JP7442268B2 - underground structure - Google Patents

underground structure Download PDF

Info

Publication number
JP7442268B2
JP7442268B2 JP2019058907A JP2019058907A JP7442268B2 JP 7442268 B2 JP7442268 B2 JP 7442268B2 JP 2019058907 A JP2019058907 A JP 2019058907A JP 2019058907 A JP2019058907 A JP 2019058907A JP 7442268 B2 JP7442268 B2 JP 7442268B2
Authority
JP
Japan
Prior art keywords
reinforced concrete
steel
column
underground
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019058907A
Other languages
Japanese (ja)
Other versions
JP2020159035A (en
Inventor
聡 北岡
慧 木村
政樹 有田
涼平 桑田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2019058907A priority Critical patent/JP7442268B2/en
Publication of JP2020159035A publication Critical patent/JP2020159035A/en
Application granted granted Critical
Publication of JP7442268B2 publication Critical patent/JP7442268B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)
  • Joining Of Building Structures In Genera (AREA)

Description

本発明は、地下躯体構造に関する。 The present invention relates to underground framework structures.

従来、超高層ビルの地中階の構造には、逆打ち工法(構真柱工法)が広く採用されている。逆打ち工法は、通常、地下躯体の柱形成位置などに基礎台柱を構築し、基礎台柱の真などに鋼管、H形鋼、クロスH形鋼などの本設または仮設の柱(以下、構真柱ともいう)を建て込み、構真柱の上に上部の躯体を構築しながら、それと並行して下部躯体を逆打ちによって構築していくものである。従来の逆打ち工法では、超高層ビルの地中階の柱を鉄骨鉄筋コンクリート造とするのが一般的である。この場合、例えば、クロスH形鋼などの鉄骨に、梁取付位置でガセット、ブラケット、またはスチフナなどの補強部材を取り付けたものを構真柱とし、アースドリル工法、ベノト工法、リバースサーキュレーションドリル工法などによって構真柱の下部を基礎台柱に埋め込み、逆打ちによってSRC柱を構築する。 Traditionally, the reverse construction method (keishinbashira method) has been widely used for the construction of underground floors of skyscrapers. In the reverse construction method, a foundation pillar is usually constructed at the column formation position of the underground framework, and permanent or temporary pillars (hereinafter referred to as construction pillars) made of steel pipes, H-beams, cross H-beams, etc. are installed at the stems of the foundation pillars. The upper frame is built on top of the structure pillars, while the lower frame is constructed in parallel by reverse hammering. In the conventional reverse construction method, the underground floor columns of skyscrapers are generally made of steel-framed reinforced concrete. In this case, for example, a steel frame such as a cross H-shaped steel with reinforcing members such as gussets, brackets, or stiffeners attached at the beam attachment position is used as the structural pillar, and the earth drill method, Benoto method, reverse circulation drill method is used. Embed the lower part of the structural pillar into the foundation pillar using methods such as this, and construct the SRC pillar by reversing it.

ここで、特許文献1には、地下躯体の柱形成位置に形成した小径の縦穴の下部にセメントミルクを注入して圧延H形鋼の構真柱を建て込んで基礎台柱を形成するとともに構真柱の下部を基礎台柱に固定する工程と、地盤を順次根切りしながら各階の梁形成位置に対応する構真柱の部分の周囲にRC梁の梁主筋の仕口の部分を位置させ、逆打ちによってRC梁、RC床およびこれらに対応するSRC柱の短い部分のみを形成する工程と、各階の室空間に略対応する構真柱の周囲に柱鉄筋を配置し、地下躯体の下方の階から上方の階に向けて順次、構真柱および柱鉄筋の周囲にコンクリートを打設して構真柱を主鉄骨とするSRC柱を形成する工程とを含む逆打ち工法が記載されている。これによって、鉄骨工場での構真柱の製作が不要になり、地下躯体のSRC柱とRC梁との取り合いがよくなり、施工性が向上する。 Here, in Patent Document 1, cement milk is injected into the lower part of a small-diameter vertical hole formed at the column formation position of the underground framework, and structural pillars made of rolled H-beam steel are erected to form foundation pillars. The process involves fixing the lower part of the column to the foundation pillar, and while cutting the ground one by one, positioning the joint part of the main beam reinforcement of the RC beam around the part of the structural pillar corresponding to the beam formation position of each floor, and The process involves forming only short sections of RC beams, RC floors, and corresponding SRC columns by hammering, and placing column reinforcing bars around the structural columns that approximately correspond to the room spaces on each floor. A reverse pouring method is described that includes the step of sequentially pouring concrete around the structural pillars and column reinforcing bars toward the upper floors to form SRC columns with the structural pillars as the main steel frame. This eliminates the need to manufacture structural columns at a steel frame factory, improves the relationship between the SRC columns and RC beams of the underground structure, and improves workability.

さらに、特許文献1には、RC梁およびRC床が荷重によって下方にずれるのを防止するために、地下躯体のRC梁の形成位置に対応する構真柱の部分に、例えば先端に膨出部が形成された頭付きスタッドなどのシアーコネクタを固定することも記載されている。特許文献1に記載された逆打ち工法では、各階の室空間に略対応する構真柱の周囲で構真柱を柱鉄骨とするSRC柱が形成されており、RC梁およびRC床に作用する荷重がSRC柱のRC部分で支持されているため、シアーコネクタを簡単な構成にすることが可能であり、建築現場で構真柱の建て込みの前後に取り付けることができる。 Furthermore, in order to prevent the RC beam and the RC floor from shifting downward due to loads, Patent Document 1 discloses that, in order to prevent the RC beam and the RC floor from shifting downward due to the load, a bulge is installed at the tip of the structural column corresponding to the formation position of the RC beam of the underground structure. Fixing shear connectors, such as headed studs, is also described. In the reverse construction method described in Patent Document 1, SRC columns are formed around structural pillars that approximately correspond to room spaces on each floor, with structural pillars serving as column steel frames, and SRC columns act on RC beams and RC floors. Since the load is supported by the RC portion of the SRC column, the shear connector can be configured simply and can be installed at the construction site before or after the structural column is erected.

特開平5-156654号公報Japanese Patent Application Publication No. 5-156654

しかしながら、特許文献1に記載された逆打ち工法においてシアーコネクタを取り付ける場合、簡単な構成であっても、RC梁の主筋とシアーコネクタとが柱梁接合部で交錯することになるため、現場での配筋やコンクリート打設の工程が煩雑なものになる可能性があった。 However, when installing shear connectors in the reverse casting method described in Patent Document 1, even with a simple configuration, the main reinforcement of the RC beam and the shear connector intersect at the column-beam joint, so it is difficult to install on-site. This could have made the reinforcing and concrete pouring processes complicated.

そこで、本発明は、シアーコネクタのような追加の部材を取り付けることなく、鉄骨鉄筋コンクリート柱に対する鉄筋コンクリート梁の下方へのずれを防止することが可能な、新規かつ改良された地下躯体構造を提供することを目的とする。 SUMMARY OF THE INVENTION Therefore, the present invention provides a new and improved underground framework structure that is capable of preventing downward displacement of a reinforced concrete beam relative to a steel reinforced concrete column without installing additional members such as shear connectors. With the goal.

本発明のある観点によれば、H形鋼からなる鉄骨を含む鉄骨鉄筋コンクリート柱と、H形鋼の断面における弱軸方向にのみ延びて鉄骨鉄筋コンクリート柱に接合される鉄筋コンクリート梁とを備える地下躯体構造が提供される。鉄筋コンクリート梁の主筋を構成する少なくとも一部の鉄筋は、H形鋼のウェブに形成された貫通孔に挿通される。H形鋼は、下部が基礎台柱に埋め込まれた構真柱を形成していてもよい。また、貫通孔の直径は、鉄筋の直径の2倍以下であってもよい。さらに、貫通孔は水平方向に複数並設されていて、隣り合う貫通孔の間の間隔は、鉄筋の直径の2.5倍以上としてもよい。 According to a certain aspect of the present invention, an underground frame structure includes a steel-framed reinforced concrete column including a steel frame made of H-section steel, and a reinforced concrete beam that extends only in the weak axis direction in the cross section of the H-section steel and is joined to the steel-framed reinforced concrete column. is provided. At least some of the reinforcing bars that constitute the main bars of the reinforced concrete beam are inserted through through holes formed in the web of the H-section steel. The H-shaped steel may form a structural column whose lower part is embedded in the foundation column. Further, the diameter of the through hole may be twice or less the diameter of the reinforcing bar. Furthermore, a plurality of through holes may be arranged in parallel in the horizontal direction, and the interval between adjacent through holes may be 2.5 times or more the diameter of the reinforcing bar.

上記の構成によれば、H形鋼のウェブに形成された貫通孔が鉄筋コンクリート梁のジベル(ずれ止め)として機能するため、シアーコネクタのような追加の部材を取り付けることなく、鉄骨鉄筋コンクリート柱に対する鉄筋コンクリート梁の下方へのずれを防止することができる。さらに貫通孔のジベル効果は、貫通孔に鉄筋を通すことでさらに強度上昇が期待できる。すなわち、鉄筋コンクリート梁の鉄筋を貫通孔に通すことでより強固な柱と梁のずれ止めの機構を構築することができる。 According to the above configuration, the through-hole formed in the web of the H-beam functions as a dowel for the reinforced concrete beam. It is possible to prevent the beam from shifting downward. Furthermore, the dowel effect of the through-hole can be expected to further increase in strength by passing reinforcing bars through the through-hole. In other words, by passing the reinforcing bars of the reinforced concrete beam through the through holes, a stronger mechanism for preventing displacement between the column and the beam can be constructed.

本発明の一実施形態に係る地下躯体構造の断面図である。FIG. 1 is a sectional view of an underground framework structure according to an embodiment of the present invention. 図1の鉄骨鉄筋コンクリート柱付近の拡大図である。FIG. 2 is an enlarged view of the vicinity of the steel reinforced concrete column in FIG. 1. 図2の異なる方向の断面図である。3 is a cross-sectional view of FIG. 2 taken in a different direction; FIG.

以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings. Note that, in this specification and the drawings, components having substantially the same functional configurations are designated by the same reference numerals and redundant explanation will be omitted.

図1は、本発明の一実施形態に係る地下躯体構造の簡略化された断面図である。図1に示されているように、地下躯体構造1は、鉄骨鉄筋コンクリート柱2と、鉄筋コンクリート梁3と、鉄筋コンクリート床4と、鉄筋コンクリート壁5とを含む。鉄筋コンクリート梁3は鉄骨鉄筋コンクリート柱2に接合され、鉄筋コンクリート床4は鉄筋コンクリート梁3および鉄筋コンクリート壁5に接合される。鉄骨鉄筋コンクリート柱2は、H形鋼21からなる鉄骨を含む。 FIG. 1 is a simplified cross-sectional view of an underground framework structure according to an embodiment of the present invention. As shown in FIG. 1, the underground framework structure 1 includes a steel reinforced concrete column 2, a reinforced concrete beam 3, a reinforced concrete floor 4, and a reinforced concrete wall 5. The reinforced concrete beam 3 is connected to the steel reinforced concrete column 2, and the reinforced concrete floor 4 is connected to the reinforced concrete beam 3 and the reinforced concrete wall 5. The steel reinforced concrete column 2 includes a steel frame made of H-shaped steel 21.

図示されているように、本実施形態において、鉄筋コンクリート梁3は、H形鋼21の断面における弱軸方向(図中のy方向)にのみ延びる。ここで、本明細書において、部材の断面における弱軸方向は、断面の対称軸のうち、断面二次モーメントが最小になる軸の方向を意味する。H形鋼21の場合は、断面においてウェブの中央を通過しウェブに対して垂直な軸の方向が弱軸方向になる。これによって、後述するように、鉄筋コンクリート梁3の主筋がH形鋼21の弱軸方向にのみ延び、主筋を構成する少なくとも一部の鉄筋をH形鋼21のウェブに形成された貫通孔に挿通することが可能になる。 As shown in the figure, in this embodiment, the reinforced concrete beam 3 extends only in the weak axis direction (the y direction in the figure) in the cross section of the H-beam 21. Here, in this specification, the weak axis direction in the cross section of a member means the direction of the axis where the moment of inertia of area is minimized among the symmetry axes of the cross section. In the case of the H-section steel 21, the direction of the axis passing through the center of the web and perpendicular to the web in the cross section is the direction of the weak axis. As a result, as will be described later, the main reinforcement of the reinforced concrete beam 3 extends only in the weak axis direction of the H-beam 21, and at least some of the reinforcing bars constituting the main reinforcement are inserted into the through holes formed in the web of the H-beam 21. It becomes possible to do so.

地下躯体構造1では、鉄筋コンクリート梁3が図中のy方向に直交する図中のx方向、すなわちH形鋼21の断面における強軸方向には延びていない。しかしながら、地下躯体構造1において、鉄筋コンクリート床4は地盤を順次根切りしながら構築されるため、地盤を構築時の支持体として利用することができる。従って、地下躯体構造1の構築にあたって、x方向に鉄筋コンクリート梁3が延びていなくても鉄筋コンクリート床4の施工は容易である。また、地下躯体構造1では、地震時などに発生する大きな水平荷重が鉄筋コンクリート壁5を介して地盤へと逃がされるため、x方向に鉄筋コンクリート梁3が延びていないことは地下躯体構造1の耐荷重性に実質的な影響を及ぼさない。 In the underground framework structure 1, the reinforced concrete beams 3 do not extend in the x direction in the figure that is orthogonal to the y direction in the figure, that is, in the strong axis direction in the cross section of the H-section steel 21. However, in the underground frame structure 1, the reinforced concrete floor 4 is constructed by sequentially cutting the ground, so the ground can be used as a support during construction. Therefore, in constructing the underground framework structure 1, it is easy to construct the reinforced concrete floor 4 even if the reinforced concrete beams 3 do not extend in the x direction. In addition, in the underground frame structure 1, large horizontal loads that occur during an earthquake are released to the ground through the reinforced concrete walls 5, so the fact that the reinforced concrete beams 3 do not extend in the x direction means that the underground frame structure 1 can withstand the load. Does not have a substantial effect on sex.

上記のような地下躯体構造1の構築にあたっては、まずH形鋼21を地盤に掘削された縦穴に建て込む。例えば、縦穴の下部にセメントミルクを注入した上でH形鋼21を縦穴に建て込むことによって、下部が基礎台柱に埋め込まれた構真柱が形成される。次に、地盤を順次根切りしながら、地下躯体構造1の各階の室空間を構成する鉄骨鉄筋コンクリート柱2、鉄筋コンクリート梁3、および鉄筋コンクリート床4を構築する。具体的には、H形鋼21の周囲に柱鉄筋を配筋し、根切りによって露出された地盤上に梁鉄筋および床鉄筋を配筋し、その後それぞれの鉄骨および鉄筋の周囲にコンクリートを打設する。既に述べたように、このように地盤を構築時の支持体として利用できるため、鉄筋コンクリート梁3が図中のx方向に延びていなくても鉄筋コンクリート床4の施工は容易である。 In constructing the underground framework structure 1 as described above, first, the H-shaped steel 21 is placed in a vertical hole excavated in the ground. For example, by injecting cement milk into the lower part of the vertical hole and then erecting the H-shaped steel 21 into the vertical hole, a structural pillar whose lower part is embedded in the foundation pillar is formed. Next, the steel-framed reinforced concrete columns 2, reinforced concrete beams 3, and reinforced concrete floors 4 that constitute the room spaces on each floor of the underground framework structure 1 are constructed while cutting the ground one after another. Specifically, column reinforcing bars are placed around the H-shaped steel 21, beam reinforcing bars and floor reinforcing bars are placed on the ground exposed by root cutting, and then concrete is poured around each steel frame and reinforcing bars. Set up As already mentioned, since the ground can be used as a support during construction, construction of the reinforced concrete floor 4 is easy even if the reinforced concrete beams 3 do not extend in the x direction in the figure.

図2は、図1に示す地下躯体構造における鉄骨鉄筋コンクリート柱付近の拡大図であり、図3は図2の異なる方向の断面図である。図2および図3には、それぞれの図の断面がII-II線およびIII-III線で示されている。図示されているように、鉄骨鉄筋コンクリート柱2は、鉄骨を構成するH形鋼21と、H形鋼21の周囲に配筋される柱鉄筋22と、H形鋼21および柱鉄筋22の周囲に打設されるコンクリート23とを含む。H形鋼21は、フランジ211,212とウェブ213とからなり、ウェブ213には複数の貫通孔214が形成される。本実施形態の場合、貫通孔214は水平方向に2つ並設されていて、図3に示すものの場合、2つの貫通孔214,214の組を異なる高さに複数段設けたもののとなっている。ここで、H形鋼21の断面における弱軸方向(図中のy方向、図1と共通)は、ウェブ213の中央を通過しウェブ213に対して垂直な軸の方向である。従って、ウェブ213に形成される貫通孔214はH形鋼21の弱軸方向に向けて開口する。 FIG. 2 is an enlarged view of the vicinity of a steel reinforced concrete column in the underground framework structure shown in FIG. 1, and FIG. 3 is a sectional view taken in a different direction from FIG. 2. In FIGS. 2 and 3, cross sections of the respective figures are shown along lines II-II and III-III. As shown in the figure, the steel-framed reinforced concrete column 2 includes an H-beam 21 constituting the steel frame, a column reinforcing bar 22 arranged around the H-beam 21, and a structure around the H-beam 21 and the column reinforcing bar 22. Concrete 23 to be placed. The H-beam 21 includes flanges 211 and 212 and a web 213, and the web 213 has a plurality of through holes 214 formed therein. In the case of this embodiment, two through holes 214 are arranged in parallel in the horizontal direction, and in the case of the one shown in FIG. There is. Here, the weak axis direction (the y direction in the figure, common to FIG. 1) in the cross section of the H-shaped steel 21 is the direction of the axis that passes through the center of the web 213 and is perpendicular to the web 213. Therefore, the through hole 214 formed in the web 213 opens toward the weak axis direction of the H section steel 21.

また、図示されているように、鉄筋コンクリート梁3は、梁鉄筋31と、梁鉄筋31の周囲に打設されるコンクリート32とを含む。梁鉄筋31は主筋311と肋筋312とを含む。上述の通り、本実施形態において鉄筋コンクリート梁3はH形鋼21の断面における弱軸方向にのみ延びるため、鉄筋コンクリート梁3の主筋311もH形鋼21の断面における弱軸方向にのみ延び、主筋311を構成する鉄筋311AをH形鋼21のウェブ213に形成された貫通孔214に挿通することが可能になる。このように、鉄筋コンクリート梁3の主筋311を構成する鉄筋311Aを貫通孔214に挿通することによって、貫通孔214が、鉄筋コンクリート梁3が荷重によって鉄骨鉄筋コンクリート柱2に対して下方にずれることを防止するジベル(ずれ止め)として機能する。 Further, as illustrated, the reinforced concrete beam 3 includes beam reinforcing bars 31 and concrete 32 placed around the beam reinforcing bars 31. The beam reinforcing bars 31 include main reinforcements 311 and cost reinforcements 312. As mentioned above, in this embodiment, the reinforced concrete beam 3 extends only in the direction of the weak axis in the cross section of the H section 21, so the main reinforcement 311 of the reinforced concrete beam 3 also extends only in the direction of the weak axis in the section of the H section 21, and the main reinforcement 311 It becomes possible to insert the reinforcing bars 311A constituting the H-section steel 21 into the through holes 214 formed in the web 213 of the H-section steel 21. In this way, by inserting the reinforcing bars 311A that constitute the main bars 311 of the reinforced concrete beam 3 into the through holes 214, the through holes 214 prevent the reinforced concrete beam 3 from shifting downward with respect to the steel reinforced concrete column 2 due to the load. Functions as a dowel (stopper).

ここで、鉄骨鉄筋コンクリート柱2のコンクリート23、および鉄筋コンクリート梁3のコンクリート32が打設された後、H形鋼21および鉄筋311Aはいずれもコンクリート中に定着する。従って、鉄筋311Aと貫通孔214との間に隙間がある場合にも、貫通孔214はジベルとして機能することができる。具体的には、例えば、貫通孔214の直径が鉄筋311Aの直径の2倍以下であれば、貫通孔214はジベルとして機能することができる。 Here, after the concrete 23 of the steel reinforced concrete column 2 and the concrete 32 of the reinforced concrete beam 3 are placed, both the H-beam 21 and the reinforcing bars 311A are fixed in the concrete. Therefore, even if there is a gap between the reinforcing bar 311A and the through hole 214, the through hole 214 can function as a dowel. Specifically, for example, if the diameter of the through hole 214 is twice or less the diameter of the reinforcing bar 311A, the through hole 214 can function as a dowel.

なお、図示された例において、主筋311を構成する別の鉄筋311Bは貫通孔214に挿通されていない。このように、本実施形態では、鉄筋コンクリート梁3の主筋311を構成する少なくとも一部の鉄筋が貫通孔214に挿通されていればよい。他の実施形態では、鉄筋コンクリート梁の主筋を構成する全部の鉄筋が、H形鋼のウェブに形成された貫通孔に挿通されていてもよい。
また、水平方向に並設された隣り合う貫通孔214,214の間の間隔d(貫通孔214の周縁間の間隔)は鉄筋の定着を確保する観点では主筋311の直径の2.5倍以上とすることが望ましい。これらの貫通孔214,214の間の間隔は、複数併設される鉄筋の間にコンクリートの骨材が十分に充填されて、鉄筋の間のコンクリートが所定の強度をより安定的に発揮するために必要な間隔である。隣り合う貫通孔214,214の間の間隔が2.5倍以上の場合には、鉄筋の間にコンクリートの骨材が十分に充填されるため、鉄筋の定着をより安定的に確保することができ、これにより、鉄筋の間のコンクリートの強度が不足することによる早期の割裂破壊や付着破壊が一層安定的に防止される。なお、隣り合う貫通孔間の間隔の上限については特に規定はないが、H形鋼のウェブの幅や貫通孔の大きさ、鉄筋の直径等の諸条件に応じた可能な範囲で適宜設定することができる。
Note that in the illustrated example, another reinforcing bar 311B that constitutes the main reinforcing bar 311 is not inserted through the through hole 214. Thus, in this embodiment, at least some of the reinforcing bars that constitute the main bars 311 of the reinforced concrete beam 3 only need to be inserted into the through holes 214. In another embodiment, all reinforcing bars constituting the main bars of the reinforced concrete beam may be inserted through through holes formed in the web of the H-section steel.
In addition, the distance d between adjacent through holes 214, 214 arranged in parallel in the horizontal direction (the distance between the peripheries of the through holes 214) is at least 2.5 times the diameter of the main reinforcement 311 from the viewpoint of ensuring anchorage of the reinforcing bars. It is desirable to do so. The spacing between these through holes 214, 214 is set so that concrete aggregate is sufficiently filled between the multiple reinforcing bars so that the concrete between the reinforcing bars can more stably exert a predetermined strength. This is the required spacing. When the distance between adjacent through holes 214, 214 is 2.5 times or more, the concrete aggregate is sufficiently filled between the reinforcing bars, so that the anchorage of the reinforcing bars can be more stably secured. As a result, early splitting failure and adhesion failure due to insufficient strength of the concrete between the reinforcing bars can be more stably prevented. There is no particular regulation regarding the upper limit of the interval between adjacent through holes, but it should be set as appropriate within the possible range according to various conditions such as the width of the web of the H-section steel, the size of the through hole, and the diameter of the reinforcing bar. be able to.

上記で説明したような本実施形態の構成によれば、シアーコネクタやガセット、ブラケット、スチフナのような梁取付用の補強部材を用いることなく、鉄筋コンクリート梁3が荷重によって鉄骨鉄筋コンクリート柱2に対して下方にずれることを防止できる。梁取付用の補強部材が不要になることによって、例えば梁鉄筋31とシアーコネクタとが柱梁接合部で交錯することがなく、現場での配筋やコンクリート打設の工程が簡略化される。また、梁取付用の補強部材がH形鋼の断面から突出することがないため、H形鋼を地盤に掘削された縦穴に建て込むときに穴径を最小化することができる。 According to the configuration of the present embodiment as explained above, the reinforced concrete beam 3 is moved against the steel reinforced concrete column 2 by the load without using reinforcing members for beam attachment such as shear connectors, gussets, brackets, and stiffeners. It can prevent it from shifting downward. By eliminating the need for reinforcing members for attaching beams, for example, beam reinforcing bars 31 and shear connectors do not intersect at column-beam joints, and the on-site reinforcement and concrete placement processes are simplified. Further, since the reinforcing member for attaching the beam does not protrude from the cross section of the H-beam, the diameter of the hole can be minimized when the H-beam is installed in a vertical hole excavated in the ground.

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範囲内において、各種の変形例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。 Although preferred embodiments of the present invention have been described above in detail with reference to the accompanying drawings, the present invention is not limited to such examples. It is clear that a person with ordinary knowledge in the technical field to which the present invention pertains can come up with various modifications or modifications within the scope of the technical idea stated in the claims. It is understood that these also naturally fall within the technical scope of the present invention.

1…地下躯体構造、2…鉄骨鉄筋コンクリート柱、3…鉄筋コンクリート梁、4…鉄筋コンクリート床、5…鉄筋コンクリート壁、21…H形鋼、213…ウェブ、214…貫通孔、22…柱鉄筋、31…梁鉄筋、311…主筋群、311A,311B…鉄筋。 1... Underground frame structure, 2... Steel reinforced concrete column, 3... Reinforced concrete beam, 4... Reinforced concrete floor, 5... Reinforced concrete wall, 21... H-beam, 213... Web, 214... Through hole, 22... Column reinforcement, 31... Beam Reinforcing bars, 311...Main reinforcing bars, 311A, 311B...Reinforcing bars.

Claims (4)

H形鋼からなる鉄骨を含む鉄骨鉄筋コンクリート柱と、
前記H形鋼の断面における弱軸方向にのみ延びて前記鉄骨鉄筋コンクリート柱に接合される鉄筋コンクリート梁と
前記鉄筋コンクリート梁に接合される鉄筋コンクリート床と
を備え、
前記鉄筋コンクリート梁の主筋を構成する少なくとも一部の鉄筋は、前記H形鋼のウェブに形成された貫通孔に挿通される地下躯体構造。
A steel reinforced concrete column including a steel frame made of H-shaped steel,
a reinforced concrete beam that extends only in the weak axis direction in the cross section of the H-beam and is connected to the steel reinforced concrete column ;
a reinforced concrete floor joined to the reinforced concrete beam;
Equipped with
At least some of the reinforcing bars constituting the main bars of the reinforced concrete beam are inserted into through holes formed in the webs of the H-beams.
前記H形鋼は、下部が基礎台柱に埋め込まれた構真柱を形成する、請求項1の地下躯体構造。 2. The underground framework structure according to claim 1, wherein the H-shaped steel forms a structural column whose lower part is embedded in a foundation column. 前記貫通孔の直径は、前記鉄筋の直径の2倍以下である、請求項1または請求項2に記載の地下躯体構造。 The underground framework structure according to claim 1 or 2, wherein the diameter of the through hole is twice or less the diameter of the reinforcing steel. 前記貫通孔は水平方向に複数並設されていて、隣り合う前記貫通孔の間の間隔は、前記鉄筋の直径の2.5倍以上である、請求項1~3のいずれか1項に記載の地下躯体構造。 According to any one of claims 1 to 3, a plurality of the through holes are arranged in parallel in a horizontal direction, and the interval between adjacent through holes is 2.5 times or more the diameter of the reinforcing bar. Underground structure.
JP2019058907A 2019-03-26 2019-03-26 underground structure Active JP7442268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019058907A JP7442268B2 (en) 2019-03-26 2019-03-26 underground structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019058907A JP7442268B2 (en) 2019-03-26 2019-03-26 underground structure

Publications (2)

Publication Number Publication Date
JP2020159035A JP2020159035A (en) 2020-10-01
JP7442268B2 true JP7442268B2 (en) 2024-03-04

Family

ID=72642217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019058907A Active JP7442268B2 (en) 2019-03-26 2019-03-26 underground structure

Country Status (1)

Country Link
JP (1) JP7442268B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070264087A1 (en) 2006-04-25 2007-11-15 Arcelor Commercial Rps S.A R.1. Method of construction using sheet piling sections
JP4285212B2 (en) 2003-11-21 2009-06-24 富士ゼロックス株式会社 Additive for electrophotographic photoreceptor, electrophotographic photoreceptor, image forming apparatus and process cartridge
JP5156654B2 (en) 2009-01-20 2013-03-06 本田技研工業株式会社 Imaging control device
JP5367924B1 (en) 2012-03-23 2013-12-11 株式会社Neomaxマテリアル Solder-coated ball and method for manufacturing the same
JP2018100508A (en) 2016-12-20 2018-06-28 大成建設株式会社 Building construction method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910459B2 (en) * 1976-11-30 1984-03-09 大成建設株式会社 Reinforcement processing method for steel reinforcement frame processing
JP2757032B2 (en) * 1989-08-11 1998-05-25 株式会社竹中工務店 Construction method of underground building with pillars with capital by reverse hitting method
JP2847447B2 (en) * 1991-12-10 1999-01-20 株式会社竹中工務店 Reverse construction method
JP2000073496A (en) * 1998-09-01 2000-03-07 Maeda Corp Method for anchoring and jointing reinforcing bar
JP3611473B2 (en) * 1999-02-15 2005-01-19 前田建設工業株式会社 Reinforcement method for beam-column joint of steel reinforced concrete structure
JP2002088909A (en) * 2000-09-13 2002-03-27 Nippon Steel Corp Joint structure of steel column and reinforced concrete beam
CN105604182B (en) * 2016-01-20 2017-11-14 重庆大学 The through round steel pipe constraint reinforced column steel girder frame node of girder steel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4285212B2 (en) 2003-11-21 2009-06-24 富士ゼロックス株式会社 Additive for electrophotographic photoreceptor, electrophotographic photoreceptor, image forming apparatus and process cartridge
US20070264087A1 (en) 2006-04-25 2007-11-15 Arcelor Commercial Rps S.A R.1. Method of construction using sheet piling sections
JP5156654B2 (en) 2009-01-20 2013-03-06 本田技研工業株式会社 Imaging control device
JP5367924B1 (en) 2012-03-23 2013-12-11 株式会社Neomaxマテリアル Solder-coated ball and method for manufacturing the same
JP2018100508A (en) 2016-12-20 2018-06-28 大成建設株式会社 Building construction method

Also Published As

Publication number Publication date
JP2020159035A (en) 2020-10-01

Similar Documents

Publication Publication Date Title
JP6166560B2 (en) Extension structure of seismic isolation building
KR101006411B1 (en) System and method for underground downward construction using concrete filled tube
JP2010261270A (en) Composite structure and method for constructing composite structure building
KR101521946B1 (en) Enlarged capital of steel framed reinforced concrete column
JP2007297861A (en) Joint part structure of bridge pier with pile
JPH10152998A (en) Earthquake-resistant reinforcing structure of existing building
JP7442268B2 (en) underground structure
KR200383309Y1 (en) Form system for construction of underground slab
JP2007277856A (en) Aseismatic reinforcing structure of existing building
KR102398605B1 (en) Construction method of seismic retrofit system using pc panel
JP4095534B2 (en) Joint structure of column and beam in ramen structure and its construction method
KR100628537B1 (en) Pc structure wall system with high earthquake resistance capacity
JP2016205054A (en) Steel reinforced concrete column and building using the same
JP6704801B2 (en) Rebuilding building with existing underground outer wall
JP7274332B2 (en) junction structure
JP2847447B2 (en) Reverse construction method
KR20210090100A (en) In a building where the underground structure is a wall structure, the shortened construction type top down construction method and structure that enables early ground frame start using temporary transfer structures
Cochran et al. Design of special concentric braced frames
KR200451731Y1 (en) Concrete Filed Tube
JP6684088B2 (en) Seismic retrofitting structure and method for existing buildings
JP4449595B2 (en) Column-beam joint structure, method for constructing column-beam joint structure, method for constructing underground structure, and building
KR102452802B1 (en) A construction method to use the seismic resistant precast concrete members
KR102330771B1 (en) Top-down construction method using bracket and double girder
JP3323474B2 (en) Partial beam removal method
KR100694762B1 (en) Method for constructing underground slabs and walls without preliminary wall-attached supports

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220915

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221213

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20230310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240220

R150 Certificate of patent or registration of utility model

Ref document number: 7442268

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150