JP7055985B2 - Construction method of seismic isolation structure and connection structure of seismic isolation structure - Google Patents

Construction method of seismic isolation structure and connection structure of seismic isolation structure Download PDF

Info

Publication number
JP7055985B2
JP7055985B2 JP2018210305A JP2018210305A JP7055985B2 JP 7055985 B2 JP7055985 B2 JP 7055985B2 JP 2018210305 A JP2018210305 A JP 2018210305A JP 2018210305 A JP2018210305 A JP 2018210305A JP 7055985 B2 JP7055985 B2 JP 7055985B2
Authority
JP
Japan
Prior art keywords
seismic isolation
seismic
isolation structure
connecting member
artificial ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018210305A
Other languages
Japanese (ja)
Other versions
JP2020076260A (en
Inventor
重雄 嶺脇
貴博 木下
庸介 鈴木
勝人 大畑
弘樹 濱口
雅史 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP2018210305A priority Critical patent/JP7055985B2/en
Publication of JP2020076260A publication Critical patent/JP2020076260A/en
Application granted granted Critical
Publication of JP7055985B2 publication Critical patent/JP7055985B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Description

本発明は、免震構造物の構築工法及び免震構造物の連結構造に関する。 The present invention relates to a method for constructing a seismic isolated structure and a connected structure for the seismic isolated structure.

特許文献1には、免震建物の増築方法及び一棟の免震建物を複数の工期に分けて構築する免震建物の新築方法に関する技術が開示されている。この先行技術では、隣接する免震建物をそれぞれ独立して構築したのち、建物基礎同士を連結建物基礎で連結し、それら連結建物基礎上に上部躯体を施工して一棟の免震建物を構築している。 Patent Document 1 discloses a technique relating to an extension method of a seismic isolated building and a new construction method of a seismic isolated building in which a seismic isolated building is constructed by dividing it into a plurality of construction periods. In this prior technology, adjacent seismic isolated buildings are constructed independently, and then the building foundations are connected by a connected building foundation, and an upper skeleton is constructed on the connected building foundations to construct a single seismic isolated building. are doing.

特許文献2には、下部構造上に免震装置を介して上部構造が支持された免震建物に関する技術が開示されている。この先行技術では、複数の上部構造が互いに近接した状態で設けられ、これら上部構造同士の間がダンパーを介して互いに接続されていることを特徴としている。 Patent Document 2 discloses a technique relating to a seismic isolated building in which a superstructure is supported via a seismic isolation device on the substructure. The prior art is characterized in that a plurality of superstructures are provided in close proximity to each other and the superstructures are connected to each other via dampers.

特許文献3には、第一免震建物の完成後に、該第一免震建物の水平方向の側方に第一免震建物に連結する第二免震建物を構築する免震建物の増築方法に関する技術が開示されている。この先行技術では、球面すべり支承を用いて免震支持された第一免震建物と第二免震建物とを連結している。 Patent Document 3 describes an extension method of a seismic isolated building for constructing a second seismic isolated building connected to the first seismic isolated building on the horizontal side of the first seismic isolated building after the completion of the first seismic isolated building. The technology related to is disclosed. In this prior art, the first seismic isolated building and the second seismic isolated building, which are seismically isolated and supported by using spherical sliding bearings, are connected.

特開平10-292643号公報Japanese Unexamined Patent Publication No. 10-292643 特開2001-193311号公報Japanese Unexamined Patent Publication No. 2001-193311 特開2018-9399号公報Japanese Unexamined Patent Publication No. 2018-9399

免震支持されて構築された第一建物に隣接して、免震支持された第二建物を構築する際、第二建物の構築が完了する前に下部同士を連結して一体化する場合がある。 When constructing a seismically isolated second building adjacent to a seismically isolated first building, the lower parts may be connected and integrated before the construction of the second building is completed. be.

しかし、このように第二建物の構築が完了する前に下部同士を剛結すると、第二建物の構築が完了するまでの期間は、第一建物の地震時応答量が増大する虞がある。 However, if the lower parts are rigidly connected before the construction of the second building is completed in this way, the earthquake response amount of the first building may increase during the period until the construction of the second building is completed.

これに対して、特許文献1のように、第二建物の構築が完了してから下部同士を連結すると、第二建物の構築が完了するまでの期間において、第一建物の地震時応答量の増大は発生しないが、第一建物と第二建物との相対的な水平移動量が大きくなる。 On the other hand, as in Patent Document 1, when the lower parts are connected after the construction of the second building is completed, the earthquake response amount of the first building is measured in the period until the construction of the second building is completed. No increase will occur, but the relative horizontal movement between the first and second buildings will increase.

特許文献2のように、ダンパーで接続してエネルギー吸収する場合は、第一建物及び第二建物の上層階同士をダンパーで接続する必要があり、高コスト化する。 When the energy is absorbed by connecting with a damper as in Patent Document 2, it is necessary to connect the upper floors of the first building and the second building with a damper, which increases the cost.

特許文献3のように、球面すべり支承を用いて免震支持する場合は、免震周期は主に曲率半径で決定される。よって、剛結しても、第二建物の構築が完了するまでの期間において、第一免震構造物の高層部の地震時応答量の増大を抑制することは可能である。しかし、免震装置が球面すべり支承に限定され、免震装置の選択の自由度がない。 In the case of seismic isolation support using a spherical sliding bearing as in Patent Document 3, the seismic isolation period is mainly determined by the radius of curvature. Therefore, even if the building is rigidly connected, it is possible to suppress an increase in the response amount during an earthquake in the high-rise part of the first seismic isolated structure until the construction of the second building is completed. However, the seismic isolation device is limited to spherical sliding bearings, and there is no freedom in selecting the seismic isolation device.

本発明は上記事実に鑑み、免震支持された第一免震構造物と第二免震構造物との下部同士を連結して一体化する場合において、地震時における第一免震構造物と第二免震構造物との相対的な水平移動量を低減させると共に第一免震構造物の上部に作用する地震時応答量を下部同士を剛結する場合よりも低減させることが目的である。 In view of the above facts, the present invention relates to the first seismic isolation structure at the time of an earthquake when the lower parts of the first seismic isolation structure and the second seismic isolation structure that are seismically isolated are connected and integrated. The purpose is to reduce the amount of horizontal movement relative to the second seismic isolation structure and to reduce the amount of response during an earthquake acting on the upper part of the first seismic isolation structure than when the lower parts are rigidly connected. ..

第一態様は、免震支持されて構築された第一免震構造物の隣に、免震支持された第二免震構造物を構築する工程と、前記第二免震構造物の構築が完了する前に、前記第一免震構造物と構築中の前記第二免震構造物の下部同士を、剛性を有する連結部材で連結する工程と、を備えた免震構造物の構築工法である。 The first aspect is the process of constructing the second seismic isolation structure supported by seismic isolation next to the first seismic isolation structure constructed by seismic isolation support, and the construction of the second seismic isolation structure. By the construction method of the seismic isolation structure including the step of connecting the lower part of the first seismic isolation structure and the lower part of the second seismic isolation structure under construction with a rigid connecting member before completion. be.

第一態様の免震構造物の構築工法では、構築された第一免震構造物と構築中の第二免震構造物の下部同士を、剛性を有する連結部材で連結する。これにより、第二免震構造物の構築が完了するまでの期間において、両者を接続しない場合に比べ地震時における第一免震構造物と第二免震構造物との相対的な水平移動量(連結部材の変形量)が低減されると共に、両者を剛結する場合に比べ第一免震構造物の上部に作用する地震時応答量が低減される。 In the construction method of the seismic isolation structure of the first aspect, the constructed first seismic isolation structure and the lower part of the second seismic isolation structure under construction are connected by a rigid connecting member. As a result, in the period until the construction of the second seismic isolation structure is completed, the relative horizontal movement amount between the first seismic isolation structure and the second seismic isolation structure at the time of an earthquake is compared with the case where both are not connected. (Amount of deformation of the connecting member) is reduced, and the amount of response during an earthquake acting on the upper part of the first seismic isolation structure is reduced as compared with the case where both are rigidly connected.

なお、第一免震構造物及び第二免震構造物の下部とは、当該構造物の1/3以下の高さ部分を指す。 The lower part of the first seismic isolation structure and the second seismic isolation structure refers to a portion having a height of 1/3 or less of the structure.

第二態様は、前記連結部材は、減衰機能を有している、第一態様に記載の免震構造物の構築工法である。 The second aspect is the method for constructing a seismic isolation structure according to the first aspect , wherein the connecting member has a damping function.

第二態様の免震構造物の構築工法では、連結部材は、減衰機能を有している。よって、第二免震構造物の構築が完了するまでの期間において、剛性 による第一免震構造物の上部に作用する地震時応答量の低減効果を維持しつつ、第一免震構造物と第二免震構造物との相対的な水平移動量(連結部材の変形量)を更に小さくすることができる。なお、ここでいう、剛性 及び 減衰機能を有している連結部材には、その弾塑性挙動において等価な剛性 および 等価な減衰機能を有していると見做せるものも含まれる。 In the construction method of the seismic isolation structure of the second aspect , the connecting member has a damping function. Therefore, during the period until the construction of the second seismic isolation structure is completed, while maintaining the effect of reducing the amount of response during an earthquake acting on the upper part of the first seismic isolation structure due to rigidity, the first seismic isolation structure and The relative horizontal movement amount (deformation amount of the connecting member) with the second seismic isolation structure can be further reduced. The connecting members having the rigidity and the damping function referred to here include those which can be regarded as having the equivalent rigidity and the equivalent damping function in the elasto-plastic behavior.

第三態様は、免震支持された第一免震構造物の隣に免震支持されて配置され、前記第一免震構造物と免震周期が異なる第二免震構造物と、前記第一免震構造物と前記第二免震構造物の下部同士を連結する剛性を有する連結部材と、を備えた免震構造物の連結構造である。 The third aspect includes a second seismic isolation structure that is seismically isolated and placed next to the first seismic isolation structure that is seismically isolated and has a different seismic isolation cycle from the first seismic isolation structure, and the first seismic isolation structure. It is a connecting structure of a seismic isolation structure provided with a rigid connecting member for connecting the lower part of the seismic isolation structure and the lower part of the second seismic isolation structure.

第三態様の免震構造物の連結構造では、免震周期が異なる第一免震構造物と第二免震構造物の下部同士を、剛性を有する連結部材で連結する。これにより、地震時における第一免震構造物と第二免震構造物との相対的な水平移動量(連結部材の変形量)が低減されると共に、第一免震構造物の上部に作用する地震時応答量が下部同士を剛結する場合よりも低減される。 In the connecting structure of the seismic isolation structure of the third aspect, the lower parts of the first seismic isolation structure and the second seismic isolation structure having different seismic isolation cycles are connected by a rigid connecting member. As a result, the relative horizontal movement amount (deformation amount of the connecting member) between the first seismic isolation structure and the second seismic isolation structure at the time of an earthquake is reduced, and at the same time, it acts on the upper part of the first seismic isolation structure. The amount of response during an earthquake is reduced compared to the case where the lower parts are rigidly connected.

本発明によれば、免震支持された第一免震構造物と第二免震構造物との下部同士を連結して一体化する場合において、地震時における第一免震構造物と第二免震構造物との相対的な水平移動量を低減させると共に第一免震構造物の上部に作用する地震時応答量を下部同士を剛結する場合よりも低減させることができる。 According to the present invention, when the lower parts of the first seismic isolation structure and the second seismic isolation structure that are seismically isolated are connected and integrated, the first seismic isolation structure and the second seismic isolation structure at the time of an earthquake are connected. The amount of horizontal movement relative to the seismic isolation structure can be reduced, and the amount of response during an earthquake acting on the upper part of the first seismic isolation structure can be reduced as compared with the case where the lower parts are rigidly connected to each other.

第一免震構造物に隣接する第二免震構造物と第三免震構造物とを建設する工程を(A)~(C)へと順番に示す工程図である。It is a process diagram which shows the process of constructing the 2nd seismic isolation structure and the 3rd seismic isolation structure adjacent to the 1st seismic isolation structure in order from (A) to (C). 図1のバリエーションの工程を(A)~(C)へと順番に示す工程図である。It is a process diagram which shows the process of the variation of FIG. 1 in order from (A) to (C). 図1(B)のモデル図である。It is a model diagram of FIG. 1 (B). 連結部材の剛性比と連結部材の変形量との関係を示すグラフである。It is a graph which shows the relationship between the rigidity ratio of a connecting member, and the amount of deformation of a connecting member. 連結部材の剛性比と第一建物に作用するせん断力との関係を示すグラフである。It is a graph which shows the relationship between the rigidity ratio of a connecting member, and the shearing force acting on the first building. 連結部材の減衰定数と連結部材の変形量との関係を示すグラフである。It is a graph which shows the relationship between the damping constant of a connecting member, and the deformation amount of a connecting member. 連結部材の減衰定数と第一建物に作用するせん断力との関係を示すグラフである。It is a graph which shows the relationship between the damping constant of a connecting member, and the shearing force acting on the first building. 連結機構を示す側面図である。It is a side view which shows the connection mechanism. 連結機構の第一バリエーションを示す側面図である。It is a side view which shows the 1st variation of a connection mechanism. (A)は連結部材に用いた市販の履歴減衰材を示す斜視図であり、(B)は連結部材のバリエーションを示す斜視図である。(A) is a perspective view showing a commercially available history damping material used for the connecting member, and (B) is a perspective view showing a variation of the connecting member. (A)は市販の免震装置を示す側面図であり、(B)は図9の連結機構の連結部材を示す側面図である。(A) is a side view showing a commercially available seismic isolation device, and (B) is a side view showing a connecting member of the connecting mechanism of FIG. 連結機構の第二バリエーションを示す側面図である。It is a side view which shows the 2nd variation of a connection mechanism.

<実施形態>
本発明の一実施形態の免震構造物の構築工法及び免震構造物の連結構造について説明する。
<Embodiment>
The construction method of the seismic isolation structure and the connecting structure of the seismic isolation structure according to the embodiment of the present invention will be described.

[免震構造物の構築工法及び連結構造]
図1(C)に示すように、第一免震構造物10は第一免震人工地盤12と第一建物14とで構成され、第二免震構造物20は、第二免震人工地盤22と第二建物24とで構成され、第三免震構造物30は第三免震人工地盤32と緑地34とで構成されている。
[Construction method and connection structure of seismic isolated structure]
As shown in FIG. 1 (C), the first seismic isolation structure 10 is composed of the first seismic isolation artificial ground 12 and the first building 14, and the second seismic isolation structure 20 is the second seismic isolation artificial ground. The third seismic isolation structure 30 is composed of a third seismic isolation artificial ground 32 and a green area 34.

第一免震人工地盤12、第二免震人工地盤22及び第三免震人工地盤32は、それぞれ横方向に間隔をあけて免震ピット50に設けられ、それぞれ免震装置52によって免震支持されている。 The first seismic isolation artificial ground 12, the second seismic isolation artificial ground 22, and the third seismic isolation artificial ground 32 are provided in the seismic isolation pit 50 at lateral intervals, and are supported by the seismic isolation device 52, respectively. Has been done.

なお、免震ピット50の免震装置52が設けられた免震層60における第一免震構造物10を免震支持している領域を第一免震層61とし、第二免震構造物20を免震支持している領域を第二免震層62とし、第三免震構造物30を免震支持している領域を第三免震層63とする。 The area supporting the first seismic isolation structure 10 in the seismic isolation layer 60 provided with the seismic isolation device 52 of the seismic isolation pit 50 is designated as the first seismic isolation layer 61, and the second seismic isolation structure. The area supporting the seismic isolation of 20 is referred to as the second seismic isolation layer 62, and the area supporting the third seismic isolation structure 30 is referred to as the third seismic isolation layer 63.

本実施形態の第一免震人工地盤12、第二免震人工地盤22及び第三免震人工地盤32は、鉄筋コンクリート造であるが、これに限定されるものではない。 The first seismic isolation artificial ground 12, the second seismic isolation artificial ground 22, and the third seismic isolation artificial ground 32 of the present embodiment are made of reinforced concrete, but are not limited thereto.

そして、第一免震人工地盤12の上に第一建物14が建設され、第二免震人工地盤22の上に第二建物24が建設され、第三免震人工地盤32の上に緑地34が構築される。なお、本実施形態では、第一建物14及び第二建物24は、同規模の超高層建物であるが、これに限定されるものではない。 Then, the first building 14 is constructed on the first seismic isolated artificial ground 12, the second building 24 is constructed on the second seismic isolated artificial ground 22, and the green space 34 is constructed on the third seismic isolated artificial ground 32. Is constructed. In the present embodiment, the first building 14 and the second building 24 are skyscrapers of the same scale, but the present invention is not limited thereto.

本実施形態では、第一免震人工地盤12と第二免震人工地盤22と第三免震人工地盤32とを連結機構100で連結して機能的に一体化(総合化)し、供用している。 In the present embodiment, the first seismic isolation artificial ground 12, the second seismic isolation artificial ground 22 and the third seismic isolation artificial ground 32 are connected by the connecting mechanism 100 and functionally integrated (integrated) and put into service. ing.

また、図1(A)及び図1(B)に示すように、第一免震人工地盤12には、先行して第一建物14が建設され、既に供用されている状態で、第二建物24の建設を開始する。 Further, as shown in FIGS. 1 (A) and 1 (B), the first building 14 was constructed in advance of the first seismic isolated artificial ground 12, and the second building is already in service. Start construction of 24.

本実施形態では、図1(B)に示すように、第二建物24が建築中に第一免震人工地盤12と第二免震人工地盤22と第三免震人工地盤32とを連結機構100で連結して機能的に一体化し、第一免震人工地盤12と第二免震人工地盤22と第三免震人工地盤32の供用を開始している。図における符号24Aは、建築中の第二建物24の下層部分を示している。 In the present embodiment, as shown in FIG. 1 (B), the second building 24 connects the first seismic isolation artificial ground 12, the second seismic isolation artificial ground 22, and the third seismic isolation artificial ground 32 during construction. The first seismic isolation artificial ground 12, the second seismic isolation artificial ground 22, and the third seismic isolation artificial ground 32 have been put into service by being connected at 100 and functionally integrated. Reference numeral 24A in the figure indicates a lower layer portion of the second building 24 under construction.

なお、第一建物14を建設して供用を開始した直後、つまり第二建物24の建設を開始する前に、第一免震人工地盤12と第二免震人工地盤22と第三免震人工地盤32とを連結機構100で連結してもよい。 Immediately after the construction of the first building 14 and the start of service, that is, before the construction of the second building 24 is started, the first seismic isolation artificial ground 12, the second seismic isolation artificial ground 22 and the third seismic isolation artificial ground are started. The ground 32 may be connected by the connecting mechanism 100.

また、本実施形態では、図1(C)に示すように、第一建物14、第二建物24及び緑地34が完成しても第一免震人工地盤12と第二免震人工地盤22と第三免震人工地盤32とを連結機構100で連結したままであるが、これに限定されない。第一免震人工地盤12と第二免震人工地盤22と第三免震人工地盤32とを剛結してもよい。 Further, in the present embodiment, as shown in FIG. 1C, even if the first building 14, the second building 24, and the green space 34 are completed, the first seismic isolation artificial ground 12 and the second seismic isolation artificial ground 22 are used. The third seismic isolated artificial ground 32 is still connected by the connecting mechanism 100, but the present invention is not limited to this. The first seismic isolation artificial ground 12, the second seismic isolation artificial ground 22, and the third seismic isolation artificial ground 32 may be rigidly connected.

[他の例]
次に、第二免震構造物20の第二免震人工地盤22と第三免震構造物30の第三免震人工地盤32とを剛結して一体化(総合化)して供用する場合について説明する。なお、同一の部材には同一の符号を付し、重複する説明は省略する。
[Other examples]
Next, the second seismic isolation artificial ground 22 of the second seismic isolation structure 20 and the third seismic isolation artificial ground 32 of the third seismic isolation structure 30 are rigidly connected and integrated (integrated) for use. The case will be described. The same members are designated by the same reference numerals, and duplicate description will be omitted.

図2(A)及び図2(B)に示すように、第一免震人工地盤12には、先行して第一建物14が建設され、既に供用されている状態で、第二建物24の建設を開始する。 As shown in FIGS. 2 (A) and 2 (B), the first building 14 was constructed in advance of the first seismic isolated artificial ground 12, and the second building 24 is in a state of being in service. Start construction.

図2(B)に示すように、第二建物24が建築中に第一免震人工地盤12と第二免震人工地盤22と連結機構100で連結して機能的に一体化し、第二免震人工地盤22と第三免震人工地盤32とを剛結して一体化(総合化)し、人工地盤41として供用している。 As shown in FIG. 2B, the second building 24 is functionally integrated by connecting the first seismic isolation artificial ground 12 and the second seismic isolation artificial ground 22 by the connecting mechanism 100 during construction, and the second seismic isolation. The seismic artificial ground 22 and the third seismic isolated artificial ground 32 are rigidly connected (integrated) and used as the artificial ground 41.

なお、第一建物14を建設して供用を開始した直後、つまり第二建物24の建設を開始する前に、第一免震人工地盤12と第二免震人工地盤22とを連結機構100で連結してもよい。 Immediately after the first building 14 is constructed and put into service, that is, before the construction of the second building 24 is started, the first seismic isolated artificial ground 12 and the second seismic isolated artificial ground 22 are connected by the connecting mechanism 100. It may be connected.

また、本実施形態では、図2(C)に示すように、第一建物14、第二建物24及び緑地34が完成しても第一免震人工地盤12と第二免震人工地盤22とを連結機構100で連結したままであるが、これに限定されない。第一免震人工地盤12と第二免震人工地盤22とを剛結してもよい。 Further, in the present embodiment, as shown in FIG. 2C, even if the first building 14, the second building 24, and the green space 34 are completed, the first seismic isolation artificial ground 12 and the second seismic isolation artificial ground 22 are used. Is still connected by the connection mechanism 100, but is not limited thereto. The first seismic isolation artificial ground 12 and the second seismic isolation artificial ground 22 may be rigidly connected.

[連結機構の詳細]
図8に示すように、連結機構100は、エキスパンションジョイント110と連結部材120(図10(A)も参照)とを有している。なお、図8では、第一免震人工地盤12と第二免震人工地盤22との連結部位を図示しているが、図1における第二免震人工地盤22と第三免震人工地盤32との連結部位も同様の構造である。
[Details of connection mechanism]
As shown in FIG. 8, the connecting mechanism 100 includes an expansion joint 110 and a connecting member 120 (see also FIG. 10A). Although FIG. 8 shows the connection portion between the first seismic isolation artificial ground 12 and the second seismic isolation artificial ground 22, the second seismic isolation artificial ground 22 and the third seismic isolation artificial ground 32 in FIG. 1 are shown. The connection site with and has the same structure.

図8に示す本実施形態のエキスパンションジョイント110は、第一免震人工地盤12及び第二免震人工地盤22の外縁部12A、22Aの上面部分に設けられ、それぞれの外縁部12Aと外縁部22Aとの間の隙間(耐震クリアランス)102を覆うように張り出す鋼板製のエキスパンションカバー112を有している。なお、各図のエキスパンションジョイント110は簡略化し模式的に図示している。また、エキスパンションジョイント110の構造は、どのようなものであってもよい。 The expansion joint 110 of the present embodiment shown in FIG. 8 is provided on the upper surface portions of the outer edge portions 12A and 22A of the first seismic isolation artificial ground 12 and the second seismic isolation artificial ground 22, and the outer edge portions 12A and the outer edge portions 22A, respectively. It has an expansion cover 112 made of a steel plate that overhangs so as to cover the gap (seismic clearance) 102 between the two. The expansion joint 110 in each figure is simplified and schematically shown. Further, the structure of the expansion joint 110 may be any.

また、第一免震人工地盤12の外縁部12Aには下側に突出する第一補強凸部13が形成され、第二免震人工地盤22の外縁部22Aには下側に突出する第二補強凸部23が形成されている。 Further, a first reinforcing convex portion 13 projecting downward is formed on the outer edge portion 12A of the first seismic isolated artificial ground 12, and a second projecting downward on the outer edge portion 22A of the second seismic isolated artificial ground 22. The reinforcing convex portion 23 is formed.

第一免震人工地盤12の外縁部12Aの第一補強凸部13と第二免震人工地盤22の外縁部22Aの第二補強凸部23とに、側面視で横U字形状の連結部材120が接続されている。連結部材120は、上部側122の基端部122Aが第二免震人工地盤22の第二補強凸部23の下面部にボルト接合され、下部側124の基端部124Aが第一免震人工地盤12の第一補強凸部13の下面部に板状の固定部材128を介してボルト接合されている。 A horizontal U-shaped connecting member to the first reinforcing convex portion 13 of the outer edge portion 12A of the first seismic isolated artificial ground 12 and the second reinforcing convex portion 23 of the outer edge portion 22A of the second seismic isolated artificial ground 22. 120 is connected. In the connecting member 120, the base end portion 122A of the upper side 122 is bolted to the lower surface portion of the second reinforcing convex portion 23 of the second seismic isolation artificial ground 22, and the base end portion 124A of the lower side 124 is the first seismic isolation artificial ground. It is bolted to the lower surface of the first reinforcing convex portion 13 of the ground 12 via a plate-shaped fixing member 128.

図10(A)に示すように、本実施形態の連結部材120は、市販の履歴減衰材で構成されている。連結部材120の上部側122と下部側124との間の湾曲部123は、湾曲の頂部に向かうに従って幅狭になっている。 As shown in FIG. 10A, the connecting member 120 of the present embodiment is made of a commercially available history damping material. The curved portion 123 between the upper side 122 and the lower side 124 of the connecting member 120 becomes narrower toward the top of the curved portion.

[作用及び効果]
次に、本実施形態の作用及び効果について説明する。
[Action and effect]
Next, the operation and effect of this embodiment will be described.

図1(A)及び図2(A)に示すように、第一免震構造物10は第一免震人工地盤12の上に第一建物14の建設が完了し、第二免震構造物20Aは第二免震人工地盤22の上に第二建物24が建築中であり下層部分24Aのみが完成している。よって、第一免震構造物10と第二免震構造物20Aとでは免震周期が異なる。 As shown in FIGS. 1 (A) and 2 (A), the first seismic isolation structure 10 has completed the construction of the first building 14 on the first seismic isolation artificial ground 12, and the second seismic isolation structure. In 20A, the second building 24 is under construction on the second seismic isolated artificial ground 22, and only the lower part 24A is completed. Therefore, the seismic isolation cycle differs between the first seismic isolation structure 10 and the second seismic isolation structure 20A.

そして、第一免震構造物10と第二免震構造物20Aとでは免震周期が異なる状態で、図1(B)及び図2(B)に示すように、第一免震人工地盤12と第二免震人工地盤22とを連結機構100で連結して機能的に一体化(総合化)し供用している。なお、図1(B)の場合は、第二免震人工地盤22と第三免震人工地盤32とを連結機構100で連結して機能的に一体化(総合化)し供用している。図2(B)の場合は、第二免震人工地盤22と第三免震人工地盤32とを剛結して一体化(総合化)し人工地盤41として供用している。 Then, as shown in FIGS. 1B and 2B, the first seismic isolation artificial ground 12 is in a state where the first seismic isolation structure 10 and the second seismic isolation structure 20A have different seismic isolation cycles. And the second seismic isolated artificial ground 22 are connected by a connecting mechanism 100 and functionally integrated (integrated) for use. In the case of FIG. 1B, the second seismic isolation artificial ground 22 and the third seismic isolation artificial ground 32 are connected by the connecting mechanism 100 and functionally integrated (integrated) for use. In the case of FIG. 2B, the second seismic isolated artificial ground 22 and the third seismic isolated artificial ground 32 are rigidly connected and integrated (comprehensive) and used as the artificial ground 41.

連結機構100の連結部材120は、市販の履歴減衰材で構成されている。よって、前述のように、第一建物14の建設が完了した第一免震構造物10と、第二建物24の下層部分24Aのみが完成した第二免震構造物20Aと、では、免震周期が異なるが、剛性を有する連結部材120で連結することで、地震時における第一免震人工地盤12と第二免震人工地盤22との相対的な水平移動量が両者を接続しない場合よりも低減されると共に、第一建物14に作用する地震時応答量が第一免震人工地盤12と第二免震人工地盤22とを剛結する場合よりも低減される。 The connecting member 120 of the connecting mechanism 100 is made of a commercially available history damping material. Therefore, as described above, the first seismic isolation structure 10 in which the construction of the first building 14 is completed and the second seismic isolation structure 20A in which only the lower portion 24A of the second building 24 is completed are seismically isolated. Although the period is different, by connecting with the connecting member 120 having rigidity, the relative horizontal movement amount of the first seismic isolated artificial ground 12 and the second seismic isolated artificial ground 22 at the time of an earthquake is larger than the case where both are not connected. The amount of response during an earthquake acting on the first building 14 is also reduced as compared with the case where the first seismic isolated artificial ground 12 and the second seismic isolated artificial ground 22 are rigidly connected.

更に、連結部材120は、減衰機能を有しているので、第一建物14に作用する地震時応答量の低減効果を維持しつつ、第一免震人工地盤12と第二免震人工地盤22との相対的な水平移動量を更に小さくすることができる。 Further, since the connecting member 120 has a damping function, the first seismic isolation artificial ground 12 and the second seismic isolation artificial ground 22 are maintained while maintaining the effect of reducing the earthquake response amount acting on the first building 14. The amount of horizontal movement relative to and can be further reduced.

したがって、第一免震人工地盤12と第二免震人工地盤22とを接続しない場合よりも両者の相対的な水平移動量を小さくすることができるので、第一免震人工地盤12と第二免震人工地盤22との隙間102を狭くすることができる。よって、連結機構100を構成するエキスパンションジョイント110を低コスト化できる。 Therefore, the relative horizontal movement amount of the first seismic isolation artificial ground 12 and the second seismic isolation artificial ground 22 can be made smaller than when the first seismic isolation artificial ground 12 and the second seismic isolation artificial ground 22 are not connected. The gap 102 with the seismic isolated artificial ground 22 can be narrowed. Therefore, the cost of the expansion joint 110 constituting the connecting mechanism 100 can be reduced.

なお、地震時における第一免震人工地盤12と第二免震人工地盤22との相対的な水平移動量、すなわち連結部材120の変形量の低減及び地震時応答量の低減についての詳細は後述する。 The details of the relative horizontal movement amount between the first seismic isolation artificial ground 12 and the second seismic isolation artificial ground 22 at the time of an earthquake, that is, the reduction of the deformation amount of the connecting member 120 and the reduction of the response amount at the time of an earthquake will be described later. do.

また、連結部材120の剛性と減衰機能の大きさは、設置する連結部材120の数量により調整することができる。また、図8の左右方向のみ効果を得たい場合には、図10(B)の連結部材119のように図8の紙面に直交する方向に幅広にすればよい。 Further, the rigidity of the connecting member 120 and the size of the damping function can be adjusted by the number of connecting members 120 to be installed. Further, when it is desired to obtain the effect only in the left-right direction of FIG. 8, the width may be widened in the direction orthogonal to the paper surface of FIG. 8 as in the connecting member 119 of FIG. 10 (B).

図10(A)の連結部材120は、履歴減衰材(免震部材)として市販されているので低コスト且つ容易に得ることができる。また、図10(B)の幅広の連結部材119を用いる場合にも、市販品の幅を広くして製造すればよいので低コストを享受できる。 Since the connecting member 120 of FIG. 10A is commercially available as a history damping material (seismic isolation member), it can be easily obtained at low cost. Further, even when the wide connecting member 119 of FIG. 10B is used, it is sufficient to manufacture the commercially available product with a wide width, so that low cost can be enjoyed.

[作用効果の詳細]
次に、前述した地震時における第一免震人工地盤12と第二免震人工地盤22との相対的な水平移動量、すなわち連結部材120の変形量の低減及び地震時応答量の低減についての詳細を説明する。
[Details of action and effect]
Next, regarding the relative horizontal movement amount between the first seismic isolation artificial ground 12 and the second seismic isolation artificial ground 22 at the time of the above-mentioned earthquake, that is, the reduction of the deformation amount of the connecting member 120 and the reduction of the response amount at the time of the earthquake. The details will be explained.

図3は、本実施形態の図1(B)の状態、すなわち第一建物14の建設が完成した状態の第一免震構造物10の第一免震人工地盤12と、第二建物24を建設中で下層部分24Aのみが完成した状態の第二免震構造物20Aの第二免震人工地盤22と、緑地34が構築されていない状態の第三免震構造物30の第三免震人工地盤32と、がそれぞれ連結部材120(図8及び図10(A)も参照)で連結された状態における地震応答解析を行うためのモデル図である。また、同時に、第二免震人工地盤22と第三免震人工地盤32との間の連結機構100を剛接とする(数値的に十分大きな剛性値を有しているとする)ことで、図2(B)の状態おける地震応答解析を行うためのモデル図でもある。 FIG. 3 shows the state of FIG. 1 (B) of the present embodiment, that is, the first seismic isolation artificial ground 12 and the second building 24 of the first seismic isolation structure 10 in the state where the construction of the first building 14 is completed. The second seismic isolation artificial ground 22 of the second seismic isolation structure 20A in the state where only the lower part 24A is completed during construction, and the third seismic isolation structure 30 of the third seismic isolation structure 30 in the state where the green space 34 is not constructed. It is a model diagram for performing the seismic isolation analysis in the state where the artificial ground 32 and the artificial ground 32 are connected by the connecting member 120 (see also FIG. 8 and FIG. 10A), respectively. At the same time, by making the connecting mechanism 100 between the second seismic isolation artificial ground 22 and the third seismic isolation artificial ground 32 rigidly connected (assuming that it has a sufficiently large rigidity value numerically). It is also a model diagram for performing seismic response analysis in the state of FIG. 2 (B).

ここで、第一免震構造物10、第二免震構造物20(第二建物24が完成した状態)及び第三免震構造物30の相対規模はそれぞれほぼ同規模である。これを、第一免震構造物10の相対規模が1.0倍であると称する。 Here, the relative scales of the first seismic isolation structure 10, the second seismic isolation structure 20 (the state where the second building 24 is completed), and the third seismic isolation structure 30 are almost the same. This is referred to as the relative scale of the first seismic isolation structure 10 being 1.0 times.

第一免震人工地盤12と第二免震人工地盤22との間の連結機構100の連結部材120の剛性は、第一免震層61の剛性を1とした比率で、0.002~2000の10水準とした。第二免震人工地盤22と第三免震人工地盤32との間の連結部材120の剛性は、図1(B)の状態を対象とするときは第一免震人工地盤12と第二免震人工地盤22との間の連結部材120の剛性と同じ値とし、図2(B)の状態を対象とするときには第一免震層61の剛性の2000倍とした。これらの剛性値の内、第一免震層61の剛性の0.002倍を連結していない状態を模擬するもの、第一免震層61の剛性の2000倍を剛結した状態を模擬するもの、として扱った。また、ここでは、連結部材120は剛性のみを有し減衰機能を有していない。 The rigidity of the connecting member 120 of the connecting mechanism 100 between the first seismic isolated artificial ground 12 and the second seismic isolated artificial ground 22 is 0.002 to 2000 at a ratio where the rigidity of the first seismic isolated layer 61 is 1. It was set to 10 levels. The rigidity of the connecting member 120 between the second seismic isolation artificial ground 22 and the third seismic isolation artificial ground 32 is the first seismic isolation artificial ground 12 and the second seismic isolation when the state shown in FIG. 1 (B) is targeted. The value was set to the same value as the rigidity of the connecting member 120 between the seismic artificial ground 22 and 2000 times the rigidity of the first seismic isolation layer 61 when the state shown in FIG. 2B was targeted. Of these rigidity values, a state in which 0.002 times the rigidity of the first seismic isolation layer 61 is not connected is simulated, and a state in which 2000 times the rigidity of the first seismic isolation layer 61 is rigidly connected is simulated. Treated as a thing. Further, here, the connecting member 120 has only rigidity and does not have a damping function.

地震波の入力方向は、図3の地震応答解析のモデル図における矢印N方向である。また、入力する地震波の種類は、告示波神戸位相、同釧路位相、同八戸位相および長周期地震動パブコメ波OS2であり、いずれも想定敷地の表層地盤増幅を考慮した。解析条件は、連結状態2水準(図1(B)、図2(B))、連結機構100の剛性10水準、入力する地震波4種類を組み合わせた80条件である。 The input direction of the seismic wave is the arrow N direction in the model diagram of the seismic response analysis of FIG. The types of seismic waves to be input are the notification wave Kobe phase, the Kushiro phase, the Hachinohe phase, and the long-period ground motion pub rice wave OS2, all of which take into consideration the surface ground amplification of the assumed site. The analysis conditions are 80 conditions that combine two levels of connection states (FIGS. 1 (B) and 2 (B)), 10 levels of rigidity of the connection mechanism 100, and four types of seismic waves to be input.

評価指標は、連結部材120の変形量及び第一免震構造物10の第一建物14の地震時応答量とした。 The evaluation indexes were the amount of deformation of the connecting member 120 and the amount of response during an earthquake of the first building 14 of the first seismic isolation structure 10.

図4は、地震応答解析結果における連結部材120のバネ剛性と連結部材120の最大変形量との関係を示すグラフである。図5は、地震応答解析結果における連結部材120のバネ剛性と第一建物14の地震時応答量の一例としてのせん断力との関係を示すグラフである。 FIG. 4 is a graph showing the relationship between the spring rigidity of the connecting member 120 and the maximum deformation amount of the connecting member 120 in the seismic response analysis result. FIG. 5 is a graph showing the relationship between the spring rigidity of the connecting member 120 in the seismic response analysis result and the shearing force as an example of the seismic response amount of the first building 14.

なお、図4及び図5の両グラフ共に横軸の「剛性比」は、第一免震構造物10の第一免震層61(図1及び図3参照)の水平剛性に対する連結部材120のバネ剛性の比であり、対数軸で表記している。また、図4及び図5の両グラフとも縦軸は、連結なし(第一免震層61の剛性×0.002)として計算した結果の平均値を基準値とし、各計算結果を基準値で除した値(比率)で示している。図4及び図5の両グラフ共に、×印は上述の80条件の計算結果であり、太線は、連結部材120のバネ剛性(剛性比)ごとに平均した結果を結んだ線である。 In both graphs of FIGS. 4 and 5, the “rigidity ratio” on the horizontal axis is the connecting member 120 with respect to the horizontal rigidity of the first seismic isolation layer 61 (see FIGS. 1 and 3) of the first seismic isolation structure 10. It is the ratio of spring rigidity and is expressed on the logarithmic axis. Further, in both graphs of FIGS. 4 and 5, the vertical axis is based on the average value of the results calculated assuming that there is no connection (rigidity of the first seismic isolation layer 61 × 0.002), and each calculation result is used as the reference value. It is shown by the value (ratio) divided. In both the graphs of FIGS. 4 and 5, the x mark is the calculation result of the above 80 conditions, and the thick line is the line connecting the averaged results for each spring rigidity (rigidity ratio) of the connecting member 120.

図4のグラフから、連結部材120の変形量は、連結部材120のバネ剛性を大きな値にするほど小さくなることが判る。また、図5のグラフから、第一建物14に作用するせん断力は、連結部材120のバネ剛性を大きな値にするほど大きくなることが判る。つまり、連結部材120の変形量及び第一建物14に作用するせん断力の両者は、連結部材120のバネ剛性に対して、トレードオフの関係にある。 From the graph of FIG. 4, it can be seen that the amount of deformation of the connecting member 120 decreases as the spring rigidity of the connecting member 120 increases. Further, from the graph of FIG. 5, it can be seen that the shearing force acting on the first building 14 increases as the spring rigidity of the connecting member 120 increases. That is, both the amount of deformation of the connecting member 120 and the shearing force acting on the first building 14 have a trade-off relationship with the spring rigidity of the connecting member 120.

また、連結部材120のバネ剛性の剛性比が0.2倍までは略非連結の状態と見なせ、連結部材120のバネ剛性の剛性比が200倍以上で、略剛結の状態と見なせることが判る。そして、その剛性比が、これら0.2倍と200倍との間の値を取る時に、連結部材120の変形量及び第一建物14に作用するせん断力の大きさが大きく遷移することがわかる。特に、連結部材120のバネ剛性比の値が1~20である間にグラフの変化が大きい。よって、剛性比を1以上且つ20以下の間で適切に選ぶことで、トレードオフに変動する連結部材120の変形量と第一建物14に作用するせん断力とを所望の値の組合せとなるようにすることができる。 Further, when the rigidity ratio of the spring rigidity of the connecting member 120 is 0.2 times or more, it can be regarded as a substantially non-connected state, and when the rigidity ratio of the spring rigidity of the connecting member 120 is 200 times or more, it can be regarded as a substantially rigid connection state. I understand. Then, it can be seen that when the rigidity ratio takes a value between 0.2 times and 200 times, the amount of deformation of the connecting member 120 and the magnitude of the shearing force acting on the first building 14 largely change. .. In particular, the change in the graph is large while the value of the spring rigidity ratio of the connecting member 120 is 1 to 20. Therefore, by appropriately selecting the rigidity ratio between 1 and more and 20 or less, the amount of deformation of the connecting member 120 which fluctuates in a trade-off and the shearing force acting on the first building 14 can be a combination of desired values. Can be.

例えば、連結部材120のバネ剛性の剛性比を2倍とすることにより、せん断力の増幅を非連結の場合の1.06倍程度に留め、連結部材120の変形量は非連結の相対変形量の0.75倍とすることができる。 For example, by doubling the rigidity ratio of the spring rigidity of the connecting member 120, the amplification of the shear force is limited to about 1.06 times that of the non-connected member, and the deformation amount of the connecting member 120 is the relative deformation amount of the non-connected member. It can be 0.75 times that of.

すなわち、連結部材120の等価剛性を、第一免震構造物10を免震支持する免震装置52(第一免震層61)の水平方向の等価剛性との比率で1以上且つ20以下の範囲の値とすることが、好適である。 That is, the equivalent rigidity of the connecting member 120 is 1 or more and 20 or less in ratio to the horizontal equivalent rigidity of the seismic isolation device 52 (first seismic isolation layer 61) that supports the first seismic isolation structure 10. It is preferable to set the value in the range.

なお、ここでいう等価剛性 とは、予め定めた地震動(例えばレベル2)での最大変形量(前者においては連結部材120に生じる変形、後者においては免震装置52の変形(第一免震人工地盤12の移動量))を想定した上で、その時に生じる力と変形量の比(割線剛性 )を採ったものである。このように等価剛性 を計算することは、一例であって、これに限定されるものではない。 The equivalent rigidity referred to here is the maximum amount of deformation in a predetermined seismic motion (for example, level 2) (deformation that occurs in the connecting member 120 in the former, and deformation of the seismic isolation device 52 in the latter (first seismic isolation artificial). The ratio of the force generated at that time to the amount of deformation (split line rigidity) is taken on the assumption of the amount of movement of the ground 12)). The calculation of the equivalent stiffness in this way is an example and is not limited to this.

また、図示及び計算例は示されていないが、第一免震構造物10の相対規模を0.5倍及び2倍とした場合も、略同様の結果であることが確認されている。 Further, although the illustration and the calculation example are not shown, it has been confirmed that substantially the same result is obtained when the relative scale of the first seismic isolation structure 10 is set to 0.5 times and 2 times.

次に、連結部材120に減衰機能が付与された条件で解析した。第一免震人工地盤12と第二免震人工地盤22との間の連結部材120の剛性比は、2~10の3水準とした。第二免震人工地盤22と第三免震人工地盤32との間の連結部材120の剛性比は、図1(B)の状態を対象とするときには第一免震人工地盤12と第二免震人工地盤22との間の連結部材120の剛性と同じ値とし、図2(B)の状態を対象とするときには第一免震層61の剛性の2000倍(剛結した状態を模擬する値)とした。連結部材120の減衰定数は、0~0.6の3水準とした。地震波の入力方向および入力する地震波の種類は前述の解析と同様である。解析条件は、2×3×3×4=72条件である。また、評価指標も同様に連結部材120の変形量及び第一免震構造物10の第一建物14の地震時応答量とした。 Next, the analysis was performed under the condition that the connecting member 120 was provided with the damping function. The rigidity ratio of the connecting member 120 between the first seismic isolated artificial ground 12 and the second seismic isolated artificial ground 22 was set to three levels of 2 to 10. The rigidity ratio of the connecting member 120 between the second seismic isolation artificial ground 22 and the third seismic isolation artificial ground 32 is the first seismic isolation artificial ground 12 and the second seismic isolation when the state shown in FIG. 1 (B) is taken into consideration. The value is the same as the rigidity of the connecting member 120 between the seismic artificial ground 22 and 2000 times the rigidity of the first seismic isolation layer 61 (a value simulating the rigid connection state) when the state shown in FIG. 2B is targeted. ). The damping constant of the connecting member 120 was set to three levels of 0 to 0.6. The input direction of the seismic wave and the type of the seismic wave to be input are the same as in the above analysis. The analysis conditions are 2 × 3 × 3 × 4 = 72 conditions. Similarly, the evaluation index was the amount of deformation of the connecting member 120 and the amount of response during an earthquake of the first building 14 of the first seismic isolation structure 10.

図6は、連結部材120が有する減衰定数に対する連結部材120の地震時における変形量の変動を表すグラフである。図7は、連結部材120が有する減衰定数に対する第一建物14の地震時応答量(せん断力)の変動を表すグラフである。 FIG. 6 is a graph showing changes in the amount of deformation of the connecting member 120 during an earthquake with respect to the damping constant of the connecting member 120. FIG. 7 is a graph showing changes in the seismic response amount (shear force) of the first building 14 with respect to the damping constant of the connecting member 120.

なお、図6及び図7の両グラフ共に横軸は連結部材120の減衰定数である。また、図6及び図7の両グラフとも縦軸は、減衰定数が0として計算した結果の平均値を基準値とし、各計算結果を基準値で除した値(比率)で示している。図6及び図7の両グラフ共に、×印は上述の72条件の計算結果であり、太線は、連結部材120の減衰定数ごとに平均した結果を結んだ線である。 In both graphs of FIGS. 6 and 7, the horizontal axis is the damping constant of the connecting member 120. Further, in both the graphs of FIGS. 6 and 7, the vertical axis shows the average value of the results calculated with the attenuation constant as 0 as the reference value, and the value (ratio) obtained by dividing each calculation result by the reference value. In both the graphs of FIGS. 6 and 7, the x mark is the calculation result of the above 72 conditions, and the thick line is the line connecting the averaged results for each damping constant of the connecting member 120.

図6に示すように、連結部材120に減衰機能を与えることにより、連結部材120の変形量を抑えることができることが判る。減衰定数が0.3の場合、平均値は減衰定数が0の場合(減衰機能を有していない場合)のおよそ0.7倍になることが判り、減衰定数0.6の場合にはおよそ0.55倍になることが判る。 As shown in FIG. 6, it can be seen that the amount of deformation of the connecting member 120 can be suppressed by giving the connecting member 120 a damping function. When the attenuation constant is 0.3, the average value is found to be about 0.7 times that when the attenuation constant is 0 (when the attenuation function is not provided), and when the attenuation constant is 0.6, it is about 0.7 times. It turns out that it will be 0.55 times.

なお、連結機構100を連結部材120のような単一の部材で構成しようとする場合には、所要の等価剛性を有し且つ減衰定数が0.6を上回るようにすることは困難である。よって、このような構成を用いることによって連結部材120の変形量を抑える程度は平均値として0.55倍程度が限界と考えられる。 When the connecting mechanism 100 is to be composed of a single member such as the connecting member 120, it is difficult to have the required equivalent rigidity and the damping constant to exceed 0.6. Therefore, it is considered that the degree of suppressing the amount of deformation of the connecting member 120 by using such a configuration is limited to about 0.55 times as an average value.

一方、図7に示すように、第一建物14に作用するせん断力の変化は、連結部材120の減衰定数に対して鈍感であることがわかる。なぜなら、減衰定数が0.3の場合と減衰定数が0.6の場合との両方共に、減衰が0の場合の0.98倍程度である。つまり、連結部材120に減衰機能を与えることにより、第一建物14の地震時応答量(本例ではせん断力)にほとんど変化を与えず、連結部材120の変形量を小さくすることができることが判る。 On the other hand, as shown in FIG. 7, it can be seen that the change in the shearing force acting on the first building 14 is insensitive to the damping constant of the connecting member 120. This is because, in both the case where the attenuation constant is 0.3 and the case where the attenuation constant is 0.6, it is about 0.98 times the case where the attenuation is 0. That is, it can be seen that by giving the connecting member 120 a damping function, the amount of deformation of the connecting member 120 can be reduced with almost no change in the earthquake response amount (shearing force in this example) of the first building 14. ..

ここで、本実施形態では、第一建物14の地震時応答量の増幅をできるだけ抑制し且つ連結部材120に生じる変形量をできるだけ小さくすることが目的である。よって、連結部材120に減衰機能を与えることで好適な結果を得られる。 Here, in the present embodiment, it is an object to suppress the amplification of the earthquake response amount of the first building 14 as much as possible and to minimize the deformation amount generated in the connecting member 120. Therefore, a suitable result can be obtained by giving the connecting member 120 a damping function.

例えば、前述した連結部材120のバネ剛性の剛性比の値の選択範囲の下限値である1倍のときに減衰定数が0の場合、連結部材120に生じる変形量(平均値)は、非連結時の0.85倍程度となる。また、連結部材120に減衰定数0.6を与えたときには、連結部材120の変形量(平均値)は、非連結時の0.85×0.55=0.47倍、つまり非連結時の0.5倍程度となる。 For example, when the damping constant is 0 when the damping constant is 0 when the lower limit of the selection range of the rigidity ratio value of the spring rigidity of the connecting member 120 described above is 1, the deformation amount (average value) generated in the connecting member 120 is not connected. It will be about 0.85 times the time. Further, when the damping constant 0.6 is given to the connecting member 120, the deformation amount (average value) of the connecting member 120 is 0.85 × 0.55 = 0.47 times the unconnected member, that is, the unconnected member 120. It will be about 0.5 times.

したがって、本発明を適用することで、この連結部材120に生じる変形量は、非連結時の0.5倍程度に小さくすることができる。つまり、第一免震人工地盤12と第二免震人工地盤22との相対変位を吸収する隙間(耐震クリアランス)102(図1、図3及び図8参照)を、本発明を適用しない場合の1/2以下程度まで低減することが可能となる。 Therefore, by applying the present invention, the amount of deformation generated in the connecting member 120 can be reduced to about 0.5 times that in the non-connected state. That is, when the present invention is not applied to the gap (seismic clearance) 102 (see FIGS. 1, 3 and 8) that absorbs the relative displacement between the first seismic isolated artificial ground 12 and the second seismic isolated artificial ground 22. It can be reduced to about 1/2 or less.

<バリエーション>
次に、上記実施形態の連結機構のバリエーションについて説明する。
<Variations>
Next, variations of the connecting mechanism of the above embodiment will be described.

(第一バリエーション)
図9は第一バリエーションの連結機構200を図示している。
(First variation)
FIG. 9 illustrates the first variation of the coupling mechanism 200.

連結機構200は、エキスパンションジョイント110と連結部材220(図11(B)も参照)とを有している。 The connecting mechanism 200 has an expansion joint 110 and a connecting member 220 (see also FIG. 11B).

第一免震人工地盤12の外縁部12Aには下側に突出する第一補強凸部15が形成され、第二免震人工地盤22の外縁部22Aには下側に突出する第二補強凸部25が形成されている。 A first reinforcing convex portion 15 projecting downward is formed on the outer edge portion 12A of the first seismic isolated artificial ground 12, and a second reinforcing convex portion projecting downward on the outer edge portion 22A of the second seismic isolated artificial ground 22. The portion 25 is formed.

本実施形態の連結部材220は、水平方向に対して剛性を有し且つ減衰機能を有する鉛プラグ入り積層ゴムで構成されている。 The connecting member 220 of the present embodiment is made of laminated rubber containing a lead plug, which has rigidity in the horizontal direction and has a damping function.

図9及び図11(B)に示すように、本バリエーションの連結部材220は、上下のフランジ222の間にゴム224と鋼板226とが積層され、内部に図示されていない鉛プラグが挿入された構造である。 As shown in FIGS. 9 and 11B, in the connecting member 220 of this variation, a rubber 224 and a steel plate 226 are laminated between the upper and lower flanges 222, and a lead plug (not shown) is inserted inside. It is a structure.

図9に示すように、連結部材220における上側のフランジ222が第二免震人工地盤22の外縁部22Aの第二補強凸部25の下面部にボルト接合されている。また、連結部材220における下側のフランジ222は、第一免震人工地盤12の外縁部12Aの第一補強凸部15の下面部に、固定板228を介して接合されている。 As shown in FIG. 9, the upper flange 222 of the connecting member 220 is bolted to the lower surface of the second reinforcing convex portion 25 of the outer edge portion 22A of the second seismic isolated artificial ground 22. Further, the lower flange 222 of the connecting member 220 is joined to the lower surface portion of the first reinforcing convex portion 15 of the outer edge portion 12A of the first seismic isolation artificial ground 12 via the fixing plate 228.

なお、図11(B)に示すように、連結部材220は、ゴム224及び鋼板226の積層厚と図示されていない鉛プラグの大きさによって、剛性と減衰機能の大きさを調整することができる。 As shown in FIG. 11B, the rigidity and the magnitude of the damping function of the connecting member 220 can be adjusted by the laminated thickness of the rubber 224 and the steel plate 226 and the size of the lead plug (not shown). ..

また、図11(A)に示す免震装置として市販されている鉛プラグ入り積層ゴム221をゴム224及び鋼板226の積層厚と図示されていない鉛プラグの大きさの仕様を変更することによって、低コスト且つ容易に本バリエーションの連結部材220を得ることができる。 Further, by changing the specifications of the laminated rubber 221 containing a lead plug, which is commercially available as the seismic isolation device shown in FIG. 11 (A), the laminated thickness of the rubber 224 and the steel plate 226 and the size of the lead plug (not shown). The connecting member 220 of this variation can be easily obtained at low cost.

また、図11(A)に示す免震装置として市販されている鉛プラグ入り積層ゴム221は、破断伸び、降伏比及び降伏点のバラツキなどに対する要求値が厳格に管理された材料が用いられる。これに対して、図11(B)に示す同構造の連結部材220で要求される変形量が小さい。よって、図11(B)に示す同構造の連結部材220は、図11(A)に示す免震装置として市販されている鉛プラグ入り積層ゴム221よりも要求値を緩和した材料を用いることができるので、この点においても低コストとなる。 Further, as the lead plug-containing laminated rubber 221 commercially available as the seismic isolation device shown in FIG. 11A, a material whose required values for breaking elongation, yield ratio, variation of yield point and the like are strictly controlled is used. On the other hand, the amount of deformation required for the connecting member 220 having the same structure shown in FIG. 11B is small. Therefore, for the connecting member 220 having the same structure shown in FIG. 11 (B), it is possible to use a material whose required value is relaxed as compared with the lead plug-containing laminated rubber 221 commercially available as the seismic isolation device shown in FIG. 11 (A). Since it can be done, the cost is low in this respect as well.

なお、鉛プラグ入り積層ゴム221以外の積層ゴム、例えば高減衰積層ゴム、錫プラグ入り積層ゴム等や天然ゴム系積層ゴムでもよい。 Laminated rubber other than the lead plug-containing laminated rubber 221 may be used, for example, a high-damping laminated rubber, a tin-plugged laminated rubber, or a natural rubber-based laminated rubber.

(第二バリエーション)
図12は第二バリエーションの連結機構300を図示している。
(Second variation)
FIG. 12 illustrates the second variation of the coupling mechanism 300.

連結機構300は、エキスパンションジョイント110と連結部材320とを有している。 The connecting mechanism 300 has an expansion joint 110 and a connecting member 320.

第一免震人工地盤12の外縁部12Aには下側に突出する第一補強凸部17が形成され、第二免震人工地盤22の外縁部22Aには下側に突出する第二補強凸部27が形成されている。 A first reinforcing convex portion 17 projecting downward is formed on the outer edge portion 12A of the first seismic isolated artificial ground 12, and a second reinforcing convex portion projecting downward on the outer edge portion 22A of the second seismic isolated artificial ground 22. The portion 27 is formed.

本バリエーションの連結部材320は、一対の湾曲部材322と直線部材324とで構成されている。一対の湾曲部材322は、側面視で一端側が上方に湾曲し、第一免震人工地盤12の第一補強凸部17及び第二免震人工地盤22の第二補強凸部27にボルト接合されている。一対の湾曲部材322の他端側の水平部は、直線部材324にボルト接合されることで、接続されている。 The connecting member 320 of this variation is composed of a pair of curved members 322 and a linear member 324. One end of the pair of curved members 322 is curved upward in a side view, and is bolted to the first reinforcing convex portion 17 of the first seismic isolated artificial ground 12 and the second reinforcing convex portion 27 of the second seismic isolated artificial ground 22. ing. The horizontal portion on the other end side of the pair of curved members 322 is connected to the straight member 324 by bolting.

なお、連結部材320の湾曲部材322の長さ、曲率及び断面性能、直線部材324の長さ、断面性能は、連結部材120(図8(A)参照)と同様であり、連結部材120または連結部材320に生じる変形と、それぞれの連結部材120及び連結部材320の各部に生じるひずみとの関係が同様になるように構成されている。すなわち、連結部材320は連結部材120と同じ力学性能をもつ部材である。 The length, curvature and cross-sectional performance of the curved member 322 of the connecting member 320, the length of the linear member 324, and the cross-sectional performance are the same as those of the connecting member 120 (see FIG. 8A), and the connecting member 120 or the connecting member 120 or the connecting member 120. The relationship between the deformation generated in the member 320 and the strain generated in each part of the connecting member 120 and the connecting member 320 is configured to be the same. That is, the connecting member 320 is a member having the same mechanical performance as the connecting member 120.

本バリエーションの連結部材320は、連結部材120(図10(A)参照)よりも第一免震人工地盤12の外縁部12A及び第二免震人工地盤22の外縁部22Aへの取り付けの仕様が簡便となる。また、連結部材120(図10(A)参照)に対する連結部材119(図10(B)参照)のように、連結部材320を図に直交する方向に拡幅して、一方向の変形のみに有効となるようにして設置してもよい。また、連結部材320の形状は、変形と各部ひずみの関係が連結部材120と同様になり、同じ力学特性を有する限りにおいて、図12の形状に限定されない。 The connecting member 320 of this variation has a specification of attachment to the outer edge portion 12A of the first seismic isolated artificial ground 12 and the outer edge portion 22A of the second seismic isolated artificial ground 22 as compared with the connecting member 120 (see FIG. 10 (A)). It will be convenient. Further, as in the connecting member 119 (see FIG. 10B) with respect to the connecting member 120 (see FIG. 10A), the connecting member 320 is widened in the direction orthogonal to the drawing, and is effective only for deformation in one direction. It may be installed so as to be. Further, the shape of the connecting member 320 is not limited to the shape shown in FIG. 12 as long as the relationship between the deformation and the strain of each part is the same as that of the connecting member 120 and has the same mechanical properties.

<その他>
尚、本発明は上記実施形態に限定されない。
<Others>
The present invention is not limited to the above embodiment.

例えば、上記実施形態では、免震支持された第一免震構造物10は第一免震人工地盤12と第一建物14とで構成され、免震支持された第二免震構造物20は第二免震人工地盤22と第二建物24とで構成され、第一免震人工地盤12と第二免震人工地盤22とは剛性を有し且つ減衰機能を有する連結部材119、120、220、320で連結されたが、これに限定されない。 For example, in the above embodiment, the first seismic isolation structure 10 that is seismically isolated is composed of the first seismic isolation artificial ground 12 and the first building 14, and the second seismic isolation structure 20 that is seismically isolated is The second seismic isolation artificial ground 22 and the second building 24 are composed, and the first seismic isolation artificial ground 12 and the second seismic isolation artificial ground 22 are connecting members 119, 120, 220 having rigidity and a damping function. , 320, but is not limited to this.

例えば、基礎免震構造の第一免震建物の下部と基礎免震構造の第二免震建物の下部とを剛性を有し且つ減衰機能を有する連結部材119、120、220、320で連結してもよい。なお、ここで言う「下部」とは、当該免震建物の下側1/3を指す。 For example, the lower part of the first seismic isolated building of the foundation seismic isolation structure and the lower part of the second seismic isolated building of the foundation seismic isolation structure are connected by connecting members 119, 120, 220, 320 having rigidity and damping function. You may. The "lower part" here refers to the lower 1/3 of the seismic isolated building.

また、連結部材119、120、220、320は、剛性を有し且つ減衰機能を有していたが、これに限定されない。剛性のみを有する連結部材であってもよい。 Further, the connecting members 119, 120, 220 and 320 have rigidity and a damping function, but are not limited thereto. It may be a connecting member having only rigidity.

更に、コイルばね等の弾性部材とオイルダンパー等の減衰部材とを並列に配置した構造の連結部材であってもよい。 Further, it may be a connecting member having a structure in which an elastic member such as a coil spring and a damping member such as an oil damper are arranged in parallel.

更に、本発明の要旨を逸脱しない範囲において種々なる態様で実施し得る。 Further, it can be carried out in various embodiments without departing from the gist of the present invention.

10 第一免震構造物
12 第一免震人工地盤(下部の一例)
20 第二免震構造物
22 第二免震人工地盤(下部の一例)
120 連結部材
220 連結部材
320 連結部材
10 First seismic isolation structure 12 First seismic isolation artificial ground (an example of the lower part)
20 Second seismic isolation structure 22 Second seismic isolation artificial ground (an example of the lower part)
120 Connecting member 220 Connecting member 320 Connecting member

Claims (9)

免震支持されて構築された第一免震構造物の隣に、免震支持された第二免震構造物を構築する工程と、
前記第二免震構造物の構築が完了する前に、前記第一免震構造物と構築中の前記第二免震構造物の下部同士を、剛性を有する連結部材で剛結せずに連結する工程と、
を備えた免震構造物の構築工法。
Next to the first seismic isolation structure constructed with seismic isolation support, the process of constructing the second seismic isolation structure with seismic isolation support,
Before the construction of the second seismic isolation structure is completed, the first seismic isolation structure and the lower part of the second seismic isolation structure under construction are connected to each other without being rigidly connected by a rigid connecting member. And the process to do
Construction method of seismic isolation structure equipped with.
前記連結部材は、減衰機能を有している、
請求項1に記載の免震構造物の構築工法。
The connecting member has a damping function.
The method for constructing a seismic isolated structure according to claim 1.
前記第一免震構造物と構築中の前記第二免震構造物の下部同士は、前記連結部材及びエキスパンションジョイントで連結する、The first seismic isolation structure and the lower portions of the second seismic isolation structure under construction are connected by the connecting member and the expansion joint.
請求項1又は請求項2に記載の免震構造物の構築工法。 The method for constructing a seismic isolated structure according to claim 1 or 2.
前記第一免震構造物は、免震支持された第一免震人工地盤と、前記第一免震人工地盤の上に構築された第一建物と、で構成され、 The first seismic isolation structure is composed of a first seismic isolated artificial ground supported by seismic isolation and a first building constructed on the first seismic isolated artificial ground.
前記第二免震構造物は、免震支持された第二免震人工地盤と、前記第二免震人工地盤の上に構築された第二建物と、で構成され、 The second seismic isolation structure is composed of a second seismic isolated artificial ground supported by seismic isolation and a second building constructed on the second seismic isolated artificial ground.
前記第二建物の構築が完了する前に、前記第一免震人工地盤と前記第二免震人工地盤とを前記連結部材で連結する、 Before the construction of the second building is completed, the first seismic isolated artificial ground and the second seismic isolated artificial ground are connected by the connecting member.
請求項1~請求項3のいずれか1項に記載の免震構造物の構築工法。 The method for constructing a seismic isolated structure according to any one of claims 1 to 3.
免震支持された第一免震構造物の隣に免震支持されて配置され、前記第一免震構造物と免震周期が異なる第二免震構造物と、 A second seismic isolation structure that is placed next to the first seismic isolation structure that is seismically isolated and has a different seismic isolation cycle from the first seismic isolation structure.
前記第一免震構造物と前記第二免震構造物の下部同士を剛結せずに連結する剛性を有する連結部材と、 A connecting member having rigidity that connects the first seismic isolation structure and the lower part of the second seismic isolation structure without rigidly connecting them.
を備えた免震構造物の連結構造。 Connected structure of seismic isolation structure with.
前記第一免震構造物と構築中の前記第二免震構造物の下部同士は、前記連結部材及びエキスパンションジョイントで連結されている、 The first seismic isolation structure and the lower part of the second seismic isolation structure under construction are connected by the connecting member and the expansion joint.
請求項5に記載の免震構造物の連結構造。 The connected structure of the seismic isolation structure according to claim 5.
前記第一免震構造物は、免震支持された第一免震人工地盤と、前記第一免震人工地盤の上に構築された第一建物と、で構成され、 The first seismic isolation structure is composed of a first seismic isolated artificial ground supported by seismic isolation and a first building constructed on the first seismic isolated artificial ground.
前記第二免震構造物は、免震支持された第二免震人工地盤と、前記第二免震人工地盤の上に構築された第二建物と、で構成され、 The second seismic isolation structure is composed of a second seismic isolated artificial ground supported by seismic isolation and a second building constructed on the second seismic isolated artificial ground.
前記連結部材は、前記第一免震人工地盤と前記第二免震人工地盤とを連結する、 The connecting member connects the first seismic isolated artificial ground and the second seismic isolated artificial ground.
請求項5又は請求項6に記載の免震構造物の連結構造。 The connected structure of the seismic isolation structure according to claim 5 or 6.
免震支持されて構築された第一免震構造物の隣に、免震支持された第二免震構造物を構築する工程と、 Next to the first seismic isolation structure constructed with seismic isolation support, the process of constructing the second seismic isolation structure with seismic isolation support,
前記第二免震構造物の構築が完了する前に、前記第一免震構造物と構築中の前記第二免震構造物の下部同士を、減衰機能を有する剛性を有する連結部材で連結する工程と、 Before the construction of the second seismic isolation structure is completed, the first seismic isolation structure and the lower part of the second seismic isolation structure under construction are connected to each other by a rigid connecting member having a damping function. Process and
を備えた免震構造物の構築工法。 Construction method of seismic isolation structure equipped with.
免震支持された第一免震構造物の隣に免震支持されて配置され、前記第一免震構造物と免震周期が異なる第二免震構造物と、 A second seismic isolation structure that is seismically isolated and placed next to the first seismic isolation structure and has a different seismic isolation cycle from the first seismic isolation structure.
前記第一免震構造物と前記第二免震構造物の下部同士を連結する減衰機能を有する剛性を有する連結部材と、 A rigid connecting member having a damping function for connecting the lower part of the first seismic isolation structure and the second seismic isolation structure to each other.
を備えた免震構造物の連結構造。 Connected structure of seismic isolation structure with.
JP2018210305A 2018-11-08 2018-11-08 Construction method of seismic isolation structure and connection structure of seismic isolation structure Active JP7055985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018210305A JP7055985B2 (en) 2018-11-08 2018-11-08 Construction method of seismic isolation structure and connection structure of seismic isolation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018210305A JP7055985B2 (en) 2018-11-08 2018-11-08 Construction method of seismic isolation structure and connection structure of seismic isolation structure

Publications (2)

Publication Number Publication Date
JP2020076260A JP2020076260A (en) 2020-05-21
JP7055985B2 true JP7055985B2 (en) 2022-04-19

Family

ID=70723689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018210305A Active JP7055985B2 (en) 2018-11-08 2018-11-08 Construction method of seismic isolation structure and connection structure of seismic isolation structure

Country Status (1)

Country Link
JP (1) JP7055985B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080229684A1 (en) 2007-03-21 2008-09-25 Daewoo Engineering & Construction Co., Ltd. Hydraulic jack systems to be installed to the outrigger to perimeter column joints to automatically adjust differential column shortening and provide additional structural damping
JP2011252316A (en) 2010-06-02 2011-12-15 Shimizu Corp Building connection system
JP2014105447A (en) 2012-11-26 2014-06-09 Takenaka Komuten Co Ltd Building structure
JP2014181505A (en) 2013-03-19 2014-09-29 Takenaka Komuten Co Ltd Extension structure of base-isolated building, and extension method for base-isolated building
JP2014181506A (en) 2013-03-19 2014-09-29 Takenaka Komuten Co Ltd Extension structure of base-isolated building
JP2017145621A (en) 2016-02-17 2017-08-24 清水建設株式会社 Base-isolation structure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH021367U (en) * 1988-06-14 1990-01-08
JPH07207988A (en) * 1994-01-12 1995-08-08 Fujita Corp Damping device of building

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080229684A1 (en) 2007-03-21 2008-09-25 Daewoo Engineering & Construction Co., Ltd. Hydraulic jack systems to be installed to the outrigger to perimeter column joints to automatically adjust differential column shortening and provide additional structural damping
JP2011252316A (en) 2010-06-02 2011-12-15 Shimizu Corp Building connection system
JP2014105447A (en) 2012-11-26 2014-06-09 Takenaka Komuten Co Ltd Building structure
JP2014181505A (en) 2013-03-19 2014-09-29 Takenaka Komuten Co Ltd Extension structure of base-isolated building, and extension method for base-isolated building
JP2014181506A (en) 2013-03-19 2014-09-29 Takenaka Komuten Co Ltd Extension structure of base-isolated building
JP2017145621A (en) 2016-02-17 2017-08-24 清水建設株式会社 Base-isolation structure

Also Published As

Publication number Publication date
JP2020076260A (en) 2020-05-21

Similar Documents

Publication Publication Date Title
Jangid et al. SEISMIC BEHAVIOUR OF BASE-ISOLATED BUILDINGS: A STATE-OF-THE ART REVIEW.
JP6640459B2 (en) Seismic isolation method for seismic isolation structure, steel frame support structure and existing steel frame support structure
JP6043525B2 (en) Seismic isolation structure
JP2017150179A (en) Column beam structure having vibration damping structure
JP2016118008A (en) Structural vibration control device, method for removing residual displacement of superstructure using the same and bridge reinforcement method
Javanmardi et al. Seismic isolation retrofitting solution for an existing steel cable-stayed bridge
KR20160048298A (en) Circular Shear Panel Damper
JP2015055293A (en) Vibration control device
TWI623674B (en) Support structure
CN103233607B (en) Reinforced concrete periodic damping structure and construction method thereof
Nassani et al. Seismic base isolation in reinforced concrete structures
Tjhin et al. Yield displacement-based seismic design of RC wall buildings
JP7055985B2 (en) Construction method of seismic isolation structure and connection structure of seismic isolation structure
JP2008031735A (en) Vibration damping device of towery structure
Correal et al. Shake table studies of bridge columns with double interlocking spirals
JP5385510B2 (en) Flexible element damping structure and flexible mixed damping structure
JP6275314B1 (en) Seismic reinforcement structure for bridges
JP4408181B2 (en) Seismic strength reinforcement method for bridges and piers
JP2020094430A (en) Construction method of base-isolated building
JP7374694B2 (en) Design method for seismically isolated buildings
JP2017043988A (en) Vibration control building
Javanmardi Seismic Behaviour Investigation of a Cablestayed Bridge with Hybrid Passive Control System
JP2005090101A (en) Seismic response control structure
JP7395806B2 (en) How to connect buildings
JP6924599B2 (en) Floor structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220317

R150 Certificate of patent or registration of utility model

Ref document number: 7055985

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150