JP6166560B2 - Extension structure of seismic isolation building - Google Patents

Extension structure of seismic isolation building Download PDF

Info

Publication number
JP6166560B2
JP6166560B2 JP2013057234A JP2013057234A JP6166560B2 JP 6166560 B2 JP6166560 B2 JP 6166560B2 JP 2013057234 A JP2013057234 A JP 2013057234A JP 2013057234 A JP2013057234 A JP 2013057234A JP 6166560 B2 JP6166560 B2 JP 6166560B2
Authority
JP
Japan
Prior art keywords
building
seismic isolation
existing
base
extension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013057234A
Other languages
Japanese (ja)
Other versions
JP2014181506A (en
Inventor
智輝 丸川
智輝 丸川
博 若林
博 若林
和田 純一
純一 和田
田村 彰男
彰男 田村
裕 大内
裕 大内
正勝 矢野
正勝 矢野
修二 田中
修二 田中
徹 五十畑
徹 五十畑
竜太 松井
竜太 松井
勝士 玉井
勝士 玉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP2013057234A priority Critical patent/JP6166560B2/en
Publication of JP2014181506A publication Critical patent/JP2014181506A/en
Application granted granted Critical
Publication of JP6166560B2 publication Critical patent/JP6166560B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、免震建物の増築構造に関する。   The present invention relates to an extension structure of a base-isolated building.

既存免震建物と一体化させて増設免震建物を増築する免震建物の増築方法が提案されている。例えば、特許文献1には、既存構造物と切り離して増設構造物を構築した後に、既存構造物と増設構造物を連結する免震構造物の増築方法が開示されている。   A method of extending a base-isolated building has been proposed in which an additional base-isolated building is integrated with an existing base-isolated building. For example, Patent Literature 1 discloses an extension method of a seismic isolation structure that connects an existing structure and the extension structure after the extension structure is constructed separately from the existing structure.

しかし、特許文献1の免震構造物の増築方法では、既存構造物と増設構造物を互いの基礎免震層の階で連結するので、増設構造物の基礎免震層を既存構造物の基礎免震層と同じ高さに配置する必要がある。よって、増設構造物の設計に制限が加えられてしまう。   However, in the extension method of the seismic isolation structure of Patent Document 1, the existing structure and the extension structure are connected to each other on the floor of the base isolation layer, so that the base isolation layer of the extension structure is the foundation of the existing structure. It must be placed at the same height as the seismic isolation layer. Therefore, restrictions are imposed on the design of the additional structure.

特開2000−204772号公報JP 2000-204772 A

本発明は係る事実を考慮し、増設免震建物の設計自由度を高くすることができる免震建物の増築構造を提供することを課題とする。   This invention considers the fact which concerns, and makes it a subject to provide the extension structure of a base isolation building which can make the design freedom of an extension base isolation building high.

第1態様の発明は、既存免震建物又は増設免震建物の基礎免震層を構成する階以外の階のみを、前記増設免震建物又は前記既存免震建物の階に連結して、前記既存免震建物と前記増設免震建物を一体化した免震建物の増築構造である。 In the invention of the first aspect , only the floor other than the floor constituting the basic seismic isolation layer of the existing seismic isolation building or the extension seismic isolation building is connected to the floor of the extension seismic isolation building or the existing seismic isolation building, This is an extension structure of a base-isolated building that integrates an existing base-isolated building and the above extension base-isolated building.

第1態様の発明では、既存免震建物又は増設免震建物の基礎免震層を構成する階以外の階のみを、増設免震建物又は既存免震建物の階に連結するので、既存免震建物と増設免震建物の基礎免震層の高さを同じにしなくてもよい。 In the invention of the first aspect , since only the floors other than the floors constituting the basic seismic isolation layer of the existing seismic isolation building or the extension seismic isolation building are connected to the floor of the extension seismic isolation building or the existing seismic isolation building, The height of the base isolation layer of the building and the extension isolation building need not be the same.

例えば、既存免震建物と増設免震建物の連結の為に、増設免震建物に地下階を構築する必要がない。また、例えば、既存免震建物側又は増設免震建物側に配置されている又は配置される、擁壁、スロープ、通路、廊下、道路、鉄道等により連結が困難な階を避けて、既存免震建物と増設免震建物を連結することができる。これらにより、増設免震建物の設計自由度を高くすることができる。   For example, there is no need to construct an underground floor in the expanded seismic isolation building for the connection between the existing seismic isolation building and the expanded seismic isolation building. In addition, for example, avoid existing floors that are difficult to connect with retaining walls, slopes, passages, corridors, roads, railways, etc. Seismic buildings can be connected to expanded seismic isolation buildings. As a result, it is possible to increase the degree of freedom in designing the extension seismic isolation building.

第2態様の発明は、第1態様の免震建物の増築構造において、前記既存免震建物の前記連結した階よりも下方にある全階層分の層剛性と、前記増設免震建物の前記連結した階よりも下方にある全階層分の層剛性を略等しくしている。 The invention of the second aspect is the extension structure of the base-isolated building of the first aspect , the layer rigidity of all the layers below the connected floor of the existing base-isolated building, and the connection of the additional base-isolated building The layer rigidity of all the floors below the floor is almost equal.

第2態様の発明では、既存免震建物の連結した階よりも下方にある全階層分(以下、「既存免震建物の下部層」とする)の層剛性と、増設免震建物の連結した階よりも下方にある全階層分(以下、「増設免震建物の下部層」とする)の層剛性を略等しくすることにより、地震時に、既存免震建物の下部層と、増設免震建物の下部層を一体に挙動させて、既存免震建物と増設免震建物に捩じれ差や変形差を生じ難くし、連結部分に作用する力を小さくすることができる。これにより、例えば、連結部分に必要な強度を低減できるので、容易な連結方法や短時間での連結方法を用いることができる。 In the invention of the second aspect , the layer rigidity of all the layers below the floor to which the existing seismic isolation building is connected (hereinafter referred to as “the lower layer of the existing seismic isolation building”) and the extension seismic isolation building are connected. In the event of an earthquake, the lower layer of the existing seismic isolation building and the additional seismic isolation building are created by making the layer rigidity of all layers below the floor (hereinafter referred to as “lower seismic isolation building lower layer”) substantially equal. By making the lower layer behave integrally, it is difficult to produce a twisting difference or deformation difference between the existing seismic isolation building and the extension seismic isolation building, and the force acting on the connecting portion can be reduced. Thereby, for example, since the strength required for the connecting portion can be reduced, an easy connecting method or a connecting method in a short time can be used.

また、既存免震建物の下部層の層剛性と、増設免震建物の下部層の層剛性を略等しくすることにより、地震時に増設免震建物の下部層から既存免震建物の下部層へ力が流れてきて既存免震建物の下部層に生じる応力が、既存免震建物と増設免震建物を連結する前よりも大きくなるのを低減することができる。これにより、既存免震建物の補強を不要にする、又は軽減することができる。   In addition, by making the layer rigidity of the lower layer of the existing base isolation building approximately equal to the layer rigidity of the lower layer of the extension base isolation building, force is applied from the lower layer of the extension base isolation building to the lower layer of the existing base isolation building during an earthquake. It is possible to reduce the stress that occurs in the lower layer of the existing base-isolated building and becomes larger than before connecting the existing base-isolated building and the additional base-isolated building. Thereby, reinforcement of the existing seismic isolation building can be made unnecessary or reduced.

第3態様の発明は、第1又は第2態様の免震建物の増築構造において、前記既存免震建物と前記増設免震建物の階は、緊張材によって緊結されることにより前記連結されている。 The invention of the third aspect is the extension structure of the base-isolated building of the first or second aspect , wherein the existing base-isolated building and the floor of the additional base-isolated building are connected by being fastened by a tension material. .

第3態様の発明では、既存免震建物と増設免震建物の階を、施工効率のよい方法で確実に連結することができる。 In the invention of the third aspect , the floors of the existing seismic isolation building and the extension seismic isolation building can be reliably connected by a method with good construction efficiency.

本発明は上記構成としたので、増設免震建物の設計自由度を高くすることができる。   Since this invention was set as the said structure, the design freedom of an extension seismic isolation building can be made high.

本発明の実施形態に係る免震建物の増築構造を示す立面図である。It is an elevation view which shows the extension structure of the seismic isolation building which concerns on embodiment of this invention. 本発明の実施形態に係る連結部を示す拡大図である。It is an enlarged view which shows the connection part which concerns on embodiment of this invention. 本発明の実施形態に係る免震建物の増築構造を示す立面図である。It is an elevation view which shows the extension structure of the seismic isolation building which concerns on embodiment of this invention. 本発明の実施形態に係る免震建物の増築構造を示す立面図である。It is an elevation view which shows the extension structure of the seismic isolation building which concerns on embodiment of this invention. 本発明の実施形態に係る免震建物の増築構造を示す立面図である。It is an elevation view which shows the extension structure of the seismic isolation building which concerns on embodiment of this invention. 本発明の実施形態に係る免震建物の増築構造を示す立面図である。It is an elevation view which shows the extension structure of the seismic isolation building which concerns on embodiment of this invention.

図を参照しながら、本発明の実施形態を説明する。まず、本発明の実施形態に係る免震建物の増築構造について説明する。   Embodiments of the present invention will be described with reference to the drawings. First, the extension structure of the seismic isolation building which concerns on embodiment of this invention is demonstrated.

図1の立面図には、既存免震建物10に隣接して増設免震建物12が構築(増築)された免震建物の増築構造14が示されている。既存免震建物10は、地盤16上に建てられた地下2階及び地上8階建ての鉄筋コンクリート造建物であり、増設免震建物12は、地盤16上に建てられた地下1階及び地上10階建ての鉄筋コンクリート造建物である。   In the elevation view of FIG. 1, an extension structure 14 of the base isolation building in which the extension base isolation building 12 is constructed (added) adjacent to the existing base isolation building 10 is shown. The existing seismic isolation building 10 is a reinforced concrete building with 2 stories underground and 8 stories above the ground 16 and the expanded seismic isolation building 12 is the 1st underground and 10 stories above the ground 16 It is a reinforced concrete building.

既存免震建物10は、基礎免震層18により地盤16上に免震支持された構造物20を有して構成されている。基礎免震層18には、地盤16上に設けられたコンクリート基礎22上に設置され、構造物20を免震支持する積層ゴム支承等の免震装置24が複数配置されている。   The existing base-isolated building 10 includes a structure 20 that is supported by base isolation on the ground 16 by a base isolation layer 18. The base seismic isolation layer 18 is provided with a plurality of seismic isolation devices 24 such as laminated rubber bearings which are installed on a concrete foundation 22 provided on the ground 16 and support the structure 20 in a seismic isolation manner.

増設免震建物12は、基礎免震層26により地盤16上に免震支持された構造物28を有して構成されている。基礎免震層26には、地盤16上に設けられたコンクリート基礎30上に設置され、構造物28を免震支持する積層ゴム支承等の免震装置32が複数配置されている。   The extension seismic isolation building 12 has a structure 28 that is seismically isolated and supported on the ground 16 by a basic seismic isolation layer 26. The base seismic isolation layer 26 is provided with a plurality of seismic isolation devices 32 such as laminated rubber bearings which are installed on a concrete foundation 30 provided on the ground 16 and support the structure 28 in a seismic isolation manner.

既存免震建物10と増設免震建物12は、既存免震建物10の地上1階に配置された床スラブ34と、増設免震建物12の地上1階に配置された床スラブ36を連結することによって一体化されている。すなわち、既存免震建物10の地上1階と増設免震建物12の地上1階が連結されている。   The existing base-isolated building 10 and the additional base-isolated building 12 connect the floor slab 34 arranged on the first floor above the existing base-isolated building 10 and the floor slab 36 arranged on the first floor above the base-isolated building 12. Are integrated. That is, the first floor above the existing base-isolated building 10 and the first floor above the expanded base-isolated building 12 are connected.

また、他の箇所(床スラブ34、36以外の箇所)では、既存免震建物10と増設免震建物12は連結されておらず、既存免震建物10と増設免震建物12の地上2階以上は、床スラブ間にエキスパンションジョイント38が設けられて、構造的に分離独立している。   In other locations (locations other than floor slabs 34 and 36), the existing seismic isolation building 10 and the additional seismic isolation building 12 are not connected, and the existing base isolation building 10 and the additional seismic isolation building 12 are on the second floor above the ground. As described above, the expansion joint 38 is provided between the floor slabs and is structurally separated and independent.

すなわち、免震建物の増築構造14では、既存免震建物10の基礎免震層18を構成する階以外の階(図1の例では、地上1階)のみを、増設免震建物12の階(図1の例では、地上1階)に連結して、既存免震建物10と増設免震建物12を一体化している。   That is, in the extension structure 14 of the seismic isolation building, only floors other than the floor constituting the basic seismic isolation layer 18 of the existing seismic isolation building 10 (the first floor in the example of FIG. 1) are the floors of the additional seismic isolation building 12. (In the example of FIG. 1), the existing seismic isolation building 10 and the extension seismic isolation building 12 are integrated.

図2に示すように、既存免震建物10の床スラブ34と、増設免震建物12の床スラブ36は、床スラブ34と一体に設けられた既存免震建物10の大梁58と、床スラブ36と一体に設けられた連結用小梁60を緊張材によって緊結することによって連結されている。図2には、緊張材としてPC鋼棒46が用いられている例が示されている。以下、既存免震建物10(大梁58)と、増設免震建物12(連結用小梁60)が連結されている部分を連結部Pとする。   As shown in FIG. 2, the floor slab 34 of the existing base-isolated building 10 and the floor slab 36 of the additional base-isolated building 12 include the girder 58 of the existing base-isolated building 10 provided integrally with the floor slab 34, and the floor slab. The connecting beam 60 provided integrally with 36 is connected by being fastened with a tension material. FIG. 2 shows an example in which a PC steel bar 46 is used as a tendon. Hereinafter, a portion where the existing base-isolated building 10 (large beam 58) and the additional base-isolated building 12 (connecting beam 60) are connected is referred to as a connecting portion P.

また、図1に示すように、既存免震建物10の連結部Pよりも下方にある全階層分の下部層48の層剛性と、増設免震建物12の連結部Pよりも下方にある全階層分の下部層50の層剛性を略等しくしている。下部層48は、既存免震建物10の基礎免震層18と、地下2階の階層52と、地下1階の階層54を合わせた層のことであり、下部層50は、増設免震建物12の基礎免震層26と、地下1階の階層56を合わせた層のことである。すなわち、既存免震建物10の連結した階(地上1階)よりも下方にある全階層分(下部層48)の層剛性と、増設免震建物12の連結した階(地上1階)よりも下方にある全階層分(下部層50)の層剛性を略等しくしている。   In addition, as shown in FIG. 1, the layer rigidity of the lower layer 48 for all layers below the connection part P of the existing base-isolated building 10 and all the parts below the connection part P of the additional base-isolated building 12. The layer rigidity of the lower layer 50 corresponding to the layer is made substantially equal. The lower layer 48 is a layer that combines the base isolation layer 18 of the existing base isolation building 10, the basement level 52, and the basement level 54, and the lower level 50 is an additional base isolation building. It is a layer that combines the 12 basic seismic isolation layers 26 and the level 56 of the first basement. That is, the layer rigidity of the entire lower layer (lower layer 48) below the floor to which the existing base-isolated building 10 is connected (the first floor above the ground) and the floor to which the additional base-isolated building 12 is connected (the first floor above the ground) The layer rigidity of the entire lower layer (lower layer 50) is made substantially equal.

増設免震建物12は、既存免震建物10の免震装置24、及び増設免震建物12の免震装置32をロックせずに、免震支持された状態で建てる。そして、既存免震建物10と増設免震建物12を連結しても既存免震建物10及び増設免震建物12が構造的に支障がない段階まで増設免震建物12を建てた後に、既存免震建物10と増設免震建物12を連結する。例えば、増設免震建物12の全てを建てた後や、増設免震建物12の8割程度を建てた後に、既存免震建物10と増設免震建物12を連結する。なお、構造上及び施工上問題がなければ、どのタイミングで既存免震建物10と増設免震建物12を連結してもよい。   The extension seismic isolation building 12 is constructed in a state where the seismic isolation device 24 of the existing seismic isolation building 10 and the seismic isolation device 32 of the extension seismic isolation building 12 are supported without being locked. Then, after the existing seismic isolation building 10 and the additional seismic isolation building 12 are connected, the existing seismic isolation building 10 and the additional seismic isolation building 12 are constructed until the existing seismic isolation building 10 and the additional seismic isolation building 12 are structurally satisfactory. The seismic building 10 and the expanded seismic isolation building 12 are connected. For example, the existing base-isolated building 10 and the extension base-isolated building 12 are connected after all the extension base-isolated buildings 12 are built or after about 80% of the extension base-isolated buildings 12 are built. If there is no structural or construction problem, the existing base-isolated building 10 and the extension base-isolated building 12 may be connected at any timing.

次に、本発明の実施形態に係る免震建物の増築構造の作用と効果について説明する。   Next, the operation and effect of the extension structure for the base-isolated building according to the embodiment of the present invention will be described.

本発明の実施形態に係る免震建物の増築構造14では、図1に示すように、既存免震建物10の基礎免震層18を構成する階以外の階(本実施形態の例では、既存免震建物10の地上1階)のみを、増設免震建物12の階(本実施形態の例では、増設免震建物12の地上1階)に連結するので、既存免震建物10の基礎免震層18と、増設免震建物12の基礎免震層26の高さを同じにしなくてもよい。   In the seismic isolation building extension structure 14 according to the embodiment of the present invention, as shown in FIG. 1, floors other than the floors constituting the basic seismic isolation layer 18 of the existing seismic isolation building 10 (in the example of this embodiment, existing Since only the basement floor of the base isolation building 10 is connected to the floor of the extension base isolation building 12 (in the example of this embodiment, the basement floor of the base isolation building 12), the basic isolation of the existing base isolation building 10 The height of the seismic layer 18 and the base seismic isolation layer 26 of the expanded seismic isolation building 12 need not be the same.

これによって、例えば、既存免震建物10と増設免震建物12の連結の為に、増設免震建物12に地下階を構築する必要がない(本実施形態の場合には、増設免震建物12を地下2階建てにしなくてもよい)。このことは、地下階を構築する深度に既設構造物があって根切りが面倒であったり、困難であったりする場合に、特に有効になる。   Thereby, for example, there is no need to construct an underground floor in the extension seismic isolation building 12 for connecting the existing seismic isolation building 10 and the extension seismic isolation building 12 (in this embodiment, the extension seismic isolation building 12 Does not have to be 2 stories underground). This is particularly effective when there is an existing structure at the depth at which the basement is constructed and the root cutting is troublesome or difficult.

また、例えば、既存免震建物10側又は増設免震建物12側に配置されている又は配置される、擁壁、スロープ、通路、廊下、道路、鉄道等により連結が困難な階を避けて、既存免震建物10と増設免震建物12を連結することができるので、擁壁、スロープ、通路、廊下、道路、鉄道等の解体工事、撤去工事や、設計変更を行わずに、増設免震建物12を増築することができる。これらにより、増設免震建物12の設計自由度を高くすることができる。   Also, for example, avoid floors that are difficult to connect due to retaining walls, slopes, passages, corridors, roads, railways, etc. that are or are located on the existing seismic isolated building 10 side or the expanded seismic isolated building 12 side. Existing seismic isolation building 10 and expansion seismic isolation building 12 can be connected, so that the seismic expansion, seismic isolation, removal, and design changes for retaining walls, slopes, passages, corridors, roads, railways, etc. are not required. Building 12 can be expanded. By these, the freedom degree of design of the extension seismic isolation building 12 can be made high.

さらに、本発明の実施形態に係る免震建物の増築構造14では、既存免震建物10の連結した階(地上1階)よりも下方にある全階層分(下部層48)の層剛性と、増設免震建物12の連結した階(地上1階)よりも下方にある全階層分(下部層50)の層剛性を略等しくすることにより、地震時に、既存免震建物10の下部層48と、増設免震建物12の下部層50を一体に挙動させて、既存免震建物10と増設免震建物12に捩じれ差や変形差を生じ難くし、連結部Pに作用する力を小さくすることができる。これにより、例えば、連結部Pに必要な強度を低減できるので、容易な連結方法や短時間での連結方法を用いることができる。   Furthermore, in the extension structure 14 of the base-isolated building according to the embodiment of the present invention, the layer rigidity of the entire layer (lower layer 48) below the floor (the first floor above) to which the existing base-isolated building 10 is connected, By making the layer rigidity of all layers (lower layer 50) below the connected floor (the first floor above ground) of the expanded seismic isolation building 12 substantially equal, the lower layer 48 of the existing seismic isolation building 10 and The lower layer 50 of the extension seismic isolation building 12 is made to behave integrally so that the existing seismic isolation building 10 and the extension seismic isolation building 12 are less likely to be twisted or deformed, and the force acting on the connecting portion P is reduced. Can do. Thereby, since the intensity | strength required for the connection part P can be reduced, for example, the easy connection method and the connection method in a short time can be used.

また、既存免震建物10の下部層48の層剛性と、増設免震建物12の下部層50の層剛性を略等しくすることにより、地震時に増設免震建物12の下部層50から既存免震建物10の下部層48へ力が流れてきて既存免震建物10の下部層48に生じる応力が、既存免震建物10と増設免震建物12を連結する前よりも大きくなるのを低減することができる。これにより、既存免震建物10の改修(例えば、既存免震建物10の躯体の補強、既存免震建物10の免震装置24の交換)を不要にする、又は軽減することができる。   Further, by making the layer rigidity of the lower layer 48 of the existing base-isolated building 10 and the layer rigidity of the lower layer 50 of the additional base-isolated building 12 substantially equal, the existing base-isolation is started from the lower layer 50 of the additional base-isolated building 12 in the event of an earthquake. Reduce the stress generated in the lower layer 48 of the existing seismic isolated building 10 due to the force flowing to the lower layer 48 of the building 10 than before connecting the existing seismic isolated building 10 and the additional seismic isolated building 12. Can do. Thereby, renovation of the existing base isolation building 10 (for example, reinforcement of the frame of the existing base isolation building 10, replacement of the base isolation device 24 of the existing base isolation building 10) can be made unnecessary or reduced.

さらに、本発明の実施形態に係る免震建物の増築構造14では、既存免震建物10と増設免震建物12の階を、連結部Pで緊張材(PC鋼棒46)によって緊結することにより、施工効率のよい方法で確実に連結することができる。   Furthermore, in the extension structure 14 of the seismic isolation building according to the embodiment of the present invention, the floors of the existing seismic isolation building 10 and the additional seismic isolation building 12 are connected by a tension member (PC steel bar 46) at the connecting portion P. It can be reliably connected by a method with good construction efficiency.

また、本発明の実施形態に係る免震建物の増築構造14では、既存免震建物10と増設免震建物12の階を連結部Pで緊結することにより、緊結した階(連結部P)よりも上の階同士のクリアランスを100mm程度にすることができる(一般に、図1に示した建物規模程度において、従来の免震建物同士を連結せずに隣り合わせた場合に必要なクリアランスは、1000mm程度であり、従来の耐震建物同士を連結せずに隣り合わせた場合に必要なクリアランスは、400mm程度である)。   Moreover, in the extension structure 14 of the seismic isolation building which concerns on embodiment of this invention, the floor of the existing seismic isolation building 10 and the extension seismic isolation building 12 is joined by the connection part P, From the tight floor (connection part P) The clearance between the upper floors can be set to about 100 mm (generally, the clearance required when the conventional seismic isolation buildings are connected to each other without connecting them at the building scale shown in FIG. 1 is about 1000 mm. The clearance required when connecting conventional earthquake-resistant buildings next to each other without being connected is about 400 mm).

これにより、100mm程度のクリアランスに対応可能なエキスパンションジョイント38を設置すればよいので、「装置コスト」、「設置コスト」、「ユーザビリティの低下」、「建物外装の意匠性の低下」を低く抑えることができる。また、既存免震建物10の近くに増設免震建物12を構築することができるので、増設免震建物12を増設するために必要な敷地を小さくすることができる。これにより、敷地の有効活用が図られ、効率的な建築計画を行うことができる。   As a result, an expansion joint 38 that can accommodate a clearance of about 100 mm may be installed, so that “equipment cost”, “installation cost”, “decrease in usability”, and “decrease in design of building exterior” are kept low. Can do. In addition, since the additional seismic isolation building 12 can be constructed near the existing seismic isolation building 10, the site necessary for adding the additional seismic isolation building 12 can be reduced. As a result, the site can be effectively used and an efficient construction plan can be performed.

以上、本発明の実施形態について説明した。   The embodiment of the present invention has been described above.

なお、本実施形態では、図1に示すように、既存免震建物10の基礎免震層18を構成する階以外の階のみを、増設免震建物12の階に連結して、既存免震建物10と増設免震建物12を一体化した例を示したが、増設免震建物12の基礎免震層26を構成する階以外の階のみを、既存免震建物10の階に連結して、既存免震建物10と増設免震建物12を一体化してもよい。すなわち、既存免震建物10及び増設免震建物12のどちらか一方が基礎免震層を構成する階で連結されていなければよい。   In this embodiment, as shown in FIG. 1, only the floors other than the floors constituting the basic seismic isolation layer 18 of the existing seismic isolation building 10 are connected to the floor of the additional seismic isolation building 12 to Although the example which integrated the building 10 and the extension seismic isolation building 12 was shown, only floors other than the floor which comprises the basic seismic isolation layer 26 of the extension seismic isolation building 12 are connected to the floor of the existing seismic isolation building 10. The existing seismic isolation building 10 and the extension seismic isolation building 12 may be integrated. That is, it is only necessary that either one of the existing seismic isolation building 10 and the additional seismic isolation building 12 is not connected on the floor constituting the basic seismic isolation layer.

よって、既存免震建物10と増設免震建物12の地下階の深さ、地上階の高さや、地下階及び地上階の階数は、等しくても異なっていてもよい。例えば、本発明の免震建物の増築構造の構成を、図3〜6に示す免震建物の増築構造62、64、66、68のようにしてもよい。図3に示す免震建物の増築構造62では、既存免震建物10を、地盤16上に建てられた地下2階及び地上5階建ての鉄筋コンクリート造建物とし、増設免震建物12を、地盤16上に建てられた地下1階及び地上7階建ての鉄筋コンクリート造建物としている。そして、既存免震建物10の地上1階(地上1階に配置された床スラブ)と、増設免震建物12の地上1階(地上1階に配置された床スラブ)を連結部Pで緊張材によって緊結して連結し、既存免震建物10と増設免震建物12の地上2階以上に配置された床スラブ同士の間にエキスパンションジョイント38が設置されている。   Therefore, the depth of the basement floor of the existing seismic isolation building 10 and the extension base isolation building 12, the height of the ground floor, and the number of basement floors and ground floors may be equal or different. For example, the structure of the extension structure of the base isolation building according to the present invention may be configured as the extension structure 62, 64, 66, 68 of the base isolation building shown in FIGS. In the seismic isolation building extension structure 62 shown in FIG. 3, the existing seismic isolation building 10 is a reinforced concrete building with 2 stories underground and 5 stories above the ground 16, and the additional seismic isolation building 12 is It is a reinforced concrete building with 1 basement and 7 floors above ground. Then, the first floor above the existing base-isolated building 10 (floor slab placed on the first floor above ground) and the first floor above the expanded base-isolated building 12 (floor slab placed on the first floor above ground) are tensioned at the connecting portion P. The expansion joint 38 is installed between the floor slabs which are tightly coupled with each other and are arranged on the second floor or higher of the existing base isolation building 10 and the extension base isolation building 12.

図4に示す免震建物の増築構造64では、既存免震建物10を、地盤16上に建てられた地下2階及び地上5階建ての鉄筋コンクリート造建物とし、増設免震建物12を、地盤16上に建てられた地上7階建ての鉄筋コンクリート造建物としている。そして、既存免震建物10の地上1階(地上1階に配置された床スラブ)と、増設免震建物12の地上1階(地上1階に配置された床スラブ)を連結部Pで緊張材によって緊結して連結し、既存免震建物10と増設免震建物12の地上2階以上に配置された床スラブ同士の間にエキスパンションジョイント38が設置されている。   In the seismic isolation building extension structure 64 shown in FIG. 4, the existing base isolation building 10 is a reinforced concrete building with two floors below and five floors above the ground 16, and the additional base isolation building 12 is the ground 16. It is a reinforced concrete building with 7 stories above the ground. Then, the first floor above the existing base-isolated building 10 (floor slab placed on the first floor above ground) and the first floor above the expanded base-isolated building 12 (floor slab placed on the first floor above ground) are tensioned at the connecting portion P. The expansion joint 38 is installed between the floor slabs which are tightly coupled with each other and are arranged on the second floor or higher of the existing base isolation building 10 and the extension base isolation building 12.

図5に示す免震建物の増築構造66では、既存免震建物10を、地盤16上に建てられた地下2階及び地上5階建ての鉄筋コンクリート造建物とし、増設免震建物12を、地盤16上に建てられた地下3階及び地上5階建ての鉄筋コンクリート造建物としている。そして、既存免震建物10の地下2階(地下2階に配置された床スラブ)と、増設免震建物12の地下2階(地下2階に配置された床スラブ)を連結部Pで緊張材によって緊結して連結し、既存免震建物10と増設免震建物12の地下1階以上に配置された床スラブ同士の間にエキスパンションジョイント38が設置されている。   In the seismic isolated building extension structure 66 shown in FIG. 5, the existing seismic isolated building 10 is a reinforced concrete building having two basements and five stories above the ground 16, and the additional seismic isolated building 12 is the ground 16. It is a reinforced concrete building with 3 floors above ground and 5 floors above ground. Then, the second basement of the existing base-isolated building 10 (floor slab placed on the second basement) and the second basement of the additional base-isolated building 12 (floor slab placed on the second basement) are tensioned at the connecting part P. The expansion joint 38 is installed between the floor slabs which are tightly coupled with each other and are arranged on the first basement or more of the existing base isolation building 10 and the extension base isolation building 12.

図6に示す免震建物の増築構造68では、既存免震建物10を、地盤16上に建てられた地下2階及び地上5階建ての鉄筋コンクリート造建物とし、増設免震建物12を、地盤16上に建てられた地下2階及び地上7階建ての鉄筋コンクリート造建物としている。そして、既存免震建物10の地上1階(地上1階に配置された床スラブ)と、増設免震建物12の地上1階(地上1階に配置された床スラブ)を連結部Pで緊張材によって緊結して連結し、既存免震建物10と増設免震建物12の地上2階以上に配置された床スラブ同士の間にエキスパンションジョイント38が設置されている。   In the seismic isolated building extension structure 68 shown in FIG. 6, the existing seismic isolated building 10 is a reinforced concrete building of 2 stories underground and 5 stories above the ground 16, and the additional seismic isolated building 12 is It is a reinforced concrete building with 2 stories underground and 7 stories above ground. Then, the first floor above the existing base-isolated building 10 (floor slab placed on the first floor above ground) and the first floor above the expanded base-isolated building 12 (floor slab placed on the first floor above ground) are tensioned at the connecting portion P. The expansion joint 38 is installed between the floor slabs which are tightly coupled with each other and are arranged on the second floor or higher of the existing base isolation building 10 and the extension base isolation building 12.

また、本実施形態では、図1に示すように、既存免震建物10の基礎免震層18を構成する階以外の階のみを、増設免震建物12の階に連結して、既存免震建物10と増設免震建物12を一体化した例を示したが、既存免震建物10及び増設免震建物12のどちらか一方が基礎免震層を構成する階で連結されなければ、連結した階以外の階同士(本実施形態の例では、既存免震建物10の地上1階と増設免震建物12の地上1階以外の階)を連結しなくてもよいし、連結してもよい。連結する階を少なくすれば、既存免震建物10の改修工事手間を軽減することができ、工期短縮やコスト低減を図ることができる。連結する階を多くすれば、既存免震建物10と増設免震建物12との間のクリアランスを小さくできる。   Further, in the present embodiment, as shown in FIG. 1, only the floors other than the floor constituting the basic seismic isolation layer 18 of the existing seismic isolation building 10 are connected to the floor of the additional seismic isolation building 12 to Although the example which integrated the building 10 and the extension seismic isolation building 12 was shown, if either one of the existing base isolation building 10 and the extension base isolation building 12 was not connected on the floor which comprises a base isolation layer, it connected. The floors other than the floors (in the example of the present embodiment, the ground floor of the existing seismic isolated building 10 and the floor other than the ground first floor of the expanded seismic isolated building 12) may not be connected, or may be connected. . If the number of floors to be connected is reduced, the labor for repairing the existing seismic isolation building 10 can be reduced, and the construction period and costs can be reduced. If the number of floors to be connected is increased, the clearance between the existing seismic isolation building 10 and the additional seismic isolation building 12 can be reduced.

連結する階は、できるだけ下の階が好ましいが、本発明の効果が得られれば、上の階でもよい。1つの階だけで連結する場合、できるだけ下の階で連結した方が建物下層の一体化度合いを高めることができるので好ましいが、本発明の効果が得られれば上の階でもよい。   The floor to be connected is preferably the lower floor as much as possible, but may be the upper floor as long as the effect of the present invention can be obtained. When connecting with only one floor, it is preferable to connect with the lower floor as much as possible because the degree of integration of the lower layer of the building can be increased. However, the upper floor may be used as long as the effect of the present invention is obtained.

さらに、本実施形態では、既存免震建物10と増設免震建物12を緊張材によって緊結して連結した例を示したが、既存免震建物10と増設免震建物12を連結により一体にできる方法であればよい。例えば、既存免震建物10を構成する躯体梁のコンクリートを斫って梁鉄筋を露出させ、増設免震建物12を構成する躯体梁の梁鉄筋と接続することにより、既存免震建物10と増設免震建物12を連結してもよいし、既存免震建物10を構成する躯体壁にあと施工アンカーを打設し、増設免震建物12を構成する躯体梁の梁鉄筋と接続することにより、既存免震建物10と増設免震建物12を連結してもよい。また、既存免震建物10と増設免震建物12の躯体が鉄骨の場合には、溶接やボルト接合によって、既存免震建物10と増設免震建物12の躯体同士を連結してもよい。   Further, in the present embodiment, an example is shown in which the existing seismic isolation building 10 and the extension seismic isolation building 12 are coupled and connected with a tension material. However, the existing seismic isolation building 10 and the extension seismic isolation building 12 can be integrated. Any method can be used. For example, it is possible to expand the existing base-isolated building 10 by rolling the concrete of the frame beams that make up the existing base-isolated building 10 to expose the beam reinforcement and connecting it to the beam reinforcing bars of the frame beams that make up the additional base-isolated building 12. The seismic isolation building 12 may be connected, or by installing a post-construction anchor on the frame wall constituting the existing seismic isolation building 10 and connecting to the beam reinforcement of the structural beam constituting the additional seismic isolation building 12, The existing base-isolated building 10 and the extension base-isolated building 12 may be connected. Moreover, when the frame of the existing base-isolated building 10 and the additional base-isolated building 12 is a steel frame, the frames of the existing base-isolated building 10 and the additional base-isolated building 12 may be connected by welding or bolt joining.

また、本実施形態で示した増設免震建物12は、長期設計において独立して成立する建物構造にしてもよいし、既存免震建物10と連結されて一体化されることにより長期設計において成立する建物構造にしてもよい。増設免震建物12を、長期設計において独立して成立する建物構造にすれば、既存免震建物10側の連結部Pに対する耐火被覆を省くことができる(火災によって連結部Pの連結が解かれた場合においても、増設免震建物12が倒れることなく独立して建っていられる)ので好ましい。   Further, the extension seismic isolation building 12 shown in the present embodiment may have a building structure that is independently established in the long-term design, or is established in the long-term design by being integrated with the existing seismic isolation building 10. It may be a building structure. If the extension seismic isolation building 12 has a building structure that is established independently in the long-term design, it is possible to omit the fireproof coating on the connection part P on the existing base isolation building 10 side (the connection of the connection part P is broken by the fire). In this case, the additional seismic isolation building 12 can be built independently without falling down).

さらに、本実施形態では、既存免震建物10の下部層48の層剛性と、増設免震建物12の下部層50の層剛性を略等しくした例を示したが、既存免震建物10の下部層48の層剛性と略等しくなるように増設免震建物12の下部層50を設計してもよいし、増設免震建物12の下部層50の層剛性と略等しくなるように既存免震建物10の下部層48に改修工事を施してもよいし、新たに設定した層剛性と略等しくなるように増設免震建物12の下部層50を設計し且つ既存免震建物10の下部層48に改修工事を施してもよい。   Furthermore, in the present embodiment, an example in which the layer rigidity of the lower layer 48 of the existing base-isolated building 10 and the layer rigidity of the lower layer 50 of the additional base-isolated building 12 is substantially equal is shown. The lower layer 50 of the extension seismic isolation building 12 may be designed so as to be substantially equal to the layer rigidity of the layer 48, or the existing base isolation building is substantially equal to the layer rigidity of the lower layer 50 of the extension seismic isolation building 12. Ten lower layers 48 may be renovated, or the lower layer 50 of the additional seismic isolated building 12 is designed to be substantially equal to the newly set layer rigidity, and the lower layer 48 of the existing seismic isolated building 10 is used. Renovation work may be performed.

また、本実施形態では、既存免震建物10の下部層48の層剛性と、増設免震建物12の下部層50の層剛性を略等しくした例を示したが、既存免震建物10の下部層48の層剛性と、増設免震建物12の下部層50の層剛性は、完全に等しくなくてもよく、既存免震建物10の下部層48の層剛性と、増設免震建物12の下部層50の層剛性は、略等しければよい。すなわち、地震時に、既存免震建物10の下部層48と、増設免震建物12の下部層50を一体に挙動させて、既存免震建物10と増設免震建物12に捩じれ差や変形差を生じ難くし、連結部Pに作用する力を小さくすることができ、また、地震時に増設免震建物12の下部層50から既存免震建物10の下部層48へ力が流れてきて既存免震建物10の下部層48に生じる応力が、既存免震建物10と増設免震建物12を連結する前よりも大きくなるのを低減することができれば、既存免震建物10の下部層48の層剛性と、増設免震建物12の下部層50の層剛性は、完全に等しくしてもよいし、概ね等しくしてもよい。   In the present embodiment, an example in which the layer rigidity of the lower layer 48 of the existing base-isolated building 10 and the layer rigidity of the lower layer 50 of the additional base-isolated building 12 is substantially equal is shown. The layer rigidity of the layer 48 and the layer rigidity of the lower layer 50 of the extension seismic isolation building 12 may not be completely equal. The layer rigidity of the lower layer 48 of the existing base isolation building 10 and the lower part of the extension isolation building 12 The layer rigidity of the layer 50 should just be substantially equal. That is, at the time of an earthquake, the lower layer 48 of the existing base-isolated building 10 and the lower layer 50 of the additional base-isolated building 12 are caused to behave integrally so that a twisting difference or deformation difference is caused between the existing base-isolated building 10 and the additional base-isolated building 12. It is less likely to occur and the force acting on the connecting portion P can be reduced. In addition, when an earthquake occurs, the force flows from the lower layer 50 of the additional seismic isolation building 12 to the lower layer 48 of the existing seismic isolation building 10 and the existing seismic isolation If the stress generated in the lower layer 48 of the building 10 can be reduced from that before the existing base-isolated building 10 and the additional base-isolated building 12 are connected, the layer rigidity of the lower layer 48 of the existing base-isolated building 10 can be reduced. And the layer rigidity of the lower layer 50 of the extension seismic isolation building 12 may be made completely equal, or may be made substantially equal.

さらに、本実施形態では、既存免震建物10及び増設免震建物12を鉄筋コンクリート造とした例を示したが、本実施形態は、鉄筋コンクリート造、鉄骨造、鉄骨鉄筋コンクリート造、CFT造(Concrete-Filled Steel Tube:充填形鋼管コンクリート構造)、それらの混合構造など、さまざまな構造や規模の既存免震建物及び増設免震建物に対して適用することができる。   Further, in the present embodiment, an example in which the existing base-isolated building 10 and the extension base-isolated building 12 are reinforced concrete structures has been shown. It can be applied to existing and additional base-isolated buildings of various structures and scales, such as Steel Tube (filled steel pipe concrete structure) and their mixed structures.

以上、本発明の実施形態について説明したが、本発明はこうした実施形態に何等限定されるものでなく、本発明の要旨を逸脱しない範囲において、種々なる態様で実施し得ることは勿論である。   As mentioned above, although embodiment of this invention was described, this invention is not limited to such embodiment at all, Of course, in the range which does not deviate from the summary of this invention, it can implement in a various aspect.

10 既存免震建物
12 増設免震建物
14、62、64、66、68 免震建物の増築構造
18、26 基礎免震層
46 PC鋼棒(緊張材)
10 Existing base-isolated building 12 Additional base-isolated building 14, 62, 64, 66, 68 Base-isolated building extension structure 18, 26 Base-isolated layer 46 Steel bar (tensile material)

Claims (2)

既存免震建物又は増設免震建物の基礎免震層を構成する階以外の階のみを、前記増設免震建物又は前記既存免震建物の階に連結して、前記既存免震建物と前記増設免震建物を一体化した、且つ、
前記既存免震建物の前記連結した階よりも下方にある全階層分の層剛性と、前記既存免震建物の基礎免震層と基礎免震層の高さ方向の位置が異なる前記増設免震建物の前記連結した階よりも下方にある全階層分の層剛性を略等しくしている免震建物の増築構造。
Connect only the floors other than the floors that make up the basic seismic isolation layer of the existing seismic isolation building or the extension seismic isolation building to the floor of the extension seismic isolation building or the existing seismic isolation building, and add the existing seismic isolation building and the extension Integrated seismic isolation building, and
The additional seismic isolation in which the layer rigidity of all layers below the connected floor of the existing base isolation building differs from the height direction of the base isolation layer and the base isolation layer of the existing base isolation building An extension structure of a base-isolated building in which the layer rigidity of all layers below the connected floor of the building is substantially equal .
既存免震建物又は増設免震建物の基礎免震層を構成する階以外の階のみを、前記増設免震建物又は前記既存免震建物の階に連結して、前記既存免震建物と前記増設免震建物を一体化した、且つ、前記既存免震建物と前記増設免震建物の階が緊張材によって緊結されることにより前記連結されている免震建物の増築構造。Connect only the floors other than the floors that make up the basic seismic isolation layer of the existing seismic isolation building or the extension seismic isolation building to the floor of the extension seismic isolation building or the existing seismic isolation building, and add the existing seismic isolation building and the extension An extension structure of the seismic isolation building integrated with the seismic isolation building, and the existing seismic isolation building and the expanded seismic isolation building are connected by a tension material.
JP2013057234A 2013-03-19 2013-03-19 Extension structure of seismic isolation building Active JP6166560B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013057234A JP6166560B2 (en) 2013-03-19 2013-03-19 Extension structure of seismic isolation building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013057234A JP6166560B2 (en) 2013-03-19 2013-03-19 Extension structure of seismic isolation building

Publications (2)

Publication Number Publication Date
JP2014181506A JP2014181506A (en) 2014-09-29
JP6166560B2 true JP6166560B2 (en) 2017-07-19

Family

ID=51700494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013057234A Active JP6166560B2 (en) 2013-03-19 2013-03-19 Extension structure of seismic isolation building

Country Status (1)

Country Link
JP (1) JP6166560B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6404013B2 (en) * 2014-06-30 2018-10-10 株式会社竹中工務店 Construction method of seismic isolation building
JP6494038B2 (en) * 2015-12-18 2019-04-03 中村物産有限会社 Adjacent building protection structure and adjacent building protection method
JP6898739B2 (en) * 2017-01-11 2021-07-07 株式会社竹中工務店 Seismic isolation structure
CN107191047B (en) * 2017-06-29 2021-11-12 北京市建筑设计研究院有限公司 Shock insulation design method for arranging shock insulation support in cross-layer mode
JP7055985B2 (en) * 2018-11-08 2022-04-19 株式会社竹中工務店 Construction method of seismic isolation structure and connection structure of seismic isolation structure
JP7456884B2 (en) 2020-08-04 2024-03-27 株式会社竹中工務店 How to build a building

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2512785B2 (en) * 1988-07-14 1996-07-03 株式会社大林組 Vibration control device for high-rise buildings
JP3816183B2 (en) * 1997-04-17 2006-08-30 大成建設株式会社 How to add a base-isolated building and how to build a base-isolated building
JP2001193311A (en) * 1999-10-19 2001-07-17 Shimizu Corp Base isolation building
JP4964545B2 (en) * 2006-09-20 2012-07-04 株式会社竹中工務店 Seismic control structure of a connected building
JP5290786B2 (en) * 2009-01-29 2013-09-18 大成建設株式会社 Damping structure
JP3169864U (en) * 2011-06-10 2011-08-18 黒沢建設株式会社 Building structure

Also Published As

Publication number Publication date
JP2014181506A (en) 2014-09-29

Similar Documents

Publication Publication Date Title
JP6166560B2 (en) Extension structure of seismic isolation building
JP4247496B2 (en) Seismic reinforcement structure
KR20150138785A (en) Vertical expansion remodeling method of existing building with seperate load path
JP4873981B2 (en) Seismic reinforcement structure for existing buildings
JP5865567B2 (en) Connecting slab and its construction method
JP2011149265A (en) Beam member and building structure
JP2006316495A (en) Foundation structure of bridge pier and its construction method
JP4976938B2 (en) Seismic reinforcement structure
JP4228308B2 (en) Reinforcement method for existing floors and seismic isolation method for existing buildings
JP2009068182A (en) Aseismatic reinforcing structure and method for existing building
JP7274332B2 (en) junction structure
JP6302222B2 (en) Horizontal force support structure and method for constructing horizontal force support structure
JP4439938B2 (en) Wall type reinforced concrete structure and its construction method
JP6895740B2 (en) Horizontal force restraint structure
KR20090108880A (en) Concrete filled column with double steel tube and construction method of underground structure using the same
JP2009035928A (en) Compound frame structure
JP5541520B2 (en) Underground construction
JP7449175B2 (en) Earthquake reinforcement structure of existing buildings
JP5350334B2 (en) Rebuilding method and building structure
JP6114071B2 (en) Seismic isolation method for existing buildings and temporary structure under construction
JP6300228B2 (en) Flat slab structure
JP5989597B2 (en) Temporary seismic structure and its construction method during construction of seismic isolation for existing frame
JP7442268B2 (en) underground structure
JP7270412B2 (en) Reinforcement structure of masonry building
JP2014181505A (en) Extension structure of base-isolated building, and extension method for base-isolated building

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170623

R150 Certificate of patent or registration of utility model

Ref document number: 6166560

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150