JP2001164645A - Structural calculation method for wooden house and wooden house built using the same - Google Patents

Structural calculation method for wooden house and wooden house built using the same

Info

Publication number
JP2001164645A
JP2001164645A JP2000297526A JP2000297526A JP2001164645A JP 2001164645 A JP2001164645 A JP 2001164645A JP 2000297526 A JP2000297526 A JP 2000297526A JP 2000297526 A JP2000297526 A JP 2000297526A JP 2001164645 A JP2001164645 A JP 2001164645A
Authority
JP
Japan
Prior art keywords
wall
load
wooden house
bearing
walls
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000297526A
Other languages
Japanese (ja)
Inventor
Hajime Tateishi
一 立石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NISHIMAKI MASARU
Original Assignee
NISHIMAKI MASARU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NISHIMAKI MASARU filed Critical NISHIMAKI MASARU
Priority to JP2000297526A priority Critical patent/JP2001164645A/en
Publication of JP2001164645A publication Critical patent/JP2001164645A/en
Pending legal-status Critical Current

Links

Landscapes

  • Load-Bearing And Curtain Walls (AREA)

Abstract

PROBLEM TO BE SOLVED: To exercise structural design utilizing a wall conventionally treated as a non-bearing wall such as a vertical wall, a spandrel wall, an auxiliary wall, etc., provided in a wooden house as a strength element. SOLUTION: Modeling for substituting hanging walls D1, D2 which are formed by stretching them over upper parts of three columns 1, 2, 3 and have not been conventionally treated as the bearing wall for braces E1, E2 is treated to take them into structural calculation as the strength element.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は狭小間口の敷地等に
建つ木造住宅の構造計算方法及びこれを利用して建築さ
れた木造住宅に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for calculating the structure of a wooden house built on a site, such as a narrow frontage, and a wooden house constructed using the method.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】一般に
木造建築、特に木造住宅においては垂壁、袖壁、腰壁等
の部分は非耐力壁として取り扱われており、構造計算上
は耐力要素とは認められておらず、これらの存在を無視
して構造計算が行われていた。
2. Description of the Related Art Generally, in a wooden building, especially a wooden house, a vertical wall, a sleeve wall, a lumbar wall, and the like are treated as non-bearing walls. Were not recognized, and structural calculations were performed ignoring these entities.

【0003】しかしこのような従来の構造計算方法にあ
っては、例えば木造3階建住宅の水平荷重(例えば風,
地震等)に対する構造設計は建築基準法施行令第46条
の規定による「壁倍率」の方法が一般的に適用されてい
るが、解析精度が十分でないという問題があった。
However, in such a conventional structure calculation method, for example, a horizontal load (for example, wind,
Although the method of “wall magnification” according to the provisions of Article 46 of the Ordinance for Enforcement of the Building Standards Law is generally applied to structural design for earthquakes, there is a problem that the analysis accuracy is not sufficient.

【0004】また狭小間口の敷地に木造平屋建、2階
建、又は3階建住宅を建築する場合、平面的には正面に
駐車場と玄関とが並ぶレイアウトが必要となる場合が多
くなるが、このような場合には奥行方向に延在する耐力
壁については比較的設定が容易となる反面、間口方向に
延在する耐力壁の設定が制約され、駐車場及び玄関が並
ぶ広いスペースを確保するのが難しいという問題もあっ
た。
[0004] When a wooden one-story, two-story, or three-story house is constructed on the site of a narrow frontage, a layout in which a parking lot and a front door are lined up in front of a flat space is often required. In such a case, the setting of the load-bearing wall extending in the depth direction is relatively easy, but the setting of the load-bearing wall extending in the frontage direction is restricted, and a large space where the parking lot and the entrance are lined up is secured. There was also a problem that it was difficult to do.

【0005】本発明者等は従来の構造計算上、耐力壁と
して認められていなかった垂壁、袖壁(幅60cm以
下)、腰壁等の所謂非耐力壁を耐力要素として構造計算
に取り込むことで解析精度を高めると共に、前述した狭
小間口の木造住宅においても耐力要素の設定が通常の耐
力壁以外の手段で可能とすることで駐車場、玄関が並ぶ
レイアウトの要求にも応じ得ることを知見した。本発明
はかかる知見に基づきなされたものであって、その目的
とするところは垂壁等の非耐力壁を耐力要素として捉え
ることで、通常の耐力壁以外の手段、即ち垂壁等の設定
によって層間変形角、偏心率、剛性率等の耐震指標を充
足し得る構造計算方法及びこれを用いて建築された木造
住宅を提供することにある。
The present inventors take in so-called non-bearing walls such as a vertical wall, a sleeve wall (60 cm or less in width), a waist wall and the like, which have not been recognized as a bearing wall in the conventional structural calculation, as a bearing element in the structural calculation. In addition to improving the analysis accuracy, we found that even in a wooden house with a narrow frontage as described above, it is possible to set the load-bearing elements by means other than ordinary load-bearing walls, so that it can meet the requirements of the layout where parking lots and entrances are lined up did. The present invention has been made based on such knowledge, and the purpose thereof is to grasp non-bearing walls such as vertical walls as load-bearing elements, and to perform means other than ordinary load-bearing walls, that is, by setting vertical walls and the like. It is an object of the present invention to provide a structural calculation method capable of satisfying seismic indices such as an interlayer deformation angle, an eccentricity, and a rigidity, and a wooden house built using the method.

【0006】本発明の他の目的は、現行の建築基準法で
規定されている水平方向荷重に対する設計は壁倍率によ
るとする木造の構造設計法に対して、従来の設計法には
よらず鉄骨造、RC(鉄筋コンクリート)造で広く実施
されている構造計算法を適用することで、より自由な構
造設計を可能ならしめ得る木造住宅の構造計算方法及び
これを用いて建築された木造住宅を提供することにあ
る。
[0006] Another object of the present invention is to provide a method for designing a wooden structure, which is based on the wall magnification in the horizontal load prescribed in the current Building Standard Law, instead of the conventional design method. Structural calculation method of wooden house that can make freer structural design possible by applying structural calculation method widely used in steel and RC (reinforced concrete) structures, and wooden house built using the same Is to do.

【0007】[0007]

【課題を解決するための手段】請求項1に係る発明の木
造住宅の構造計算方法は、木造住宅の構造計算を行うべ
く架構の設定を行うに際して、木造住宅における垂壁、
袖壁、腰壁等の非耐力壁として取扱われる壁を耐力要素
として捉え、これをモデル化処理し、構造計算を行うこ
とを特徴とする。
According to a first aspect of the present invention, there is provided a method for calculating the structure of a wooden house, comprising: setting a frame for calculating the structure of the wooden house;
It is characterized in that a wall treated as a non-bearing wall such as a sleeve wall, a waist wall, or the like is regarded as a bearing element, a modeling process is performed on the wall, and a structural calculation is performed.

【0008】これによって従来非耐力壁と考えられてい
た壁を耐力要素として捉えることが可能となり、木造建
築物自体の水平方向荷重に対する耐力及び変形性能をよ
り正確に捉え得ることは勿論、狭小間口の木造住宅にお
いても通常の耐力壁以外の手段で耐力要素の設定が可能
となる。
As a result, it is possible to regard a wall which has been conventionally regarded as a non-bearing wall as a bearing element, and it is possible to more accurately grasp the strength and deformation performance of a wooden building itself against a horizontal load, as well as a narrow frontage. It is also possible to set the load-bearing element by means other than the normal load-bearing wall in a wooden house.

【0009】請求項2に係る発明の木造住宅の構造計算
方法は、前記モデル化処理は非耐力壁を筋交い又は壁エ
レメントに換算する処理であることを特徴とする。
According to a second aspect of the present invention, in the method for calculating the structure of a wooden house, the modeling process is a process of converting a non-bearing wall into a brace or a wall element.

【0010】これによって垂壁等の強度を正確に構造計
算に取り込むことが可能となる。
Thus, the strength of the vertical wall or the like can be accurately taken into the structural calculation.

【0011】請求項3に係る発明の木造住宅は、木造住
宅の構造計算を行うべく架構の設定を行うに際して、木
造住宅における非耐力壁として取扱われている壁を耐力
要素として捉え、これをモデル化処理して得た構造計算
の結果を反映させて建築されたことを特徴とする。
In the wooden house according to the third aspect of the present invention, when setting up a frame for calculating the structure of the wooden house, a wall treated as a non-bearing wall in the wooden house is regarded as a load-bearing element, and this is modeled. It is characterized by the fact that it was built reflecting the results of structural calculations obtained by the conversion process.

【0012】これによって木造住宅の構造設計の自由度
が大きくなり、より使い勝手のよい住宅の設計が可能と
なる。
As a result, the degree of freedom in the structural design of a wooden house is increased, and a more user-friendly house can be designed.

【0013】請求項4に係る発明の木造住宅は、木造3
階建以下であることを特徴とする。
The wooden house according to the fourth aspect of the present invention is a wooden house.
It is characterized by being below the story.

【0014】これによって狭小間口の木造2階建、又は
3階建住宅においても正面に車庫と玄関のレイアウトが
許容される水平方向荷重に対する強度の確保が可能とな
る。
As a result, even in a wooden two-story or three-story house with a narrow frontage, it is possible to secure strength against a horizontal load in which the layout of the garage and the entrance is allowed in front.

【0015】[0015]

【発明の実施の形態】図1は本発明方法に係る3階建の
建物の構造計算方法の過程を示すフローチャートであ
る。先ず架構の設定を行い(ステップS1)、地震力、
風圧力等による水平力の設定を行い(ステップS2)、
建築部材断面の設定を行って(ステップS3)、静的応
力の解析を行い(ステップS4)、許容応力度に基づく
安全性の確認を行う(ステップS5)。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a flowchart showing the steps of a method for calculating the structure of a three-story building according to the method of the present invention. First, the frame is set (step S1), and the seismic force,
The horizontal force is set by the wind pressure or the like (step S2),
The building member cross section is set (step S3), the static stress is analyzed (step S4), and the safety is confirmed based on the allowable stress level (step S5).

【0016】前記架構の設定過程においては、どのよう
な部材をどのように架構を組むかを定め、また組み立て
た架構を構造計算用に用意されたツールに適した態様に
モデル化処理を行う。そしてこの際、垂壁、腰壁及び袖
壁(幅60cm以下)等、従来は非耐力壁として取り扱わ
れてきた部分についてはこれを耐力要素として捉え、例
えばブレース(筋交い)または壁エレメント(軸力を持
たず、水平力だけを持つ1本の木製の柱)に置換するモ
デル化処理を行い、構造計算に取り込み、構造計画、構
造設計に反映させる。但し、階段、小屋組(屋根面は面
剛性を持つと考える)は、耐力要素とはしない。
In the frame setting process, what members are to be assembled and how the frame is assembled are determined, and the assembled frame is modeled in a mode suitable for a tool prepared for structural calculation. At this time, a part which has been conventionally treated as a non-bearing wall, such as a vertical wall, a waist wall, and a sleeve wall (width of 60 cm or less), is regarded as a bearing element, for example, a brace (bracing) or a wall element (axial force). The model is replaced with a single wooden column that has only horizontal force without the slab, and is incorporated into the structural calculation and reflected in the structural plan and structural design. However, stairs and huts (the roof surface is considered to have surface rigidity) are not considered as load-bearing elements.

【0017】また上記構造計画の段階においては、安全
性確認の結果、不適合の場合にはステップS3に戻って
前述した過程を反復し、また適合の場合には層間変形角
の確認(ステップS6)を行い(1/120以下又は1
/150以下。層間変形角は一般的に木造では1/12
0以下と規定される。但し、木造3階建は多くの場合、
密集地で建てられることや、防火の意味あいより1/1
50以下に規定されるケースが多いことによる。)、再
度判定を行う(ステップS7)。判定の結果不適合の場
合には再びステップS3へ戻って前述した過程を反復
し、また適合の場合には、偏心率、剛性率の確認を行う
(ステップS8)。原則として偏心率は0.15以下、
剛性率は0.60以上である必要がある。
In the structural planning stage, as a result of the safety check, if there is no conformity, the process returns to step S3 to repeat the above-described process. If there is a conformity, the interlayer deformation angle is confirmed (step S6). (1/120 or less or 1
/ 150 or less. Interlayer deformation angle is generally 1/12 for wooden structures
It is defined as 0 or less. However, wooden 3 stories are often
1/1 because it is built in a densely populated area and because of fire protection
This is because there are many cases where the number is specified to be 50 or less. ), And make a determination again (step S7). If the result of the determination is non-conformity, the process returns to step S3 again to repeat the above-described process. If the result is proper, the eccentricity and rigidity are confirmed (step S8). In principle, the eccentricity is 0.15 or less,
The rigidity must be 0.60 or more.

【0018】耐震指標に関する安全性の確認を行い(ス
テップS9)、適合の場合は終了し、また不適合の場合
には保有水平耐力の確認を行い(ステップS10)、判
定を行う(ステップS11)。なお保有水平耐力の計算
は増分解析法による。判定結果が不適合の場合にはステ
ップS3へ戻って前述した過程を反復し、また適合の場
合には終了する。
The safety of the seismic index is confirmed (step S9), and if the conformity is met, the process is terminated. If the conformity is not met, the retained horizontal strength is confirmed (step S10), and a judgment is made (step S11). The calculation of the retained horizontal strength is based on the incremental analysis method. If the determination result is inconsistent, the process returns to step S3 to repeat the above-described process.

【0019】耐力要素の対象として捉えるべき垂壁は、
例えば構造用合板(厚さt(mm)≧9)、又は構造耐力
上有効な構造用合板(t=24)を柱、梁等に直接釘打
ち接合により取り付けて構成されるが、材料、取り付け
構造については上記の場合にのみ限定するものではな
い。袖壁、腰壁等についても同様である。なお上述した
過程は木造3階建のみに限らず木造平屋建、木造2階建
の場合も適用可能である。
The vertical wall to be considered as the object of the load-bearing element is:
For example, a structural plywood (thickness t (mm) ≧ 9) or a structural plywood (t = 24) effective for structural strength is attached to a column, a beam, or the like by direct nailing. The structure is not limited only to the above case. The same applies to sleeve walls, waist walls, and the like. The above-described process is not limited to a three-story wooden building, but is also applicable to a one-story wooden building or a two-story wooden building.

【0020】図2(a) 〜(c) は本発明方法に依る場合
の、また図2(d) は従来方法に依る場合の各原理を示す
模式図である。従来方法にあっては図2(d) に示す如
く、空間Aを囲ってその両側に耐力壁である側壁S1 ,
S2 を設け、上部に垂壁Dが形成されている構造の場
合、垂壁Dはこれを非耐力壁とし、両側の側壁S1 , S
2 のみを耐力壁として、構造計算に取り込み、その結果
を構造計画, 構造設計に反映させている。
FIGS. 2 (a) to 2 (c) are schematic diagrams showing each principle in the case of using the method of the present invention, and FIG. 2 (d) is a schematic diagram showing each principle in the case of using the conventional method. In the conventional method, as shown in FIG. 2 (d), the side walls S1,
In the case of a structure in which S2 is provided and a vertical wall D is formed on the upper part, the vertical wall D is a non-bearing wall, and the side walls S1, S on both sides are formed.
Only 2 is taken as structural wall and taken into the structural calculation, and the result is reflected in structural planning and structural design.

【0021】これに対して本発明方法にあっては、図2
(a) に示す如く、3本の柱1, 2,3の上部に梁4を渡
して空間A1 ,A2 の上部に垂壁D1 , D2 が形成され
ている構造の場合、柱1,2,3と垂壁D1 , D2 とを
含むフレームを水平抵抗要素として扱い、これをモデル
化処理し、構造計算に取り込む。また図2(b) に示す如
く、空間Aを囲う左,右に耐力壁としての側壁S1 , S
2 を、また上部に垂壁Dを設定された構造の場合、側壁
S1 , S2 に加えて、垂壁Dを含むフレームを水平抵抗
要素として扱い、これらをモデル化処理し、夫々構造計
算に取り込む。
On the other hand, in the method of the present invention, FIG.
As shown in (a), in the case of a structure in which the vertical walls D1 and D2 are formed above the spaces A1 and A2 by passing the beam 4 over the three columns 1, 2, and 3, respectively, A frame including the vertical wall 3 and the vertical walls D1 and D2 is treated as a horizontal resistance element, which is subjected to a modeling process and incorporated into a structural calculation. As shown in FIG. 2 (b), the left and right side walls S1, S surrounding the space A serve as bearing walls.
In the case of a structure in which a vertical wall D is set on the upper side, in addition to the side walls S1 and S2, a frame including the vertical wall D is treated as a horizontal resistance element, and these are modeled and incorporated into structural calculations. .

【0022】図2(c) に示す如く、空間Aの片側に耐力
壁としての側壁S1 を、また上部に垂壁Dを設定された
構造の場合、側壁S1 に加えて柱3と垂壁Dとを含むフ
レームを水平抵抗要素として扱いモデル化処理し、夫々
構造計算に取り込む。図3は図2(a) に示す構造につい
てのモデル化処理の内容を示す説明図であり、図3(a)
に示す各垂壁D1 , D2 は図3(b) に示す如く夫々筋交
いE1 ,E2に置換するモデル化処理を行い、このよう
な構造のものとして構造計算を行う。なお図3(b) 中〇
印は筋交いE1 , E2 と各柱1, 2又は3とのピン接合
部分(曲げ応力を伝達しない)を示している。
As shown in FIG. 2C, in the case of a structure in which a side wall S1 as a bearing wall is set on one side of the space A and a vertical wall D is set on the upper part, the pillar 3 and the vertical wall D are added in addition to the side wall S1. Are treated as horizontal resistance elements and subjected to modeling processing, and each of them is taken into structural calculations. FIG. 3 is an explanatory diagram showing the contents of the modeling process for the structure shown in FIG.
As shown in FIG. 3 (b), the vertical walls D1 and D2 shown in FIG. 3 are subjected to a modeling process of replacing them with braces E1 and E2, respectively, and a structural calculation is performed assuming such a structure. In FIG. 3 (b), the symbol 〇 indicates a pin joint portion (not transmitting bending stress) between the brace E1, E2 and each of the columns 1, 2, or 3.

【0023】合板釘打ちの垂壁を耐力壁として取扱う場
合、これを同じ剪断力を有するブレース(筋交い)に置
換するモデル化処理の際の置換式は (1)〜(3) 式で与え
られ、ブレースの長さを設定することで断面積AB (cm
2 )が求まる。
When a vertical wall of plywood nailing is treated as a load-bearing wall, a replacement equation in a modeling process for replacing this with a brace (brace) having the same shearing force is given by equations (1) to (3). , The cross-sectional area A B (cm
2 ) is obtained.

【0024】 耐力壁の剪断力(kgf) :Q=K・δ …(1) ブレースの剪断力(kgf) :Q= (2・E・AB ・l2 ・δ) /S3 …(2) (1)、(2) 式からブレース断面積AB (cm2 ) は下記
(3)式で与えられる。 AB = (K・S3 ) / (2・E・l2 ) …(3) 但し、K:耐力壁の面内剪断剛性(kgf/cm) δ:変形量(cm) E:置換ブレースのヤング係数(kgf/cm2 ) l:合板の幅(cm) h:合板の高さ(cm) S:ブレース長さ(cm) S=√ (I2 +h2 )
Shearing force (kgf) of load-bearing wall: Q = K · δ (1) Shearing force (kgf) of brace: Q = (2 · E · AB · l 2 · δ) / S 3 (2) ) From formulas (1) and (2), the brace cross-sectional area A B (cm 2 ) is
It is given by equation (3). A B = (K · S 3 ) / (2 · E · l 2 ) (3) where K: in-plane shear rigidity of the load-bearing wall (kgf / cm) δ: deformation amount (cm) E: displacement brace Young's modulus (kgf / cm 2 ) l: Plywood width (cm) h: Plywood height (cm) S: Brace length (cm) S = √ (I 2 + h 2 )

【0025】合板釘打ちの垂壁を耐力壁として取扱う場
合、これを同じ曲げ剛性、剪断剛性を有する壁エレメン
トへの置換するモデル化処理の際の置換式は以下の過程
で導かれる。水平抵抗要素である壁エレメントへの置換
には軸剛性、曲げ剛性及び剪断剛性の3つのパラメータ
を用いるが、軸剛性は実質的には評価せず、通常は数値
として小さい値、例えば0.1(cm2 )を割り当ててい
る。従って以下に水平抵抗要素の面内剪断剛性を曲げ剛
性と剪断剛性との2つに分割する場合について説明す
る。合板の曲げ変形δM 、曲げ剛性I、剪断変形δS
剪断剛性AS は夫々下記 (4)〜(7) 式で与えられる。
When a vertical wall of plywood nailing is treated as a load-bearing wall, a replacement equation in a modeling process for replacing this with a wall element having the same bending rigidity and shear rigidity is derived in the following process. Three parameters of axial rigidity, bending rigidity and shear rigidity are used for the replacement with the wall element which is a horizontal resistance element, but the axial rigidity is not substantially evaluated, and is usually a small numerical value, for example, 0.1. (Cm 2 ). Therefore, the case where the in-plane shear stiffness of the horizontal resistance element is divided into two, that is, bending stiffness and shear stiffness, will be described below. Plywood bending deformation δ M , bending stiffness I, shearing deformation δ S ,
The shear stiffness AS is given by the following equations (4) to (7), respectively.

【0026】 δM =(P・h3 )/(12・E・I) …(4) I =(t・l3 )/12 …(5) δS =(P・h)/(G・AS ) …(6) AS =(t・l)/1.2 …(7)Δ M = (P · h 3 ) / (12 · E · I) (4) I = (t · l 3 ) / 12 (5) δ S = (P · h) / (G · A S ) (6) A S = (t · l) /1.2 (7)

【0027】(4)〜(7) 式からこれらを変形してまとめ
ると、曲げ変形δM と剪断変形δSとの比が下記 (8)式
で与えられる。 δM /δS =(G・h2 )/( 1.2・E・l2 ) …(8) 水平抵抗要素の面内剪断剛性Kは下記 (9)式で与えられ
るから k=P/δ=P/(δM +δS ) …(9)
[0027] (4) In summary deformed them from ~ (7), the ratio of the bending deformation [delta] M and shear deformation [delta] S is given by the following equation (8). δ M / δ S = (G · h 2 ) / (1.2 · E · l 2 ) (8) Since the in-plane shear stiffness K of the horizontal resistance element is given by the following equation (9), k = P / δ = P / (δ M + δ S )… (9)

【0028】置換式である壁エレメント (1本の柱) の
曲げ剛性I、剪断剛性AS は下記(10)、(11)式で与えら
れる。 I={(K・h3 )/(12・E)} ・〔{( 1.2・E・l2 )+(G・h2 )}/(G・h2 )〕 …(10) AS ={(K・h)/G} ・〔{( 1.2・E・l2 )+(G・h2 )}/( 1.2・E・l2 )〕 …(11) 但し、K:耐力壁の面内剪断剛性(kgf/cm) P:剪断力(kgf) E:合板のヤング係数(kgf/cm2 ) G:合板の剪断弾性係数(kgf/cm2 ) t:合板の厚さ(cm) l:合板の幅(cm) h:合板の高さ(cm)
The bending stiffness I and the shear stiffness A S of the replacement wall element (one column) are given by the following equations (10) and (11). I = {(K · h 3 ) / (12 · E)} · [{(1.2 · E · l 2 ) + (G · h 2 )} / (G · h 2 )] (10) A S = {(K · h) / G} [{(1.2 · E · l 2 ) + (G · h 2 )} / (1.2 · E · l 2 )]… (11) where K: surface of load-bearing wall Inner shear stiffness (kgf / cm) P: Shear force (kgf) E: Young's modulus of plywood (kgf / cm 2 ) G: Shear modulus of plywood (kgf / cm 2 ) t: Thickness of plywood (cm) l : Plywood width (cm) h: Plywood height (cm)

【0029】図4は本発明に係る実施の形態である3階
建木造住宅の垂直断面を正面側から見た状態を示す概念
図であり、図中Bは基礎、1,2,3は木製であって全
断面有効な柱を示している。柱1,2,3に渡って3階
の天井及び2, 3階の床を支える梁4,5,6が平行に
組立てられ、また柱1,3には夫々を取り込んで耐力壁
たる側壁S1 , S2 , S3 , S4 が設けられている。な
お1階部分には耐力壁は存在しない。
FIG. 4 is a conceptual diagram showing a vertical cross section of a three-story wooden house according to an embodiment of the present invention as viewed from the front side, in which B is a foundation, and 1, 2, and 3 are wooden. This shows a column that is effective in all cross sections. Beams 4, 5, and 6 supporting the ceiling of the third floor and the floors of the second and third floors are assembled in parallel over the pillars 1, 2, and 3, and the pillars 1 and 3 are respectively taken in and the side walls S1 as bearing walls. , S2, S3, S4. There is no bearing wall on the first floor.

【0030】また1〜3階の天井直下には前記梁4,
5,6と平行に梁4,5,6の下方にこれと所定の間隔
を隔てて鴨居7,8,9が設けられ、これら各鴨居7,
8,9と梁4,5,6との間には垂壁D1 , D2 , D3
が設けられている。土台、柱1,2,3、梁4,5,6
等の材料としては集成材を用い、夫々の断面は120×
120mm〜120×300mmとした。柱2と鴨居7との
交叉部分は図11に示す如き三角金物12にて束結し
た。更に1階の建物正面には、耐力壁がなく柱だけの骨
組み架構とする。なお、図4においては、柱1,柱2,
及び柱3の断面積がそれぞれ異なるよう構成してある
が、同じ断面積の柱1,柱2,及び柱3を用いても良
い。
The beams 4 and 4 are located directly below the ceilings of the first to third floors.
At the lower part of the beams 4, 5, 6 in parallel with 5, 5 and 6, at a predetermined distance from the beams 4, 8, 9 are provided, and each of the gates 7, 8, 9 is provided.
Vertical walls D1, D2, D3 between 8, 9 and beams 4, 5, 6
Is provided. Base, pillars 1, 2, 3, beams 4, 5, 6
Glued lumber is used as the material, etc., and each cross section is 120 ×
120 mm to 120 × 300 mm. The intersection between the pillar 2 and the Kamoi 7 was bound by a triangular metal fitting 12 as shown in FIG. In addition, the front floor of the building on the first floor will be a framed structure with no columns and only columns. In addition, in FIG. 4, pillar 1, pillar 2,
And the columns 3 are configured to have different cross-sectional areas, but the columns 1, 2, and 3 having the same cross-sectional area may be used.

【0031】このようなフレームは、構造用合板を用い
た垂壁により柱頭部分を拘束して、ラーメン架構を可能
にし、柱脚はピンでも可能である。また、このフレーム
の中央の柱2の断面積を120×240mmとして剛性を
高めると共に、この柱2には水平力が集中するため、接
合部のスッポ抜け防止のためにピン金物を用いて基礎B
に固定してある。
In such a frame, a columnar portion is restrained by a vertical wall using a structural plywood, thereby enabling a ramen frame. The column base can be a pin. The column 2 at the center of the frame has a cross-sectional area of 120 × 240 mm to increase rigidity, and since horizontal force is concentrated on the column 2, the base B is formed by using a pin metal to prevent the joint from slipping off.
It is fixed to.

【0032】接合部分の継手仕口はプレカットによる従
来の接合方法を採用し、また各階の耐力壁は構造用合板
(t≧9) を釘打ち接合により柱、梁、土台に固定して
構成し、一部の垂壁は構造耐力上有効な働きをするよう
に構造用合板 (t≧9) の両面を釘打ち接合で固めて構
成する。また床の構造は構造用合板 (t=24) を用い
て梁に直接釘打ち接合で取り付けてある。
The joints at the joints adopt the conventional joining method by pre-cut, and the load-bearing walls of each floor are made of structural plywood.
(t ≧ 9) is fixed to the column, beam or base by nailing, and some vertical walls are nailed on both sides of the structural plywood (t ≧ 9) so as to work effectively in structural strength. It is hardened and formed by punching and joining. The floor structure is directly nailed to the beam using structural plywood (t = 24).

【0033】このような木造3階建住宅にあっては垂壁
D1 , D2 , D3 下端のレベルにダミーの層を考えて構
造計算を行う。このような垂壁D1 , D2 , D3 を構造
的に利用することにより、垂壁D1 , D2 , D3 に取り
付く柱は柱頭が拘束されて水平耐力を負担し得ることと
なり、また縦長の短い壁では「引抜き力」が小さくな
る。
In such a three-story wooden house, structural calculations are performed by considering a dummy layer at the level of the lower ends of the vertical walls D1, D2, D3. By using such vertical walls D1, D2, D3 structurally, the pillars attached to the vertical walls D1, D2, D3 can restrain the column capitals and bear the horizontal strength. The "pull-out force" is reduced.

【0034】図5(a) 、図6(a) 、図7(a) 、図8(a)
は3階建木造住宅の実施例1〜実施例4の構造を示す模
式図、図5(b) 、図6(b) 、図7(b) 、図8(b) は図5
(a)〜図8(a) に示す各実施例1〜4の側壁及び垂壁を
耐力壁として取扱い、これらを筋交いに置換するモデル
化を行った態様を示すモデル図である。なお図9、図1
0には比較例1, 2について示す。
FIGS. 5 (a), 6 (a), 7 (a), 8 (a)
FIG. 5 is a schematic diagram showing the structure of the first to fourth embodiments of the three-story wooden house, and FIGS. 5 (b), 6 (b), 7 (b), and 8 (b) are FIGS.
FIG. 9A is a model diagram showing a mode in which side walls and vertical walls of Examples 1 to 4 shown in FIGS. 8A to 8A are treated as load-bearing walls and are modeled by replacing them with braces. 9 and FIG.
0 shows Comparative Examples 1 and 2.

【0035】図5(a) に示す木造3階建住宅にあっては
水平距離3000mm、600mmの間隔を隔てて設置され
た図4に示す如き3本の木製の通し柱1,2,3のうち
の両側の柱1,3夫々にはこれらを取り込んで1〜3階
にわたって耐力壁たる側壁S1 , S2 , S3 が形成さ
れ、また柱1,2,3に渡して梁4,5,6が平行に渡
されると共に、各梁4, 5, 6と平行であって所定の寸
法下方に鴨居7,8,9が設けられ、この鴨居7,8,
9と梁4,5,6との間に垂壁D1 ,D2 ,D3が形成
されている。各階の床面から天井の梁4,5,6までの
高さは夫々2800mmとしてある。
In the wooden three-story house shown in FIG. 5 (a), there are three wooden through pillars 1, 2, 3 as shown in FIG. 4 installed at a horizontal distance of 3000 mm and a distance of 600 mm. These are taken into the pillars 1 and 3 on both sides, respectively, to form side walls S1, S2 and S3 as load-bearing walls over the first to third floors, and the beams 4, 5 and 6 are parallel across the pillars 1, 2 and 3. , And at the bottom of a predetermined dimension parallel to each of the beams 4, 5, 6 are provided with the gates 7, 8, 9;
Vertical walls D1, D2, D3 are formed between the beam 9 and the beams 4, 5, 6. The height from the floor of each floor to the beams 4, 5, and 6 of the ceiling is 2800 mm.

【0036】図5(b) に示すモデル図では各垂壁D1 ,
D2 , D3 及び耐力壁としての側壁S1 〜S3 及びこの
側壁S1 〜S3 内に組み込まれている垂壁D11, D22,
D33は夫々耐力壁として取扱い、耐力要素たる筋交いE
1 〜E9 に置換するモデル化処理をしてある。筋交いの
端部は梁4, 5, 6の梁端部より僅かに内側に取り付
き、またその有効断面積は柱と同材として引張力、圧縮
力に対しともに有効とした。
In the model diagram shown in FIG. 5B, each vertical wall D1,
D2, D3 and the side walls S1 to S3 as bearing walls and the vertical walls D11, D22, embedded in the side walls S1 to S3,
D33 is treated as a load-bearing wall, and bracing E is a load-bearing element.
Modeling processing to replace 1 to E9 is performed. The ends of the braces were attached slightly inside the beam ends of beams 4, 5, and 6, and the effective cross-sectional area was the same as that of the column, and was effective against both tensile and compressive forces.

【0037】図6は実施例2の構成を示す模式図、図6
(b) は図6(a) をモデル化処理したモデル図である。こ
の実施例2は木造の通し柱1, 2間、2, 3間の間隔を
2700mm、900mmとした点以外は実施例1の構成と
実質的に同じであり、対応する部分には同じ番号を付し
て説明を省略する。
FIG. 6 is a schematic diagram showing the structure of the second embodiment.
FIG. 6B is a model diagram obtained by modeling FIG. 6A. The second embodiment is substantially the same as the first embodiment except that the intervals between the wooden through pillars 1, 2 and 2 are 2700 mm and 900 mm, and the corresponding parts are denoted by the same reference numerals. And the description is omitted.

【0038】図7は実施例3の構成を示す模式図、図7
(b) は図7(a) をモデル化処理したモデル図である。こ
の実施例3にあっては鴨居は各階において柱1, 2間に
渡してのみ設け、側壁S1 〜S3 内には鴨居を設けない
構成としてある。柱1, 2,3の配置等の他の構成は実
施例1のそれと実質的に同じであり、対応する部材には
同じ番号を付してある。モデル化処理は各垂壁D1 , D
2 , D3 を筋交いE1, E2 , E3 に、また側壁S1 ,
S2 , S3 を筋交いE4 , E5 , E6 に置換し、構造計
算に供される。
FIG. 7 is a schematic diagram showing the structure of the third embodiment.
(b) is a model diagram obtained by modeling FIG. 7 (a). In the third embodiment, the gate is provided only between the pillars 1 and 2 on each floor, and the gate is not provided in the side walls S1 to S3. Other configurations such as the arrangement of the columns 1, 2, and 3 are substantially the same as those of the first embodiment, and corresponding members are denoted by the same reference numerals. The modeling process is performed on each of the vertical walls D1, D
2 and D3 are bended to E1, E2 and E3, and side walls S1 and
S2 and S3 are replaced with braces E4, E5 and E6, and are used for structural calculation.

【0039】図8(a) は実施例4の構成を示す模式図、
図8(b) は図8(a) をモデル化処理したモデル図であ
る。この実施例4にあっては側壁S1 , S2 , S3 内に
は鴨居を設けない構成としてあり、また柱1, 2, 3の
配置等は実施例2のそれと実質的に同じであり、対応す
る部材には同じ番号を付してある。モデル化処理は各垂
壁D1 , D2 , D3 を筋交いE1 , E2 ,E3 に、また
側壁S1 , S2 , S3 を筋交いE4 , E5 , E6 に夫々
置換することで行われており、この状態で構造計算に供
される。
FIG. 8A is a schematic diagram showing the structure of the fourth embodiment.
FIG. 8B is a model diagram obtained by modeling FIG. 8A. In the fourth embodiment, there is no headgate in the side walls S1, S2, S3, and the arrangement of the pillars 1, 2, 3 is substantially the same as that of the second embodiment. The members are assigned the same numbers. The modeling process is performed by replacing the vertical walls D1, D2, and D3 with braces E1, E2, and E3, and replacing the side walls S1, S2, and S3 with braces E4, E5, and E6. Provided for calculations.

【0040】図9(a) は比較例1の構成を示す模式図、
図9(b) は図9(a) をモデル化処理したモデル図であ
る。この比較例1においては木造の通し柱1, 2間、
2, 3間の間隔を夫々3000mm、600mmとし、柱
2, 3間には耐力壁としての側壁S1 , S2 , S3 が設
けられ、また各階には垂壁D1 , D2 , D3 が設けられ
ている。他の構成は実施例3のそれと実質的に同じであ
る。
FIG. 9A is a schematic diagram showing the structure of Comparative Example 1.
FIG. 9B is a model diagram obtained by modeling FIG. 9A. In this comparative example 1, between the wooden through pillars 1 and 2,
The distance between the columns 2 and 3 is 3000 mm and 600 mm, respectively. Side walls S1, S2 and S3 are provided between the columns 2 and 3 as load-bearing walls, and vertical walls D1, D2 and D3 are provided on each floor. . Other configurations are substantially the same as those of the third embodiment.

【0041】このような構成の木造3階建住宅をモデル
化処理すると図9(b) に明らかなように耐力壁である側
壁S1 ,S2 ,S3 については各階毎に筋交いE4 , E
5 ,E6 に置換されて構造計算に取り込まれるが、垂壁
D1 , D2 , D3 については耐力壁として扱われず、所
謂非耐力壁として構造計算上はないものとして取り扱わ
れていた。
When a wooden three-story house having such a configuration is modeled, as shown in FIG. 9 (b), the side walls S1, S2, and S3, which are load-bearing walls, are braced E4, E at each floor.
The vertical walls D1, D2, and D3 were not treated as load-bearing walls, but were treated as so-called non-bearing walls, which were not included in the structural calculation.

【0042】図10(a) は比較例2の構成を示す模式
図、図10(b) は図10(a) をモデル化処理したモデル
図である。この比較例2は木造の通し柱1, 2, 3間の
間隔を2700mm、900mmとした点以外は比較例1の
場合と実質的に同じである。図10(b) から明らかなよ
うに耐力壁である側壁S1,S2,S3は夫々筋交いE
4 , E5 , E6 に置換されているが、垂壁D1 , D2 ,
D3 については非耐力壁であって、構造計算上は無いも
のとして取り扱われている。
FIG. 10A is a schematic diagram showing the configuration of Comparative Example 2, and FIG. 10B is a model diagram obtained by modeling FIG. 10A. Comparative Example 2 is substantially the same as Comparative Example 1 except that the intervals between the wooden pillars 1, 2, and 3 were 2700 mm and 900 mm. As is apparent from FIG. 10B, the side walls S1, S2, and S3, which are load-bearing walls, each have a brace E.
4, E5 and E6, but the vertical walls D1, D2,
D3 is a non-bearing wall and is treated as not present in the structural calculation.

【0043】上述した実施例1〜4、比較例1、2につ
いての試験結果を表1〜3に示す。表1は柱1, 2, 3
の各支点番号a1 〜a3 における支点反力 (t:トン)
を、また表2は1〜3階における柱の曲げモーメントの
最大値 (tm)を、表3は所定の水平力を付与した際の
各階の変位量 (cm) を夫々示してある。
Tables 1 to 3 show the test results for Examples 1 to 4 and Comparative Examples 1 and 2 described above. Table 1 shows pillars 1, 2, and 3.
Fulcrum reaction force at each fulcrum number a1 to a3 (t: ton)
Table 2 shows the maximum value (tm) of the bending moment of the column on the first to third floors, and Table 3 shows the displacement (cm) of each floor when a predetermined horizontal force is applied.

【0044】[0044]

【表1】 [Table 1]

【0045】[0045]

【表2】 [Table 2]

【0046】[0046]

【表3】 [Table 3]

【0047】表1から明らかなように比較例1、2に対
して実施例1〜4はいずれも支点反力が大幅に低減、換
言すれば水平力が付与された際の引抜き力が大幅に低減
されていることが解る。
As is clear from Table 1, in Examples 1 to 4, the fulcrum reaction force was significantly reduced in comparison with Comparative Examples 1 and 2. In other words, the pull-out force when a horizontal force was applied was significantly increased. It can be seen that it has been reduced.

【0048】また表2から明らかなように比較例1、2
に対して実施例1〜4はいずれも曲げモーメントの最大
値が増大していることが解る。更に表3から明らかなよ
うに比較例1、2に対して実施例1〜4では2、3階の
変位量も大幅に低減し得ていることが解る。
As is clear from Table 2, Comparative Examples 1 and 2
On the other hand, it can be understood that the maximum values of the bending moments are increased in all of Examples 1 to 4. Further, as is apparent from Table 3, in Examples 1 to 4 as compared with Comparative Examples 1 and 2, the displacement amounts of the second and third floors can be significantly reduced.

【0049】次に木造住宅における垂壁の水平耐力及び
剛性を調べる試験を行ったので、これを説明する。実験
用供試体は図11に示す如きものであり、3本の木製の
柱1, 2間、2,3間を1800mm、2700mmの間隔
に設定し、柱1, 2, 3の上端にわたって梁4を渡し、
梁4の下方に鴨居7を設け、これら梁4、鴨居7及び柱
1, 2, 3に渡して垂壁としての構造用合板(d=9、
d=15の2枚)10を釘を用いて固定した。各柱1,
2, 3の下端は沓金物11に嵌め込んで基礎に固定し
た。また構造用合板10と柱2との交叉部分には柱2の
両側に三角金物12を垂壁受け材として使用した。
Next, a test for examining the horizontal strength and rigidity of a vertical wall in a wooden house will be described. The test specimen is as shown in FIG. 11, where the distance between the three wooden pillars 1 and 2 is set to 1800 mm and 2700 mm between the two wooden pillars 1 and 2 and the beam 4 is extended over the upper ends of the pillars 1, 2 and 3. Pass
A dumbbell 7 is provided below the beam 4, and the plywood (d = 9,
10 (d = 15) were fixed using nails. Each pillar 1,
The lower ends of a few were fitted into the shoe hardware 11 and fixed to the foundation. At the intersection of the structural plywood 10 and the column 2, triangular metal parts 12 were used as hanging members on both sides of the column 2.

【0050】試験方法 図11において白抜矢符方向から梁4に油圧シリンダの
ロッド先端を連結させ、反対側の図示しない取付支柱に
変位計SE1 〜SE4 を上,下方向に830mm、720
mm、700mm、650mmの間隔を隔てて4個固定し、ま
た垂壁D1 , D2 と柱との接合部分には孔を開けて変位
計 (図示せず)を7個固定した。油圧シリンダによって
水平力を加え、各変位計SE1 〜SE4 が図12に示す
所定の変位量(mm)を示すように加圧を3回づつ反復し
た。
Test Method In FIG. 11, the rod end of the hydraulic cylinder was connected to the beam 4 from the direction of the white arrow, and the displacement gauges SE1 to SE4 were mounted on the opposite mounting column (not shown) upward and downward by 830 mm, 720 mm.
Four pieces were fixed at intervals of mm, 700 mm, and 650 mm, and seven displacement gauges (not shown) were fixed by making holes in the joints between the vertical walls D1 and D2 and the columns. A horizontal force was applied by a hydraulic cylinder, and the pressurization was repeated three times so that each of the displacement meters SE1 to SE4 showed a predetermined displacement (mm) shown in FIG.

【0051】図12は油圧シリンダによって図11に示
す如き実験用の4組の供試体( No.1〜 No.4) に付与
した水平力付加パターンを示すグラフであり、各供試体
に図11に示す如く白抜き矢符方向から9.6mm、1
4.5mm、19.3mm、29.0mm、38.6mm、5
8.0mm、116.0mmの第1〜第7載荷ステップにお
いて3回ずつ繰り返す両振幅載荷を付与し、また供試体
No. 4には風加重を想定して片振幅載荷を同様に3回ず
つ繰り返し付与し、各種の測定を行った。結果は表4〜
表6に示すとおりである。
FIG. 12 is a graph showing a horizontal force application pattern applied to four sets of test specimens (No. 1 to No. 4) as shown in FIG. 11 by a hydraulic cylinder. 9.6mm from the white arrow direction as shown
4.5mm, 19.3mm, 29.0mm, 38.6mm, 5
In the first to seventh loading steps of 8.0 mm and 116.0 mm, a double amplitude loading which is repeated three times is applied, and
No. 4 was repeatedly subjected to a single amplitude loading three times in the same manner assuming wind load, and various measurements were performed. Table 4 ~
It is as shown in Table 6.

【0052】表4は各供試体 No.1〜 No.4についての
荷重(kgf) 、最大荷重(kgf) 、最大荷重時における変位
量(mm)、変位角(rad) 、終局時変位(mm)を検出した結果
を示している。表4から明らかなように、第4載荷ステ
ップ(変位計SE1 の変位量による層間変位角1/10
0rad :以下同じ) まで、荷重−変位曲線はほぼ同じ軌
跡を描き、この間、垂壁受け材の抜け出しが観察され
た。また第6載荷ステップ (1/50rad)からは同一荷
重で繰り返し載荷を行う都度、変位が明らかに増加し
た。加力方向による変位量の差には有意の差は認められ
なかった。 No.1〜 No.4の各供試体とも最大荷重を記
録したのは1/25rad を越えた後であった。
Table 4 shows the load (kgf), the maximum load (kgf), the displacement at the maximum load (mm), the displacement angle (rad), and the final displacement (mm) for each specimen No. 1 to No. 4. ) Is shown. As apparent from Table 4, the fourth loading step (interlayer displacement angle 1/10 based on the displacement amount of the displacement meter SE1) is performed.
0 rad: the same applies hereinafter), the load-displacement curve followed almost the same trajectory, during which the falling-out of the vertical wall receiving material was observed. Also, from the sixth loading step (1/50 rad), the displacement clearly increased each time loading was performed repeatedly with the same load. No significant difference was observed in the difference in the displacement amount depending on the direction of the applied force. The maximum load was recorded for each of the specimens No. 1 to No. 4 after exceeding 1/25 rad.

【0053】[0053]

【表4】 [Table 4]

【0054】表5は各供試体について各変位計SE1 〜
SE4 の変位比率を示している。表5中各縦欄の点線の
左側欄は変位計SE1 の変位量を、また右側欄は変位計
SE4 の変位量を夫々1.0とした場合の各変位量の比
較を示している。
Table 5 shows that each of the displacement gauges SE1 to SE1 for each specimen.
The displacement ratio of SE4 is shown. The left column of the dotted line of each column in Table 5 shows the displacement of the displacement meter SE1, and the right column shows the comparison of each displacement when the displacement of the displacement meter SE4 is 1.0.

【0055】[0055]

【表5】 [Table 5]

【0056】表5から明らかなように、変位状態の特徴
として、柱脚から変位計SE2 までの変位量の比率が、
ほぼ直線的に増加し、特に両振幅載荷した供試体 No.1
〜 No.3では、変位計SE3 から柱脚間でほとんど曲げ
変形を生じていない。片振幅載荷の供試体 No.4はこの
傾向がやや薄いものの、供試体 No.4も含めた全体的な
特徴として、変位計SE1 と変位計SE2 間、即ち垂壁
部分における構造用合板の剪断変形は極めて小さいと言
える。また柱については、曲げ変形は垂壁受け材の部分
で最大で、柱脚から垂壁受け材までの変位量は柱脚の回
転にその大部分を負うと考えられる。
As is clear from Table 5, the characteristic of the displacement state is that the ratio of the displacement amount from the column base to the displacement meter SE2 is:
Specimen No. 1 which increased almost linearly, especially loaded with both amplitudes
In No. 3 to No. 3, almost no bending deformation occurred between the column pedestals from the displacement meter SE3. Although the specimen No. 4 with half-amplitude loading has a slightly thinner tendency, as a whole feature including the specimen No. 4, shearing of the structural plywood between the displacement gauges SE1 and SE2, that is, the vertical wall portion The deformation can be said to be extremely small. Also, regarding the column, the bending deformation is greatest at the vertical wall receiving member, and the displacement from the column base to the vertical wall receiving member is considered to be largely owed to the rotation of the column base.

【0057】表6、表7及び表8には実験供試体 No.1
〜 No.3についての両方向載荷試験の結果であり、表6
は基準剛性を、また表7には基準許容耐力を、更に表8
には基準終局耐力を夫々示してある。
Tables 6, 7 and 8 show the test specimen No. 1
Table 6 shows the results of the bidirectional loading test for No. 3 to No. 3.
Is the reference rigidity, Table 7 is the reference allowable proof stress, and Table 8
Shows the reference ultimate strength.

【0058】[0058]

【表6】 [Table 6]

【0059】[0059]

【表7】 [Table 7]

【0060】[0060]

【表8】 [Table 8]

【0061】次に図13に示す説明図に基づき各供試体
の基準許容耐力及び基準終局耐力の評価法を説明する。 a) 供試体の基準許容耐力の評価 1) 縦軸に荷重を、また横軸に変位をとり、荷重−変
位包絡曲線を求め、この荷重−変位包絡曲線において、
最大荷重の0.1倍と0.4倍に相当する点を、の直
線で結ぶ。 2) 最大荷重の0.9倍と0.4倍に相当する点を
の直線で結び、同じ傾きで荷重−変位包絡曲線と接する
直線を引き、直線と直線との交点の荷重を許容耐
力とする。 3) 許容耐力の信頼水準75%の50%下側許容限界
と、最大荷重の2/3の信頼水準75%の50%下側許
容限界のうち、最も小さい値を供試体の基準許容耐力と
する。
Next, a method for evaluating the reference allowable proof stress and the reference ultimate proof stress of each specimen will be described with reference to the explanatory view shown in FIG. a) Evaluation of the standard allowable proof stress of the test specimen 1) Taking the load on the vertical axis and the displacement on the horizontal axis, determine the load-displacement envelope curve. In this load-displacement envelope curve,
Points corresponding to 0.1 times and 0.4 times the maximum load are connected by a straight line. 2) Connect points corresponding to 0.9 times and 0.4 times of the maximum load with a straight line, draw a straight line tangent to the load-displacement envelope curve with the same slope, and denote the load at the intersection of the straight line and the straight line as the allowable proof stress. I do. 3) The minimum value of the 50% lower allowable limit of 75% confidence level of 75% of the maximum load and the 50% lower allowable limit of 75% reliability level of the maximum load is the standard allowable strength of the specimen. I do.

【0062】b) 供試体の基準終局耐力の評価 1) 荷重が最大荷重の0.8まで低下する時の変位
と、供試体の剪断変位角が1/30となる変位のうち、
小さい方の値を通り、縦軸に平行な直線を引く。 2) 直線、直線、横軸、横軸に平行な直線によ
って囲まれる部分の面積が、荷重−変位包絡曲線、横
軸、直線で囲まれる部分の面積と等しくなるように直
線の位置を決め、直線と縦軸との交点荷重の値を基
準終局耐力とする。 3) 基準終局耐力の信頼水準75%の50%下側許容
限界の値を供試体の基準終局耐力とする。
B) Evaluation of the standard ultimate proof stress of the specimen 1) Of the displacement when the load decreases to the maximum load of 0.8 and the displacement at which the shear displacement angle of the specimen becomes 1/30,
Draw a straight line that passes through the smaller value and is parallel to the vertical axis. 2) The position of the straight line is determined so that the area of the portion surrounded by the straight line, the straight line, the horizontal axis, and the straight line parallel to the horizontal axis is equal to the load-displacement envelope curve, the horizontal axis, and the area of the portion surrounded by the straight line. The value of the load at the intersection of the straight line and the vertical axis is defined as the reference ultimate strength. 3) The value of the 50% lower permissible limit of 75% confidence level of the reference ultimate strength is defined as the reference ultimate strength of the specimen.

【0063】次に図14に示す解析モデル図に基づいて
得た計算値と実験値とを比較する。図14中における各
部材M1 〜M6 の断面性能は、表9に示す値とした。
柱、梁材のヤング係数は材料試験により所定の性能を確
認済みの実験供試体に用いた構造用集成材のJAS規格
値を使用したが、120mm角の柱に限っては、断面構成
が加力方向に対して弱軸方向に構成されていたことを考
慮し、ヤング係数を105 (tf/cm2 ) まで低減した。
ブレースの部材 (図14中の部材M5 、部材M6) は、
構造用合板の接合に用いた釘の仕様とピッチから、別途
計算によってヤング係数と各断面性能値を求めた。ま
た、梁、壁受け材の断面2次モーメントは、等断面積の
せい40cm (垂壁のせいの約半分) として置換し求めた
値を用いた。条件として、中央の柱に使用した三角金物
を、剛域として考慮した場合と、無視した場合の2通り
を想定した。結果は表10に示すとおりである。
Next, the calculated values obtained based on the analysis model diagram shown in FIG. 14 and the experimental values are compared. The sectional performance of each of the members M1 to M6 in FIG.
For the Young's modulus of the columns and beams, the JAS standard values of the structural glued laminated lumber used for the test specimens, for which the specified performance was confirmed by material tests, were used. In consideration of the fact that the structure was in the weak axis direction with respect to the force direction, the Young's modulus was reduced to 105 (tf / cm 2 ).
The members of the brace (members M5 and M6 in FIG. 14)
The Young's modulus and each cross-sectional performance value were determined by separate calculations from the specifications and pitches of the nails used to join the structural plywood. The value of the second moment of area of the beam and the wall receiving member was obtained by substituting 40 cm (about half the height of the vertical wall) of the same cross-sectional area. As conditions, two cases were assumed: a case where the triangular metal used for the center pillar was considered as a rigid region, and a case where it was ignored. The results are as shown in Table 10.

【0064】[0064]

【表9】 [Table 9]

【0065】[0065]

【表10】 [Table 10]

【0066】続いて3タイプの実験供試体I〜IVにつ
いてそれぞれモデル化を行い、本発明に係るモデル化処
理による構造計算結果と、実験によるデータとが一致す
るか否かを検証した。図15は実験供試体タイプIの模
式図、図16は実験供試体タイプIをモデル化処理した
モデル図である。図15に示すように、実験供試体タイ
プIは、平面視矩形型の土台B1の長手方向上に柱1
a、1b、1cおよび1dが立設され、柱1a〜1dの
他端を土台B1の長手方向に沿って設けられる梁4aに
それぞれ釘着してある。
Subsequently, modeling was performed on each of the three types of experimental specimens I to IV, and it was verified whether or not the result of the structural calculation by the modeling process according to the present invention and the experimental data were consistent. FIG. 15 is a schematic diagram of the experimental specimen type I, and FIG. 16 is a model diagram obtained by performing a modeling process on the experimental specimen type I. As shown in FIG. 15, the test specimen type I has a column 1 on the longitudinal direction of a rectangular base B1 in plan view.
a, 1b, 1c and 1d are erected, and the other ends of the columns 1a to 1d are respectively nailed to beams 4a provided along the longitudinal direction of the base B1.

【0067】また、土台B1と梁4aとの間の適宜の位
置に、梁4aの長手方向に沿って垂れ壁受け材Daが柱
1a及び柱1bの間に、垂れ壁受け材Dbが柱1b及び
柱1cの間に、垂れ壁受け材Dcが柱1c及び柱1dの
間にそれぞれ狭着されている。そして土台B1、柱1
a、垂れ壁受け材Da、及び柱1bにそって袖壁S1が
釘着されている。同様に袖壁S2も土台B1の長手方向
の対向する位置に釘着されている。一方、垂れ壁受け材
Da、Db、及びDcと梁4aとの間には略中央部を境
にして垂れ壁D1,及びD2がそれぞれ釘着されてい
る。そして、土台B1、柱1b、垂れ壁受け材Db、及
び柱1cを囲む位置に駐車場または入口等のために用意
される空間Aが形成される。
Further, at an appropriate position between the base B1 and the beam 4a, a hanging wall receiving material Da is provided between the columns 1a and 1b along the longitudinal direction of the beam 4a, and a hanging wall receiving material Db is provided at the appropriate position between the column 1b. The hanging wall receiving member Dc is narrowly fitted between the pillar 1c and the pillar 1d between the pillar 1c and the pillar 1c. And base B1, pillar 1
a, a sleeve wall S1 is nailed along the hanging wall receiving member Da and the pillar 1b. Similarly, the sleeve wall S2 is also nailed at a position facing the base B1 in the longitudinal direction. On the other hand, hanging walls D1, D2 are respectively nailed between the hanging wall receiving members Da, Db, and Dc and the beam 4a at a substantially central portion. Then, a space A prepared for a parking lot or an entrance is formed at a position surrounding the base B1, the pillar 1b, the hanging wall receiving material Db, and the pillar 1c.

【0068】以上説明した実験供試体タイプIを、本発
明に係るモデル化処理を行うと図16(a)、図16
(b)の如くモデル化することができる。図16(a)
に示すように実験供試体タイプIは柱1a〜柱1d及び
筋交いE1〜E5で構成されるモデルにより表すことが
できる。一方、図16(b)に示すように本実施の形態
では、柱1a及び柱1cの柱脚には支点バネF1,F2
をそれぞれ設けてモデル化してある。つまり、各部材接
合部の伸びを考慮して構造計算を行うべく支点バネF
1,及びF2を挿嵌してモデル化処理を行ったもの(以
下、軸バネモデルという)である。なお、支点バネF
1,及びF2の剛性は8660Kg/cmとして計算し
てある。
When the above-described experimental specimen type I is subjected to the modeling process according to the present invention, FIGS.
It can be modeled as in (b). FIG. 16 (a)
As shown in the figure, the experimental specimen type I can be represented by a model composed of columns 1a to 1d and braces E1 to E5. On the other hand, as shown in FIG. 16B, in the present embodiment, fulcrum springs F1 and F2 are provided on the column bases of the columns 1a and 1c.
Are provided and modeled. That is, the fulcrum spring F is used to calculate the structure in consideration of the elongation of each member joint.
1 and F2 are subjected to a modeling process (hereinafter, referred to as an axial spring model). The fulcrum spring F
The stiffnesses of 1 and F2 are calculated as 8660 Kg / cm.

【0069】以上の構成において、図15に示す矢印方
向(東西方向)へ上述した両振幅斬増載荷(第1ステッ
プ〜第7ステップ)を行い、梁4aの東西方向への変位
量を検知する変位計SE1から検出される変位量を計測
した。図17は実験供試体タイプIの荷重に対する変位
量を示すグラフである。図において、縦軸は荷重(kg
f)を示しており、横軸は変位計SE1から出力される
変位(mm)を示したものである。また各線のプロット
点1〜7は第1〜第7載荷ステップをそれぞれ示したも
のである。
In the above configuration, the above-mentioned double amplitude additional loading (first step to seventh step) is performed in the direction of the arrow (east-west direction) shown in FIG. 15, and the displacement amount of the beam 4a in the east-west direction is detected. The amount of displacement detected from the displacement meter SE1 was measured. FIG. 17 is a graph showing the displacement amount of the test specimen type I with respect to the load. In the figure, the vertical axis represents the load (kg
f), and the horizontal axis shows the displacement (mm) output from the displacement meter SE1. The plot points 1 to 7 on the respective lines indicate the first to seventh loading steps, respectively.

【0070】図17に示す実線は両振幅斬増載荷を4回
実行した場合におけるそれぞれの荷重に対する変位量を
表したグラフである。また破線は本発明に係るモデル化
処理による構造計算結果を示すグラフであり、一点鎖線
は本発明に係る軸バネモデル化処理による構造計算結果
を示すグラフである。図から明らかなように、本発明に
係るモデル化処理による構造計算結果が、変位計SE1
から出力される変位量とほぼ等しく、本発明に係るモデ
ル化処理による構造計算の実用性が立証できた。
The solid line shown in FIG. 17 is a graph showing the amount of displacement with respect to each load when the double amplitude additional load is executed four times. The broken line is a graph showing the result of the structure calculation by the modeling process according to the present invention, and the dashed line is the graph showing the result of the structure calculation by the shaft spring modeling process according to the present invention. As is clear from the figure, the result of the structural calculation by the modeling processing according to the present invention is the displacement meter SE1.
This is almost equal to the displacement output from the above, and the practicability of the structural calculation by the modeling processing according to the present invention has been proved.

【0071】図18は実験供試体タイプIIの模式図、
図19は実験供試体タイプIIをモデル化処理したモデ
ル図である。タイプIIはタイプIと異なり、垂れ壁D
2の下部に位置する袖壁S2及び柱1cが無い構成とな
っている。このような構成において、同様に図19
(a)に示すモデル化、図19(b)に示す軸バネモデ
ル化を行い、両振幅斬増載荷試験を行った。
FIG. 18 is a schematic view of an experimental specimen type II.
FIG. 19 is a model diagram obtained by performing a modeling process on the test specimen type II. Type II differs from Type I in that the hanging wall D
2 has no sleeve wall S2 and no pillar 1c. In such a configuration, FIG.
The modeling shown in FIG. 19A and the axial spring modeling shown in FIG. 19B were performed, and a double amplitude incremental load test was performed.

【0072】図20は実験供試体タイプIIの荷重に対
する変位量を示すグラフである。図に示すように、実線
の実験データグラフと、点線のモデル化処理を行った本
発明に係る構造計算結果とがほぼ一致していることが分
かる。さらに一点鎖線の軸バネモデル化処理を行った本
発明に係る構造計算結果ともほぼ一致していることが分
かり、本発明に係るモデル化処理による構造計算の実用
性がさらに立証することができた。
FIG. 20 is a graph showing the amount of displacement with respect to the load of the test specimen type II. As shown in the figure, it can be seen that the experimental data graph of the solid line substantially matches the result of the structural calculation according to the present invention, in which the modeling process of the dotted line is performed. Furthermore, it was found that the results of the structural calculation according to the present invention in which the dash-dot-dotted shaft spring modeling process was performed were almost the same, and the practicability of the structural calculation by the modeling process according to the present invention was further proved.

【0073】図21は実験供試体タイプIIIの模式図
及び実験供試体タイプIIIをモデル化処理したモデル
図である。タイプIIIはタイプIと異なり、土台B1
が存在せず実験用の保持台N1及びN2上に柱1a及び
1dを立設し、沓金物11、11でもって、柱脚を固定
してある。また梁4aを支える柱は柱1a、及び柱1d
の2本で構成され、袖壁は存在しない。さらに、柱1a
と垂れ壁受け材Daとの接合部は三角金物12、12を
配設することによって供試体タイプIIIの強度を確保
してある。同様に柱1dと垂れ壁D2との接合部には三
角金物12が配設されている。このような構成におい
て、図22(a)に示す如くモデル化処理を行った。ま
た、三角金物12の影響を考慮すべく、三角金物12を
も構造計算要素としてモデル化(以下、三角金物モデル
化処理という)した図を図22(b)に示す。そして、
これらについて両振幅斬増載荷試験を実行した。なお、
三角金物の剛性は500Kg/cmであり、実験供試体
タイプIIIは土台B1が存在しないので軸バネF1,
F2については特に設けていない。
FIG. 21 is a schematic diagram of an experimental specimen type III and a model diagram obtained by modeling the experimental specimen type III. Type III is different from Type I, base B1
Does not exist, the columns 1a and 1d are erected on the holding stands N1 and N2 for experiments, and the column bases are fixed by the shoe hardware 11,11. The pillar supporting the beam 4a is a pillar 1a and a pillar 1d.
And there is no sleeve wall. Furthermore, pillar 1a
The joint between the hanging member and the hanging wall receiving material Da is provided with triangular metal fittings 12, 12 to secure the strength of the specimen type III. Similarly, a triangular metal fitting 12 is provided at a joint between the column 1d and the hanging wall D2. In such a configuration, a modeling process was performed as shown in FIG. FIG. 22B is a diagram in which the triangular hardware 12 is modeled as a structural calculation element (hereinafter, referred to as a triangular hardware modeling process) in order to consider the influence of the triangular hardware 12. And
A double-amplitude loading test was performed for these. In addition,
The rigidity of the triangular metal fitting is 500 Kg / cm, and the experimental specimen type III does not have the base B1.
No particular provision is made for F2.

【0074】図23は実験供試体タイプIIIの荷重に
対する変位量を示すグラフである。図に示すように、実
線の実験データグラフと、点線のモデル化処理を行った
本発明に係る構造計算結果とがほぼ一致していることが
分かる。さらに一点鎖線の三角金物モデル化処理を行っ
た本発明に係る構造計算結果ともほぼ一致していること
が分かる。なお、実験供試体タイプIIIにおいては荷
重が高くなるほど、実験データと本発明に係る構造計算
結果とが合致しなくなる傾向にあるが、これは構造計算
に用いる各パラメータは安全面を考慮してより安全側の
パラメータを採用することに起因するものである。この
他、非耐力壁が垂れ壁D1,及びD2しか存在せず、構
造計算に必要なパラメータが不足していることに起因す
るものである。ただし、構造計算に必要なパラメータ、
すなわち非耐力壁が多ければ多いほど、本発明に係るモ
デル化処理による構造計算の精度が向上するといえるこ
とから、本発明の有効性がさらに立証された。
FIG. 23 is a graph showing the amount of displacement of the test specimen type III with respect to the load. As shown in the figure, it can be seen that the experimental data graph indicated by the solid line substantially matches the result of the structural calculation according to the present invention, in which the modeling process indicated by the dotted line is performed. Further, it can be seen that the results substantially match the results of the structural calculation according to the present invention in which the processing of modeling the dash-dot-dot triangular hardware is performed. In the test specimen type III, as the load becomes higher, the experimental data and the structural calculation result according to the present invention tend to be inconsistent, but this is because each parameter used in the structural calculation is more in consideration of safety. This is due to the adoption of parameters on the safe side. In addition, the non-bearing walls are only the hanging walls D1 and D2, and the parameters required for the structural calculation are insufficient. However, parameters required for structural calculation,
In other words, it can be said that the more non-bearing walls are, the more the accuracy of the structural calculation by the modeling process according to the present invention is improved. Therefore, the effectiveness of the present invention is further proved.

【0075】最後に実験供試体タイプIVについて実験
を行った。実験供試体タイプIVは図11に示す構成か
らなり、この供試体について両振幅斬増載荷試験を行っ
た。図24は実験供試体タイプIVをモデル化処理した
モデル図である。なお、本試験にあっては柱1、柱2、
及び柱3の耐力値として規格により定められる耐力値
(以下、規格強度という)、及び規格により定められる
耐力値とは異なる耐力値(以下、実験強度という)をそ
れぞれ設定してモデル化処理を行った。
Finally, an experiment was conducted on the test specimen type IV. The experimental specimen type IV has the configuration shown in FIG. 11, and the specimen was subjected to a double amplitude incremental load test. FIG. 24 is a model diagram obtained by performing a modeling process on the test specimen type IV. In this test, Pillar 1, Pillar 2,
Modeling is performed by setting a proof value (hereinafter referred to as a standard strength) defined by the standard as the proof value of the column 3 and a proof value (hereinafter referred to as the experimental strength) different from the proof value defined by the standard. Was.

【0076】図25は実験供試体タイプIVの荷重に対
する変位量を示すグラフである。図に示すように、実線
の実験データグラフと、点線のモデル化処理を行った本
発明の規格強度に係る構造計算結果とがほぼ一致してい
ることが分かる。さらに一点鎖線のモデル化処理を行っ
た本発明の実験強度に係る構造計算結果ともほぼ一致し
ていることが分かる。なお、実験供試体タイプIVにお
けるモデル化処理の結果から、図11示す如く袖壁が存
在せず、柱及び垂壁のみで構成される木造住宅において
も本発明の構造計算方法の有用性が立証された。
FIG. 25 is a graph showing the displacement with respect to the load of the test specimen type IV. As shown in the figure, it can be seen that the experimental data graph of the solid line and the result of the structural calculation of the standard strength of the present invention subjected to the modeling process of the dotted line are almost the same. Further, it can be seen that the results almost match the results of the structural calculation according to the experimental strength of the present invention in which the dash-dot line modeling process was performed. From the result of the modeling process in the test specimen type IV, the usefulness of the structure calculation method of the present invention is proved even in a wooden house having no sleeve wall and only columns and vertical walls as shown in FIG. Was done.

【0077】[0077]

【発明の効果】請求項1に係る発明にあっては、従来非
耐力壁と考えられていた壁を耐力要素として捉えること
で、木造建築物自体の水平方向荷重に対する強度をより
正確に捉え得ることは勿論、狭小間口の木造住宅におい
ても通常の耐力壁以外の耐力要素の設定が可能となる。
According to the first aspect of the present invention, the strength of the wooden building itself against the horizontal load can be more accurately grasped by treating the wall, which has been conventionally regarded as a non-bearing wall, as the bearing element. Needless to say, in a narrow-width wooden house, it is possible to set a load-bearing element other than a normal load-bearing wall.

【0078】請求項2に係る発明にあっては、垂壁等の
強度を正確に構造計算に取り込むことが可能となる。
According to the second aspect of the invention, the strength of the vertical wall or the like can be accurately taken into the structural calculation.

【0079】請求項3に係る発明にあっては、木造住宅
の構造設計の自由度が大きくなり、より使い勝手のよい
住宅の設計が可能となる。
According to the third aspect of the present invention, the degree of freedom in the structural design of a wooden house is increased, and a more user-friendly house can be designed.

【0080】請求項4に係る発明にあっては、狭小間口
の木造3階建住宅においても正面に車庫と玄関のレイア
ウトが可能な水平方向荷重に対する強度の確保が可能と
なる。
According to the fourth aspect of the present invention, even in a wooden three-story house with a narrow frontage, it is possible to secure the strength against a horizontal load that allows the garage and entrance to be laid out in front.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法に用いる木造住宅の構造計算過程を
示すフローチャートである。
FIG. 1 is a flowchart showing a structure calculation process of a wooden house used in the method of the present invention.

【図2】(a) 〜(c) は本発明方法に依る場合の、また
(d) は従来方法に依る場合の原理を示す模式図である。
FIG. 2 shows (a) to (c) when the method of the present invention is used and
(d) is a schematic diagram showing the principle when the conventional method is used.

【図3】図2(a) に示す構造についてのモデル化処理の
内容を示す説明図である。
FIG. 3 is an explanatory diagram showing the contents of a modeling process for the structure shown in FIG. 2 (a).

【図4】本発明に係る実施の形態である3階建木造住宅
の垂直断面を正面側から見た状態を示す概念図である。
FIG. 4 is a conceptual diagram showing a vertical cross section of a three-story wooden house according to an embodiment of the present invention, as viewed from the front.

【図5】実施例1の模式図及びそれをモデル化処理した
モデル図である。
FIG. 5 is a schematic diagram of the first embodiment and a model diagram obtained by performing a modeling process on the schematic diagram.

【図6】実施例2の模式図及びそれをモデル化処理した
モデル図である。
FIG. 6 is a schematic diagram of a second embodiment and a model diagram obtained by performing a modeling process on the schematic diagram.

【図7】実施例3の模式図及びそれをモデル化処理した
モデル図である。
FIG. 7 is a schematic diagram of a third embodiment and a model diagram obtained by performing a modeling process on the schematic diagram.

【図8】実施例4の模式図及びそれをモデル化処理した
モデル図である。
FIG. 8 is a schematic diagram of a fourth embodiment and a model diagram obtained by performing a modeling process on the schematic diagram.

【図9】比較例1の模式図及びそれをモデル化処理した
モデル図である。
FIG. 9 is a schematic diagram of Comparative Example 1 and a model diagram obtained by performing a modeling process on the schematic diagram.

【図10】比較例2の模式図及びそれをモデル化処理し
たモデル図である。
FIG. 10 is a schematic diagram of Comparative Example 2 and a model diagram obtained by performing a modeling process on the schematic diagram.

【図11】試験用の供試体の模式図である。FIG. 11 is a schematic view of a test specimen for testing.

【図12】供試体に対する試験のための水平力付加パタ
ーンを示すグラフである。
FIG. 12 is a graph showing a horizontal force application pattern for a test on a specimen.

【図13】実験供試体の基準許容耐力及び基準終局耐力
の評価法を示す説明図である。
FIG. 13 is an explanatory diagram showing a method for evaluating a reference allowable proof stress and a reference ultimate proof stress of an experimental specimen.

【図14】解析モデル図である。FIG. 14 is an analysis model diagram.

【図15】実験供試体タイプIの模式図である。FIG. 15 is a schematic view of an experimental specimen type I.

【図16】実験供試体タイプIをモデル化処理したモデ
ル図である。
FIG. 16 is a model diagram showing a model of an experimental specimen type I;

【図17】実験供試体タイプIの荷重に対する変位量を
示すグラフである。
FIG. 17 is a graph showing a displacement amount of an experimental specimen type I with respect to a load.

【図18】実験供試体タイプIIの模式図である。FIG. 18 is a schematic diagram of an experimental specimen type II.

【図19】実験供試体タイプIIをモデル化処理したモ
デル図である。
FIG. 19 is a model diagram showing a model of an experimental specimen type II.

【図20】実験供試体タイプIIの荷重に対する変位量
を示すグラフである。
FIG. 20 is a graph showing a displacement amount with respect to a load of the test specimen type II.

【図21】実験供試体タイプIIIの模式図である。FIG. 21 is a schematic view of an experimental specimen type III.

【図22】実験供試体タイプIIIをモデル化処理した
モデル図である。
FIG. 22 is a model diagram showing a model of experimental specimen type III.

【図23】実験供試体タイプIIIの荷重に対する変位
量を示すグラフである。
FIG. 23 is a graph showing a displacement amount of an experimental specimen type III with respect to a load.

【図24】実験供試体タイプIVをモデル化処理したモ
デル図である。
FIG. 24 is a model diagram showing a model of an experimental specimen type IV.

【図25】実験供試体タイプIVの荷重に対する変位量
を示すグラフである。
FIG. 25 is a graph showing the amount of displacement with respect to the load of the test specimen type IV.

【符号の説明】[Explanation of symbols]

1,1a,1b,1c,1d,2,3 柱 4,4a,5,6 梁 7,8,9 鴨居 10 構造用合板 11 沓金物 12 三角金物 1, 1a, 1b, 1c, 1d, 2, 3 pillar 4, 4a, 5, 6 beam 7, 8, 9 Kamoi 10 structural plywood 11 shoe hardware 12 triangular hardware

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 木造住宅の構造計算を行うべく架構の設
定を行うに際して、木造住宅における垂壁、袖壁、腰壁
等の非耐力壁として取扱われる壁を耐力要素として捉
え、これをモデル化処理し、構造計算を行うことを特徴
とする木造住宅の構造計算方法。
When a frame is set to perform a structural calculation of a wooden house, walls treated as non-bearing walls such as vertical walls, sleeve walls, and lumbar walls in the wooden house are regarded as load-bearing elements and modeled. A structural calculation method for a wooden house, wherein the structural calculation is performed.
【請求項2】 前記モデル化処理は非耐力壁を筋交い又
は壁エレメントに換算する処理であることを特徴とする
請求項1に記載の木造住宅の構造計算方法。
2. The method for calculating the structure of a wooden house according to claim 1, wherein the modeling process is a process of converting non-bearing walls into braces or wall elements.
【請求項3】 木造住宅の構造計算を行うべく架構の設
定を行うに際して、木造住宅における非耐力壁として取
扱われている壁を耐力要素として捉え、これをモデル化
処理して得た構造計算の結果を反映させて建築されたこ
とを特徴とする木造住宅。
3. When a frame is set to perform a structural calculation of a wooden house, a wall treated as a non-bearing wall in the wooden house is regarded as a load-bearing element, and a structural calculation of the structural calculation obtained by modeling the wall is performed. A wooden house characterized by being built reflecting the results.
【請求項4】 木造3階建以下であることを特徴とする
請求項3記載の木造住宅。
4. The wooden house according to claim 3, wherein the wooden house has three stories or less.
JP2000297526A 1999-09-28 2000-09-28 Structural calculation method for wooden house and wooden house built using the same Pending JP2001164645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000297526A JP2001164645A (en) 1999-09-28 2000-09-28 Structural calculation method for wooden house and wooden house built using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP27522199 1999-09-28
JP11-275221 1999-09-28
JP2000297526A JP2001164645A (en) 1999-09-28 2000-09-28 Structural calculation method for wooden house and wooden house built using the same

Publications (1)

Publication Number Publication Date
JP2001164645A true JP2001164645A (en) 2001-06-19

Family

ID=26551377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000297526A Pending JP2001164645A (en) 1999-09-28 2000-09-28 Structural calculation method for wooden house and wooden house built using the same

Country Status (1)

Country Link
JP (1) JP2001164645A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003035642A (en) * 2001-05-16 2003-02-07 Nippon Steel Corp Method for predicting/evaluating strength, method for providing material data, method for identifying material data, system for predicting/evaluating strength, recording medium, and program
JP2006241842A (en) * 2005-03-03 2006-09-14 Sumitomo Forestry Co Ltd Evaluation system and evaluation program for column-beam joint part
JP2006328760A (en) * 2005-05-25 2006-12-07 Sekisui Chem Co Ltd Building with piloti floor
JP2007277856A (en) * 2006-04-04 2007-10-25 Taisei Corp Aseismatic reinforcing structure of existing building
JP2013145529A (en) * 2012-01-16 2013-07-25 Lixil Corp Calculation method of allowable shearing proof stress of bearing wall having aperture, design method of bearing wall having aperture, arithmetic unit of allowable shearing proof stress of bearing wall having aperture, and calculation program of allowable shearing proof stress of bearing wall having aperture
JP2014089567A (en) * 2012-10-30 2014-05-15 Panahome Corp Method of analysing frame body having pillar, beam and bearing frame
JP2016509707A (en) * 2012-12-19 2016-03-31 パトコ リミテッド ライアビリティ カンパニーPatco, Llc Method and system using standard structural members
JP6484752B1 (en) * 2018-11-06 2019-03-13 株式会社アクト Load-bearing panel and wooden frame building
JP2020166503A (en) * 2019-03-29 2020-10-08 大和ハウス工業株式会社 Buckling load calculation method
JP2020180490A (en) * 2019-04-25 2020-11-05 株式会社アールシーコア Rigidity evaluation method for log wall, rigidity evaluation program for log wall and storage medium

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003035642A (en) * 2001-05-16 2003-02-07 Nippon Steel Corp Method for predicting/evaluating strength, method for providing material data, method for identifying material data, system for predicting/evaluating strength, recording medium, and program
JP2006241842A (en) * 2005-03-03 2006-09-14 Sumitomo Forestry Co Ltd Evaluation system and evaluation program for column-beam joint part
JP2006328760A (en) * 2005-05-25 2006-12-07 Sekisui Chem Co Ltd Building with piloti floor
JP4667960B2 (en) * 2005-05-25 2011-04-13 積水化学工業株式会社 Building with a piloti floor
JP2007277856A (en) * 2006-04-04 2007-10-25 Taisei Corp Aseismatic reinforcing structure of existing building
JP2013145529A (en) * 2012-01-16 2013-07-25 Lixil Corp Calculation method of allowable shearing proof stress of bearing wall having aperture, design method of bearing wall having aperture, arithmetic unit of allowable shearing proof stress of bearing wall having aperture, and calculation program of allowable shearing proof stress of bearing wall having aperture
JP2014089567A (en) * 2012-10-30 2014-05-15 Panahome Corp Method of analysing frame body having pillar, beam and bearing frame
JP2016509707A (en) * 2012-12-19 2016-03-31 パトコ リミテッド ライアビリティ カンパニーPatco, Llc Method and system using standard structural members
JP6484752B1 (en) * 2018-11-06 2019-03-13 株式会社アクト Load-bearing panel and wooden frame building
JP2020076229A (en) * 2018-11-06 2020-05-21 株式会社アクト Load bearing panel and wooden framed building
JP2020166503A (en) * 2019-03-29 2020-10-08 大和ハウス工業株式会社 Buckling load calculation method
JP7248482B2 (en) 2019-03-29 2023-03-29 大和ハウス工業株式会社 Buckling load calculation method
JP2020180490A (en) * 2019-04-25 2020-11-05 株式会社アールシーコア Rigidity evaluation method for log wall, rigidity evaluation program for log wall and storage medium

Similar Documents

Publication Publication Date Title
Leng et al. Modeling seismic response of a full-scale cold-formed steel-framed building
López et al. Seismic design of buckling-restrained braced frames
Wang et al. Seismic behavior of blind bolted CFST frames with semi-rigid connections
US6412237B1 (en) Framed structures with coupled girder system and method for dissipating seismic energy
Balkaya et al. Seismic vulnerability, behavior and design of tunnel form building structures
Moehle et al. Seismic design of reinforced concrete special moment frames: a guide for practicing engineers
Brueggen Performance of T-shaped reinforced concrete structural walls under multi-directional loading
Bahmani et al. Experimental seismic behavior of a full-scale four-story soft-story wood-frame building with retrofits. I: Building design, retrofit methodology, and numerical validation
WO2021205993A1 (en) Gypsum-based bearing surface material for wooden building, bearing wall structure, and bearing wall construction method
Tsai et al. Seismic performance analysis of BRBs and gussets in a full‐scale 2‐story BRB‐RCF specimen
Hu et al. Seismic risk assessment of steel frames equipped with steel panel wall
JP2001164645A (en) Structural calculation method for wooden house and wooden house built using the same
Arabzadeh et al. Numerical and experimental investigation of composite steel shear wall with opening
Hatami et al. A parametric study on seismic characteristics of cold-formed steel shear walls by finite element modeling
Tsai et al. Pseudodynamic test of a full-scale CFT/BRB frame: Part 1-Performance-based specimen design
Hashemi et al. Study of a semi-rigid steel braced building damaged in the Bam earthquake
US20040003548A1 (en) Framed structures with coupled girder system and method for dissipating seismic energy
Peralta et al. Seismic performance of rehabilitated wood diaphragms
Zhang Structural Performance of Mass Timber Panel-Concrete Composite Floors with Notched Connections
Weng et al. Seismic performance evaluation of a 34‐story steel building retrofitted with response modification elements
Kaltakci et al. Experimental and analytical analysis of RC frames strengthened using RC external shear walls
Charney Needs in the Development of a comprehensive performance based optimization process
Goel et al. Steel moment frames with ductile girder web opening
Busch Design and Construction of Tall Mass Timber Buildings With Resilient Post-Tensioned Mass Timber Rocking Walls
Saifullah Performance of Ceiling Diaphragms in Steel-Framed Domestic Structures Subjected to Wind Loading