JP7447218B2 - 蓄電池 - Google Patents

蓄電池 Download PDF

Info

Publication number
JP7447218B2
JP7447218B2 JP2022171313A JP2022171313A JP7447218B2 JP 7447218 B2 JP7447218 B2 JP 7447218B2 JP 2022171313 A JP2022171313 A JP 2022171313A JP 2022171313 A JP2022171313 A JP 2022171313A JP 7447218 B2 JP7447218 B2 JP 7447218B2
Authority
JP
Japan
Prior art keywords
storage battery
battery
terminal
positive electrode
battery cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022171313A
Other languages
English (en)
Other versions
JP2023011729A (ja
Inventor
正樹 山梶
純平 桃
亮太 田島
崇廣 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of JP2023011729A publication Critical patent/JP2023011729A/ja
Application granted granted Critical
Publication of JP7447218B2 publication Critical patent/JP7447218B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/488Cells or batteries combined with indicating means for external visualization of the condition, e.g. by change of colour or of light density
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/126Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
    • H01M50/129Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers with two or more layers of only organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Mounting, Suspending (AREA)

Description

本発明の一形態は、可撓性を有する蓄電池及び電子機器に関する。
なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する発明の
一態様の技術分野は、物、方法、または、製造方法に関するものである。または、本発明
の一態様は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・
オブ・マター)に関するものである。そのため、より具体的に本明細書で開示する本発明
の一態様の技術分野としては、半導体装置、表示装置、液晶表示装置、発光装置、照明装
置、蓄電池、記憶装置、それらの駆動方法、または、それらの製造方法、を一例として挙
げることができる。
近年、リチウムイオン蓄電池等の蓄電池、リチウムイオンキャパシタ、空気電池、燃料電
池等、種々の蓄電池の開発が盛んに行われている。特に高出力、高エネルギー密度である
リチウムイオン蓄電池は、携帯電話やスマートフォン、ノート型パーソナルコンピュータ
等の携帯情報端末、携帯音楽プレーヤ、デジタルカメラ等の電子機器、あるいは医療機器
、ハイブリッド車(HEV)、電気自動車(EV)、又はプラグインハイブリッド車(P
HEV)等の次世代クリーンエネルギー自動車、定置用蓄電池など、半導体産業の発展お
よび省エネルギー化の要求の高まりに伴い急速にその需要が拡大し、現代社会に不可欠な
ものとなっている。さらに近年、フレキシブルデバイス或いはウエアラブルデバイスに対
する期待が高まっており、デバイスの変形に追従して変形することができる可撓性を有す
るリチウムイオン蓄電池、すなわち、可撓性を有する蓄電池の開発が急務であり、一部開
始されている(特許文献1)。
非水系蓄電池の一つであるリチウムイオン蓄電池は、正極と、負極と、セパレータと、非
水電解液と、これらを覆う外装体と、を有する。一般的に、リチウムイオン蓄電池では、
アルミニウム等の金属からなる正極集電体の両面にリチウムイオンを吸蔵及び放出するこ
とができる正極活物質を含む正極合剤を塗布した正極と、銅等からなる負極集電体の両面
にリチウムイオンを吸蔵及び放出することができる負極活物質を含む負極合剤を塗布した
負極が用いられる。また、これら正極と負極の間にセパレータが挟まれることで絶縁され
、正極及び負極は、外装体に設けられた正極端子及び負極端子と電気的に接続されている
。外装体は、円筒形や角形等の一定の形状を有する。
特開2008-146917号公報
可撓性を有するリチウムイオン蓄電池は、変形の回数が増すごとに、電池の各部材や電解
液を保持する外装体に疲労(ダメージ)が蓄積される。疲労(ダメージ)の蓄積が進むと
、やがて外装体または封止構造が破壊され、蓄電池内部に空気が入り込むという問題が発
生する場合がある。また、蓄電池の正極及び負極のタブ電極(端子部)において疲労が蓄
積し、やがて端子部が破壊され蓄電池が機能しなくなる場合もある。
リチウムイオン蓄電池が破損し内部に空気が入り込むと、蓄電池の内部の部材が空気や水
分と反応し、熱を発してやがて発火する場合があり、さらに爆発といった重大事故につな
がることもある。これを防ぐために、外装体等が破損したことを検知して警告を発する仕
組みを導入しても、外装体等が破損した後ではこのような重大事故を未然に防止すること
は難しい。
そのため、構成部材の疲労(ダメージ)の蓄積が進み、破損が生じる前に使用者に警告を
与えることができる蓄電池が必要である。
上記に鑑み、本発明の一態様は、可撓性を有する蓄電池において、構成部材に疲労(ダメ
ージ)による損傷が生じる前に使用者に警告することができる機能を有する蓄電池を提供
することを課題の一つとする。または、可撓性を有する蓄電池における安全性の確保を実
現することを課題の一つとする。
また、本発明の一態様は、可撓性を有する安全性の高いリチウムイオン蓄電池または電子
機器を提供することを課題の一つとする。または、本発明の一態様は、新規のリチウムイ
オン蓄電池、または、新規な電子機器などを提供することを課題の一つとする。
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一
態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課題
は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図
面、請求項などの記載から、これら以外の課題を抽出することが可能である。
本発明の一態様は、正極と、負極と、正極と前記負極との間のセパレータと、正極と、負
極と、セパレータと、を包む外装体と、外装体に沿って設けられた配線と、を有し、配線
の少なくとも一部は、外装体よりも変形に対して脆弱である、可撓性を有する蓄電池であ
る。
また、本発明の他の一態様は、正極と、負極と、タブ電極と、配線と、正極と負極との間
のセパレータと、正極と、負極と、セパレータと、を包む外装体と、を有し、タブ電極は
、正極または負極の一方と接続され、配線は、タブ電極に沿って設けられ、配線の少なく
とも一部は、タブ電極よりも変形に対して脆弱である、可撓性を有する蓄電池である。
なお、本発明の一態様において、配線は第1の回路と電気的に接続され、第1の回路は、
配線の損傷を検知することができる機能を有する可撓性を有する蓄電池としてもよい。ま
た、第1の回路を内包する可撓性を有する蓄電池としてもよい。さらに、第1の回路は、
配線の損傷を検知したときに、損傷を検知していない状態とは異なる信号を発信すること
ができる機能を有する可撓性を有する蓄電池としてもよい。
また、本発明の一態様に係る蓄電池を有し、さらに表示部と、第1の回路と、を有し、第
1の回路は、配線と電気的に接続され、第1の回路は、配線の損傷を検知することができ
る機能を有する、可撓性を有する電子機器としてもよい。また、本発明の一態様に係る蓄
電池を有し、さらに表示部と、第1の回路と、を有し、第1の回路は、配線と電気的に接
続され、第1の回路は、配線の損傷を検知することができる機能を有し、表示部は、第1
の回路が配線の損傷を検知したときに損傷を検知していない状態とは異なる表示をするこ
とができる機能を有する可撓性を有する電子機器としてもよい。
本発明の一態様においては、疲労(ダメージ)にさらされる部材に、該部材よりも脆弱な
配線を該部材に沿って設け、該部材が変形する際は同時に該配線も連動して変形する機構
とする。すると、変形による疲労(ダメージ)を該部材のみならず、該配線も受ける。そ
のため、該部材と該配線とは同様の疲労(ダメージ)を蓄積することとなるが、該配線は
該部材よりも脆弱であるため、該部材よりも早く損傷する。
そこで、該配線に接続された回路を、該配線の損傷を検知することができる機能を有する
回路とする。すると、該配線が疲労(ダメージ)により損傷したことを該回路が検知した
ときに、蓄電池または電子機器の使用を中止することができる。ここで、該配線に接する
構成部材にも相応の疲労(ダメージ)が蓄積したこととなるため、蓄電池または電子機器
の使用を継続して、さらに該部材の疲労(ダメージ)が蓄積し、該部材が損傷して事故が
発生するという事態を防止することができる。
本発明の一態様は、可撓性を有する蓄電池において、構成部材に疲労(ダメージ)による
損傷が生じる前に使用者に警告することができる機能を有する蓄電池を提供することがで
きる。または、可撓性を有する蓄電池における安全性の確保を実現することができる。
また、本発明の一態様は、可撓性を有する安全性の高いリチウムイオン蓄電池または電子
機器を提供することができる。または、本発明の一態様は、新規のリチウムイオン蓄電池
、または、新規な電子機器などを提供することができる。
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一
態様は、これらの効果の全てを有する必要はないものとする。なお、これら以外の効果は
、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面
、請求項などの記載から、これら以外の効果を抽出することが可能である。
本発明の一態様のリチウムイオン蓄電池を説明する図。 曲率半径を説明する図。 曲率半径を説明する図。 コイン型の蓄電池を説明する図。 円筒型の蓄電池を説明する図。 ラミネート型の蓄電池を説明する図。 蓄電池の外観を示す図。 蓄電池の外観を示す図。 蓄電池の作製方法を説明するための図。 可撓性を有するラミネート型の蓄電池を説明する図。 蓄電池の例を説明するための図。 蓄電池の例を説明するための図。 蓄電池の例を説明するための図。 蓄電池の例を説明するための図。 蓄電池の例を説明するための図。 蓄電池の応用形態を示す図。 本発明の一態様を説明するブロック図。 本発明の一態様を説明する概念図。 本発明の一態様を説明する回路図。 本発明の一態様を説明する回路図。 本発明の一態様を説明する概念図。 本発明の一態様を説明するブロック図。 本発明の一態様を説明するフローチャート。 本発明の一態様に係る蓄電池の外観及び断面構造を示す図。 本発明の一態様を説明する回路図。
以下では、本発明の実施の形態について図面を用いて詳細に説明する。ただし、本発明は
以下の説明に限定されず、その形態および詳細を様々に変更し得ることは、当業者であれ
ば容易に理解される。また、本発明は以下に示す実施の形態の記載内容に限定して解釈さ
れるものではない。
なお、本明細書で説明する各図において、正極、負極、活物質層、セパレータ、外装体な
どの各構成要素の大きさや厚さ等は、個々に説明の明瞭化のために誇張されている場合が
ある。よって、必ずしも各構成要素はその大きさに限定されず、また各構成要素間での相
対的な大きさに限定されない。
また、本明細書等において、第1、第2、第3などとして付される序数詞は、便宜上用い
るものであって工程の順番や上下の位置関係などを示すものではない。そのため、例えば
、「第1の」を「第2の」又は「第3の」などと適宜置き換えて説明することができる。
また、本明細書等に記載されている序数詞と、本発明の一態様を特定するために用いられ
る序数詞は一致しない場合がある。
また、本明細書等で説明する本発明の構成において、同一部分又は同様の機能を有する部
分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する。また
、同様の機能を有する部分を指す場合には、ハッチパターンを同じくし、特に符号を付さ
ない場合がある。
また、本明細書において可撓性とは、物体が柔軟であり、曲がることが可能である性質を
指す。物体にかかる外力に応じて物体が変形することができる性質であり、弾性や変形前
の形状への復元性の有無を問題にはしない。可撓性を有する蓄電池は、外力に応じて変形
することができる。可撓性を有する蓄電池は、変形した状態で固定して使用することもで
き、繰り返し変形させて使用してもよく、変形していない状態で使用することもできる。
また、この発明を実施するための形態に記載の内容は、適宜組み合わせて用いることがで
きる。
(実施の形態1)
本実施の形態では、本発明の一態様に係るリチウムイオン蓄電池について説明する。
本発明の一態様にかかるリチウムイオン蓄電池110の作製方法について図1(A)及び
(B)を用い、以下に説明する。図1(B)は、リチウムイオン蓄電池110の断面図で
ある。正極集電体100と、正極活物質層101と、セパレータ104と、負極活物質層
103と、負極集電体102とを積み重ね、電解液105とともに外装体207により封
止された状態の断面模式図である。なお、活物質層は集電体の両面に形成することもでき
、蓄電池を積層構造とすることも可能である。さらに、本実施の形態では、一例として配
線206を外装体に沿って設けており、また、一例として配線206に接続された回路2
08を外装体207上に設けている。
≪配線及び回路≫
本発明の一態様に係る可撓性を有するリチウムイオン蓄電池110が有する配線206と
、配線206の損傷を検知することができる機能を有する回路208について説明する。
配線206は、保護対象の部材を変形による破損から保護するために設けられる。そのた
めに、配線206は該部材よりも変形による疲労に弱く、破断等の損傷の生じやすい材料
で作製する。配線206を該部材に沿って設け、該部材が変形する際は同時に配線206
も連動して変形する機構とする。
本実施の形態では、例えば外装体を変形による破損から保護するために、外装体に沿って
配線206を設ける。配線206を組み込んだリチウムイオン蓄電池110を変形させる
と、リチウムイオン蓄電池110を構成する各部材が変形するため、保護対象となる部材
も疲労(ダメージ)を受ける。変形による疲労(ダメージ)を保護対象の部材のみならず
、配線206も受ける。そのため、該部材と配線206とは同様の疲労(ダメージ)を蓄
積することとなる。
ここで、配線206は保護対象の部材よりも変形による疲労(ダメージ)に弱いため、疲
労が蓄積され限界に達すると、保護対象の部材よりも早く破断等の損傷が生じる。損傷が
生じた配線206は各種物性が変化し、例えば導電性や熱伝導性は低下する。
そこで、本発明の一態様においては、配線206の損傷による物性の変化(例えば導電性
の低下)を検知することができる機能を有する回路208を配線206に接続する。する
と、配線206が疲労(ダメージ)により損傷したことを回路208が検知したときに、
配線206の損傷を検知したという情報をタブ電極516を通してリチウムイオン蓄電池
110を組みこんだ電子機器に送り、該電子機器の使用者に報知することができる。報知
を受けた使用者は、電子機器を都合の良いタイミングで中止することができる。配線20
6に接する保護対象の部材にも相応の疲労(ダメージ)が蓄積したこととなるため、リチ
ウムイオン蓄電池110または電子機器の使用を継続して、さらに該部材の疲労(ダメー
ジ)が蓄積し、該部材が損傷して事故が発生するという事態となる前に、蓄電池を交換す
ることができる。
また、回路208が配線206の損傷を検知したときに、電子機器に情報を伝達しなくて
も、回路208を該蓄電池の過放電、過充電、過電流を検知する制御ユニット(図示しな
い)に接続し、損傷を検知したときに該制御ユニットによりリチウムイオン蓄電池110
の放電または充電を自動的に遮断する仕組みを設けてもよい。
いずれにせよ、本発明の一態様により、リチウムイオン蓄電池110の構成部材が損傷す
る前に、リチウムイオン蓄電池110の使用を中止して事故を防ぐことができる。
ここで、配線206としては、変形による疲労(ダメージ)による破壊を防止したい部材
よりも脆弱な材料を用いることができる。そのため、配線206には該部材の性質に応じ
て種々の材料を用いることができる。なお、本明細書においては、変形による疲労(ダメ
ージ)の蓄積により破壊または破断の生じやすい性質を、脆い、脆弱である、疲労限度が
小さい、変形による疲労(ダメージ)に弱い、若しくは、変形に弱いと表現する場合があ
る。
材料が何回の繰り返し応力に耐えられるか、どのくらいの回数を与えるとどのくらいの応
力で破壊するかを表すためにS-N曲線が広く用いられている。一般に材料の疲れ試験(
JIS規格:JISZ2273)により材料の疲労に対する強度を得るが、試験において
材料に加えられる応力は時間で振幅する応力であり、正弦波を入力する。S-N曲線は、
縦軸に応力振幅、横軸に破断までの繰り返し回数Nとして疲労試験の結果をプロットして
グラフ化したものである。
そこで、本発明の一態様において、配線206は、変形による疲労(ダメージ)による破
壊を防止したい部材のS-N曲線よりも横軸に近い形状のS-N曲線を持つ材料を使用す
ることができる。ただし、配線206の材料はこれに限定されない。
また、本発明の一態様が実施されたリチウムイオン蓄電池110において、リチウムイオ
ン蓄電池110から配線206と変形による疲労(ダメージ)による破壊を防止したい部
材とを取り出して、それぞれに対して変形による疲労(ダメージ)に対する強さを評価す
ることが困難である場合がある。本発明の一態様においては、リチウムイオン蓄電池11
0に対して繰り返し曲げ試験を行い、配線206に該部材よりも先に破壊または破断等の
損傷が生じることを確認することをもって、配線206は該部材よりも変形による疲労(
ダメージ)に弱いと評価することができる。
次に、配線206の損傷を検知する回路208は、上述の過放電、過充電、過電流を検知
する制御ユニットに設けてもよく、制御ユニットとは独立して設けてもよい。変形による
疲労(ダメージ)による破壊を防止したい部材の種類に応じて、他の機能を有するユニッ
トまたは回路に組み込むこともできる。なお、回路208の構成の一例及び動作の一例は
後述する。
≪正極の構成≫
正極について説明する。正極は、正極活物質層101と、正極集電体100とを含む。
正極活物質層101に用いられる正極活物質材料としては、リチウムイオン等のキャリア
イオンの挿入及び脱離が可能な材料を用いることができ、例えば、オリビン型の結晶構造
、層状岩塩型の結晶構造、又はスピネル型の結晶構造を有するリチウム含有材料等が挙げ
られる。
オリビン型構造のリチウム含有材料(一般式LiMPO(Mは、Fe(II)、Mn(
II)、Co(II)またはNi(II)))の代表例としては、LiFePO、Li
NiPO、LiCoPO、LiMnPO、LiFeNiPO、LiFe
PO、LiFeMnPO、LiNiCoPO、LiNiMnPO
(a+bは1以下、0<a<1、0<b<1)、LiFeNiCoPO、Li
FeNiMnPO、LiNiCoMnPO(c+d+eは1以下、0<
c<1、0<d<1、0<e<1)、LiFeNiCoMnPO(f+g+h
+iは1以下、0<f<1、0<g<1、0<h<1、0<i<1)等がある。
例えば、リン酸鉄リチウム(LiFePO)は、安全性、安定性、高容量密度、高電位
、初期酸化(充電)時に引き抜けるリチウムイオンの存在等、正極活物質に求められる事
項をバランスよく満たしているため、好ましい。
層状岩塩型の結晶構造を有するリチウム含有材料としては、例えば、コバルト酸リチウム
(LiCoO)、LiNiO、LiMnO、LiMnO、LiNi0.8Co
0.2等のNiCo系(一般式は、LiNiCo1-x(0<x<1))、L
iNi0.5Mn0.5等のNiMn系(一般式は、LiNiMn1-x(0
<x<1))、LiNi1/3Mn1/3Co1/3等のNiMnCo系(NMCと
もいう。一般式は、LiNiMnCo1-x-y(x>0、y>0、x+y<1
))が挙げられる。さらに、Li(Ni0.8Co0.15Al0.05)O、Li
MnO-LiMO(MはCo、NiまたはMn)等も挙げられる。
特に、LiCoOは、容量が大きいこと、LiNiOに比べて大気中で安定であるこ
と、LiNiOに比べて熱的に安定であること等の利点があるため、好ましい。
スピネル型の結晶構造を有するリチウム含有材料としては、例えば、LiMn、L
1+xMn2-x(0<x<2)、LiMn2-xAl(0<x<2)、L
iMn1.5Ni0.5等が挙げられる。
LiMn等のマンガンを含むスピネル型の結晶構造を有するリチウム含有材料に、
少量のニッケル酸リチウム(LiNiOやLiNi1-x(0<x<1)(M
=Co、Al等))を混合すると、マンガンの溶出を抑制する、電解液の分解を抑制する
等の利点があり好ましい。
また、正極活物質として、一般式Li(2-j)MSiO(Mは、Fe(II)、Mn
(II)、Co(II)、またはNi(II))(jは0以上2以下)で表される複合酸
化物を用いることができる。一般式Li(2-j)MSiOの代表例としては、Li
2-j)FeSiO、Li(2-j)NiSiO、Li(2-j)CoSiO、L
(2-j)MnSiO、Li(2-j)FeNiSiO、Li(2-j)Fe
CoSiO、Li(2-j)FeMnSiO、Li(2-j)NiCo
SiO、Li(2-j)NiMnSiO(k+lは1以下、0<k<1、0<l
<1)、Li(2-j)FeNiCoSiO、Li(2-j)FeNiMn
SiO、Li(2-j)NiCoMnSiO(m+n+qは1以下、0<m
<1、0<n<1、0<q<1)、Li(2-j)FeNiCoMnSiO
r+s+t+uは1以下、0<r<1、0<s<1、0<t<1、0<u<1)等が挙げ
られる。
また、正極活物質として、A(XO(AはLi、Na、または、Mg)(M
はFe、Mn、Ti、V、Nb、または、Al)(XはS、P、Mo、W、As、または
、Si)の一般式で表されるナシコン型化合物を用いることができる。ナシコン型化合物
としては、Fe(MnO、Fe(SO、LiFe(PO等が
挙げられる。また、正極活物質として、LiMPOF、LiMP、Li
(MはFeまたはMn)の一般式で表される化合物、NaFeF、FeF等のペ
ロブスカイト型フッ化物、TiS、MoS等の金属カルコゲナイド(硫化物、セレン
化物、テルル化物)、LiMVO等の逆スピネル型の結晶構造を有するリチウム含有材
料、バナジウム酸化物系(V、V13、LiV等)、マンガン酸化物、
有機硫黄等の材料を用いることができる。
なお、キャリアイオンが、リチウムイオン以外のアルカリ金属イオンや、アルカリ土類金
属イオンの場合、正極活物質として、上記化合物や酸化物において、リチウムの代わりに
、アルカリ金属(例えば、ナトリウムやカリウム等)、アルカリ土類金属(例えば、カル
シウム、ストロンチウム、バリウム、ベリリウム、マグネシウム等)を用いてもよい。例
えば、NaFeOや、Na2/3[Fe1/2Mn1/2]Oなどのナトリウム含有
層状酸化物を正極活物質として用いることができる。
また、正極活物質として、上記材料を複数組み合わせた材料を用いてもよい。例えば、上
記材料を複数組み合わせた固溶体を正極活物質として用いることができる。例えば、Li
Co1/3Mn1/3Ni1/3とLiMnOの固溶体を正極活物質として用い
ることができる。
正極活物質は、一次粒子の平均粒径が50nm以上100μm以下のものを用いるとよい
正極活物質は負極活物質と共に、蓄電池の電池反応の中心的役割を担いキャリアイオンの
放出及び吸収を行う物質である。蓄電池の寿命を高めるためには、電池反応の不可逆反応
に係る容量が少ない材料であることが好ましく、充放電効率の高い材料であることが好ま
しい。
活物質は電解液と接するため、活物質と電解液とが反応し、反応により活物質が失われ劣
化すると、蓄電池の容量が低下するため、劣化の少ない蓄電池を実現するためには、蓄電
池内のこのような反応が生じないことが望ましい。
電極の導電助剤として、アセチレンブラック(AB)、グラファイト(黒鉛)粒子、カー
ボンナノチューブ、グラフェン、フラーレンなどを用いることができる。
導電助剤により、電極中に電気伝導のネットワークを形成することができる。導電助剤に
より、正極活物質どうしの電気伝導の経路を維持することができる。正極活物質層中に導
電助剤を添加することにより、高い電気伝導性を有する正極活物質層101を実現するこ
とができる。
また、バインダーとして、代表的なポリフッ化ビニリデン(PVDF)の他、ポリイミド
、ポリテトラフルオロエチレン、ポリビニルクロライド、エチレンプロピレンジエンポリ
マー、フッ素ゴム、ポリメチルメタクリレート、ポリエチレン、ニトロセルロース等を用
いることができる。
正極活物質層101の総量に対するバインダーの含有量は、1wt%以上10wt%以下
が好ましく、2wt%以上8wt%以下がより好ましく、3wt%以上5wt%以下がさ
らに好ましい。また、正極活物質層101の総量に対する導電助剤の含有量は、1wt%
以上10wt%以下が好ましく、1wt%以上5wt%以下がより好ましい。
塗布法を用いて正極活物質層101を形成する場合は、正極活物質とバインダーと導電助
剤と分散媒を混合して電極スラリーを作製し、正極集電体100上に塗布して乾燥させれ
ばよい。
なお、正極集電体100にはステンレス、金、白金、アルミニウム、チタン等の金属、及
びこれらの合金など、導電性の高く、リチウム等のキャリアイオンと合金化しない材料を
用いることができる。また、シリコン、チタン、ネオジム、スカンジウム、モリブデンな
どの耐熱性を向上させる元素が添加されたアルミニウム合金を用いることができる。また
、シリコンと反応してシリサイドを形成する金属元素で形成してもよい。シリコンと反応
してシリサイドを形成する金属元素としては、ジルコニウム、チタン、ハフニウム、バナ
ジウム、ニオブ、タンタル、クロム、モリブデン、タングステン、コバルト、ニッケル等
がある。正極集電体は、箔状、板状(シート状)、網状、パンチングメタル状、エキスパ
ンドメタル状等の形状を適宜用いることができる。
以上の工程でリチウムイオン蓄電池の正極を作製することができる。
≪負極の構成≫
次に負極について図1(A)を用いて説明する。負極は、負極活物質層103と、負極集
電体102とを含む。負極を形成する工程を以下に説明する。
負極活物質層103に用いられる負極活物質として、炭素系材料としては、黒鉛、易黒鉛
化性炭素(ソフトカーボン)、難黒鉛化性炭素(ハードカーボン)、カーボンナノチュー
ブ、グラフェン、カーボンブラック等がある。黒鉛としては、メソカーボンマイクロビー
ズ(MCMB)、コークス系人造黒鉛、ピッチ系人造黒鉛等の人造黒鉛や、球状化天然黒
鉛等の天然黒鉛がある。また、黒鉛の形状としては鱗片状のものや球状のものなどがある
負極活物質として、炭素系材料以外に、リチウムとの合金化・脱合金化反応により充放電
反応を行うことが可能な材料も用いることができる。例えば、Ga、Si、Al、Ge、
Sn、Pb、Sb、Bi、Ag、Zn、Cd、In等のうち少なくとも一つを含む材料を
用いることができる。このような元素は炭素と比べて容量が大きく、特にシリコンは理論
容量が4200mAh/gと高く好ましい。このような元素を用いた合金系材料としては
、例えば、MgSi、MgGe、MgSn、SnS、VSn、FeSn
CoSn、NiSn、CuSn、AgSn、AgSb、NiMnSb、
CeSb、LaSn、LaCoSn、CoSb、InSb、SbSn等があ
る。
また、負極活物質として、SiO、SnO、SnO、二酸化チタン(TiO)、リチ
ウムチタン酸化物(LiTi12)、リチウム-黒鉛層間化合物(Li)、
五酸化ニオブ(Nb)、酸化タングステン(WO)、酸化モリブデン(MoO
)等の酸化物を用いることができる。
また、負極活物質として、リチウムと遷移金属の複窒化物である、LiN型構造をもつ
Li3-xN(MはCo、NiまたはCu)を用いることができる。例えば、Li
.6Co0.4は大きな充放電容量(900mAh/g、1890mAh/cm
を示し好ましい。
リチウムと遷移金属の複窒化物を用いると、負極活物質中にリチウムイオンを含むため、
正極活物質としてリチウムイオンを含まないV、Cr等の材料と組み合わせ
ることができる。なお、正極活物質にリチウムイオンを含む材料を用いる場合でも、あら
かじめ正極活物質に含まれるリチウムイオンを脱離させることで、負極活物質としてリチ
ウムと遷移金属の複窒化物を用いることができる。
また、コンバージョン反応が生じる材料を負極活物質として用いることもできる。例えば
、酸化コバルト(CoO)、酸化ニッケル(NiO)、酸化鉄(FeO)等の、リチウム
と合金化反応を行わない遷移金属酸化物を負極活物質に用いてもよい。コンバージョン反
応が生じる材料としては、さらに、Fe、CuO、CuO、RuO、Cr
等の酸化物、CoS0.89、NiS、CuS等の硫化物、Zn、CuN、G
等の窒化物、NiP、FeP、CoP等のリン化物、FeF、BiF
等のフッ化物でも起こる。
負極活物質は、一例としては、粒径が50nm以上100μm以下のものを用いるとよい
なお、正極活物質層101においても負極活物質層103においても、活物質材料は複数
の材料を特定の割合で組み合わせて用いてもよい。活物質層に複数の材料を用いることで
、より詳細に活物質層の性能を選択することができる。
電極の導電助剤として、アセチレンブラック(AB)、グラファイト(黒鉛)粒子、カー
ボンナノチューブ、グラフェン、フラーレンなどを用いることができる。
導電助剤により、電極中に電気伝導のネットワークを形成することができる。導電助剤に
より、負極活物質どうしの電気伝導の経路を維持することができる。負極活物質層中に導
電助剤を添加することにより、高い電気伝導性を有する負極活物質層103を実現するこ
とができる。
また、バインダーとして、代表的なポリフッ化ビニリデン(PVDF)の他、ポリイミド
、ポリビニルクロライド、エチレンプロピレンジエンポリマー、スチレン-ブタジエンゴ
ム、アクリロニトリル-ブタジエンゴム、フッ素ゴム、ポリ酢酸ビニル、ポリメチルメタ
クリレート、ポリエチレン、ニトロセルロース等を用いることができる。
負極活物質層103の総量に対するバインダーの含有量は、1wt%以上10wt%以下
が好ましく、2wt%以上8wt%以下がより好ましく、3wt%以上5wt%以下がさ
らに好ましい。また、負極活物質層103の総量に対する導電助剤の含有量は、1wt%
以上10wt%以下が好ましく、1wt%以上5wt%以下がより好ましい。
次いで、負極集電体102上に負極活物質層103を形成する。塗布法を用いて負極活物
質層103を形成する場合は、負極活物質とバインダーと導電助剤と分散媒を混合してス
ラリーを作製し、負極集電体102に塗布して乾燥させる。また、乾燥後に必要があれば
プレス処理を行ってもよい。
なお、負極集電体102には、ステンレス、金、白金、鉄、銅、チタン、タンタル等の金
属、及びこれらの合金など、導電性の高く、リチウム等のキャリアイオンと合金化しない
材料を用いることができる。また、シリコンと反応してシリサイドを形成する金属元素で
形成してもよい。シリコンと反応してシリサイドを形成する金属元素としては、ジルコニ
ウム、チタン、ハフニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、タン
グステン、コバルト、ニッケル等がある。負極集電体102は、箔状、板状(シート状)
、網状、円柱状、コイル状、パンチングメタル状、エキスパンドメタル状等の形状を適宜
用いることができる。負極集電体102は、厚みが5μm以上30μm以下のものを用い
るとよい。また、電極集電体の表面の一部に、グラファイトなどを用いてアンダーコート
層を設けてもよい。
以上の工程でリチウムイオン蓄電池の負極を作製することができる。
≪セパレータの構成≫
セパレータ104について説明する。セパレータ104の材料としては、紙、不織布、ガ
ラス繊維、あるいは、ナイロン(ポリアミド)、ビニロン(ポリビニルアルコール系繊維
)、ポリエステル、アクリル、ポリオレフィン、ポリウレタンといった合成繊維等を用い
ればよい。ただし、後述の電解液に溶解しない材料を選ぶ必要がある。
より具体的には、セパレータ104の材料として、例えば、フッ素系ポリマー、ポリエチ
レンオキシド、ポリプロピレンオキシド等のポリエーテル、ポリエチレン、ポリプロピレ
ン等のポリオレフィン、ポリアクリロニトリル、ポリ塩化ビニリデン、ポリメチルメタク
リレート、ポリメチルアクリレート、ポリビニルアルコール、ポリメタクリロニトリル、
ポリビニルアセテート、ポリビニルピロリドン、ポリエチレンイミン、ポリブタジエン、
ポリスチレン、ポリイソプレン、ポリウレタン系高分子及びこれらの誘導体、セルロース
、紙、不織布、ガラス繊維から選ばれる一種を単独で、又は二種以上を組み合せて用いる
ことができる。
セパレータ104は、両極の接触を防ぐ絶縁性能、電解液を保持する性能、イオンの伝導
性がなければならない。セパレータとしての機能を有する膜を製造する方法として、膜の
延伸による方法がある。例えば、溶融したポリマー材料を展開して放熱させ、得られた膜
を膜と平行の二軸方向に延伸して孔を形成する、延伸開孔法がある。
次に、セパレータ104を蓄電池に組み込む方法としては、セパレータを正極及び負極の
間に挟みこむ方法が可能である。また、正極又は負極の一方にセパレータ104を載置し
、正極又は負極のもう一方を併せる方法も可能である。正極、負極、及びセパレータを外
装体に収納し、電解液を含ませることにより、蓄電池を形成することができる。
また、セパレータ104を正極または負極の一方の両面を覆うことができる大きさのシー
ト状若しくはエンベロープ状に形成し、セパレータ104に包まれた電極とすると、蓄電
池の製造上、電極を機械的な損傷から保護することができ、電極の取り扱いが容易となる
。セパレータに包まれた電極ともう一方の電極とを、併せて外装体に収納し、電解液を含
ませることにより、蓄電池を形成することができる。図1(B)は、正極と負極を1組用
いて作製した蓄電池の断面構造を示しているが、正極と負極を複数組用いて積層型蓄電池
を作製することもできる。
さらに、セパレータ104は複数層としてもよい。セパレータ104は、上述の方法で形
成できるが、構成材料と膜の機械的強度のために、膜の孔の大きさや膜の厚さの範囲には
制限がある。第1のセパレータ及び第2のセパレータをそれぞれ延伸法により作製して、
これを併せて蓄電池に用いることができる。第1のセパレータ及び第2のセパレータを構
成する材料には、上記の材料または上記以外の材料から1種類以上を選択して用いること
ができ、膜の形成の条件及び延伸の条件等により、膜中の孔の大きさ、孔の占める体積の
割合(空隙率ともいう)、膜の厚さ等の特性をそれぞれ決定することができる。特性の異
なる二つのセパレータを併せて用いることにより、一方の膜を単独で用いる場合と比べ、
蓄電池のセパレータの性能を多彩に選択することができるようになる。
さらに、蓄電池が可撓性を有していてもよく、可撓性を有する蓄電池に変形応力がかかる
場合にも、第1のセパレータと第2のセパレータとの界面において、両セパレータが摺動
することにより応力を緩和することができるため、複数のセパレータを用いた構造は、可
撓性を有する蓄電池のセパレータの構造としても適している。
以上の工程でリチウムイオン蓄電池にセパレータを組み込むことができる。
≪電解液の構成≫
本発明の一態様に係るリチウムイオン蓄電池に用いることができる電解液105は、電解
質(溶質)を含む非水溶液(溶媒)とすることが好ましい。
電解液105の溶媒としては、キャリアイオンが移動可能な材料を用いる。例えば、非プ
ロトン性有機溶媒が好ましく、エチレンカーボネート(EC)、プロピレンカーボネート
(PC)、ブチレンカーボネート、クロロエチレンカーボネート、ビニレンカーボネート
、γ-ブチロラクトン、γ-バレロラクトン、ジメチルカーボネート(DMC)、ジエチ
ルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ギ酸メチル、酢酸メ
チル、酪酸メチル、1,3-ジオキサン、1,4-ジオキサン、ジメトキシエタン(DM
E)、ジメチルスルホキシド、ジエチルエーテル、メチルジグライム、アセトニトリル、
ベンゾニトリル、テトラヒドロフラン、スルホラン、スルトン等の1種、又はこれらのう
ちの2種以上を任意の組み合わせ及び比率で用いることができる。
また、電解液105の溶媒としてゲル化される高分子材料を用いることで、漏液性等に対
する安全性が高まる。また、リチウムイオン蓄電池の薄型化及び軽量化が可能である。ゲ
ル化される高分子材料の代表例としては、シリコーンゲル、アクリルゲル、アクリロニト
リルゲル、ポリエチレンオキサイド系ゲル、ポリプロピレンオキサイド系ゲル、フッ素系
ポリマーのゲル等がある。
また、電解液の溶媒として、難燃性及び難蒸発性であるイオン液体(常温溶融塩ともいう
)を一つまたは複数用いることで、リチウムイオン蓄電池の内部短絡や、過充電等によっ
て内部温度が上昇しても、リチウムイオン蓄電池の破裂や発火などを防ぐことができる。
これにより、リチウムイオン蓄電池の安全性を高めることができる。
また、蓄電池に用いる電解液は、粒状のごみや電解液の構成元素以外の元素(以下、単に
「不純物」ともいう。)の含有量が少ない高純度化された電解液を用いることが好ましい
。具体的には、電解液に対する不純物の質量比を1%以下、好ましくは0.1%以下、よ
り好ましくは0.01%以下とすることが好ましい。また、電解液にビニレンカーボネー
トなどの添加剤を加えてもよい。
また、上記の溶媒に溶解させる電解質としては、キャリアにリチウムイオンを用いる場合
、例えばLiPF、LiClO、LiAsF、LiBF、LiAlCl、Li
SCN、LiBr、LiI、LiSO、Li10Cl10、Li12Cl
、LiCFSO、LiCSO、LiC(CFSO、LiC(C
SO、LiN(CFSO、LiN(CSO)(CFSO
)、LiN(CSO等のリチウム塩を一種、又はこれらのうちの二種以上を
任意の組み合わせ及び比率で用いることができる。
なお、上記の電解質では、キャリアイオンがリチウムイオンである場合について説明した
が、リチウムイオン以外のキャリアイオンも用いることができる。リチウムイオン以外の
キャリアイオンとしては、アルカリ金属イオンやアルカリ土類金属イオンの場合、電解質
として、上記リチウム塩において、リチウムの代わりに、アルカリ金属(例えば、ナトリ
ウムやカリウム等)、アルカリ土類金属(例えば、カルシウム、ストロンチウム、バリウ
ム、ベリリウム、またはマグネシウム等)を用いてもよい。
なお、電解液は、正極の集電体と反応し、正極集電体を腐食する場合がある。そのような
腐食を防止するため、電解液に数wt%のLiPFを添加することが好ましい。正極集
電体表面に不導体膜を生じ、該不導体膜が電解液と正極集電体との反応を抑制するためで
ある。ただし、正極活物質層を溶解させないために、LiPFの濃度は10wt%以下
、好ましくは5wt%以下、より好ましくは3wt%以下とするとよい。
≪外装体の構成≫
次に、外装体207について説明する。外装体207には、例えばポリエチレン、ポリプ
ロピレン、ポリカーボネート、アイオノマー、ポリアミド等の材料からなる膜上に、アル
ミニウム、ステンレス、銅、ニッケル等の可撓性に優れた金属薄膜を設け、さらに該金属
薄膜上に外装体の外面としてポリアミド系樹脂、ポリエステル系樹脂等の絶縁性合成樹脂
膜を設けた三層構造のフィルムを用いることができる。このような三層構造とすることで
、電解液や気体の透過を遮断するとともに、絶縁性を確保し、併せて耐電解液性を有する
。外装体を内側に折り曲げて重ねて、または、2つの外装体それぞれの内面を向い合せて
重ねて熱を加えることにより、内面の材料が融け2つの外装体を融着することができ、封
止構造を作製することができる。
外装体が融着等され封止構造が形成されている箇所を封止部とすると、外装体を内側に折
り曲げて重ねた場合は、折り目以外の個所に封止部が形成され、外装体の第1の領域と、
該第1の領域と重なる第2の領域とが融着等された構造となる。また、2枚の外装体を重
ねた場合は熱融着等の方法で外周すべてに封止部が形成される。
≪可撓性の蓄電池≫
本実施の形態にて示された各部材の材料から、可撓性を有する材料を選択して用いると、
可撓性を有するリチウムイオン蓄電池を作製することができる。近年、変形可能なデバイ
スの研究及び開発が盛んである。そのようなデバイスに用いる蓄電池として、可撓性を有
する蓄電池の需要が生じている。
2枚のフィルムを外装体として電極・電解液など1805を挟む蓄電池を湾曲させた場合
には、蓄電池の曲率中心1800に近い側のフィルム1801の曲率半径1802は、曲
率中心1800から遠い側のフィルム1803の曲率半径1804よりも小さい(図2(
A))。蓄電池を湾曲させて断面を円弧状とすると曲率中心1800に近いフィルムの表
面には圧縮応力がかかり、曲率中心1800から遠いフィルムの表面には引っ張り応力が
かかる(図2(B))。
可撓性を有するリチウムイオン蓄電池を変形させたとき、外装体に大きな応力がかかるが
、外装体の表面に凹部または凸部で形成される模様を形成すると、蓄電池の変形により圧
縮応力や引っ張り応力がかかったとしても、ひずみによる影響を抑えることができる。そ
のため、蓄電池は、曲率中心に近い側の外装体の曲率半径が50mm好ましくは30mm
となる範囲で変形することができる。
面の曲率半径について、図3を用いて説明する。図3(A)において、曲面1700を切
断した平面1701において、曲面1700に含まれる曲線1702の一部を円の弧に近
似して、その円の半径を曲率半径1703とし、円の中心を曲率中心1704とする。図
3(B)に曲面1700の上面図を示す。図3(C)に、平面1701で曲面1700を
切断した断面図を示す。曲面を平面で切断するとき、曲面に対する平面の角度や切断する
位置に応じて、断面に現れる曲線の曲率半径は異なるものとなるが、本明細書等では、最
も小さい曲率半径を面の曲率半径とする。
なお、蓄電池の断面形状は、単純な円弧状に限定されず、一部が円弧を有する形状にする
ことができ、例えば図2(C)に示す形状や、波状(図2(D))、S字形状などとする
こともできる。蓄電池の曲面が複数の曲率中心を有する形状となる場合は、複数の曲率中
心それぞれにおける曲率半径の中で、最も曲率半径が小さい曲面において、2枚の外装体
の曲率中心に近い方の外装体の曲率半径が、50mm好ましくは30mmとなる範囲で蓄
電池が変形することができる。
≪蓄電池の組み立て及びエージング≫
次に、上述の構成部材を組み合わせて、外装体207を封止することにより図1(A)及
び(B)に示す通り、正極集電体100と、正極活物質層101と、セパレータ104と
、負極活物質層103と、負極集電体102とを積み重ね、電解液105とともに外装体
207により封止された状態とする。
次に、エージング工程を行う。まず環境温度を例えば室温程度に保ち、低いレートで一致
電圧まで定電流充電を行う。次に、充電により外装体内部の領域に発生したガスを、外装
体外部に放出させる。次に、さらに初回の充電よりも高いレートで充電を行う。
その後、やや高い温度環境下で長時間保存する。例えば40℃以上の環境下で24時間以
上保存する。
やや高い温度環境下で長時間保存した後、再び外装体内部の領域に発生したガスを放出さ
せる。さらに室温環境下で0.2Cのレートで放電し、同レートにて充電し、再び同レー
トで放電した後、さらに同レートで充電する。そして、同レートで放電することによりエ
ージング工程を終了する。
以上のようにして、本発明に係る蓄電池を製造することができる。
本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。
なお、本明細書等においては、ある一つの実施の形態において述べる図または文章におい
て、少なくとも一つの具体例が記載される場合、その具体例の上位概念を導き出すことは
、当業者であれば容易に理解される。したがって、ある一つの実施の形態において述べる
図または文章において、少なくとも一つの具体例が記載される場合、その具体例の上位概
念も、発明の一態様として開示されているものであり、発明の一態様を構成することが可
能である。そして、その発明の一態様は、明確であると言える。
なお、本明細書等においては、少なくとも図に記載した内容(図の中の一部でもよい)は
、発明の一態様として開示されているものであり、発明の一態様を構成することが可能で
ある。したがって、ある内容について、図に記載されていれば、文章を用いて述べていな
くても、その内容は、発明の一態様として開示されているものであり、発明の一態様を構
成することが可能である。同様に、図の一部を取り出した図についても、発明の一態様と
して開示されているものであり、発明の一態様を構成することが可能である。そして、そ
の発明の一態様は明確であると言える。
なお、本実施の形態において、本発明の一態様について述べた。または、他の実施の形態
において、本発明の一態様について述べる。ただし、本発明の一態様は、これらに限定さ
れない。つまり、本実施の形態および他の実施の形態では、様々な発明の態様が記載され
ているため、本発明の一態様は、特定の態様に限定されない。例えば、本発明の一態様と
して、リチウムイオン二次電池に適用した場合の例を示したが、本発明の一態様は、これ
に限定されない。場合によっては、または、状況に応じて、本発明の一態様は、様々な二
次電池、鉛蓄電池、リチウムイオンポリマー二次電池、ニッケル・水素蓄電池、ニッケル
・カドミウム蓄電池、ニッケル・鉄蓄電池、ニッケル・亜鉛蓄電池、酸化銀・亜鉛蓄電池
、固体電池、空気電池、一次電池、キャパシタ、または、電気二重層キャパシタ、ウルト
ラ・キャパシタ、スーパー・キャパシタ、リチウムイオンキャパシタ、などに適用しても
よい。または例えば、場合によっては、または、状況に応じて、本発明の一態様は、リチ
ウムイオン二次電池に適用しなくてもよい。
(実施の形態2)
本実施の形態では、上記実施の形態で説明したリチウムイオン蓄電池の外装体に配線を設
ける構成の一例、及び配線とリチウムイオン蓄電池の破断を検知するための回路の一例に
ついて説明する。
図24(A)は、外装体に配線を設けたラミネート型の畜電池の模式図である。図24(
B)は、図24(A)中、一点鎖線X1-X2での断面図である。図24(A)及び(B
)に示すリチウムイオン蓄電池110の外装体5007には、変形による疲労(ダメージ
)により損傷することを防止するため、外装体5007の形状に沿って配線5006を設
ける。また外装体5007には、配線5006の破断等の損傷を検知するための回路50
08を設ける。
配線5006は、損傷を防止したい部材を構成する材料、ここでは外装体5007の材料
よりも変形に弱い材料を用いることができる。配線5006は予め用意していたものを外
装体5007に貼付して設けてもよく、導電性のペースト又はスラリーを外装体5007
の上に所定の形状で塗布又は印刷して、これを乾燥させて設けてもよい。また、配線50
06の上には、変形による疲労(ダメージ)以外の損傷を防ぐための保護膜を設けてもよ
い。
外装体5007の材料は実施の形態1にて示した通り、例えばポリエチレン、ポリプロピ
レン、ポリカーボネート、アイオノマー、ポリアミド等の材料からなる膜上に、アルミニ
ウム、ステンレス、銅、ニッケル等の可撓性に優れた金属薄膜を設け、さらに該金属薄膜
上に外装体の外面としてポリアミド系樹脂、ポリエステル系樹脂等の絶縁性合成樹脂膜を
設けた三層構造のフィルムを用いることができる。このような三層構造のフィルムを外装
体に用いた場合、変形を繰り返し疲労(ダメージ)が蓄積すると、まず金属薄膜層に損傷
を生じる場合がある。そのため、配線5006は該金属薄膜層よりも変形に対して脆弱で
あればよい。
三層構造のフィルム状の外装体を用いるとき、配線5006を金属薄膜層よりも脆弱とす
るためには、機械的強度が該金属薄膜層よりも低い材料を用いることができる。機械的強
度の評価方法は各種知られているが、いずれかの評価方法で評価した結果、強度が低い材
料であればよく、種々の機械的強度の評価方法を用いることができる。
図24(A)では、一例として、配線5006を2か所に設けているが、配線の数は2か
所に限らない。一連の配線5006の両端は、それぞれ回路5008と電気的に接続され
るように設ける。
図24(A)では、一例として、回路5008を外装体5007上に設けているが、回路
5008の設置場所の限定はない。例えば、リチウムイオン蓄電池110の内部に設けて
もよい。あるいはリチウムイオン蓄電池110の外部に設けてもよい。あるいは、リチウ
ムイオン蓄電池110の電池制御ユニットBMUと同じ基板上に設けてもよい。また、あ
るいは、リチウムイオン蓄電池110から電力の供給を受ける電子機器に設けてもよい。
なお回路5008を駆動するための電力は、直接リチウムイオン蓄電池110から供給す
ればよい。この場合、リチウムイオン蓄電池110の電圧を必要に応じて昇圧または降圧
して供給すればよい。
図25(A)に示す回路図は、図24(A)及び(B)で示した回路5008と配線50
06との接続を説明する図である。なお図25(A)では説明のため、外装体5007内
部の電池セル5011、+端子、-端子、破断等の損傷の有無を出力する信号を出力する
端子Salertを図示している。+端子、-端子、及び端子Salertは、外部に信
号を取り出すためのFPC側にあり、回路5008及び配線5006は、外装体5007
側にある。
図25(A)において、配線5006の一端は電池セル5011の正極と電気的に接続さ
れている。また、配線5006の他端は配線5006を介して、電池セル5011の正極
と電気的に接続されている。
回路5008は、配線5006の一端及び他端のそれぞれに接続される。回路5008は
、配線5006の破断等の損傷の有無に従って信号を出力する機能を有する。回路500
8は、一例としては、配線5006の一端と他端との電位の違いを検出して、端子Sal
ertに信号を出力することができる。
回路5008の構成を図25(B)に示す。回路5008は、排他的論理和回路5009
と、Dラッチ5010と、を有する。なお、回路5008を構成するトランジスタに、チ
ャネル形成領域に酸化物半導体を用いることができ、酸化物半導体として上述のCAAC
-OS膜を用いることもできる。
排他的論理和回路5009の入力は、配線5006の一端の電位5006_1と配線50
06の他端の電位5006_2とが与えられる。排他的論理和回路5009の出力は、D
ラッチ5010のD端子とCK端子の双方に与えられる。Dラッチ5010の出力は、Q
端子から端子Salertに与えられる。端子Salertから出力される破断等の損傷
の有無を出力する信号は、外部の回路に出力される。
回路5008は、配線5006に破断等の損傷がないとき、ローレベル(低電位)の信号
を出力する。配線5006が破断等しておらず損傷がないとき、配線5006の抵抗は小
さいため、電位5006_1と電位5006_2は同電位である。このとき排他的論理和
回路5009は低電位を出力し、Dラッチ5010のD端子とCK端子には低電位が入力
されるため、Dラッチ5010のQ端子からも低電位が出力される。これが、配線500
6に破断等の損傷のない正常な状態での動作である。
一方、回路5008は、配線5006に破断等の損傷があるとき、ハイレベル(高電位)
の信号を出力する。リチウムイオン蓄電池110が繰り返し変形することにより、配線5
006と、外装体5007とが変形して、疲労(ダメージ)が蓄積すると、まず配線50
06に破断等の損傷が発生し電気抵抗が増大する。すると、配線5006の他端の電位5
006_2は、電池セル5011からの電荷の供給が途絶えるため、外部への電荷の放出
によって電位が低下する。一方で配線5006の一端の電位5006_1は、電池セル5
011からの電荷の供給があるため、電位5006_1と電位5006_2とを異ならせ
ることができる。排他的論理和回路5009は、電位5006_1と電位5006_2が
異なる電位の場合、高電位を出力し、Dラッチ5010のD端子とCK端子には高電位が
入力されるため、Dラッチ5010のQ端子からも高電位が出力される。これが、配線5
006に破断等の損傷のある状態での動作である。
回路5008は、配線5006に破断等の損傷のあるときに外部の回路に高電位を信号と
して出力することで、配線5006の異常状態を報知して使用者にリチウムイオン蓄電池
110の使用を停止して新しい蓄電池と交換するよう警告することができる。そのため、
リチウムイオン蓄電池110の外装体5007に損傷が生じる前に使用を中止することが
できるため、外装体5007の損傷による事故を防止することができる。なお、該信号は
Dラッチ5010により形成されているため、ひとたび出力されれば該信号が出力され続
ける。
本実施の形態において、配線の損傷を回路で検出する方法について説明したが、配線の損
傷を検知する方法はこれに限らない。配線の疲労(ダメージ)の蓄積による熱伝導性の変
化、体積の変化等、種々の変化する物性を利用することができる。
以上のようにして、本発明に係るリチウムイオン蓄電池は、繰り返しの変形に起因する疲
労(ダメージ)の蓄積による部材の破損事故を防止することができる。
本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。
(実施の形態3)
本実施の形態では、本発明の一態様に係る蓄電池の構造について、図4乃至図6を参照し
て説明する。
≪コイン型蓄電池≫
図4(A)は、コイン型(単層偏平型)の蓄電池の外観図であり、図4(B)は、その断
面図である。
コイン型の蓄電池300は、正極端子を兼ねた正極缶301と負極端子を兼ねた負極缶3
02とが、ポリプロピレン等で形成されたガスケット303で絶縁シールされている。正
極304は、正極集電体305と、これと接するように設けられた正極活物質層306に
より形成される。正極活物質層306は、正極活物質の他、正極活物質の密着性を高める
ための結着剤(バインダー)、正極活物質層の導電性を高めるための導電助剤等を有して
もよい。
また、負極307は、負極集電体308と、これに接するように設けられた負極活物質層
309により形成される。負極活物質層309は、負極活物質の他、負極活物質の密着性
を高めるための結着剤(バインダー)、負極活物質層の導電性を高めるための導電助剤等
を有してもよい。正極活物質層306と負極活物質層309との間には、セパレータ31
0と、電解質(図示せず)とを有する。
各構成部材には、実施の形態1で示した材料を用いることができる。
正極缶301、負極缶302には、電解液に対して耐腐食性のある、ニッケル、チタン等
の金属、またはこれらの合金やこれらと他の金属との合金(例えばステンレス鋼等)を用
いることができる。また、電解液による腐食を防ぐため、ニッケル等を被覆することが好
ましい。正極缶301は正極304と、負極缶302は負極307とそれぞれ電気的に接
続する。
これら負極307、正極304及びセパレータ310を電解質に含浸させ、図4(B)に
示すように、正極缶301を下にして正極304、セパレータ310、負極307、負極
缶302をこの順で積層し、正極缶301と負極缶302とをガスケット303を介して
圧着してコイン形の蓄電池300を製造する。
ここで図4(C)を用いて蓄電池の充電時の電流の流れを説明する。リチウムを用いた蓄
電池を一つの閉回路とみなした時、リチウムイオンの動きと電流の流れは同じ向きになる
。なお、リチウムを用いた蓄電池では、充電と放電でアノード(陽極)とカソード(陰極
)が入れ替わり、酸化反応と還元反応とが入れ替わることになるため、反応電位が高い電
極を正極と呼び、反応電位が低い電極を負極と呼ぶ。したがって、本明細書においては、
充電中であっても、放電中であっても、逆パルス電流を流す場合であっても、充電電流を
流す場合であっても、正極は「正極」または「+極(プラス極)」と呼び、負極は「負極
」または「-極(マイナス極)」と呼ぶこととする。酸化反応や還元反応に関連したアノ
ード(陽極)やカソード(陰極)という用語を用いると、充電時と放電時とでは、逆にな
ってしまい、混乱を招く可能性がある。したがって、アノード(陽極)やカソード(陰極
)という用語は、本明細書においては用いないこととする。仮にアノード(陽極)やカソ
ード(陰極)という用語を用いる場合には、充電時か放電時かを明記し、正極(プラス極
)と負極(マイナス極)のどちらに対応するものかも併記することとする。
図4(C)に示す2つの端子には充電器が接続され、蓄電池400が充電される。蓄電池
400の充電が進めば、電極間の電位差は大きくなる。図4(C)では、蓄電池400の
外部の端子から、正極402の方へ流れ、蓄電池400の中において、正極402から負
極404の方へ流れ、負極から蓄電池400の外部の端子の方へ流れる電流の向きを正の
向きとしている。つまり、充電電流の流れる向きを電流の向きとしている。
≪円筒型蓄電池≫
次に、円筒型の蓄電池の一例について、図5を参照して説明する。円筒型の蓄電池600
は図5(A)に示すように、上面に正極キャップ(電池蓋)601を有し、側面及び底面
に電池缶(外装缶)602を有している。これら正極キャップと電池缶(外装缶)602
とは、ガスケット(絶縁パッキン)610によって絶縁されている。
図5(B)は、円筒型の蓄電池の断面を模式的に示した図である。中空円柱状の電池缶6
02の内側には、帯状の正極604と負極606とがセパレータ605を間に挟んで捲回
された電池素子が設けられている。図示しないが、電池素子はセンターピンを中心に捲回
されている。電池缶602は、一端が閉じられ、他端が開いている。電池缶602には、
電解液に対して耐腐食性のあるニッケル、チタン等の金属、又はこれらの合金やこれらと
他の金属との合金(例えば、ステンレス鋼等)を用いることができる。また、電解液によ
る腐食を防ぐため、ニッケル等を被覆することが好ましい。電池缶602の内側において
、正極、負極及びセパレータが捲回された電池素子は、対向する一対の絶縁板608、6
09により挟まれている。また、電池素子が設けられた電池缶602の内部は、非水電解
液(図示せず)が注入されている。非水電解液は、コイン型の蓄電池と同様のものを用い
ることができる。
正極604及び負極606は、上述したコイン型の蓄電池の正極及び負極と同様に製造す
ればよいが、円筒型の蓄電池に用いる正極及び負極は捲回するため、集電体の両面に活物
質を形成する点において異なる。正極604には正極端子(正極集電タブ)603が接続
され、負極606には負極端子(負極集電タブ)607が接続される。正極端子603及
び負極端子607は、ともにアルミニウムなどの金属材料を用いることができる。正極端
子603は安全弁機構612に、負極端子607は電池缶602の底にそれぞれ抵抗溶接
される。安全弁機構612は、PTC素子(Positive Temperature
Coefficient)611を介して正極キャップ601と電気的に接続されてい
る。安全弁機構612は電池の内圧の上昇が所定の閾値を超えた場合に、正極キャップ6
01と正極604との電気的な接続を切断するものである。また、PTC素子611は温
度が上昇した場合に抵抗が増大する熱感抵抗素子であり、抵抗の増大により電流量を制限
して異常発熱を防止するものである。PTC素子には、チタン酸バリウム(BaTiO
)系半導体セラミックス等を用いることができる。
≪ラミネート型蓄電池≫
次に、ラミネート型の蓄電池の一例について、図6(A)を参照して説明する。ラミネー
ト型の蓄電池は、可撓性を有する構成とすれば、可撓性を有する部位を少なくとも一部有
する電子機器に実装すれば、電子機器の変形に合わせて蓄電池も曲げることもできる。
図6(A)に示すラミネート型の蓄電池500は、正極集電体501および正極活物質層
502を有する正極503と、負極集電体504および負極活物質層505を有する負極
506と、セパレータ507と、電解液508と、外装体509と、を有する。外装体5
09内に設けられた正極503と負極506との間にセパレータ507が設置されている
。また、外装体509内は、電解液508で満たされている。電解液508には、実施の
形態1で示した電解液を用いることができる。
図6(A)に示すラミネート型の蓄電池500において、正極集電体501および負極集
電体504は、外部との電気的接触を得る端子の役割も兼ねている。そのため、正極集電
体501および負極集電体504の一部は、外装体509から外側に露出するように配置
してもよい。また、正極集電体501および負極集電体504を、外装体509から外側
に露出させず、タブ電極を用いてそのタブ電極と正極集電体501、或いは負極集電体5
04と超音波接合させてタブ電極を外側に露出するようにしてもよい。
ラミネート型の蓄電池500において、外装体509には、例えばポリエチレン、ポリプ
ロピレン、ポリカーボネート、アイオノマー、ポリアミド等の材料からなる膜上に、アル
ミニウム、ステンレス、銅、ニッケル等の可撓性に優れた金属薄膜を設け、さらに該金属
薄膜上に外装体の外面としてポリアミド系樹脂、ポリエステル系樹脂等の絶縁性合成樹脂
膜を設けた三層構造のラミネートフィルムを用いることができる。
また、ラミネート型の蓄電池500の断面構造の一例を図6(B)に示す。図6(A)で
は簡略のため、2つの集電体で構成する例を示しているが、実際は、複数の電極層で構成
する。
図6(B)では、一例として、電極層数を16としている。なお、電極層数を16として
も蓄電池500は、可撓性を有する。図6(B)では負極集電体504が8層と、正極集
電体501が8層の合計16層の構造を示している。なお、図6(B)は負極の取り出し
部の断面を示しており、8層の負極集電体504を超音波接合させている。勿論、電極層
数は16に限定されず、多くてもよいし、少なくてもよい。電極層数が多い場合には、よ
り多くの容量を有する蓄電池とすることができる。また、電極層数が少ない場合には、薄
型化でき、可撓性に優れた蓄電池とすることができる。
ここで、ラミネート型の蓄電池500の外観図の一例を図7及び図8に示す。図7及び図
8は、正極503、負極506、セパレータ507、外装体509、正極タブ電極510
及び負極タブ電極511を有する。
図9(A)は正極503及び負極506の外観図を示す。正極503は正極集電体501
を有し、正極活物質層502は正極集電体501の表面に形成されている。また、正極5
03は正極集電体501が一部露出する領域(タブ領域という)を有する。負極506は
負極集電体504を有し、負極活物質層505は負極集電体504の表面に形成されてい
る。また、負極506は負極集電体504が一部露出する領域、すなわちタブ領域を有す
る。正極及び負極が有するタブ領域の面積や形状は、図9(A)に示す例に限られない。
≪ラミネート型蓄電池の作製方法≫
ここで、図7に外観図を示すラミネート型蓄電池の作製方法の一例について、図9(B)
、(C)を用いて説明する。
まず、負極506、セパレータ507及び正極503を積層する。図9(B)に積層され
た負極506、セパレータ507及び正極503を示す。ここでは負極を5組、正極を4
組使用する例を示す。次に、正極503のタブ領域同士の接合と、最表面の正極のタブ領
域への正極タブ電極510の接合を行う。接合には、例えば超音波溶接等を用いればよい
。同様に、負極506のタブ領域同士の接合と、最表面の負極のタブ領域への負極タブ電
極511の接合を行う。
次に外装体509上に、負極506、セパレータ507及び正極503を配置する。
次に、図9(C)に示すように、外装体509を破線で示した部分で折り曲げる。その後
、外装体509の外周部を接合する。接合には例えば熱圧着等を用いればよい。この時、
後に電解液508を入れることができるように、外装体509の一部(または一辺)に接
合されない領域(以下、導入口という)を設ける。
次に、外装体509に設けられた導入口から、電解液508を外装体509の内側へ導入
する。電解液508の導入は、減圧雰囲気下、或いは不活性ガス雰囲気下で行うことが好
ましい。そして最後に、導入口を接合する。このようにして、ラミネート型の蓄電池であ
る蓄電池500を作製することができる。
なお、本実施の形態では、蓄電池として、コイン型、ラミネート型及び円筒型の蓄電池を
示したが、その他の封止型蓄電池、角型蓄電池等様々な形状の蓄電池を用いることができ
る。また、正極、負極、及びセパレータが複数積層された構造、正極、負極、及びセパレ
ータが捲回された構造であってもよい。
また、可撓性を有するラミネート型の蓄電池を電子機器に実装する例を図10に示す。フ
レキシブルな形状を備える蓄電池を適用した電子機器として、例えば、テレビジョン装置
(テレビ、又はテレビジョン受信機ともいう)、コンピュータ用などのモニタ、デジタル
カメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機(携帯電話、携帯
電話装置ともいう)、携帯型ゲーム機、携帯情報端末、音響再生装置、パチンコ機などの
大型ゲーム機などが挙げられる。
また、フレキシブルな形状を備える蓄電池を、家屋やビルの内壁または外壁や、自動車の
内装または外装の曲面に沿って組み込むことも可能である。
図10(A)は、携帯電話機の一例を示している。携帯電話機7400は、筐体7401
に組み込まれた表示部7402の他、操作ボタン7403、外部接続ポート7404、ス
ピーカ7405、マイク7406などを備えている。なお、携帯電話機7400は、蓄電
池7407を有している。
図10(B)は、携帯電話機7400を湾曲させた状態を示している。携帯電話機740
0を外部の力により変形させて全体を湾曲させると、その内部に設けられている蓄電池7
407も湾曲される。また、その時、曲げられた蓄電池7407の状態を図10(C)に
示す。蓄電池7407はラミネート型の蓄電池である。
図10(D)は、バングル型の表示装置の一例を示している。携帯表示装置7100は、
筐体7101、表示部7102、操作ボタン7103、及び蓄電池7104を備える。ま
た、図10(E)に曲げられた蓄電池7104の状態を示す。
≪蓄電池の構造例≫
蓄電池の構造例について、図11乃至図15を用いて説明する。
図11(A)及び図11(B)は、蓄電池の外観図を示す図である。蓄電池は、回路基板
900と、蓄電池913と、を有する。蓄電池913には、ラベル910が貼られている
。さらに、図11(B)に示すように、蓄電池は、端子951と、端子952と、アンテ
ナ914と、アンテナ915と、を有する。
回路基板900は、端子911と、回路912と、を有する。端子911は、端子951
、端子952、アンテナ914、アンテナ915、及び回路912に接続される。なお、
端子911を複数設けて、複数の端子911のそれぞれを、制御信号入力端子、電源端子
などとしてもよい。
回路912は、回路基板900の裏面に設けられていてもよい。なお、アンテナ914及
びアンテナ915は、コイル状に限定されず、例えば線状、板状であってもよい。また、
平面アンテナ、開口面アンテナ、進行波アンテナ、EHアンテナ、磁界アンテナ、誘電体
アンテナ等のアンテナを用いてもよい。又は、アンテナ914若しくはアンテナ915は
、平板状の導体でもよい。この平板状の導体は、電界結合用の導体の一つとして機能する
ことができる。つまり、コンデンサの有する2つの導体のうちの一つの導体として、アン
テナ914若しくはアンテナ915を機能させてもよい。これにより、電磁界、磁界だけ
でなく、電界で電力のやり取りを行うこともできる。
アンテナ914の線幅は、アンテナ915の線幅よりも大きいことが好ましい。これによ
り、アンテナ914により受電する電力量を大きくできる。
蓄電池は、アンテナ914及びアンテナ915と、蓄電池913との間に層916を有す
る。層916は、例えば蓄電池913による電磁界への影響を防止することができる機能
を有する。層916としては、例えば磁性体を用いることができる。
なお、蓄電池の構造は、図11に限定されない。
例えば、図12(A-1)及び図12(A-2)に示すように、図11(A)及び図11
(B)に示す蓄電池913のうち、対向する一対の面のそれぞれにアンテナを設けてもよ
い。図12(A-1)は、上記一対の面の一方側方向から見た外観図であり、図12(A
-2)は、上記一対の面の他方側方向から見た外観図である。なお、図11(A)及び図
11(B)に示す蓄電池と同じ部分については、図11(A)及び図11(B)に示す蓄
電池の説明を適宜援用できる。
図12(A-1)に示すように、蓄電池913の一対の面の一方に層916を挟んでアン
テナ914が設けられ、図12(A-2)に示すように、蓄電池913の一対の面の他方
に層917を挟んでアンテナ915が設けられる。層917は、例えば蓄電池913によ
る電磁界への影響を防止することができる機能を有する。層917としては、例えば磁性
体を用いることができる。
上記構造にすることにより、アンテナ914及びアンテナ915の両方のサイズを大きく
することができる。
又は、図12(B-1)及び図12(B-2)に示すように、図11(A)及び図11(
B)に示す蓄電池913のうち、対向する一対の面のそれぞれに別のアンテナを設けても
よい。図12(B-1)は、上記一対の面の一方側方向から見た外観図であり、図12(
B-2)は、上記一対の面の他方側方向から見た外観図である。なお、図11(A)及び
図11(B)に示す蓄電池と同じ部分については、図12(A)及び図12(B)に示す
蓄電池の説明を適宜援用できる。
図12(B-1)に示すように、蓄電池913の一対の面の一方に層916を挟んでアン
テナ914及びアンテナ915が設けられ、図12(B-2)に示すように、蓄電池91
3の一対の面の他方に層917を挟んでアンテナ918が設けられる。アンテナ918は
、例えば、外部機器とのデータ通信を行うことができる機能を有する。アンテナ918に
は、例えばアンテナ914及びアンテナ915に適用可能な形状のアンテナを適用するこ
とができる。アンテナ918を介した蓄電池と他の機器との通信方式としては、NFCな
ど、蓄電池と他の機器との間で用いることができる応答方式などを適用することができる
又は、図13(A)に示すように、図11(A)及び図11(B)に示す蓄電池913に
表示装置920を設けてもよい。表示装置920は、端子919を介して端子911に電
気的に接続される。なお、表示装置920が設けられる部分にラベル910を設けなくて
もよい。なお、図11(A)及び図11(B)に示す蓄電池と同じ部分については、図1
1(A)及び図11(B)に示す蓄電池の説明を適宜援用できる。
表示装置920には、例えば充電中であるか否かを示す画像、蓄電量を示す画像などを表
示してもよい。表示装置920としては、例えば電子ペーパー、液晶表示装置、エレクト
ロルミネセンス(ELともいう)表示装置などを用いることができる。例えば、電子ペー
パーを用いることにより表示装置920の消費電力を低減することができる。
又は、図13(B)に示すように、図11(A)及び図11(B)に示す蓄電池913に
センサ921を設けてもよい。センサ921は、端子922を介して端子911に電気的
に接続される。なお、図11(A)及び図11(B)に示す蓄電池と同じ部分については
、図11(A)及び図11(B)に示す蓄電池の説明を適宜援用できる。
センサ921としては、例えば、変位、位置、速度、加速度、角速度、回転数、距離、光
、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流
量、湿度、傾度、振動、におい、又は赤外線を測定することができる機能を有すればよい
。センサ921を設けることにより、例えば、蓄電池が置かれている環境を示すデータ(
温度など)を検出し、回路912内のメモリに記憶しておくこともできる。
さらに、蓄電池913の構造例について図14及び図15を用いて説明する。
図14(A)に示す蓄電池913は、筐体930の内部に端子951と端子952が設け
られた捲回体950を有する。捲回体950は、筐体930の内部で電解液に含浸される
。端子952は、筐体930に接し、端子951は、絶縁材などを用いることにより筐体
930に接していない。なお、図14(A)では、便宜のため、筐体930を分離して図
示しているが、実際は、捲回体950が筐体930に覆われ、端子951及び端子952
が筐体930の外に延在している。筐体930としては、金属材料又は樹脂材料を用いる
ことができる。
なお、図14(B)に示すように、図14(A)に示す筐体930を複数の材料によって
形成してもよい。例えば、図14(B)に示す蓄電池913は、筐体930aと筐体93
0bが貼り合わされており、筐体930a及び筐体930bで囲まれた領域に捲回体95
0が設けられている。
筐体930aとしては、有機樹脂など、絶縁材料を用いることができる。特に、アンテナ
が形成される面に有機樹脂などの材料を用いることにより、蓄電池913による電界の遮
蔽を抑制できる。なお、筐体930aによる電界の遮蔽が小さければ、筐体930aの内
部にアンテナ914やアンテナ915などのアンテナを設けてもよい。筐体930bとし
ては、例えば金属材料を用いることができる。
さらに、捲回体950の構造について図15に示す。捲回体950は、負極931と、正
極932と、セパレータ933と、を有する。捲回体950は、セパレータ933を挟ん
で負極931と、正極932が重なり合って積層され、該積層シートを捲回させた捲回体
である。なお、負極931と、正極932と、セパレータ933と、の積層を、さらに複
数重ねてもよい。
負極931は、端子951及び端子952の一方を介して図11に示す端子911に接続
される。正極932は、端子951及び端子952の他方を介して図11に示す端子91
1に接続される。
≪電子機器の一例:車両に搭載する例≫
次に、蓄電池を車両に搭載する例について示す。蓄電池を車両に搭載すると、ハイブリッ
ド車(HEV)、電気自動車(EV)、又はプラグインハイブリッド車(PHEV)等の
次世代クリーンエネルギー自動車を実現できる。
図16において、本発明の一態様を用いた車両を例示する。図16(A)に示す自動車8
100は、走行のための動力源として電気モーターを用いる電気自動車である。または、
走行のための動力源として電気モーターとエンジンを適宜選択して用いることが可能なハ
イブリッド自動車である。本発明の一態様を用いることで、繰り返し充放電することがで
きる車両を実現することができる。また、自動車8100は蓄電池を有する。蓄電池は電
気モーターを駆動するだけでなく、ヘッドライト8101やルームライト(図示せず)な
どの発光装置に電力を供給することができる。
また、蓄電池は、自動車8100が有するスピードメーター、タコメーターなどの表示装
置に電力を供給することができる。また、蓄電池は、自動車8100が有するナビゲーシ
ョンゲーションシステムなどの半導体装置に電力を供給することができる。
図16(B)に示す自動車8200は、自動車8200が有する蓄電池にプラグイン方式
や非接触給電方式等により外部の充電設備から電力供給を受けて、充電することができる
。図16(B)に、地上設置型の充電装置8021から自動車8200に搭載された蓄電
池に、ケーブル8022を介して充電を行っている状態を示す。充電に際しては、充電方
法やコネクタの規格等は所定の方式で適宜行えばよい。充電装置8021は、商用施設に
設けられた充電ステーションでもよく、また家庭の電源であってもよい。例えば、プラグ
イン技術によって、外部からの電力供給により自動車8200に搭載された蓄電池802
4を充電することができる。充電は、ACDCコンバータ等の変換装置を介して、交流電
力を直流電力に変換して行うことができる。
また、図示しないが、受電装置を車両に搭載し、地上の送電装置から電力を非接触で供給
して充電することもできる。この非接触給電方式の場合には、道路や外壁に送電装置を組
み込むことで、停車中に限らず走行中に充電を行うこともできる。また、この非接触給電
の方式を利用して、車両どうしで電力の送受信を行ってもよい。さらに、車両の外装部に
太陽電池を設け、停車時や走行時に蓄電池の充電を行ってもよい。このような非接触での
電力の供給には、電磁誘導方式や磁界共鳴方式を用いることができる。
本発明の一態様によれば、蓄電池のサイクル特性が良好となり、信頼性を向上させること
ができる。また、本発明の一態様によれば、蓄電池の特性を向上することができ、よって
、蓄電池自体を小型軽量化することができる。蓄電池自体を小型軽量化できれば、車両の
軽量化に寄与するため、航続距離を向上させることができる。また、車両に搭載した蓄電
池を車両以外の電力供給源として用いることもできる。この場合、電力需要のピーク時に
商用電源を用いることを回避することができる。
本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。
(実施の形態4)
実施の形態1乃至3で説明した蓄電池を電池セルとして、これと組み合わせて用いること
ができる電池制御ユニット(Battery Management Unit:BMU
)、及び該電池制御ユニットを構成する回路に適したトランジスタについて、図17乃至
図23を参照して説明する。本実施の形態では、特に直列に接続された電池セルを有する
蓄電池の電池制御ユニットについて説明する。
直列に接続された複数の電池セルに対して充放電を繰り返していくと、各電池セル間にお
いて、充放電特性にばらつきが生じて、各電池セルの容量(出力電圧)が異なってくる。
直列に接続された複数の電池セルでは、全体の放電時の容量が、容量の小さい電池セルに
依存する。各電池セルの容量にばらつきがあると放電時の全体の容量が小さくなる。また
、容量が小さい電池セルを基準にして充電を行うと、充電不足となる虞がある。また、容
量の大きい電池セルを基準にして充電を行うと、過充電となる虞がある。
そのため、直列に接続された電池セルを有する蓄電池の電池制御ユニットは、充電不足や
、過充電の原因となる、電池セル間の容量のばらつきを揃える機能を有する。電池セル間
の容量のばらつきを揃える回路構成には、抵抗方式、キャパシタ方式、あるいはインダク
タ方式等あるが、ここではオフ電流の小さいトランジスタを利用して容量のばらつきを揃
えることのできる回路構成を一例として挙げて説明する。
オフ電流の小さいトランジスタとしては、チャネル形成領域に酸化物半導体を有するトラ
ンジスタ(OSトランジスタ)が好ましい。オフ電流の小さいOSトランジスタを蓄電池
の電池制御ユニットの回路構成に用いることで、電池から漏洩する電荷量を減らし、時間
の経過による容量の低下を抑制することができる。
チャネル形成領域に用いる酸化物半導体は、In-M-Zn酸化物(Mは、Ga、Sn、
Y、Zr、La、Ce、またはNd)を用いる。酸化物半導体膜を成膜するために用いる
ターゲットにおいて、金属元素の原子数比をIn:M:Zn=x:y:zとすると
/yは、1/3以上6以下、さらには1以上6以下であって、z/yは、1
/3以上6以下、さらには1以上6以下であることが好ましい。なお、z/yを1以
上6以下とすることで、酸化物半導体膜としてCAAC-OS膜が形成されやすくなる。
ここで、CAAC-OS膜について説明する。
CAAC-OS膜は、c軸配向した複数の結晶部を有する酸化物半導体膜の一つである。
透過型電子顕微鏡(TEM:Transmission Electron Micro
scope)によって、CAAC-OS膜の明視野像および回折パターンの複合解析像(
高分解能TEM像ともいう。)を観察することで複数の結晶部を確認することができる。
一方、高分解能TEM像によっても明確な結晶部同士の境界、即ち結晶粒界(グレインバ
ウンダリーともいう。)を確認することができない。そのため、CAAC-OS膜は、結
晶粒界に起因する電子移動度の低下が起こりにくいといえる。
試料面と略平行な方向から、CAAC-OS膜の断面の高分解能TEM像を観察すると、
結晶部において、金属原子が層状に配列していることを確認できる。金属原子の各層は、
CAAC-OS膜の膜を形成する面(被形成面ともいう。)または上面の凹凸を反映した
形状であり、CAAC-OS膜の被形成面または上面と平行に配列する。
一方、試料面と略垂直な方向から、CAAC-OS膜の平面の高分解能TEM像を観察す
ると、結晶部において、金属原子が三角形状または六角形状に配列していることを確認で
きる。しかしながら、異なる結晶部間で、金属原子の配列に規則性は見られない。
CAAC-OS膜に対し、X線回折(XRD:X-Ray Diffraction)装
置を用いて構造解析を行うと、例えばInGaZnOの結晶を有するCAAC-OS膜
のout-of-plane法による解析では、回折角(2θ)が31°近傍にピークが
現れる場合がある。このピークは、InGaZnOの結晶の(009)面に帰属される
ことから、CAAC-OS膜の結晶がc軸配向性を有し、c軸が被形成面または上面に略
垂直な方向を向いていることが確認できる。
なお、InGaZnOの結晶を有するCAAC-OS膜のout-of-plane法
による解析では、2θが31°近傍のピークの他に、2θが36°近傍にもピークが現れ
る場合がある。2θが36°近傍のピークは、CAAC-OS膜中の一部に、c軸配向性
を有さない結晶が含まれることを示している。CAAC-OS膜は、2θが31°近傍に
ピークを示し、2θが36°近傍にピークを示さないことが好ましい。
CAAC-OS膜は、不純物濃度の低い酸化物半導体膜である。不純物は、水素、炭素、
シリコン、遷移金属元素などの酸化物半導体膜の主成分以外の元素である。特に、シリコ
ンなどの、酸化物半導体膜を構成する金属元素よりも酸素との結合力の強い元素は、酸化
物半導体膜から酸素を奪うことで酸化物半導体膜の原子配列を乱し、結晶性を低下させる
要因となる。また、鉄やニッケルなどの重金属、アルゴン、二酸化炭素などは、原子半径
(または分子半径)が大きいため、酸化物半導体膜内部に含まれると、酸化物半導体膜の
原子配列を乱し、結晶性を低下させる要因となる。なお、酸化物半導体膜に含まれる不純
物は、キャリアトラップやキャリア発生源となる場合がある。
また、CAAC-OS膜は、欠陥準位密度の低い酸化物半導体膜である。例えば、酸化物
半導体膜中の酸素欠損は、キャリアトラップとなることや、水素を捕獲することによって
キャリア発生源となることがある。
不純物濃度が低く、欠陥準位密度が低い(酸素欠損の少ない)ことを、高純度真性または
実質的に高純度真性と呼ぶ。高純度真性または実質的に高純度真性である酸化物半導体膜
は、キャリア発生源が少ないため、キャリア密度を低くすることができる。したがって、
当該酸化物半導体膜を用いたトランジスタは、しきい値電圧がマイナスとなる電気特性(
ノーマリーオンともいう。)になることが少ない。また、高純度真性または実質的に高純
度真性である酸化物半導体膜は、キャリアトラップが少ない。そのため、当該酸化物半導
体膜を用いたトランジスタは、電気特性の変動が小さく、信頼性の高いトランジスタとな
る。なお、酸化物半導体膜のキャリアトラップに捕獲された電荷は、放出するまでに要す
る時間が長く、あたかも固定電荷のように振る舞うことがある。そのため、不純物濃度が
高く、欠陥準位密度が高い酸化物半導体膜を用いたトランジスタは、電気特性が不安定と
なる場合がある。
また、CAAC-OS膜を用いたトランジスタは、可視光や紫外光の照射による電気特性
の変動が小さい。
なお、OSトランジスタは、チャネル形成領域にシリコンを有するトランジスタ(Siト
ランジスタ)に比べてバンドギャップが大きいため、高電圧を印加した際の絶縁破壊が生
じにくい。直列に電池セルを接続する場合、数100Vの電圧が生じることになるが、蓄
電池においてこのような電池セルに適用される電池制御ユニットの回路構成には、前述の
OSトランジスタで構成することが適している。
図17には、蓄電池のブロック図の一例を示す。図17に示す蓄電池BT00は、端子対
BT01と、端子対BT02と、切り替え制御回路BT03と、切り替え回路BT04と
、切り替え回路BT05と、変圧制御回路BT06と、変圧回路BT07と、直列に接続
された複数の電池セルBT09を含む電池部BT08と、を有する。
また、図17の蓄電池BT00において、端子対BT01と、端子対BT02と、切り替
え制御回路BT03と、切り替え回路BT04と、切り替え回路BT05と、変圧制御回
路BT06と、変圧回路BT07とにより構成される部分を、電池制御ユニットと呼ぶこ
とができる。
切り替え制御回路BT03は、切り替え回路BT04及び切り替え回路BT05の動作を
制御する。具体的には、切り替え制御回路BT03は、電池セルBT09毎に測定された
電圧に基づいて、放電する電池セル(放電電池セル群)、及び充電する電池セル(充電電
池セル群)を決定する。
さらに、切り替え制御回路BT03は、当該決定された放電電池セル群及び充電電池セル
群に基づいて、制御信号S1及び制御信号S2を出力する。制御信号S1は、切り替え回
路BT04へ出力される。この制御信号S1は、端子対BT01と放電電池セル群とを接
続させるように切り替え回路BT04を制御する信号である。また、制御信号S2は、切
り替え回路BT05へ出力される。この制御信号S2は、端子対BT02と充電電池セル
群とを接続させるように切り替え回路BT05を制御する信号である。
また、切り替え制御回路BT03は、切り替え回路BT04、切り替え回路BT05、及
び変圧回路BT07の構成を踏まえ、端子対BT01と放電電池セル群との間、または端
子対BT02と充電電池セル群との間で、同じ極性の端子同士が接続されるように、制御
信号S1及び制御信号S2を生成する。
切り替え制御回路BT03の動作の詳細について述べる。
まず、切り替え制御回路BT03は、複数の電池セルBT09毎の電圧を測定する。そし
て、切り替え制御回路BT03は、例えば、所定の閾値以上の電圧の電池セルBT09を
高電圧の電池セル(高電圧セル)、所定の閾値未満の電圧の電池セルBT09を低電圧の
電池セル(低電圧セル)と判断する。
なお、高電圧セル及び低電圧セルを判断する方法については、様々な方法を用いることが
できる。例えば、切り替え制御回路BT03は、複数の電池セルBT09の中で、最も電
圧の高い、又は最も電圧の低い電池セルBT09の電圧を基準として、各電池セルBT0
9が高電圧セルか低電圧セルかを判断してもよい。この場合、切り替え制御回路BT03
は、各電池セルBT09の電圧が基準となる電圧に対して所定の割合以上か否かを判定す
る等して、各電池セルBT09が高電圧セルか低電圧セルかを判断することができる。そ
して、切り替え制御回路BT03は、この判断結果に基づいて、放電電池セル群と充電電
池セル群とを決定する。
なお、複数の電池セルBT09の中には、高電圧セルと低電圧セルが様々な状態で混在し
得る。例えば、切り替え制御回路BT03は、高電圧セルと低電圧セルが混在する中で、
高電圧セルが最も多く連続して直列に接続された部分を放電電池セル群とする。また、切
り替え制御回路BT03は、低電圧セルが最も多く連続して直列に接続された部分を充電
電池セル群とする。また、切り替え制御回路BT03は、過充電又は過放電に近い電池セ
ルBT09を、放電電池セル群又は充電電池セル群として優先的に選択するようにしても
よい。
ここで、本実施形態における切り替え制御回路BT03の動作例を、図18を用いて説明
する。図18は、切り替え制御回路BT03の動作例を説明するための図である。なお、
説明の便宜上、図18では4個の電池セルBT09が直列に接続されている場合を例に説
明する。
まず、図18(A)の例では、電池セルa乃至dの電圧を電圧Va乃至電圧Vdとすると
、Va=Vb=Vc>Vdの関係にある場合を示している。つまり、連続する3つの高電
圧セルa乃至cと、1つの低電圧セルdとが直列に接続されている。この場合、切り替え
制御回路BT03は、連続する3つの高電圧セルa乃至cを放電電池セル群として決定す
る。また、切り替え制御回路BT03は、低電圧セルdを充電電池セル群として決定する
次に、図18(B)の例では、Vc>Va=Vb>>Vdの関係にある場合を示している
。つまり、連続する2つの低電圧セルa、bと、1つの高電圧セルcと、1つの過放電間
近の低電圧セルdとが直列に接続されている。この場合、切り替え制御回路BT03は、
高電圧セルcを放電電池セル群として決定する。また、切り替え制御回路BT03は、低
電圧セルdが過放電間近であるため、連続する2つの低電圧セルa及びbではなく、低電
圧セルdを充電電池セル群として優先的に決定する。
最後に、図18(C)の例では、Va>Vb=Vc=Vdの関係にある場合を示している
。つまり、1つの高電圧セルaと、連続する3つの低電圧セルb乃至dとが直列に接続さ
れている。この場合、切り替え制御回路BT03は、高電圧セルaを放電電池セル群と決
定する。また、切り替え制御回路BT03は、連続する3つの低電圧セルb乃至dを充電
電池セル群として決定する。
切り替え制御回路BT03は、上記図18(A)乃至(C)の例のように決定された結果
に基づいて、切り替え回路BT04の接続先である放電電池セル群を示す情報が設定され
た制御信号S1と、切り替え回路BT05の接続先である充電電池セル群を示す情報が設
定された制御信号S2を、切り替え回路BT04及び切り替え回路BT05に対してそれ
ぞれ出力する。
以上が、切り替え制御回路BT03の動作の詳細に関する説明である。
切り替え回路BT04は、切り替え制御回路BT03から出力される制御信号S1に応じ
て、端子対BT01の接続先を、切り替え制御回路BT03により決定された放電電池セ
ル群に設定する。
端子対BT01は、対を成す端子A1及びA2により構成される。切り替え回路BT04
は、この端子A1及びA2のうち、いずれか一方を放電電池セル群の中で最も上流(高電
位側)に位置する電池セルBT09の正極端子と接続し、他方を放電電池セル群の中で最
も下流(低電位側)に位置する電池セルBT09の負極端子と接続することにより、端子
対BT01の接続先を設定する。なお、切り替え回路BT04は、制御信号S1に設定さ
れた情報を用いて放電電池セル群の位置を認識することができる。
切り替え回路BT05は、切り替え制御回路BT03から出力される制御信号S2に応じ
て、端子対BT02の接続先を、切り替え制御回路BT03により決定された充電電池セ
ル群に設定する。
端子対BT02は、対を成す端子B1及びB2により構成される。切り替え回路BT05
は、この端子B1及びB2のうち、いずれか一方を充電電池セル群の中で最も上流(高電
位側)に位置する電池セルBT09の正極端子と接続し、他方を充電電池セル群の中で最
も下流(低電位側)に位置する電池セルBT09の負極端子と接続することにより、端子
対BT02の接続先を設定する。なお、切り替え回路BT05は、制御信号S2に設定さ
れた情報を用いて充電電池セル群の位置を認識することができる。
切り替え回路BT04及び切り替え回路BT05の構成例を示す回路図を図19及び図2
0に示す。
図19では、切り替え回路BT04は、複数のトランジスタBT10と、バスBT11及
びBT12とを有する。バスBT11は、端子A1と接続されている。また、バスBT1
2は、端子A2と接続されている。複数のトランジスタBT10のソース又はドレインの
一方は、それぞれ1つおきに交互に、バスBT11及びBT12と接続されている。また
、複数のトランジスタBT10のソース又はドレインの他方は、それぞれ隣接する2つの
電池セルBT09の間に接続されている。
なお、複数のトランジスタBT10のうち、最上流に位置するトランジスタBT10のソ
ース又はドレインの他方は、電池部BT08の最上流に位置する電池セルBT09の正極
端子と接続されている。また、複数のトランジスタBT10のうち、最下流に位置するト
ランジスタBT10のソース又はドレインの他方は、電池部BT08の最下流に位置する
電池セルBT09の負極端子と接続されている。
切り替え回路BT04は、複数のトランジスタBT10のゲートに与える制御信号S1に
応じて、バスBT11に接続される複数のトランジスタBT10のうちの1つと、バスB
T12に接続される複数のトランジスタBT10のうちの1つとをそれぞれ導通状態にす
ることにより、放電電池セル群と端子対BT01とを接続する。これにより、放電電池セ
ル群の中で最も上流に位置する電池セルBT09の正極端子は、端子対の端子A1又はA
2のいずれか一方と接続される。また、放電電池セル群の中で最も下流に位置する電池セ
ルBT09の負極端子は、端子対の端子A1又はA2のいずれか他方、すなわち正極端子
と接続されていない方の端子に接続される。
トランジスタBT10には、OSトランジスタを用いることが好ましい。OSトランジス
タはオフ電流が小さいため、放電電池セル群に属しない電池セルから漏洩する電荷量を減
らし、時間の経過による容量の低下を抑制することができる。またOSトランジスタは高
電圧を印加した際の絶縁破壊が生じにくい。そのため、放電電池セル群の出力電圧が大き
くても、非導通状態とするトランジスタBT10が接続された電池セルBT09と端子対
BT01とを絶縁状態とすることができる。
また、図19では、切り替え回路BT05は、複数のトランジスタBT13と、電流制御
スイッチBT14と、バスBT15と、バスBT16とを有する。バスBT15及びBT
16は、複数のトランジスタBT13と、電流制御スイッチBT14との間に配置される
。複数のトランジスタBT13のソース又はドレインの一方は、それぞれ1つおきに交互
に、バスBT15及びBT16と接続されている。また、複数のトランジスタBT13の
ソース又はドレインの他方は、それぞれ隣接する2つの電池セルBT09の間に接続され
ている。
なお、複数のトランジスタBT13のうち、最上流に位置するトランジスタBT13のソ
ース又はドレインの他方は、電池部BT08の最上流に位置する電池セルBT09の正極
端子と接続されている。また、複数のトランジスタBT13のうち、最下流に位置するト
ランジスタBT13のソース又はドレインの他方は、電池部BT08の最下流に位置する
電池セルBT09の負極端子と接続されている。
トランジスタBT13には、トランジスタBT10と同様に、OSトランジスタを用いる
ことが好ましい。OSトランジスタはオフ電流が小さいため、充電電池セル群に属しない
電池セルから漏洩する電荷量を減らし、時間の経過による容量の低下を抑制することがで
きる。またOSトランジスタは高電圧を印加した際の絶縁破壊が生じにくい。そのため、
充電電池セル群を充電するための電圧が大きくても、非導通状態とするトランジスタBT
13が接続された電池セルBT09と端子対BT02とを絶縁状態とすることができる。
電流制御スイッチBT14は、スイッチ対BT17とスイッチ対BT18とを有する。ス
イッチ対BT17の一端は、端子B1に接続されている。また、スイッチ対BT17の他
端は2つのスイッチで分岐しており、一方のスイッチはバスBT15に接続され、他方の
スイッチはバスBT16に接続されている。スイッチ対BT18の一端は、端子B2に接
続されている。また、スイッチ対BT18の他端は2つのスイッチで分岐しており、一方
のスイッチはバスBT15に接続され、他方のスイッチはバスBT16に接続されている
スイッチ対BT17及びスイッチ対BT18が有するスイッチは、トランジスタBT10
及びトランジスタBT13と同様に、OSトランジスタを用いることが好ましい。
切り替え回路BT05は、制御信号S2に応じて、トランジスタBT13、及び電流制御
スイッチBT14のオン/オフ状態の組み合わせを制御することにより、充電電池セル群
と端子対BT02とを接続する。
切り替え回路BT05は、一例として、以下のようにして充電電池セル群と端子対BT0
2とを接続する。
切り替え回路BT05は、複数のトランジスタBT13のゲートに与える制御信号S2に
応じて、充電電池セル群の中で最も上流に位置する電池セルBT09の正極端子と接続さ
れているトランジスタBT13を導通状態にする。また、切り替え回路BT05は、複数
のトランジスタBT13のゲートに与える制御信号S2に応じて、充電電池セル群の中で
最も下流に位置する電池セルBT09の負極端子に接続されているトランジスタBT13
を導通状態にする。
端子対BT02に印加される電圧の極性は、端子対BT01と接続される放電電池セル群
、及び変圧回路BT07の構成によって変わり得る。また、充電電池セル群を充電する方
向に電流を流すためには、端子対BT02と充電電池セル群との間で、同じ極性の端子同
士を接続する必要がある。そこで、電流制御スイッチBT14は、制御信号S2により、
端子対BT02に印加される電圧の極性に応じてスイッチ対BT17及びスイッチ対BT
18の接続先をそれぞれ切り替えるように制御される。
一例として、端子B1が正極、端子B2が負極となるような電圧が端子対BT02に印加
されている状態を挙げて説明する。この時、電池部BT08の最下流の電池セルBT09
が充電電池セル群である場合、スイッチ対BT17は、制御信号S2により、当該電池セ
ルBT09の正極端子と接続されるように制御される。すなわち、スイッチ対BT17の
バスBT16に接続されるスイッチがオン状態となり、スイッチ対BT17のバスBT1
5に接続されるスイッチがオフ状態となる。一方、スイッチ対BT18は、制御信号S2
により、当該電池セルBT09の負極端子と接続されるように制御される。すなわち、ス
イッチ対BT18のバスBT15に接続されるスイッチがオン状態となり、スイッチ対B
T18のバスBT16に接続されるスイッチがオフ状態となる。このようにして、端子対
BT02と充電電池セル群との間で、同じ極性をもつ端子同士が接続される。そして、端
子対BT02から流れる電流の方向が、充電電池セル群を充電する方向となるように制御
される。
また、電流制御スイッチBT14は、切り替え回路BT05ではなく、切り替え回路BT
04に含まれていてもよい。この場合、電流制御スイッチBT14、制御信号S1に応じ
て、端子対BT01に印加される電圧の極性を制御することにより、端子対BT02に印
加される電圧の極性を制御する。そして、電流制御スイッチBT14は、端子対BT02
から充電電池セル群に流れる電流の向きを制御する。
図20は、図19とは異なる、切り替え回路BT04及び切り替え回路BT05の構成例
を示す回路図である。
図20では、切り替え回路BT04は、複数のトランジスタ対BT21と、バスBT24
及びバスBT25とを有する。バスBT24は、端子A1と接続されている。また、バス
BT25は、端子A2と接続されている。複数のトランジスタ対BT21の一端は、それ
ぞれトランジスタBT22とトランジスタBT23とにより分岐している。トランジスタ
BT22のソース又はドレインの一方は、バスBT24と接続されている。また、トラン
ジスタBT23のソース又はドレインの一方は、バスBT25と接続されている。また、
複数のトランジスタ対の他端は、それぞれ隣接する2つの電池セルBT09の間に接続さ
れている。なお、複数のトランジスタ対BT21のうち、最上流に位置するトランジスタ
対BT21の他端は、電池部BT08の最上流に位置する電池セルBT09の正極端子と
接続されている。また、複数のトランジスタ対BT21のうち、最下流に位置するトラン
ジスタ対BT21の他端は、電池部BT08の最下流に位置する電池セルBT09の負極
端子と接続されている。
切り替え回路BT04は、制御信号S1に応じてトランジスタBT22及びトランジスタ
BT23の導通/非導通状態を切り換えることにより、当該トランジスタ対BT21の接
続先を、端子A1又は端子A2のいずれか一方に切り替える。詳細には、トランジスタB
T22が導通状態であれば、トランジスタBT23は非導通状態となり、その接続先は端
子A1になる。一方、トランジスタBT23が導通状態であれば、トランジスタBT22
は非導通状態となり、その接続先は端子A2になる。トランジスタBT22及びトランジ
スタBT23のどちらが導通状態になるかは、制御信号S1によって決定される。
端子対BT01と放電電池セル群とを接続するには、2つのトランジスタ対BT21が用
いられる。詳細には、制御信号S1に基づいて、2つのトランジスタ対BT21の接続先
がそれぞれ決定されることにより、放電電池セル群と端子対BT01とが接続される。2
つのトランジスタ対BT21のそれぞれの接続先は、一方が端子A1となり、他方が端子
A2となるように、制御信号S1によって制御される。
切り替え回路BT05は、複数のトランジスタ対BT31と、バスBT34及びバスBT
35とを有する。バスBT34は、端子B1と接続されている。また、バスBT35は、
端子B2と接続されている。複数のトランジスタ対BT31の一端は、それぞれトランジ
スタBT32とトランジスタBT33とにより分岐している。トランジスタBT32によ
り分岐する一端は、バスBT34と接続されている。また、トランジスタBT33により
分岐する一端は、バスBT35と接続されている。また、複数のトランジスタ対BT31
の他端は、それぞれ隣接する2つの電池セルBT09の間に接続されている。なお、複数
のトランジスタ対BT31のうち、最上流に位置するトランジスタ対BT31の他端は、
電池部BT08の最上流に位置する電池セルBT09の正極端子と接続されている。また
、複数のトランジスタ対BT31のうち、最下流に位置するトランジスタ対BT31の他
端は、電池部BT08の最下流に位置する電池セルBT09の負極端子と接続されている
切り替え回路BT05は、制御信号S2に応じてトランジスタBT32及びトランジスタ
BT33の導通/非導通状態を切り換えることにより、当該トランジスタ対BT31の接
続先を、端子B1又は端子B2のいずれか一方に切り替える。詳細には、トランジスタB
T32が導通状態であれば、トランジスタBT33は非導通状態となり、その接続先は端
子B1になる。逆に、トランジスタBT33が導通状態であれば、トランジスタBT32
は非導通状態となり、その接続先は端子B2になる。トランジスタBT32及びトランジ
スタBT33のどちらが導通状態となるかは、制御信号S2によって決定される。
端子対BT02と充電電池セル群とを接続するには、2つのトランジスタ対BT31が用
いられる。詳細には、制御信号S2に基づいて、2つのトランジスタ対BT31の接続先
がそれぞれ決定されることにより、充電電池セル群と端子対BT02とが接続される。2
つのトランジスタ対BT31のそれぞれの接続先は、一方が端子B1となり、他方が端子
B2となるように、制御信号S2によって制御される。
また、2つのトランジスタ対BT31のそれぞれの接続先は、端子対BT02に印加され
る電圧の極性によって決定される。具体的には、端子B1が正極、端子B2が負極となる
ような電圧が端子対BT02に印加されている場合、上流側のトランジスタ対BT31は
、トランジスタBT32が導通状態となり、トランジスタBT33が非導通状態となるよ
うに、制御信号S2によって制御される。一方、下流側のトランジスタ対BT31は、ト
ランジスタBT33が導通状態、トランジスタBT32が非導通状態となるように、制御
信号S2によって制御される。また、端子B1が負極、端子B2が正極となるような電圧
が端子対BT02に印加されている場合は、上流側のトランジスタ対BT31は、トラン
ジスタBT33が導通状態となり、トランジスタBT32が非導通状態となるように、制
御信号S2によって制御される。一方、下流側のトランジスタ対BT31は、トランジス
タBT32が導通状態、トランジスタBT33が非導通状態となるように、制御信号S2
によって制御される。このようにして、端子対BT02と充電電池セル群との間で、同じ
極性をもつ端子同士が接続される。そして、端子対BT02から流れる電流の方向が、充
電電池セル群を充電する方向となるように制御される。
変圧制御回路BT06は、変圧回路BT07の動作を制御する。変圧制御回路BT06は
、放電電池セル群に含まれる電池セルBT09の個数と、充電電池セル群に含まれる電池
セルBT09の個数とに基づいて、変圧回路BT07の動作を制御する変圧信号S3を生
成し、変圧回路BT07へ出力する。
なお、放電電池セル群に含まれる電池セルBT09の個数が充電電池セル群に含まれる電
池セルBT09の個数よりも多い場合は、充電電池セル群に対して過剰に大きな充電電圧
が印加されることを防止する必要がある。そのため、変圧制御回路BT06は、充電電池
セル群を充電できる範囲で放電電圧(Vdis)を降圧させるように変圧回路BT07を
制御する変圧信号S3を出力する。
また、放電電池セル群に含まれる電池セルBT09の個数が、充電電池セル群に含まれる
電池セルBT09の個数以下である場合は、充電電池セル群を充電するために必要な充電
電圧を確保する必要がある。そのため、変圧制御回路BT06は、充電電池セル群に過剰
な充電電圧が印加されない範囲で放電電圧(Vdis)を昇圧させるように変圧回路BT
07を制御する変圧信号S3を出力する。
なお、過剰な充電電圧とする電圧値は、電池部BT08で使用される電池セルBT09の
製品仕様等に鑑みて決定することができる。また、変圧回路BT07により昇圧及び降圧
された電圧は、充電電圧(Vcha)として端子対BT02に印加される。
ここで、本実施形態における変圧制御回路BT06の動作例を、図21(A)乃至(C)
を用いて説明する。図21(A)乃至(C)は、図18(A)乃至(C)で説明した放電
電池セル群及び充電電池セル群に対応させた、変圧制御回路BT06の動作例を説明する
ための概念図である。なお図21(A)乃至(C)は、電池制御ユニットBT41を図示
している。電池制御ユニットBT41は、上述したように、端子対BT01と、端子対B
T02と、切り替え制御回路BT03と、切り替え回路BT04と、切り替え回路BT0
5と、変圧制御回路BT06と、変圧回路BT07とにより構成される。
図21(A)に示される例では、図18(A)で説明したように、連続する3つの高電圧
セルa乃至cと、1つの低電圧セルdとが直列に接続されている。この場合、図18(A
)を用いて説明したように、切り替え制御回路BT03は、高電圧セルa乃至cを放電電
池セル群として決定し、低電圧セルdを充電電池セル群として決定する。そして、変圧制
御回路BT06は、放電電池セル群に含まれる電池セルBT09の個数を基準とした時の
、充電電池セル群に含まれる電池セルBT09の個数の比に基づいて、放電電圧(Vdi
s)から充電電圧(Vcha)への変換比Nを算出する。
なお放電電池セル群に含まれる電池セルBT09の個数が、充電電池セル群に含まれる電
池セルBT09の個数よりも多い場合に、放電電圧を変圧せずに端子対BT02にそのま
ま印加すると、充電電池セル群に含まれる電池セルBT09に、端子対BT02を介して
過剰な電圧が印加される可能性がある。そのため、図21(A)に示されるような場合で
は、端子対BT02に印加される充電電圧(Vcha)を、放電電圧よりも降圧させる必
要がある。さらに、充電電池セル群を充電するためには、充電電圧は、充電電池セル群に
含まれる電池セルBT09の合計電圧より大きい必要がある。そのため、変圧制御回路B
T06は、放電電池セル群に含まれる電池セルBT09の個数を基準とした時の、充電電
池セル群に含まれる電池セルBT09の個数の比よりも、変換比Nを大きく設定する。
変圧制御回路BT06は、放電電池セル群に含まれる電池セルBT09の個数を基準とし
た時の、充電電池セル群に含まれる電池セルBT09の個数の比に対して、変換比Nを1
乃至10%程度大きくするのが好ましい。この時、充電電圧は充電電池セル群の電圧より
も大きくなるが、実際には充電電圧は充電電池セル群の電圧と等しくなる。ただし、変圧
制御回路BT06は変換比Nに従い充電電池セル群の電圧を充電電圧と等しくするために
、充電電池セル群を充電する電流を流すこととなる。この電流は変圧制御回路BT06に
設定された値となる。
図21(A)に示される例では、放電電池セル群に含まれる電池セルBT09の個数が3
個で、充電電池セル群に含まれる電池セルBT09の数が1個であるため、変圧制御回路
BT06は、1/3より少し大きい値を変換比Nとして算出する。そして、変圧制御回路
BT06は、放電電圧を当該変換比Nに応じて降圧し、充電電圧に変換する変圧信号S3
を変圧回路BT07に出力する。そして、変圧回路BT07は、変圧信号S3に応じて変
圧された充電電圧を、端子対BT02に印加する。そして、端子対BT02に印加される
充電電圧によって、充電電池セル群に含まれる電池セルBT09が充電される。
また、図21(B)や図21(C)に示される例でも、図21(A)と同様に、変換比N
が算出される。図21(B)や図21(C)に示される例では、放電電池セル群に含まれ
る電池セルBT09の個数が、充電電池セル群に含まれる電池セルBT09の個数以下で
あるため、変換比Nは1以上となる。よって、この場合は、変圧制御回路BT06は、放
電電圧を昇圧して充電電圧に変換する変圧信号S3を出力する。
変圧回路BT07は、変圧信号S3に基づいて、端子対BT01に印加される放電電圧を
充電電圧に変換する。そして、変圧回路BT07は、変換された充電電圧を端子対BT0
2に印加する。ここで、変圧回路BT07は、端子対BT01と端子対BT02との間を
電気的に絶縁している。これにより、変圧回路BT07は、放電電池セル群の中で最も下
流に位置する電池セルBT09の負極端子の絶対電圧と、充電電池セル群の中で最も下流
に位置する電池セルBT09の負極端子の絶対電圧との差異による短絡を防止する。さら
に、変圧回路BT07は、上述したように、変圧信号S3に基づいて放電電池セル群の合
計電圧である放電電圧を充電電圧に変換する。
また、変圧回路BT07は、例えば絶縁型DC(Direct Current)-DC
コンバータ等を用いることができる。この場合、変圧制御回路BT06は、絶縁型DC-
DCコンバータのオン/オフ比(デューティー比)を制御する信号を変圧信号S3として
出力することにより、変圧回路BT07で変換される充電電圧を制御する。
なお、絶縁型DC-DCコンバータには、フライバック方式、フォワード方式、RCC(
Ringing Choke Converter)方式、プッシュプル方式、ハーフブ
リッジ方式、及びフルブリッジ方式等が存在するが、目的とする出力電圧の大きさに応じ
て適切な方式が選択される。
絶縁型DC-DCコンバータを用いた変圧回路BT07の構成を図22に示す。絶縁型D
C-DCコンバータBT51は、スイッチ部BT52とトランス部BT53とを有する。
スイッチ部BT52は、絶縁型DC-DCコンバータの動作のオン/オフを切り替えるス
イッチであり、例えば、MOSFET(Metal-Oxide-Semiconduc
tor Field-Effect Transistor)やバイポーラ型トランジス
タ等を用いて実現される。また、スイッチ部BT52は、変圧制御回路BT06から出力
される、オン/オフ比を制御する変圧信号S3に基づいて、絶縁型DC-DCコンバータ
BT51のオン状態とオフ状態を周期的に切り替える。なお、スイッチ部BT52は、使
用される絶縁型DC-DCコンバータの方式によって様々な構成を取り得る。トランス部
BT53は、端子対BT01から印加される放電電圧を充電電圧に変換する。詳細には、
トランス部BT53は、スイッチ部BT52のオン/オフ状態と連動して動作し、そのオ
ン/オフ比に応じて放電電圧を充電電圧に変換する。この充電電圧は、スイッチ部BT5
2のスイッチング周期において、オン状態となる時間が長いほど大きくなる。一方、充電
電圧は、スイッチ部BT52のスイッチング周期において、オン状態となる時間が短いほ
ど小さくなる。なお、絶縁型DC-DCコンバータを用いる場合、トランス部BT53の
内部で、端子対BT01と端子対BT02は互いに絶縁することができる。
本実施形態における蓄電池BT00の処理の流れを、図23を用いて説明する。図23は
、蓄電池BT00の処理の流れを示すフローチャートである。
まず、蓄電池BT00は、複数の電池セルBT09毎に測定された電圧を取得する(ステ
ップS001)。そして、蓄電池BT00は、複数の電池セルBT09の電圧を揃える動
作の開始条件を満たすか否かを判定する(ステップS002)。この開始条件は、例えば
、複数の電池セルBT09毎に測定された電圧の最大値と最小値との差分が、所定の閾値
以上か否か等とすることができる。この開始条件を満たさない場合は(ステップS002
:NO)、各電池セルBT09の電圧のバランスが取れている状態であるため、蓄電池B
T00は、以降の処理を実行しない。一方、開始条件を満たす場合は(ステップS002
:YES)、蓄電池BT00は、各電池セルBT09の電圧を揃える処理を実行する。こ
の処理において、蓄電池BT00は、測定されたセル毎の電圧に基づいて、各電池セルB
T09が高電圧セルか低電圧セルかを判定する(ステップS003)。そして、蓄電池B
T00は、判定結果に基づいて、放電電池セル群及び充電電池セル群を決定する(ステッ
プS004)。さらに、蓄電池BT00は、決定された放電電池セル群を端子対BT01
の接続先に設定する制御信号S1、及び決定された充電電池セル群を端子対BT02の接
続先に設定する制御信号S2を生成する(ステップS005)。蓄電池BT00は、生成
された制御信号S1及び制御信号S2を、切り替え回路BT04及び切り替え回路BT0
5へそれぞれ出力する。そして、切り替え回路BT04により、端子対BT01と放電電
池セル群とが接続され、切り替え回路BT05により、端子対BT02と放電電池セル群
とが接続される(ステップS006)。また、蓄電池BT00は、放電電池セル群に含ま
れる電池セルBT09の個数と、充電電池セル群に含まれる電池セルBT09の個数とに
基づいて、変圧信号S3を生成する(ステップS007)。そして、蓄電池BT00は、
変圧信号S3に基づいて、端子対BT01に印加される放電電圧を充電電圧に変換し、端
子対BT02に印加する(ステップS008)。これにより、放電電池セル群の電荷が充
電電池セル群へ移動される。
また、図23のフローチャートでは、複数のステップが順番に記載されているが、各ステ
ップの実行順序は、その記載の順番に制限されない。
以上、本実施形態によれば、放電電池セル群から充電電池セル群へ電荷を移動させる際、
キャパシタ方式のように、放電電池セル群からの電荷を一旦蓄積し、その後充電電池セル
群へ放出させるような構成を必要としない。これにより、単位時間あたりの電荷移動効率
を向上させることができる。また、切り替え回路BT04及び切り替え回路BT05によ
り、放電電池セル群及び充電電池セル群のうち、変圧回路と接続する電池セルを、個別に
切り替えられる。
さらに、変圧回路BT07により、放電電池セル群に含まれる電池セルBT09の個数と
充電電池セル群に含まれる電池セルBT09の個数とに基づいて、端子対BT01に印加
される放電電圧が充電電圧に変換され、端子対BT02に印加される。これにより、放電
側及び充電側の電池セルBT09がどのように選択されても、問題なく電荷の移動を実現
できる。
さらに、トランジスタBT10及びトランジスタBT13にOSトランジスタを用いるこ
とにより、充電電池セル群及び放電電池セル群に属しない電池セルBT09から漏洩する
電荷量を減らすことができる。これにより、充電及び放電に寄与しない電池セルBT09
の容量の低下を抑制することができる。また、OSトランジスタは、Siトランジスタに
比べて熱に対する特性の変動が小さい。これにより、電池セルBT09の温度が上昇して
も、制御信号S1、S2に応じた導通状態と非導通状態の切り替えといった、正常な動作
をさせることができる。
なお、本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。
100 正極集電体
101 正極活物質層
102 負極集電体
103 負極活物質層
104 セパレータ
105 電解液
110 リチウムイオン蓄電池
206 配線
207 外装体
208 回路
300 蓄電池
301 正極缶
302 負極缶
303 ガスケット
304 正極
305 正極集電体
306 正極活物質層
307 負極
308 負極集電体
309 負極活物質層
310 セパレータ
400 蓄電池
402 正極
404 負極
500 蓄電池
501 正極集電体
502 正極活物質層
503 正極
504 負極集電体
505 負極活物質層
506 負極
507 セパレータ
508 電解液
509 外装体
510 正極タブ電極
511 負極タブ電極
515 タブ電極
516 タブ電極
600 蓄電池
601 正極キャップ
602 電池缶
603 正極端子
604 正極
605 セパレータ
606 負極
607 負極端子
608 絶縁板
609 絶縁板
610 ガスケット
611 PTC素子
612 安全弁機構
900 回路基板
910 ラベル
911 端子
912 回路
913 蓄電池
914 アンテナ
915 アンテナ
916 層
917 層
918 アンテナ
919 端子
920 表示装置
921 センサ
922 端子
930 筐体
930a 筐体
930b 筐体
931 負極
932 正極
933 セパレータ
951 端子
952 端子
1700 曲面
1701 平面
1702 曲線
1703 曲率半径
1704 曲率中心
1800 曲率中心
1801 フィルム
1802 曲率半径
1803 フィルム
1804 曲率半径
1805 電極・電解液など
5006 配線
5007 外装体
5008 回路
5009 排他的論理和回路
5010 Dラッチ
5011 電池セル
7100 携帯表示装置
7101 筐体
7102 表示部
7103 操作ボタン
7104 蓄電池
7400 携帯電話機
7401 筐体
7402 表示部
7403 操作ボタン
7404 外部接続ポート
7405 スピーカ
7406 マイク
7407 蓄電池
8021 充電装置
8022 ケーブル
8024 蓄電池
8100 自動車
8101 ヘッドライト
S1 制御信号
S2 制御信号
S3 変圧信号
BT00 蓄電池
BT01 端子対
BT02 端子対
BT03 切り替え制御回路
BT04 切り替え回路
BT05 切り替え回路
BT06 変圧制御回路
BT07 変圧回路
BT08 電池部
BT09 電池セル
BT10 トランジスタ
BT11 バス
BT12 バス
BT13 トランジスタ
BT14 電流制御スイッチ
BT15 バス
BT16 バス
BT17 スイッチ対
BT18 スイッチ対
BT21 トランジスタ対
BT22 トランジスタ
BT23 トランジスタ
BT24 バス
BT25 バス
BT31 トランジスタ対
BT32 トランジスタ
BT33 トランジスタ
BT34 バス
BT35 バス
BT41 電池制御ユニット
BT51 絶縁型DC-DCコンバータ
BT52 スイッチ部
BT53 トランス部
S001 ステップ
S002 ステップ
S003 ステップ
S004 ステップ
S005 ステップ
S006 ステップ
S007 ステップ
S008 ステップ

Claims (1)

  1. 外装体と、前記外装体に沿って設けられた配線と、前記配線と電気的に接続された回路と、を有し、
    前記外装体及び前記配線はそれぞれ、外力に応じて変形される領域を有し、
    前記回路は、前記変形の回数に応じた前記配線の損傷を検知する機能を有する蓄電池。
JP2022171313A 2014-11-27 2022-10-26 蓄電池 Active JP7447218B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014239736 2014-11-27
JP2014239736 2014-11-27
JP2021014859A JP2021068710A (ja) 2014-11-27 2021-02-02 蓄電池

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2021014859A Division JP2021068710A (ja) 2014-11-27 2021-02-02 蓄電池

Publications (2)

Publication Number Publication Date
JP2023011729A JP2023011729A (ja) 2023-01-24
JP7447218B2 true JP7447218B2 (ja) 2024-03-11

Family

ID=56079748

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2015231758A Active JP6618338B2 (ja) 2014-11-27 2015-11-27 可撓性を有する蓄電池及び電子機器
JP2019204534A Active JP6833004B2 (ja) 2014-11-27 2019-11-12 蓄電池
JP2021014859A Withdrawn JP2021068710A (ja) 2014-11-27 2021-02-02 蓄電池
JP2022171313A Active JP7447218B2 (ja) 2014-11-27 2022-10-26 蓄電池

Family Applications Before (3)

Application Number Title Priority Date Filing Date
JP2015231758A Active JP6618338B2 (ja) 2014-11-27 2015-11-27 可撓性を有する蓄電池及び電子機器
JP2019204534A Active JP6833004B2 (ja) 2014-11-27 2019-11-12 蓄電池
JP2021014859A Withdrawn JP2021068710A (ja) 2014-11-27 2021-02-02 蓄電池

Country Status (3)

Country Link
US (3) US10608290B2 (ja)
JP (4) JP6618338B2 (ja)
KR (2) KR102536888B1 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6761638B2 (ja) 2015-02-04 2020-09-30 株式会社半導体エネルギー研究所 二次電池
JP6890956B2 (ja) 2015-12-10 2021-06-18 株式会社半導体エネルギー研究所 蓄電装置及び電子機器
WO2017145011A1 (en) 2016-02-26 2017-08-31 Semiconductor Energy Laboratory Co., Ltd. Connecting member, power supply device, electronic device, and system
KR20170101120A (ko) 2016-02-26 2017-09-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 축전 장치, 전지 제어 유닛 및 전자 기기
TWI780504B (zh) 2016-06-30 2022-10-11 日商半導體能源研究所股份有限公司 資訊終端
WO2018035093A1 (en) * 2016-08-15 2018-02-22 Littelfuse, Inc. Flexible positive temperature coefficient device with battery management system
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
KR102578534B1 (ko) 2016-12-02 2023-09-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 전력 저장 장치 및 전자 기기
US20180288889A1 (en) * 2017-03-30 2018-10-04 Google Inc. Circuit board and battery architecture of an electronic device
WO2018207049A1 (ja) * 2017-05-12 2018-11-15 株式会社半導体エネルギー研究所 正極活物質粒子
JP6852789B2 (ja) * 2017-06-19 2021-03-31 株式会社村田製作所 二次電池
US11211606B2 (en) 2017-12-28 2021-12-28 The Hong Kong Polytechnic University Electrode for battery and fabrication method thereof
USD929946S1 (en) * 2019-01-04 2021-09-07 Libest Inc. Electrode assembly
USD928698S1 (en) * 2019-06-24 2021-08-24 Libest Inc. Battery
USD928080S1 (en) * 2019-06-24 2021-08-17 Libest Inc. Battery
USD918132S1 (en) * 2019-06-24 2021-05-04 Libest Inc. Battery
US11349191B1 (en) * 2019-09-17 2022-05-31 Amazon Technologies, Inc. Ring-shaped devices with combined battery and antenna assemblies
KR20220085590A (ko) * 2020-12-15 2022-06-22 삼성전자주식회사 파우치형 플렉서블 배터리
KR20230115756A (ko) * 2022-01-27 2023-08-03 삼성에스디아이 주식회사 이차전지

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013201027A (ja) 2012-03-26 2013-10-03 Hitachi Ltd 電池モジュール、及びそれを用いた電池システム
JP2014017141A (ja) 2012-07-10 2014-01-30 Canon Inc 電子機器

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05196680A (ja) 1992-01-23 1993-08-06 Mazda Motor Corp 断線誤動作防止回路
US7059769B1 (en) * 1997-06-27 2006-06-13 Patrick Henry Potega Apparatus for enabling multiple modes of operation among a plurality of devices
JP2000173559A (ja) 1998-12-03 2000-06-23 Tokai Rubber Ind Ltd 薄型電池用袋体
JP2002063938A (ja) 2000-08-18 2002-02-28 Sony Corp 二次電池及びその製造方法
JP2002117911A (ja) 2000-10-06 2002-04-19 Nec Mobile Energy Kk 電池搭載機器
US20020192549A1 (en) * 2000-12-07 2002-12-19 Tdk Corporation Electrode composition, and lithium secondary battery
JP4188591B2 (ja) 2000-12-13 2008-11-26 Tdk株式会社 リチウム二次電池
JP2003151640A (ja) 2001-11-09 2003-05-23 Matsushita Electric Ind Co Ltd 二次電池保護素子とその取付け方法
JP2003257408A (ja) 2002-02-27 2003-09-12 Japan Storage Battery Co Ltd 電 池
JP2008146917A (ja) 2006-12-07 2008-06-26 Nippon Synthetic Chem Ind Co Ltd:The 全固体型リチウム二次電池
JP2008192432A (ja) 2007-02-02 2008-08-21 Sony Corp 二次電池及び二次電池装置
JP5217214B2 (ja) 2007-03-30 2013-06-19 Tdk株式会社 電源装置及び電気化学素子の膨張検知方法
FR2916306B1 (fr) * 2007-05-15 2009-07-17 Batscap Sa Module pour ensembles de stockage d'energie electrique permettant la detection du vieillissement desdits ensembles.
US9219288B2 (en) * 2010-01-05 2015-12-22 Samsung Sdi Co., Ltd. Secondary battery
JP2011198616A (ja) 2010-03-19 2011-10-06 Nissan Motor Co Ltd 積層型電池
US20120183825A1 (en) 2011-01-14 2012-07-19 Seung-Hun Lee Secondary battery and method of manufacturing the same
JP2012243556A (ja) 2011-05-19 2012-12-10 Hitachi Ltd ラミネート電池とその膨張検知方法および電池モジュール
US9487880B2 (en) 2011-11-25 2016-11-08 Semiconductor Energy Laboratory Co., Ltd. Flexible substrate processing apparatus
JP5719859B2 (ja) 2012-02-29 2015-05-20 株式会社半導体エネルギー研究所 蓄電装置
TWI811937B (zh) 2013-10-22 2023-08-11 日商半導體能源研究所股份有限公司 二次電池及電子裝置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013201027A (ja) 2012-03-26 2013-10-03 Hitachi Ltd 電池モジュール、及びそれを用いた電池システム
JP2014017141A (ja) 2012-07-10 2014-01-30 Canon Inc 電子機器

Also Published As

Publication number Publication date
US20200194845A1 (en) 2020-06-18
KR20160063992A (ko) 2016-06-07
US20210210794A1 (en) 2021-07-08
JP6618338B2 (ja) 2019-12-11
JP6833004B2 (ja) 2021-02-24
JP2021068710A (ja) 2021-04-30
JP2020024946A (ja) 2020-02-13
KR102536888B1 (ko) 2023-05-25
US10608290B2 (en) 2020-03-31
KR20230074690A (ko) 2023-05-31
US10886572B2 (en) 2021-01-05
JP2016111014A (ja) 2016-06-20
US20160156071A1 (en) 2016-06-02
JP2023011729A (ja) 2023-01-24
US11670807B2 (en) 2023-06-06

Similar Documents

Publication Publication Date Title
JP7447218B2 (ja) 蓄電池
JP7152566B2 (ja) リチウムイオン蓄電池
JP7225331B2 (ja) 二次電池
JP7364730B2 (ja) リチウムイオン蓄電池
JP7227309B2 (ja) リチウムイオン二次電池の製造方法
US20160118644A1 (en) Lithium-ion storage battery and fabricating method thereof
JP2016127016A (ja) 蓄電池
JP2016207493A (ja) 電極、蓄電池、及び電子機器
JP7019011B2 (ja) リチウムイオン蓄電池
JP6571349B2 (ja) 可撓性を有するリチウムイオン蓄電池
JP7259100B2 (ja) リチウムイオン蓄電池
WO2016113656A1 (ja) 可撓性を有する蓄電池及び電子機器
JP2023085451A (ja) 蓄電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240228

R150 Certificate of patent or registration of utility model

Ref document number: 7447218

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150