[s]以下となる。また、いずれのパターン生成部が生成する走行パターンにおいても、加速度などの連続性は保たれているため、かご6の振動が誘発されることによる乗り心地の悪化が抑えられる。
図10において、第1パターン生成部28が生成する走行パターンが実線で示される。また、かご6が停止するまで一定のジャークが保たれる図2の走行パターンが破線で示される。この図から、第1速度|v|が第2速度|v|より小さい場合に、第1パターン生成部28が生成する走行パターンの着床時間T′[s]は、定ジャークの走行パターンの着床時間T[m]より短いことが確認できる。
図11において、第2パターン生成部29が生成する走行パターンが実線で示される。また、かご6が停止するまで一定のジャークが保たれる図2の走行パターンが破線で示される。この図から、第1速度|v|が第2速度|v|より大きい場合に、第2パターン生成部29が生成する走行パターンの着床時間T′′[s]は、定ジャークの走行パターンの着床時間T[m]より短いことが確認できる。
続いて、図12から図14を用いて、制御システム8の動作の例を説明する。
図12から図14は、実施の形態1に係る制御システム8の動作の例を示すフローチャートである。
図12において、着床位置への着床制御に係る制御システム8の処理の例が示される。
図12の処理は、起点検知部11がかご6の起点位置の通過を検知するときに開始される。
ステップS1において、着床指令部17のサンプルホールド27は、かご6が起点位置を通過するときのかご6の速度v[m/s]を取得する。その後、制御システム8は、ステップS2の処理に進む。
ステップS2において、パターン選択部30は、第1速度|v|が第2速度|v|より小さいかを判定する。判定結果がYesの場合に、制御システム8は、ステップS3の処理に進む。一方、判定結果がNoの場合に、制御システム8は、ステップS4の処理に進む。
ステップS3において、第1パターン生成部28は、走行パターンの生成処理を行う。その後、制御システム8は、ステップS5の処理に進む。
ステップS4において、第2パターン生成部29は、走行パターンの生成処理を行う。その後、制御システム8は、ステップS5の処理に進む。
ステップS5において、走行制御部19は、生成された走行パターンにかご6の走行を追従させて着床位置に停止させる。その後、制御システム8は、ステップS6の処理に進む。
ステップS6において、制御システム8は、かご6が停止した後に、かご6の停止位置および着床位置の差異を取得する。ここで取得された差異は、着床動作の判定を行うための情報として用いられる。その後、制御システム8は、着床制御に係る処理を終了する。
図13において、図12のステップS3における、第1パターン生成部28の走行パターンの生成処理の例が示される。
ステップS31において、定ジャークパターン生成部32は、ジャークが一定の走行パターンの演算式における係数を計算する。このとき、定ジャークパターン生成部32は、かご6の走行距離x′[m]および着床時間T′[s]を計算する。その後、第1パターン生成部28は、ステップS32の処理に進む。
ステップS32において、補正パターン生成部33は、着床時間T′[s]のうちに着床誤差x[m]を補正する走行パターンの演算式における係数を計算する。その後、第1パターン生成部28は、ステップS33の処理に進む。
ステップS33において、第1パターン生成部28は、起点位置の通過から着床位置まで走行する間の処理回数nを計算する。第1パターン生成部28は、着床時間T′[s]を演算周期T[s]で割った自然数nとして、処理回数nを計算する。第1パターン生成部28は、ループ変数kを0に初期化する。その後、第1パターン生成部28は、ステップS34の処理にすすむ。
ステップS34において、第1パターン生成部28は、ループ変数kに1を加算する。その後、ステップS35において、定ジャークパターン生成部32は、生成した走行パターンのk番目の時刻点におけるかご6の位置x1(k)を算出する。その後、ステップS36において、補正パターン生成部33は、生成した走行パターンのk番目の時刻におけるかご6の位置x2(k)を算出する。その後、ステップS37において、加算器34は、位置x1(k)および位置x2(k)を加算して、第1パターン生成部28が生成する走行パターンのk番目の時刻点の位置におけるかご6の位置x(k)として出力する。その後、ステップS38において、第1パターン生成部28は、ループ変数kが処理回数n以上であるかを判定する。判定結果がNoの場合に、第1パターン生成部28は、ステップS34の処理に進む。一方、判定結果がYesの場合に、第1パターン生成部28は、走行パターンの生成処理を終了する。
図14において、図12のステップS4における、第2パターン生成部29の走行パターンの生成処理の例が示される。
ステップS41において、第2パターン生成部29は、ジャークの絶対値が時間の一次関数として増加する走行パターンの演算式における係数を計算する。このとき、第2パターン生成部29は、着床時間T′′[s]を計算する。その後、第2パターン生成部29は、ステップS42の処理に進む。
ステップS42において、第2パターン生成部29は、起点位置の通過から着床位置まで走行する間の処理回数nを計算する。第2パターン生成部29は、着床時間T′′[s]を演算周期T[s]で割った自然数nとして、処理回数nを計算する。第2パターン生成部29は、ループ変数kを0に初期化する。その後、第2パターン生成部29は、ステップS43の処理にすすむ。
ステップS43において、第2パターン生成部29は、ループ変数kに1を加算する。その後、ステップS44において、第2パターン生成部29は、生成した走行パターンのk番目の時刻点におけるかご6の位置x(k)を算出する。その後、ステップS45において、第2パターン生成部29は、算出したx(k)を出力する。その後、ステップS46において、第2パターン生成部29は、ループ変数kが処理回数n以上であるかを判定する。判定結果がNoの場合に、第2パターン生成部29は、ステップS43の処理に進む。一方、判定結果がYesの場合に、第2パターン生成部29は、走行パターンの生成処理を終了する。
なお、制御システム8は、3つ以上のパターン生成部を含んでいてもよい。パターン生成部は、ステップ関数または一次関数などの他の関数によってジャークと時間との関係が定められる走行パターンを生成してもよい。このとき、当該関数は、例えば2つ以上のパラメータによって設定される関数などが選択される。また、各々のパターン生成部は、位置波形を出力する代わりに、速度波形を出力してもよい。このとき、制御システム8は、速度制御に基づく着床制御を行うエレベーター1においても適用できる。
また、位置計測部10は、APSのセンサでなくてもよい。位置計測部10は、例えばガバナなどによってかご6の位置を検出するものであってもよい。
以上に説明したように、実施の形態1に係る制御システム8は、位置計測部10と、起点検知部11と、複数のパターン生成部と、走行制御部19と、パターン選択部30と、を備える。位置計測部10は、かご6の走行方向における現在位置を検出する。起点検知部11は、かご6の着床位置から予め設定された距離離れた起点位置におけるかご6の通過を検知する。各々のパターン生成部は、起点位置から着床位置までの走行パターンを、互いに異なるアルゴリズムに基づいて生成する。各々の走行パターンにおいて、かご6が起点位置を通過する前からかご6が停止するまでの加速度は連続である。走行制御部19は、位置計測部10が検出するかご6の現在位置に基づいて、いずれかのパターン生成部が生成した走行パターンにかご6の走行を追従させる。パターン選択部30は、各々のパターン生成部が生成する走行パターンのうちから、着床時間が最も短い走行パターンを、走行制御部19がかご6の走行を追従させる走行パターンとして選択する。着床時間は、起点位置から着床位置までの走行に要する時間である。パターン選択部30は、起点検知部11がかご6の通過を検知したタイミングにおけるかご6の速度に基づいて、当該選択を行う。
また、実施の形態1に係るエレベーター1の制御方法は、起点検知工程と、速度取得工程と、パターン選択工程と、走行制御工程と、を備える。起点検知工程は、起点位置におけるかご6の通過を検知する工程である。速度取得工程は、起点検知工程でかご6の起点位置の通過が検知されたタイミングにおけるかご6の速度を取得する工程である。パターン選択工程は、互いに異なるアルゴリズムに基づく複数の走行パターンのうちから、着床時間が最も短い走行パターンを選択する工程である。各々の走行パターンは、起点位置から着床位置までの走行パターンである。各々の走行パターンにおいて、かご6が起点位置を通過する前からかご6が停止するまで加速度が連続である。パターン選択工程において、速度取得工程で取得されたかご6の速度に基づいて選択が行われる。走行制御工程は、かご6の現在位置に基づいて、パターン選択工程において選択された走行パターンにかご6の走行を追従させる工程である。
このような構成により、起点位置の通過の直前からかご6が停止するまで、加速度が連続性を保つようにかご6の走行が制御される。このため、かご6の振動が誘発されにくくなるので、着床制御中の乗り心地の悪化が抑えられる。また、複数の走行パターンのうち着床時間が最も短い走行パターンが選択されるので、エレベーター1の利用者の利便性が向上する。すなわち、利用者の乗り心地の悪化の抑制、および利便性の向上が両立する。
また、制御システム8は、パターン生成部として第1パターン生成部28を含む。第1パターン生成部28は、定ジャークパターンおよび補正パターンを重ね合わせた走行パターンを生成する。定ジャークパターンは、起点検知部11がかご6の通過を検知したタイミングにおけるかご6の速度を初速度とし、かご6が停止するまで一定のジャークを保つ走行パターンである。補正パターンは、定ジャークパターンによる着床誤差を、定ジャークパターンにおける着床時間のうちに補正する走行パターンである。
このような構成により、利用者の乗り心地がよい定ジャークによる走行パターンを基にして、着床誤差が補正された走行パターンが生成される。このため、利用者の乗り心地の悪化の抑制、および利便性の向上がより効果的に両立するようになる。
また、制御システム8は、パターン生成部として第2パターン生成部29を含む。第2パターン生成部29は、起点検知部11がかご6の通過を検知したタイミングにおけるかご6の速度に応じて、かご6が停止するまでジャークの絶対値が時間の一次関数として増加する走行パターンを生成する。
このような構成により、ジャークが急激に変化せず利用者の乗り心地のよい走行パターンが生成される。このため、利用者の乗り心地の悪化の抑制、および利便性の向上がより効果的に両立するようになる。
また、起点検知部11がかご6の通過を検知したタイミングにおけるかご6の速度の絶対値を、第1速度とする。位置計測部10が計測するかご6の現在位置に誤差がないとした場合の起点位置におけるかご6の速度の絶対値を、第2速度とする。パターン選択部30は、第1速度が第2速度より小さい場合に、第1パターン生成部28が生成する走行パターンを選択する。パターン選択部30は、第1速度が第2速度より大きい場合に、第2パターン生成部29が生成する走行パターンを選択する。
第1パターン生成部28および第2パターン生成部29が生成する走行パターンにおいて、第2速度および着床時間の関係は、式(4)および式(13)などの初等関数による計算式で表される。このため、いずれの走行パターンの着床時間が短いかの判定条件は、これらの式などに基づいて事前に設定できる条件となる。この例において、いずれの走行パターンの着床時間が短いかは、第1速度および第2速度の大小関係によって判定できる。このため、パターン選択部30は、かご6が起点位置を通過するタイミングにおいて、当該タイミングのかご6の速度に基づいていずれの走行パターンの着床時間が短いかを速やかに判定できるようになる。これにより、走行パターンの選択に係るタイムラグが低減される。このため、利用者の乗り心地の悪化の抑制、および利便性の向上がより効果的に両立されるようになる。
続いて、図15を用いて、制御システム8のハードウェア構成の例について説明する。
図15は、実施の形態1に係る制御システム8の主要部のハードウェア構成図である。
制御システム8の各機能は、処理回路により実現し得る。処理回路は、少なくとも1つのプロセッサ100aと少なくとも1つのメモリ100bとを備える。処理回路は、プロセッサ100aおよびメモリ100bと共に、あるいはそれらの代用として、少なくとも1つの専用ハードウェア200を備えてもよい。
処理回路がプロセッサ100aとメモリ100bとを備える場合、制御システム8の各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせで実現される。ソフトウェアおよびファームウェアの少なくとも一方は、プログラムとして記述される。そのプログラムはメモリ100bに格納される。プロセッサ100aは、メモリ100bに記憶されたプログラムを読み出して実行することにより、制御システム8の各機能を実現する。
プロセッサ100aは、CPU(Central Processing Unit)、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、DSPともいう。メモリ100bは、例えば、RAM、ROM、フラッシュメモリ、EPROM、EEPROMなどの、不揮発性または揮発性の半導体メモリなどにより構成される。
処理回路が専用ハードウェア200を備える場合、処理回路は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、またはこれらの組み合わせで実現される。
制御システム8の各機能は、それぞれ処理回路で実現することができる。あるいは、制御システム8の各機能は、まとめて処理回路で実現することもできる。制御システム8の各機能について、一部を専用ハードウェア200で実現し、他部をソフトウェアまたはファームウェアで実現してもよい。このように、処理回路は、専用ハードウェア200、ソフトウェア、ファームウェア、またはこれらの組み合わせで制御システム8の各機能を実現する。
実施の形態2.
実施の形態2において、実施の形態1で開示される例と相違する点について特に詳しく説明する。実施の形態2で説明しない特徴については、実施の形態1で開示される例のいずれの特徴が採用されてもよい。
図16は、実施の形態2に係るエレベーター1の構成図である。
この例において、エレベーター1の制御システム8は、位置計測部10を含んでいない。制御システム8は、位置計測部10に代えて、かご状態推定部35を備える。
かご状態推定部35は、かご6の状態を推定する部分である。かご状態推定部35は、制御装置12に搭載される。かご状態推定部35が推定するかご6の状態は、かご6の走行方向における現在位置およびかご6の速度などである。かご状態推定部35は、かご6の走行方向における現在位置を推定によって検出する部分である。かご状態推定部35は、位置検出部の例である。かご状態推定部35は、エンコーダ9から受け付けた信号に基づいて、かご6の現在位置を推定する。かご状態推定部35は、検出したかご6の現在位置x_carの信号を制御装置12の減算器24に出力する。また、かご状態推定部35は、例えばかご6の現在位置の時間微分などによって、かご6の速度を推定する。かご状態推定部35は、推定したかご6の速度v_carの信号を制御装置12の着床指令部17に出力する。
なお、モータ3、シーブ4、および主ロープ5を通じたかご6までの伝達特性が無視できる程度に昇降工程の短いエレベーター1において、かご状態推定部35は、省略されてもよい。このとき、制御システム8は、かご状態推定部35に替えて、かご速度演算部15を備えていてもよい。一方、モータ3、シーブ4、および主ロープ5を通じたかご6までの伝達特性が無視できない程度に昇降工程の長いエレベーター1において、状態推定部は、例えば2次フィルタなどによって構成される。
このような構成においても、起点位置の通過の直前からかご6が停止するまで、加速度が連続性を保つようにかご6の走行が制御される。このため、かご6の振動が誘発されにくくなるので、着床制御中の乗り心地の悪化が抑えられる。また、複数の走行パターンのうち着床時間が最も短い走行パターンが選択されるので、エレベーター1の利用者の利便性が向上する。すなわち、利用者の乗り心地の悪化の抑制、および利便性の向上が両立する。
本開示に係る制御システムおよび制御方法は、エレベーターに適用できる。
1 エレベーター、 2 昇降路、 3 モータ、 4 シーブ、 5 主ロープ、 6 かご、 7 釣合い錘、 8 制御システム、 9 エンコーダ、 10 位置計測部、 11 起点検知部、 12 制御装置、 13 コードテープ、 14 検知体、 15 かご速度演算部、 16 走行指令部、 17 着床指令部、 18 制御モード切替部、 19 走行制御部、 20 かご位置制御部、 21 モータ速度演算部、 22 モータ速度制御部、 23 モータ電流制御部、 24、25 減算器、 26 電流検出器、 27 サンプルホールド、 28 第1パターン生成部、 29 第2パターン生成部、 30 パターン選択部、 31 パターン切替部、 32 定ジャークパターン生成部、 33 補正パターン生成部、 34 加算器、 35 かご状態推定部、 100a プロセッサ、 100b メモリ、 200 専用ハードウェア

Claims (5)

  1. かごの走行方向における現在位置を検出する位置検出部と、
    前記かごの着床位置から予め設定された距離離れた起点位置における前記かごの通過を検知する起点検知部と、
    前記起点位置から前記着床位置までの前記かごが前記起点位置を通過する前から前記かごが停止するまで加速度が連続な走行パターンを、互いに異なるアルゴリズムに基づいて各々が生成する複数のパターン生成部と、
    前記位置検出部が検出する前記かごの現在位置に基づいて、前記かごの走行を前記複数のパターン生成部のいずれかが生成した走行パターンに追従させる走行制御部と、
    前記複数のパターン生成部の各々が生成する走行パターンのうちから、前記起点検知部が前記かごの通過を検知したタイミングにおける前記かごの速度に基づいて、前記起点位置から前記着床位置までの走行に要する着床時間が最も短い走行パターンを、前記走行制御部が前記かごの走行を追従させる走行パターンとして選択するパターン選択部と、
    を備えるエレベーターの制御システム。
  2. 前記複数のパターン生成部は、前記起点検知部が前記かごの通過を検知したタイミングにおける前記かごの速度を初速度とし前記かごが停止するまで一定のジャークを保つパターン、および当該パターンによる着床誤差を当該パターンにおける着床時間のうちに補正するパターンを重ね合わせた走行パターンを生成する第1パターン生成部を含む
    請求項1に記載のエレベーターの制御システム。
  3. 前記複数のパターン生成部は、前記起点検知部が前記かごの通過を検知したタイミングにおける前記かごの速度に応じて、前記かごが停止するまでジャークの絶対値が時間の一次関数として増加する走行パターンを生成する第2パターン生成部を含む
    請求項1または請求項2に記載のエレベーターの制御システム。
  4. 前記複数のパターン生成部は、
    前記起点検知部が前記かごの通過を検知したタイミングにおける前記かごの速度を初速度とし前記かごが停止するまで一定のジャークを保つパターン、および当該パターンによる着床誤差を当該パターンにおける着床時間のうちに補正するパターンを重ね合わせた走行パターンを生成する第1パターン生成部と、
    前記起点検知部が前記かごの通過を検知したタイミングにおける前記かごの速度に応じて、前記かごが停止するまでジャークの絶対値が時間の一次関数として増加する走行パターンを生成する第2パターン生成部と、
    を含み、
    前記パターン選択部は、前記起点検知部が前記かごの通過を検知したタイミングにおける前記かごの速度の絶対値を第1速度とし、前記位置検出部が検出する前記かごの現在位置に誤差がないとした場合の前記起点位置における前記かごの速度の絶対値を第2速度とし、前記第1速度が前記第2速度より小さい場合に前記第1パターン生成部が生成する走行パターンを選択し、前記第1速度が前記第2速度より大きい場合に前記第2パターン生成部が生成する走行パターンを選択する
    請求項1に記載のエレベーターの制御システム。
  5. かごの着床位置から予め設定された距離離れた起点位置における前記かごの通過を検知する起点検知工程と、
    前記起点検知工程で前記かごの前記起点位置の通過が検知されたタイミングにおける前記かごの速度を取得する速度取得工程と、
    前記起点位置から前記着床位置までの、前記かごが前記起点位置を通過する前から前記かごが停止するまで加速度が連続な、互いに異なるアルゴリズムに基づく複数の走行パターンのうちから、前記速度取得工程において取得された前記かごの速度に基づいて、前記起点位置から前記着床位置までの走行に要する着床時間が最も短い走行パターンを選択するパターン選択工程と、
    前記かごの現在位置に基づいて、前記パターン選択工程において選択された走行パターンに前記かごの走行を追従させる走行制御工程と、
    を備えるエレベーターの制御方法。
JP2023514193A 2021-04-12 2021-04-12 エレベーターの制御システムおよびエレベーターの制御方法 Active JP7452760B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/015193 WO2022219682A1 (ja) 2021-04-12 2021-04-12 エレベーターの制御システムおよびエレベーターの制御方法

Publications (2)

Publication Number Publication Date
JPWO2022219682A1 JPWO2022219682A1 (ja) 2022-10-20
JP7452760B2 true JP7452760B2 (ja) 2024-03-19

Family

ID=83640253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023514193A Active JP7452760B2 (ja) 2021-04-12 2021-04-12 エレベーターの制御システムおよびエレベーターの制御方法

Country Status (4)

Country Link
US (1) US20240116736A1 (ja)
JP (1) JP7452760B2 (ja)
CN (1) CN117177929A (ja)
WO (1) WO2022219682A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4691807A (en) 1986-03-05 1987-09-08 Mitsubishi Denki Kabushiki Kaisha Elevator control apparatus
JP2007254050A (ja) 2006-03-20 2007-10-04 Toshiba Elevator Co Ltd エレベータの着床制御装置
WO2011030402A1 (ja) 2009-09-09 2011-03-17 三菱電機株式会社 エレベータの制御装置
JP2011153020A (ja) 2010-01-28 2011-08-11 Mitsubishi Electric Corp エレベータの速度制御装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02239076A (ja) * 1989-03-09 1990-09-21 Toshiba Corp エレベータ制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4691807A (en) 1986-03-05 1987-09-08 Mitsubishi Denki Kabushiki Kaisha Elevator control apparatus
JP2007254050A (ja) 2006-03-20 2007-10-04 Toshiba Elevator Co Ltd エレベータの着床制御装置
WO2011030402A1 (ja) 2009-09-09 2011-03-17 三菱電機株式会社 エレベータの制御装置
JP2011153020A (ja) 2010-01-28 2011-08-11 Mitsubishi Electric Corp エレベータの速度制御装置

Also Published As

Publication number Publication date
US20240116736A1 (en) 2024-04-11
WO2022219682A1 (ja) 2022-10-20
CN117177929A (zh) 2023-12-05
JPWO2022219682A1 (ja) 2022-10-20

Similar Documents

Publication Publication Date Title
US7992689B2 (en) Movement control of an elevator system using position deviation to determine loading state
KR102044340B1 (ko) 엘리베이터의 제어 장치 및 가버너 로프 신축량 추정 방법
JP6288291B2 (ja) エレベータの制御装置
JP6490238B2 (ja) エレベーターの制御装置
JP7452760B2 (ja) エレベーターの制御システムおよびエレベーターの制御方法
FI96674C (fi) Menetelmä ja laite asennoittimen käyttimen säätelemiseen, erityisesti hissilaitteistoissa
JP4727234B2 (ja) エレベータ装置
JP2005289627A (ja) エレベータ
JP2010180026A (ja) エレベーターの制御装置
WO2021240593A1 (ja) エレベーターの着床制御システム
JP5850801B2 (ja) エレベータおよびその速度制御方法
JP6611882B2 (ja) エレベータの制御装置およびガバナロープ伸縮量推定方法
WO2023203622A1 (ja) かご位置制御装置
JP6306135B1 (ja) エレベータ制御装置
JP5177850B2 (ja) エレベータの着床制御装置
JP4216671B2 (ja) エレベータ用秤装置の較正装置、及びエレベータ用秤装置の較正方法
JP5029799B2 (ja) エレベータの着床制御装置
WO2023238321A1 (ja) エレベーター
KR102205550B1 (ko) 엘리베이터의 제어 장치 및 권상 로프의 신축량 추정 방법
JP2004010345A (ja) エレベーター装置
JPH0351275A (ja) エレベータの制御装置
JP2004091199A (ja) エレベータの制御装置
CN114026037A (zh) 电梯的控制装置
JPH07115808B2 (ja) エレベータの制御装置
JPH04280780A (ja) リニアモータを用いたエレベータの制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240219

R150 Certificate of patent or registration of utility model

Ref document number: 7452760

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150