JP2007277856A - Aseismatic reinforcing structure of existing building - Google Patents

Aseismatic reinforcing structure of existing building Download PDF

Info

Publication number
JP2007277856A
JP2007277856A JP2006103136A JP2006103136A JP2007277856A JP 2007277856 A JP2007277856 A JP 2007277856A JP 2006103136 A JP2006103136 A JP 2006103136A JP 2006103136 A JP2006103136 A JP 2006103136A JP 2007277856 A JP2007277856 A JP 2007277856A
Authority
JP
Japan
Prior art keywords
reinforcing
existing building
column
seismic
frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006103136A
Other languages
Japanese (ja)
Other versions
JP4873981B2 (en
Inventor
Hiromi Suzuki
裕美 鈴木
Yasuhiro Nishikawa
泰弘 西川
Kazuhiro Kaneda
和浩 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2006103136A priority Critical patent/JP4873981B2/en
Publication of JP2007277856A publication Critical patent/JP2007277856A/en
Application granted granted Critical
Publication of JP4873981B2 publication Critical patent/JP4873981B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aseismatic reinforcing structure of an existing building capable of avoiding the extension of a foundation, by minimizing a vertical load generated in reinforcing columns of an aseismatic reinforcing frame. <P>SOLUTION: The aseismatic reinforcing frame 5 is arranged along an outside surface of the existing building 1 having a plurality of stories, and has a plurality of reinforcing columns 6a and 6b running along a column 2 of the existing building, a plurality of reinforcing beams 7 running along a beam 3 of the existing building, and a horizontal resistance element 8 arranged in a structural plane composed of these reinforcing columns and reinforcing beams; and is characterized in that in the other reinforcing column 6b except for the reinforcing columns 6a positioned in both side end parts, the total axial force in the respective reinforcing columns 6b of adding vertical directional additional axial force transmitted from the horizontal resistance element 8 positioned on the right and left of the reinforcing column 6b in an earthquake, to axial force by weight of the aseismatic reinforcing frame 5 acting on the respective reinforcing columns 6b, is set within an allowance degree of support capacity in an existing foundation part to which the total axial force is transmitted. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、既存建物の外面に沿って耐震補強架構を配置することにより、当該既存建物における耐震性能を向上させる耐震補強構造に関するものである。   The present invention relates to a seismic reinforcement structure that improves seismic performance in an existing building by arranging a seismic reinforcement frame along the outer surface of the existing building.

先の兵庫県南部地震等を契機として、旧来の建築基準法に則って設計された建物や老朽化が懸念される建物等の各種の既存建物に対して、その躯体を補強することにより耐震性を向上させる様々な耐震補強構造が開発されている。
このような耐震補強構造の一種として、既存建物内の柱梁構面内に鉄骨造のブレースや鉄筋コンクリート造の壁を増設したり、既存の壁を増し打ちしたりすることにより、剛性と耐力とを共に向上させるものが知られている。
With the previous Hyogoken-Nanbu Earthquake, etc. as an opportunity, the existing buildings such as buildings designed in accordance with the old Building Standards Law and buildings that are concerned about aging are reinforced to provide earthquake resistance. Various seismic reinforcement structures have been developed to improve the performance.
As one type of such seismic reinforcement structure, rigidity and strength can be improved by adding steel braces and reinforced concrete walls in the column beam structure of existing buildings, or by increasing the number of existing walls. Those that improve both are known.

ところで、上記従来の耐震補強構造にあっては、補強後に建物内部の使用に新たな制約が生じるとともに、工事がもっぱら既存建物の内部となるために、改修期間中は建物内部の使用ができなくなるという欠点がある。
そこで、特に既存建物の内部を使用したままで当該既存建物に対する耐震補強を施工する等の要請がある場合には、上記既存建物の外周に沿って耐震補強架構を配設し、これと既存建物の柱梁架構とを一体化させる工法が採用されている。
By the way, in the conventional seismic reinforcement structure, since there are new restrictions on the use of the interior of the building after reinforcement, and the construction is entirely inside the existing building, the interior of the building cannot be used during the renovation period. There is a drawback.
Therefore, in particular, when there is a request to install seismic reinforcement for the existing building while using the inside of the existing building, a seismic reinforcement frame is installed along the outer periphery of the existing building. The method of integrating the column beam frame is adopted.

例えば、下記特許文献1においては、上下方向に延在する補強柱と、水平方向に延在する補強梁と、これら補強柱と補強梁との間に架設された補強ブレースとから構成され、かつ建物の側端部と中心部との軸力負担の差が小さくなるよう上記補強ブレースが互いに斜め方向において隣接する千鳥状に配置された鉄骨造の補強フレームを、上記建物の外側面に配設した建物の補強構造が提案されている。   For example, in the following Patent Document 1, it is composed of a reinforcing column extending in the vertical direction, a reinforcing beam extending in the horizontal direction, and a reinforcing brace laid between the reinforcing column and the reinforcing beam, and A steel frame reinforcement frame in which the reinforcing braces are arranged in a staggered manner adjacent to each other in an oblique direction so as to reduce the difference in the axial force load between the side edge and the center of the building is arranged on the outer surface of the building. Reinforcement structure of the building has been proposed.

そして、上記建物の補強構造によれば、地震等による大きな水平外力が作用したときに、従来に比較して、建物の側端部と中心部とでの軸力負担の差を小さくすることができ、特に中心部における強度的な無駄を小さくすることができるために、鉄骨造や鉄筋コンクリート造からなる補強フレームで効率よく水平外力を負担して、建物の耐震性を向上させることができるとされている。
特開平10−18639号公報
And, according to the reinforcing structure of the building, when a large horizontal external force due to an earthquake or the like is applied, it is possible to reduce the difference in the axial force burden between the side end portion and the center portion of the building as compared with the conventional case. In particular, because it is possible to reduce the strength waste in the center, it is said that the reinforcement frame made of steel frame or reinforced concrete can efficiently bear horizontal external force and improve the earthquake resistance of the building. ing.
JP-A-10-18639

ところで、このような耐震補強架構を設置した場合に、当該耐震補強架構の自重による鉛直荷重に加えて、さらに地震時に当該耐震補強架構に大きな水平力が作用すると、ブレース等の水平抵抗要素から作用する分力によって、補強柱には大きな鉛直荷重が作用する。したがって、上記耐震補強架構を既存建物と一体化させた場合に、上記補強柱から既存建物に伝達された鉛直荷重が、既存建物の基礎における支持能力の余裕度を超えてしまうために、別途既存建物の基礎を補強したり、あるいは耐震補強架構の下部に、補強柱から作用する鉛直荷重を支持するための基礎を増設したりする必要がある。   By the way, when such a seismic strengthening frame is installed, in addition to the vertical load due to its own weight, if a large horizontal force acts on the seismic strengthening frame during an earthquake, it acts from horizontal resistance elements such as braces. A large vertical load acts on the reinforcing column due to the component force. Therefore, when the seismic retrofit frame is integrated with an existing building, the vertical load transmitted from the reinforcing column to the existing building exceeds the margin of the support capacity in the foundation of the existing building. It is necessary to reinforce the foundation of the building, or to add a foundation to support the vertical load acting from the reinforcing column at the bottom of the seismic reinforcement frame.

この結果、耐震補強工事が大掛かりなものになって、施工の多くの手間と工期とを要するとともに、施工コストの高騰化を招くという問題点があった。
特に、上記従来の建物の補強構造にあっては、建物の側端部と中心部とでの軸力負担の差が小さくなるように補強ブレースを配置している結果、補強ブレース全体の補強柱によって鉛直荷重を負担することになるために、既存建物の基礎における支持能力の余裕度によっては、上記鉛直荷重を支承するために、上記補強フレームの全体にわたって新設基礎を設ける必要が生じてしまうという問題点があった。
As a result, there has been a problem that the seismic reinforcement work becomes large-scale, which requires a lot of work and construction time, and increases the construction cost.
In particular, in the above-described conventional building reinforcement structure, the reinforcement brace is arranged so that the difference in the axial load between the side end portion and the center portion of the building is reduced. In order to support the vertical load, it may be necessary to provide a new foundation over the entire reinforcing frame in order to support the vertical load depending on the margin of the support capacity of the foundation of the existing building. There was a problem.

本発明は、かかる事情に鑑みてなされたもので、耐震補強架構の増設によって既存建物の水平耐力を増加させる場合において、耐震補強架構の重量や水平抵抗要素から作用する補強柱の鉛直荷重を極力小さく設定することにより、基礎の増設を最小限に抑えることが可能になる既存建物の耐震補強構造を提供することを課題とするものである。   The present invention has been made in view of such circumstances, and in the case where the horizontal strength of an existing building is increased by adding a seismic reinforcing frame, the weight of the seismic reinforcing frame and the vertical load of the reinforcing column acting from the horizontal resistance element are minimized. It is an object of the present invention to provide a seismic reinforcement structure for an existing building that can minimize the number of additional foundations by setting it small.

上記課題を解決するために、請求項1に記載の発明は、複数の階層を有する既存建物の外面に沿って耐震補強架構を配設して上記既存建物の柱梁架構と連結してなる耐震補強構造であって、上記耐震補強架構は、上記既存建物の柱に沿って配置される複数の補強柱と、上記既存建物の梁に沿って配置される複数の補強梁と、これら補強柱および補強梁によって構成される構面内に設けられた水平抵抗要素とを備えてなり、かつ、両側端部に位置する上記補強柱を除いた他の上記補強柱において、各々の上記補強柱に作用する上記耐震補強架構の重量による軸力に、地震時に当該補強柱の左右に位置する上記水平抵抗要素から伝達される鉛直方向の付加軸力を加えた各上記補強柱における総軸力が、当該総軸力が伝達される既存基礎部分における支持能力の余裕度以内であることを特徴とするものである。   In order to solve the above-mentioned problem, the invention according to claim 1 is provided with an earthquake-resistant reinforcement structure in which an earthquake-proof reinforcement frame is disposed along the outer surface of an existing building having a plurality of levels and is connected to the column beam frame of the existing building. The seismic reinforcement frame includes a plurality of reinforcing columns arranged along the columns of the existing building, a plurality of reinforcing beams arranged along the beams of the existing building, and these reinforcing columns and A horizontal resistance element provided in a structural surface constituted by reinforcing beams, and acting on each of the reinforcing columns in the other reinforcing columns excluding the reinforcing columns located at both ends. The total axial force in each of the reinforcing columns is the axial force due to the weight of the seismic reinforcing frame added to the vertical additional axial force transmitted from the horizontal resistance element located on the left and right of the reinforcing column in the event of an earthquake. In the existing foundation where the total axial force is transmitted It is characterized in that is within the margin of the support capability.

また、請求項2に記載の発明は、請求項1に記載の発明において、既存建物は、梁スパンおよび階高が等しい柱梁架構によって構築されているとともに、上記耐震補強架構は、上記水平抵抗要素の耐力が、各々の上記補強柱の左右において互いに略等しくなるように配置されていることを特徴とするものである。   The invention according to claim 2 is the invention according to claim 1, wherein the existing building is constructed of a column beam frame having the same beam span and the same floor height, and the seismic strengthening frame has the horizontal resistance. The elements are arranged such that the proof stresses of the elements are substantially equal to each other on the left and right of each of the reinforcing columns.

他方、請求項3に記載の発明は、請求項1に記載の発明において、上記既存建物は、少なくとも一部において梁スパンおよび/または階高が異なる柱梁架構によって構築されているとともに、上記耐震補強架構は、各々の上記補強柱の左右における上記水平抵抗要素の耐力の大小関係が、当該水平抵抗要素を設置する場所の階高をそのスパンで除したアスペクト比の大小関係と逆になるように配置されていることを特徴とするものである。   On the other hand, the invention according to claim 3 is the invention according to claim 1, wherein the existing building is constructed by a column beam structure having a beam span and / or a different floor height at least partially, and In the reinforcing frame, the magnitude relationship of the proof stress of the horizontal resistance element on the left and right of each reinforcing column is opposite to the aspect ratio of the aspect ratio obtained by dividing the floor height of the place where the horizontal resistance element is installed by its span. It is characterized by being arranged.

また、請求項4に記載の発明は、請求項1〜3のいずれかに記載の発明において、上記耐震補強架構は、最下階の上記補強柱と上記既存建物との間に、当該補強柱から作用する鉛直方向の力を上記既存建物の基礎に伝える伝達補強部材が介装されていることを特徴とするものである。   The invention according to claim 4 is the invention according to any one of claims 1 to 3, wherein the seismic reinforcement frame is provided between the reinforcement column on the lowest floor and the existing building. A transmission reinforcing member for transmitting a vertical force acting on the foundation to the foundation of the existing building is interposed.

さらに、請求項5に記載の発明は、請求項4に記載の伝達補強部材が、上記補強柱の最下部と上記既存建物の柱とに接合手段を介して一体化されることにより、上記耐震補強架構と直交する方向に配設された補強壁であることを特徴とするものである。
ここで、上記接合手段としては、あと施工アンカーや鋼材の貫通ボルト、あるいはその導入力による締め付け力が適用可能である。
Furthermore, the invention according to claim 5 is characterized in that the transmission reinforcing member according to claim 4 is integrated with the lowermost part of the reinforcing column and the column of the existing building through a joining means. The reinforcing wall is arranged in a direction orthogonal to the reinforcing frame.
Here, as the joining means, a post-construction anchor, a steel through-bolt, or a tightening force due to its introduction force can be applied.

また、請求項6に記載の発明は、請求項1〜5のいずれかに記載の発明において、上記水平抵抗要素が、上記構面の対角方向に介装された1本のブレースであり、かつ上記耐震補強架構が、正面視において、中央の上記補強柱を境にして、その左側に位置する上記ブレースが上記構面の上部右側隅部から下部左側隅部に向けて配置されるとともに、その右側に位置する上記ブレースが上記構面の上部左側隅部から下部右側隅部に向けて配置されていることを特徴とするものである。   The invention according to claim 6 is the brace according to any one of claims 1 to 5, wherein the horizontal resistance element is interposed in a diagonal direction of the construction surface. And in the front view, the seismic strengthening frame is arranged from the upper right corner of the construction surface toward the lower left corner with the reinforcing column in the center as a boundary, and the brace located on the left side of the structural surface. The brace located on the right side is arranged from the upper left corner of the construction surface toward the lower right corner.

請求項1〜6のいずれかに記載の発明によれば、耐震補強架構を設置することによって、両側端部の補強柱を除いた他の各々の補強柱から既存建物に作用する総軸力、すなわち各補強柱に作用する耐震補強架構の重量による軸力と、地震時に各々の上記補強柱の左右に位置する上記水平抵抗要素から当該補強柱に伝達される鉛直方向の付加軸力とを合わせた総軸力を、各補強柱の軸力が伝達される上記既存建物の基礎部分における支持能力の余裕度以内に設定している。   According to the invention according to any one of claims 1 to 6, the total axial force acting on the existing building from each of the other reinforcing columns excluding the reinforcing columns at both ends by installing the seismic reinforcing frame, In other words, the axial force due to the weight of the seismic reinforcement frame acting on each reinforcing column is combined with the vertical additional axial force transmitted to the reinforcing column from the horizontal resistance element located on the left and right of each reinforcing column in the event of an earthquake. The total axial force is set within the margin of the support capacity in the foundation part of the existing building to which the axial force of each reinforcing column is transmitted.

このため、耐震補強架構を設置する際に、少なくとも両側端部の補強柱を除いて、他の補強柱を支承するための新設基礎の施工や、上記補強柱の軸力が伝達される既存建物の基礎における支持能力を上げるための措置、例えば基礎直下や周辺を地盤改良することにより地耐力を増強することや、基礎の周辺に新たに杭を打って基礎と一体化する増し杭、あるいは基礎の支持面積を増加させる基礎の増し打ち等の各種の基礎部分を補強するための追加的な施工を行う必要が無く、よって既存建物の使用に大きな制約を与えることなく簡易な施工によって既存建物の耐震補強を行うことができる。   For this reason, when installing a seismic retrofit frame, at least excluding the reinforcement columns at the ends of both sides, constructing a new foundation to support other reinforcement columns, and existing buildings where the axial force of the reinforcement columns is transmitted Measures to increase the support capacity of the foundation of the foundation, such as increasing the ground strength by improving the ground directly below or around the foundation, or additional piles or foundations that are integrated with the foundation by hitting a new pile around the foundation There is no need to perform additional construction to reinforce various foundation parts, such as additional foundations that increase the support area of the foundation, and therefore, simple construction without any significant restrictions on the use of existing buildings Seismic reinforcement can be performed.

ここで、特に、地震時に各々の上記補強柱の左右に位置する上記水平抵抗要素から当該補強柱に伝達される鉛直方向の軸力の総和を極力小さく抑えるためには、上記水平抵抗要素を、補強柱の左右において互いの耐力が拮抗するように配置することが好適である。
例えば、上記既存建物が複数の階層にわたって等しい梁スパンおよび階高である場合には、請求項2に記載の発明のように、耐震補強架構の水平抵抗要素の耐力を、各々の補強柱の左右において互いに等しくなるように配置すれば、容易に上記付加軸力を既存建物の基礎における支持能力の余裕度以内に設定することができる。
Here, in particular, in order to suppress the sum of the axial forces in the vertical direction transmitted from the horizontal resistance elements located on the left and right of each of the reinforcing pillars to the reinforcing pillars at the time of an earthquake, the horizontal resistance elements are It is preferable to arrange the reinforcing columns so that their proof stresses are antagonistic on the left and right sides.
For example, when the existing building has the same beam span and floor height over a plurality of floors, the proof strength of the horizontal resistance element of the seismic reinforcement frame is set to the left and right of each reinforcing column as in the invention described in claim 2. If they are arranged so as to be equal to each other, the additional axial force can be easily set within the margin of the support capability in the foundation of the existing building.

すなわち、図5に示すように、既存建物の柱に沿って配置される補強柱Aと、既存建物の梁に沿って配置される補強梁Bと、これら補強柱Aおよび補強梁Bによって構成される構面内に設けられたブレース(水平抵抗要素)C、Cとを備えた耐震補強架構において、地震時に大きな水平力Fが作用すると、補強柱Aには、その左側のブレースCによって圧縮力fが作用するとともに、その右側のブレースCによって引張力fが作用する。 That is, as shown in FIG. 5, the reinforcing column A is arranged along the columns of the existing building, the reinforcing beam B is arranged along the beam of the existing building, and the reinforcing columns A and the reinforcing beams B. When a large horizontal force F is applied during an earthquake in a seismic strengthening frame provided with braces (horizontal resistance elements) C 1 and C 2 provided in the structural surface, the brace C 1 on the left side of the reinforcing column A is applied. As a result, a compressive force f 1 acts and a tensile force f 2 acts by the brace C 2 on the right side thereof.

この結果、例えば上記ブレースC、Cの耐力が等しいとすると、補強柱Aの左右におけるこれらブレースC、Cから当該補強柱Aに伝達される鉛直方向の軸力の総和(f−f)は実質的に0(ゼロ)になる。
したがって、上記既存建物が複数の階層を有する場合に、補強柱の左側において上下方向に配置された水平抵抗要素の耐力の合計と、当該補強柱の右側において上下方向に配設された水平抵抗要素の耐力の合計とが、互いに等しくするように配置することにより、地震時に上記補強柱に作用する鉛直方向の軸力の総和を、容易に実質的に0にすることができる。
As a result, for example, assuming that the proof strengths of the braces C 1 and C 2 are equal, the sum of the axial forces in the vertical direction transmitted from the braces C 1 and C 2 on the left and right sides of the reinforcing column A to the reinforcing column A (f 1 -f 2) is substantially zero (zero).
Therefore, when the existing building has a plurality of floors, the total resistance of horizontal resistance elements arranged in the vertical direction on the left side of the reinforcing column and the horizontal resistance elements arranged in the vertical direction on the right side of the reinforcing column By arranging them so that their total proof stresses are equal to each other, the sum of the axial forces in the vertical direction acting on the reinforcing columns during an earthquake can be easily made substantially zero.

これに対して、図6に示すように、上記既存建物が、少なくとも一部において補強柱A間の補強梁BのスパンS、Sおよび/または階高H、Hが異なる柱梁架構によって構築されている場合には、請求項3に記載の発明のように、各々の補強柱Aの左右におけるブレース(水平抵抗要素)C、Cの耐力の大小関係を、これらブレースC、Cを設置する場所の階高H、HをそのスパンS、Sで除したアスペクト比(H/S、H/S)の大小関係と逆になるように設定することにより、同様の作用効果を得ることができる。 On the other hand, as shown in FIG. 6, the existing building is a column beam in which spans S 1 and S 2 and / or floor heights H 1 and H 2 of the reinforcement beam B between the reinforcement columns A are different at least partially. When constructed by a frame, as in the invention described in claim 3, the magnitude relationship between the proof strengths of the braces (horizontal resistance elements) C 1 and C 2 on the left and right of each reinforcing column A is represented by these braces C. 1 , so that the floor height H 1 , H 2 of the place where C 2 is installed is opposite to the magnitude relationship of the aspect ratio (H 1 / S 1 , H 2 / S 2 ) divided by the spans S 1 and S 2 By setting to, the same effect can be obtained.

また、本発明によれば、少なくとも両側端部の補強柱を除いた他の補強柱については、これらの鉛直荷重を支承するための新設基礎が不要となることから、請求項4に記載の発明のように、少なくとも最下階の補強柱と既存建物との間に伝達補強部材を介装して、直接これら補強柱の鉛直荷重を既存建物の基礎に伝えるようにすることが好ましい。   Further, according to the present invention, a new foundation for supporting these vertical loads is unnecessary for the other reinforcing columns excluding at least the reinforcing columns at both ends. As described above, it is preferable that a transmission reinforcing member is interposed at least between the reinforcing column on the lowest floor and the existing building so that the vertical load of these reinforcing columns is directly transmitted to the foundation of the existing building.

この際に、請求項5に記載の発明のように、上記伝達補強部材として、上記耐震補強架構と直交する方向に配設されて補強柱の最下部と既存建物の柱とにあと施工アンカー等の接合手段を介して一体化された剛性に優れる補強壁を用いれば、例えば左右に位置する水平抵抗要素の耐力に差異があり、この結果他の補強柱よりも地震時により大きな鉛直方向の軸力が作用する補強柱を既存建物の柱と一体化する際に好適である。   At this time, as in the invention described in claim 5, as the transmission reinforcing member, post-installed anchors and the like are arranged in the direction perpendicular to the earthquake-proof reinforcing frame and the lowermost part of the reinforcing column and the column of the existing building. For example, there is a difference in the proof stress of the horizontal resistance elements located on the left and right, resulting in a larger vertical axis during an earthquake than other reinforcing columns. It is suitable for integrating a reinforcing column on which a force acts with a column of an existing building.

また、既存建物がバルコニー等の壁面から突出する構造体を有している場合には、耐震補強架構を上記構造体のさらに外面側に配設する必要があるために、剛性の高い上記補強壁を用いることにより、上記耐震補強架構から作用する荷重を確実に既存建物の基礎へと伝達することが可能になる。   In addition, when the existing building has a structure that protrudes from the wall surface such as a balcony, it is necessary to dispose the seismic reinforcement frame on the outer surface side of the structure. By using, it becomes possible to reliably transmit the load acting from the earthquake-proof reinforcement frame to the foundation of the existing building.

さらに、上記水平抵抗要素としては、補強柱および補強梁によって構成される構面内にV字型あるいはX字型に設けられたブレースを用いることも可能であるが、特に請求項6に記載の発明にように、上記構面の対角方向に介装された1本のブレースを用いれば、耐震補強架構を設置したことに起因する既存建物に対する日照障害を最小限に抑えることができる。   Furthermore, as the horizontal resistance element, it is possible to use a brace provided in a V-shape or an X-shape in a structural surface constituted by a reinforcing column and a reinforcing beam. As described in the invention, if one brace interposed in the diagonal direction of the structural surface is used, it is possible to minimize the sunshine obstacle to the existing building caused by the installation of the earthquake-proof reinforcement frame.

また、上記1本のブレースを、中央の補強柱を境にして、左側では上記構面の上部右側隅部から下部左側隅部に向けて配置し、右側では上記構面の上部左側隅部から下部右側隅部に向けて配置すれば、上記ブレースが全体として山形を描くことになり、意匠性が向上するという効果も得られる。   The one brace is arranged from the upper right corner of the composition surface to the lower left corner on the left side with the central reinforcing column as a boundary, and from the upper left corner portion of the composition surface on the right side. If it arrange | positions toward a lower right corner, the said brace will draw a mountain shape as a whole, and the effect that the design property improves will also be acquired.

(実施形態1)
図1および図2は、本発明に係る既存建物の耐震補強構造の第1の実施形態を示すもので、図中符号1が複数の階層(図では4階)を有する既存建物である。
この既存建物1は、複数本(図では11本)の柱2と、これら柱2間に架設された梁3とによって架構が構成されており、各々の階には、前壁面から突出するバルコニー4が設けられている。なお、図中1aは、上記前壁面に形成された窓である。
(Embodiment 1)
1 and 2 show a first embodiment of the seismic reinforcement structure for an existing building according to the present invention, and reference numeral 1 in the figure is an existing building having a plurality of layers (fourth floor in the figure).
The existing building 1 is constructed of a plurality of (11 in the figure) pillars 2 and beams 3 installed between the pillars 2, and each floor has a balcony protruding from the front wall surface. 4 is provided. In addition, 1a in the figure is a window formed on the front wall surface.

そして、この既存建物1のバルコニー4の前壁に沿って、既存建物1を耐震補強するための鉄骨造の耐震補強架構5が配設されている。
この耐震補強架構5は、既存建物1の柱2に沿って配置される複数本(本実施形態においては合計9本)の補強柱6a、6bと、既存建物1の梁3に沿って配置される複数本(図では5本)の補強梁7と、これら補強柱6と補強梁7とによって構成される構面内に設けられた1本のブレース(水平抵抗要素)8と有する構造のものである。
And along the front wall of the balcony 4 of this existing building 1, the steel structure earthquake-proof reinforcement frame 5 for earthquake-proofing the existing building 1 is arrange | positioned.
The seismic reinforcement frame 5 is arranged along a plurality of reinforcing columns 6a and 6b (9 in total in the present embodiment) arranged along the pillar 2 of the existing building 1 and the beam 3 of the existing building 1. Having a plurality of reinforcing beams 7 (five in the figure), and one brace (horizontal resistance element) 8 provided in a structural surface constituted by the reinforcing columns 6 and the reinforcing beams 7. It is.

ここで、この耐震補強架構5においては、ブレース8が両側端部の補強柱6aを除いた他の補強柱6bの左右に、それぞれ上下合わせて2本ずつ位置するように配置されている。
これにより、図5に示した場合と同様に、左右のブレース8から各補強柱6bに伝達される鉛直方向の軸力の総和が実質的に0になることを利用して、各々の補強柱6bに作用する総軸力、すなわち耐震補強架構5の重量による軸力に、地震時に各補強柱6bの左右に位置するブレース8から当該補強柱6bに伝達される鉛直方向の付加軸力を加えた軸力が、既存建物1の基礎12における支持能力の余裕度以内になるように設定されている。
Here, in this seismic reinforcement frame 5, the braces 8 are arranged so that two of them are positioned on the left and right sides of the other reinforcing columns 6b excluding the reinforcing columns 6a at both ends.
Accordingly, as in the case shown in FIG. 5, each reinforcing column is utilized by utilizing that the sum of the axial forces in the vertical direction transmitted from the left and right braces 8 to the reinforcing columns 6b is substantially zero. In addition to the total axial force acting on 6b, that is, the axial force due to the weight of the seismic reinforcement frame 5, an additional axial force in the vertical direction transmitted from the braces 8 positioned on the left and right of each reinforcing column 6b to the reinforcing column 6b during an earthquake is added. The axial force is set so as to be within the margin of the support capacity of the foundation 12 of the existing building 1.

また、これらブレース8は、正面視において、中央の補強柱6bを境にして、その左側に位置するブレース8が上記構面の上部右側隅部から下部左側隅部に向けて配置されるとともに、その右側に位置するブレース8が上記構面の上部左側隅部から下部右側隅部に向けて配置されている。   Further, these braces 8 are arranged in such a manner that the brace 8 located on the left side of the central reinforcing column 6b is arranged from the upper right corner portion to the lower left corner portion of the above-mentioned composition surface in front view. The brace 8 located on the right side is arranged from the upper left corner of the construction surface toward the lower right corner.

他方、図2に示すように、所定階のバルコニー4のスラブ下面には、新設スラブ(伝達補強部材)9が増設されている。この新設スラブ9は、地震時に耐震補強架構5に作用する水平力を既存建物1の柱2および梁3に伝達するためのものであり、せん断用あと施工アンカーおよびその両側端部に設けられた偏心曲げ用引張あと施工アンカーを介して上記梁3および柱2に一体化されている。   On the other hand, as shown in FIG. 2, a new slab (transmission reinforcing member) 9 is added on the lower surface of the slab of the balcony 4 on the predetermined floor. This new slab 9 is used to transmit the horizontal force acting on the seismic reinforcement frame 5 to the pillar 2 and the beam 3 of the existing building 1 in the event of an earthquake, and is provided at the post-installed anchor for shearing and at both end portions thereof. It is integrated with the beam 3 and the column 2 via a post-tensioning anchor for eccentric bending.

そして、耐震補強架構5は、各々の補強梁7があと施工アンカー10を介してバルコニー4のスラブに連結されることにより、地震時に耐震補強架構に作用する水平力を既存建物1に伝達するようになっている。
さらに、新設スラブ9は、上下階のブレース8の本数または当該ブレース8の耐力が変化するR階、4階および2階に設けられており、あと施工アンカー10を介してバルコニー4のスラブと共に水平力を伝達するようになっている。
And each seismic reinforcement frame 5 is connected to the slab of the balcony 4 through the post-construction anchor 10 so that the horizontal force acting on the seismic frame can be transmitted to the existing building 1 in the event of an earthquake. It has become.
Furthermore, the new slabs 9 are provided on the R floor, the fourth floor, and the second floor where the number of braces 8 on the upper and lower floors or the proof strength of the braces 8 change, and are installed horizontally along with the slabs of the balcony 4 via the post-construction anchor 10. It is designed to transmit power.

これに対して、3階においては、上下階のブレース8の本数または当該ブレース8の耐力が同じであることから、大きな水平力の伝達が必要でないために、新設スラブ9が設けられていない。   On the other hand, on the third floor, since the number of braces 8 on the upper and lower floors or the proof stress of the braces 8 are the same, a large horizontal force is not required to be transmitted, and therefore no new slab 9 is provided.

また、最下部の補強梁7は、あと施工アンカーを介して既存建物1の基礎12との間に形成された新設スラブ(伝達補強部材)11と一体化されている。
なお、最下部の補強梁7は、既存建物1の基礎12と一体化されるために、当該基礎12とレベルを合わせるために地中に埋設されている。このため、補強梁7を構成する鉄骨の腐食を防止するためにコンクリートにより覆われたSRC造となっている。
The lowermost reinforcing beam 7 is integrated with a new slab (transmission reinforcing member) 11 formed between the foundation 12 of the existing building 1 via a post-construction anchor.
Since the lowermost reinforcing beam 7 is integrated with the foundation 12 of the existing building 1, it is buried in the ground to match the level of the foundation 12. For this reason, in order to prevent the corrosion of the steel frame which comprises the reinforcement beam 7, it is SRC structure covered with concrete.

さらに、耐震補強架構5の両側端部に位置する補強柱6aにおいては、必然的に左右に上下方向に配設されたブレース8の数が等しくならないために、当該補強柱6aに伝達される付加軸力が他の補強柱6bと比較して大きくなる。このため、これら補強柱6aの付加軸力が、当該付加軸力の伝達される既存建物1の基礎部分における支持能力の余裕度を超える場合にのみ、各々の補強柱6aの下部に、これを支承するための補強基礎18が増設される。   Further, in the reinforcing columns 6a located at both end portions of the seismic reinforcing frame 5, the number of braces 8 arranged in the vertical direction on the left and right sides is inevitably not equal. The axial force is greater than that of the other reinforcing columns 6b. For this reason, only when the additional axial force of these reinforcement pillars 6a exceeds the margin of the support capability in the foundation part of the existing building 1 to which the additional axial force is transmitted, this is applied to the lower part of each reinforcement pillar 6a. The reinforcement foundation 18 for supporting is added.

以上の構成からなる既存建物の耐震補強構造によれば、4階層にわたって等しい梁スパンおよび階高である既存建物1に、耐震補強架構5を設置するに際して、補強柱6bの左側において上下方向に配置されたブレース8の数と、当該補強柱6bの右側において上下方向に配設されたブレース8の数とを互いに等しくして、補強柱6bから既存建物1に作用する付加軸力を小さくすることにより、既存建物1の基礎12における支持能力の余裕度以内に設定しているために、新設基礎や既存建物1の基礎12の補強等を施工する必要が無い。   According to the seismic reinforcement structure of the existing building having the above configuration, when the seismic reinforcement frame 5 is installed in the existing building 1 having the same beam span and floor height over the four levels, it is arranged vertically on the left side of the reinforcing column 6b. The number of the braces 8 made and the number of the braces 8 arranged in the vertical direction on the right side of the reinforcing pillar 6b are made equal to each other to reduce the additional axial force acting on the existing building 1 from the reinforcing pillar 6b. Therefore, since it is set within the margin of the support capacity of the foundation 12 of the existing building 1, it is not necessary to construct a new foundation or reinforcement of the foundation 12 of the existing building 1.

また、仮に両側端部の補強柱6aから伝達される付加軸力が既存建物1の基礎部分における支持能力の余裕度を超えた場合には、各々の補強柱6aの下部にこれを支承するための補強基礎18を増設する必要が生じるが、当該補強箇所が限定されている。このため、本耐震補強構造によれば、総じて既存建物1の使用に大きな制約を与えることなく簡易な施工によってその耐震補強を行うことができる。   Further, if the additional axial force transmitted from the reinforcing pillars 6a at both ends exceeds the margin of the supporting capacity in the foundation portion of the existing building 1, this is supported at the lower part of each reinforcing pillar 6a. However, the reinforcement location is limited. For this reason, according to this earthquake-proof reinforcement structure, the earthquake-proof reinforcement can be performed by simple construction without giving a big restriction to the use of the existing building 1 as a whole.

また、この耐震補強架構5においては、1本のブレース8を、中央の補強柱6bを境にして、左側では補強柱6a、6bと補強梁7とからなる構面の上部右側隅部から下部左側隅部に向けて配置し、右側では上記構面の上部左側隅部から下部右側隅部に向けて配置しているために、ブレース8が全体として山形を描くことになり、意匠性が向上する。   Further, in this seismic strengthening frame 5, one brace 8 is placed on the left side from the upper right corner of the structure composed of the reinforcing columns 6a and 6b and the reinforcing beam 7 with the central reinforcing column 6b as a boundary. Arranged toward the left corner and on the right side from the upper left corner to the lower right corner of the above construction surface, the brace 8 as a whole draws a chevron, improving design. To do.

(実施形態2)
次いで、図3および図4は、本発明の第2の実施形態を示すものであり、図1および図2に示したものと同一構成部分については、同一符号を付してある。
この耐震補強架構15においては、1階における中央の補強柱6cの左右の構面に、当該中央の補強柱6cを境にして、その左側に位置するブレース8が上記構面の上部右側隅部から下部左側隅部に向けて配置されるとともに、その右側に位置するブレース8が上記構面の上部左側隅部から下部右側隅部に向けて配置されている。
(Embodiment 2)
Next, FIG. 3 and FIG. 4 show a second embodiment of the present invention, and the same components as those shown in FIG. 1 and FIG.
In this seismic reinforcement frame 15, the brace 8 located on the left side of the central reinforcing column 6c on the left and right sides of the central reinforcing column 6c on the first floor is the upper right corner of the above structural surface. The brace 8 located on the right side is arranged from the upper left corner of the composition surface toward the lower right corner.

そして、中央の補強柱6cの左右の構面から、それぞれ左右に2スパンずつ離れた構面から上記1階のブレース8と並行になるように、斜め上方に連続するようにして、ブレース8が配置されている。この結果、ブレース8は、正面視において、全体として3重の山形を形成するように配置されている。   Then, the braces 8 are formed so as to be continuous diagonally upward from the left and right surfaces of the central reinforcing column 6c so as to be parallel to the braces 8 on the first floor from the surfaces left and right by two spans. Has been placed. As a result, the braces 8 are arranged so as to form a triple chevron as a whole in a front view.

そして、このようなブレース8の配置を採用したために、中央の柱6cから左右に3スパン離れた各補強柱16においては、左右に位置するブレース8の数が等しくならなくなるが、この耐震補強架構15においても、補強柱6a、6b、6c、16から作用する上記付加軸力が、既存建物1の基礎12における支持能力の余裕度以内になるように設定されている。   Since the arrangement of the braces 8 is adopted, the number of the braces 8 positioned on the left and right sides is not equal in each reinforcing column 16 that is separated from the central column 6c by 3 spans to the left and right. 15, the additional axial force acting from the reinforcing pillars 6 a, 6 b, 6 c, 16 is set so as to be within the margin of the support capability of the foundation 12 of the existing building 1.

また、この耐震補強構造においては、左右のブレース8の数が等しくならない両側端部の補強柱6aおよび補強柱16、並びに中央の補強柱6cのように左右のブレース8の数が同じであっても、図3に示すように左右に傾斜方向が異なる1本のブレース8が配設されている結果、同じ方向の水平力に対して引張と圧縮の耐力が異なる箇所に、それぞれの最下部と既存建物1の柱2との間に、これら補強柱6a、6c、16から作用する鉛直方向の力を既存建物1の基礎12に伝えるための補強壁(伝達補強部材)17が介装されている。   Further, in this seismic reinforcement structure, the number of left and right braces 8 is the same as in the reinforcing columns 6a and 16 at the ends of both sides where the number of left and right braces 8 is not equal, and the central reinforcing column 6c. However, as shown in FIG. 3, as a result of the arrangement of one brace 8 having different inclination directions on the left and right sides, the lowermost portions and Between the pillar 2 of the existing building 1, a reinforcing wall (transmission reinforcing member) 17 for transmitting the vertical force acting from the reinforcing pillars 6 a, 6 c, 16 to the foundation 12 of the existing building 1 is interposed. Yes.

これら補強壁17は、補強柱6a、6c、16を構成するH形鋼にリブ附きの鋼板を接合一体化した構造のもので、一方の側部が補強柱6a、6b、16にボルト接合されるとともに、他方の側部が柱2に埋設されたあと施工アンカーを介して一体化されている。
なお、リブ附きの鋼板は、鉄筋コンクリート造の壁で連結・一体化することもできる。
These reinforcing walls 17 have a structure in which a ribbed steel plate is joined and integrated with the H-shaped steel constituting the reinforcing pillars 6a, 6c and 16, and one side portion is bolted to the reinforcing pillars 6a, 6b and 16. In addition, after the other side portion is embedded in the pillar 2, it is integrated via a construction anchor.
Ribbed steel plates can also be connected and integrated with reinforced concrete walls.

上記構成からなる既存建物の耐震補強構造によれば、第1の実施形態に示したものと同様の作用効果が得られることに加えて、上記伝達補強部材として、耐震補強架構15と直交する方向に配設されて補強柱6a、6c、16の最下部と既存建物の柱とにあと施工アンカーを介して連結・一体化された剛性に優れる補強壁17を用いているために、既存建物1のバルコニー4の外面側に設置した耐震補強架構15から作用する鉛直荷重を、確実に既存建物1の基礎12へと伝達することができる。   According to the seismic reinforcement structure of the existing building having the above-described configuration, in addition to obtaining the same operational effects as those shown in the first embodiment, a direction perpendicular to the seismic reinforcement frame 15 as the transmission reinforcement member Since the reinforcing wall 17 having excellent rigidity connected to and integrated with the lowermost portions of the reinforcing columns 6a, 6c, 16 and the columns of the existing building via post-installed anchors is used, the existing building 1 The vertical load acting from the seismic reinforcement frame 15 installed on the outer surface side of the balcony 4 can be reliably transmitted to the foundation 12 of the existing building 1.

また特に、左右に位置するブレース8の数に差異がある補強柱6a、16においては、他の補強柱6bよりも地震時により大きな鉛直方向の軸力が作用するが、当該補強柱6a、16と既存建物1の柱2との間に補強壁17を介装しているために、これら補強柱6a、16を強固に既存建物1の柱2と一体化させて、その軸力を既存建物1の基礎12に伝達させることができる。   In particular, in the reinforcing columns 6a and 16 having different numbers of braces 8 located on the left and right sides, a larger vertical axial force acts during an earthquake than the other reinforcing columns 6b. However, the reinforcing columns 6a and 16 Since the reinforcing wall 17 is interposed between the existing building 1 and the pillar 2 of the existing building 1, the reinforcing pillars 6a and 16 are firmly integrated with the pillar 2 of the existing building 1 and the axial force is applied to the existing building. Can be transmitted to one foundation 12.

さらに、この耐震補強架構15においては、正面視において、全体として3重の山形を形成するようにブレース8を配置しているために、第1の実施形態に示したものよりも、一層意匠性に優れる。   Furthermore, in this seismic strengthening frame 15, since the braces 8 are arranged so as to form a triple chevron as a whole when viewed from the front, the design is further improved than that shown in the first embodiment. Excellent.

本発明の第1の実施形態を示す正面図である。It is a front view which shows the 1st Embodiment of this invention. 図1のII−II線視断面図である。It is the II-II sectional view taken on the line of FIG. 本発明の第2の実施形態を示す正面図である。It is a front view which shows the 2nd Embodiment of this invention. 図3のIV−IV線視断面図である。It is the IV-IV sectional view taken on the line of FIG. 柱梁構面に配したブレースから間に位置する柱への軸力の作用形態を示す模式図である。It is a schematic diagram which shows the action form of the axial force to the pillar located between the braces arranged on the column beam construction surface. 梁スパンおよび階高が異なる架構にブレースを配置した状態を示す模式図である。It is a schematic diagram which shows the state which has arrange | positioned the brace to the frame from which a beam span and floor height differ.

符号の説明Explanation of symbols

1 既存建物
2 柱
3 梁
5、15 耐震補強架構
6a、6b、6c、16 補強柱
7 補強梁
8 ブレース(水平抵抗要素)
9、11 新設スラブ(伝達補強部材)
12 基礎
17 補強壁(伝達補強部材)
18 補強基礎
DESCRIPTION OF SYMBOLS 1 Existing building 2 Column 3 Beam 5, 15 Seismic reinforcement frame 6a, 6b, 6c, 16 Reinforcement column 7 Reinforcement beam 8 Brace (horizontal resistance element)
9,11 New slab (transmission reinforcement member)
12 Foundation 17 Reinforcement wall (Transmission reinforcement member)
18 Reinforcement foundation

Claims (6)

複数の階層を有する既存建物の外面に沿って耐震補強架構を配設して上記既存建物の柱梁架構と連結してなる耐震補強構造であって、
上記耐震補強架構は、上記既存建物の柱に沿って配置される複数の補強柱と、上記既存建物の梁に沿って配置される複数の補強梁と、これら補強柱および補強梁によって構成される構面内に設けられた水平抵抗要素とを備えてなり、
かつ、両側端部に位置する上記補強柱を除いた他の上記補強柱において、各々の上記補強柱に作用する上記耐震補強架構の重量による軸力に、地震時に当該補強柱の左右に位置する上記水平抵抗要素から伝達される鉛直方向の付加軸力を加えた各上記補強柱における総軸力が、当該総軸力が伝達される既存基礎部分における支持能力の余裕度以内であることを特徴とする既存建物の耐震補強構造。
A seismic strengthening structure in which seismic reinforcement frames are arranged along the outer surface of an existing building having a plurality of levels and connected to the column beam frame of the existing building,
The seismic retrofit frame is composed of a plurality of reinforcing columns arranged along the columns of the existing building, a plurality of reinforcing beams arranged along the beams of the existing building, and the reinforcing columns and the reinforcing beams. A horizontal resistance element provided in the construction surface,
Further, in the other reinforcing columns excluding the reinforcing columns located at both ends, the axial force due to the weight of the seismic reinforcing frame acting on each reinforcing column is positioned on the left and right sides of the reinforcing column at the time of an earthquake. The total axial force in each of the reinforcing columns to which the additional axial force in the vertical direction transmitted from the horizontal resistance element is added is within the margin of the support capacity in the existing foundation portion to which the total axial force is transmitted. Seismic reinforcement structure for existing buildings.
上記既存建物は、梁スパンおよび階高が各々等しい柱梁架構によって構築されているとともに、上記耐震補強架構は、上記水平抵抗要素の耐力が、各々の上記補強柱の左右において互いに略等しくなるように配置されていることを特徴とする請求項1に記載の既存建物の耐震補強構造。   The existing building is constructed with column beam frames having the same beam span and floor height, and the seismic strengthening frame is configured so that the proof stress of the horizontal resistance element is substantially equal on the left and right of each of the reinforcing columns. The seismic reinforcement structure for an existing building according to claim 1, wherein 上記耐震補強架構は、各々の上記補強柱の左右における上記水平抵抗要素の耐力の大小関係が、当該水平抵抗要素を設置する場所の階高をそのスパンで除したアスペクト比の大小関係と逆になるように配置されていることを特徴とする請求項1に記載の既存建物の耐震補強構造。   In the seismic retrofit frame, the strength relationship of the horizontal resistance elements on the left and right of each reinforcing column is opposite to the aspect ratio of the aspect ratio obtained by dividing the floor height of the place where the horizontal resistance elements are installed by the span. The seismic reinforcement structure for an existing building according to claim 1, wherein the structure is arranged to be 上記耐震補強架構は、最下階の上記補強柱と上記既存建物との間に、当該補強柱から作用する鉛直方向の力を上記既存建物の基礎に伝える伝達補強部材が介装されていることを特徴とする請求項1ないし3のいずれかに記載の既存建物の耐震補強構造。   The seismic strengthening frame is provided with a transmission reinforcement member that transmits the vertical force acting from the reinforcement pillar to the foundation of the existing building between the reinforcement pillar on the lowest floor and the existing building. The seismic reinforcement structure for an existing building according to any one of claims 1 to 3. 上記伝達補強部材は、上記補強柱の最下部と上記既存建物の柱とに接合手段を介して一体化されることにより、上記耐震補強架構と直交する方向に配設された補強壁であることを特徴とする請求項4に記載の既存建物の耐震補強構造。   The transmission reinforcing member is a reinforcing wall disposed in a direction orthogonal to the earthquake-proof reinforcing frame by being integrated with the lowest part of the reinforcing column and the column of the existing building via a joining means. The earthquake-proof reinforcement structure of the existing building of Claim 4 characterized by these. 上記水平抵抗要素は、上記構面の対角方向に介装された1本のブレースであり、かつ上記耐震補強架構が、正面視において、中央の上記補強柱を境にして、その左側に位置する上記ブレースが上記構面の上部右側隅部から下部左側隅部に向けて配置されるとともに、その右側に位置する上記ブレースが上記構面の上部左側隅部から下部右側隅部に向けて配置されていることを特徴とする請求項1ないし5のいずれかに記載の既存建物の耐震補強構造。   The horizontal resistance element is a brace interposed in a diagonal direction of the structural surface, and the seismic reinforcement frame is located on the left side of the central reinforcing column in front view. The brace is arranged from the upper right corner of the construction surface to the lower left corner, and the brace located on the right side is arranged from the upper left corner of the construction surface to the lower right corner. The earthquake-proof reinforcement structure for an existing building according to any one of claims 1 to 5, wherein
JP2006103136A 2006-04-04 2006-04-04 Seismic reinforcement structure for existing buildings Active JP4873981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006103136A JP4873981B2 (en) 2006-04-04 2006-04-04 Seismic reinforcement structure for existing buildings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006103136A JP4873981B2 (en) 2006-04-04 2006-04-04 Seismic reinforcement structure for existing buildings

Publications (2)

Publication Number Publication Date
JP2007277856A true JP2007277856A (en) 2007-10-25
JP4873981B2 JP4873981B2 (en) 2012-02-08

Family

ID=38679566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006103136A Active JP4873981B2 (en) 2006-04-04 2006-04-04 Seismic reinforcement structure for existing buildings

Country Status (1)

Country Link
JP (1) JP4873981B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010229800A (en) * 2009-03-30 2010-10-14 Tobishima Corp Existing building reinforcing structure
JP4799703B1 (en) * 2011-04-08 2011-10-26 等 塩原 Bonding structure of structure
JP2012184591A (en) * 2011-03-07 2012-09-27 Tokyu Construction Co Ltd Invisualization device of structural member and earthquake strengthening method
JP5143301B1 (en) * 2012-04-02 2013-02-13 等 塩原 Seismic retrofitting structure
JP2016216932A (en) * 2015-05-15 2016-12-22 清水建設株式会社 Earthquake resistant strengthening structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1018639A (en) * 1996-07-02 1998-01-20 Shimizu Corp Reinforcing construction of building
JP2001164645A (en) * 1999-09-28 2001-06-19 Kaneshiro Kazumori Structural calculation method for wooden house and wooden house built using the same
JP2002242449A (en) * 2001-02-15 2002-08-28 Yahagi Construction Co Ltd Reinforcing structure and earthquake resistant reinforcing construction method using this structure
JP2005155139A (en) * 2003-11-25 2005-06-16 Oriental Construction Co Ltd Seismic reinforcing external frame construction method of existing building
JP2005163432A (en) * 2003-12-04 2005-06-23 Kajima Corp Antiseismic reinforcing frame using tension material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1018639A (en) * 1996-07-02 1998-01-20 Shimizu Corp Reinforcing construction of building
JP2001164645A (en) * 1999-09-28 2001-06-19 Kaneshiro Kazumori Structural calculation method for wooden house and wooden house built using the same
JP2002242449A (en) * 2001-02-15 2002-08-28 Yahagi Construction Co Ltd Reinforcing structure and earthquake resistant reinforcing construction method using this structure
JP2005155139A (en) * 2003-11-25 2005-06-16 Oriental Construction Co Ltd Seismic reinforcing external frame construction method of existing building
JP2005163432A (en) * 2003-12-04 2005-06-23 Kajima Corp Antiseismic reinforcing frame using tension material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010229800A (en) * 2009-03-30 2010-10-14 Tobishima Corp Existing building reinforcing structure
JP2012184591A (en) * 2011-03-07 2012-09-27 Tokyu Construction Co Ltd Invisualization device of structural member and earthquake strengthening method
JP4799703B1 (en) * 2011-04-08 2011-10-26 等 塩原 Bonding structure of structure
JP5143301B1 (en) * 2012-04-02 2013-02-13 等 塩原 Seismic retrofitting structure
JP2013213338A (en) * 2012-04-02 2013-10-17 Hitoshi Shiobara Structure with vibration control reinforcement frame
JP2016216932A (en) * 2015-05-15 2016-12-22 清水建設株式会社 Earthquake resistant strengthening structure

Also Published As

Publication number Publication date
JP4873981B2 (en) 2012-02-08

Similar Documents

Publication Publication Date Title
CN106703197B (en) A kind of large span multilayer anti-seismic frame structure system and its construction method
JP4247496B2 (en) Seismic reinforcement structure
JP6543084B2 (en) Structure
JPH10131516A (en) Reinforcing structure of existing building
JP4873981B2 (en) Seismic reinforcement structure for existing buildings
JP6166560B2 (en) Extension structure of seismic isolation building
JP2009144494A (en) Base-isolating work method for existing buildings
JP3981949B2 (en) Seismic reinforcement structure
JP5041758B2 (en) Seismic isolation structure with artificial ground
KR20150138785A (en) Vertical expansion remodeling method of existing building with seperate load path
JP3690437B2 (en) Seismic reinforcement structure for existing buildings
JP2012140818A (en) Earthquake strengthening structure for existing reinforced concrete apartment house
KR20190036248A (en) Seismic retrofit structure for building and seismic retrofit method using the same
JP6550319B2 (en) Column with braces
JP5191191B2 (en) Extension construction method of extension building
JP2006052543A (en) Structure of extension of existing reinforced concrete building
JP2003003690A (en) Base isolation building and method for base isolation of exisiting building
JP6945341B2 (en) Expansion foundation structure
KR20210100384A (en) Steel-concrete composite shearwall core structural system
JP6684088B2 (en) Seismic retrofitting structure and method for existing buildings
JP4354381B2 (en) Extension method
JP5703412B2 (en) Frame structure of plate apartment
JP5683349B2 (en) Frame structure of plate apartment
JP7436258B2 (en) high rise building
JP2788027B2 (en) Wall structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20171202

Year of fee payment: 6

R150 Certificate of patent or registration of utility model

Ref document number: 4873981

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250