JP2020159035A - Underground skeleton structure - Google Patents

Underground skeleton structure Download PDF

Info

Publication number
JP2020159035A
JP2020159035A JP2019058907A JP2019058907A JP2020159035A JP 2020159035 A JP2020159035 A JP 2020159035A JP 2019058907 A JP2019058907 A JP 2019058907A JP 2019058907 A JP2019058907 A JP 2019058907A JP 2020159035 A JP2020159035 A JP 2020159035A
Authority
JP
Japan
Prior art keywords
reinforced concrete
steel
skeleton structure
reinforcing bar
underground skeleton
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019058907A
Other languages
Japanese (ja)
Other versions
JP7442268B2 (en
Inventor
聡 北岡
Satoshi Kitaoka
聡 北岡
慧 木村
Kei Kimura
慧 木村
政樹 有田
Masaki Arita
政樹 有田
涼平 桑田
Ryohei Kuwata
涼平 桑田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2019058907A priority Critical patent/JP7442268B2/en
Publication of JP2020159035A publication Critical patent/JP2020159035A/en
Application granted granted Critical
Publication of JP7442268B2 publication Critical patent/JP7442268B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)
  • Joining Of Building Structures In Genera (AREA)

Abstract

To provide an underground skeleton structure that prevents downward displacement of a reinforced concrete beam with respect to a steel-framed reinforced concrete column without attaching additional members such as shear connectors.SOLUTION: There is provided an underground skeleton structure comprising a steel-framed reinforced concrete column 2 including a steel frame made of H-shaped steel 21, and a reinforced concrete beam 3 extending only in the weak axis direction in the cross section of the H-shaped steel 21 and joined to the steel-framed reinforced concrete column 2. At least a part of a reinforcing bar 311A constituting a main reinforcing bar 311 of the reinforced concrete beam 3 is inserted into a through hole 214 formed in a web 213 of the H-shaped steel 21.SELECTED DRAWING: Figure 2

Description

本発明は、地下躯体構造に関する。 The present invention relates to an underground skeleton structure.

従来、超高層ビルの地中階の構造には、逆打ち工法(構真柱工法)が広く採用されている。逆打ち工法は、通常、地下躯体の柱形成位置などに基礎台柱を構築し、基礎台柱の真などに鋼管、H形鋼、クロスH形鋼などの本設または仮設の柱(以下、構真柱ともいう)を建て込み、構真柱の上に上部の躯体を構築しながら、それと並行して下部躯体を逆打ちによって構築していくものである。従来の逆打ち工法では、超高層ビルの地中階の柱を鉄骨鉄筋コンクリート造とするのが一般的である。この場合、例えば、クロスH形鋼などの鉄骨に、梁取付位置でガセット、ブラケット、またはスチフナなどの補強部材を取り付けたものを構真柱とし、アースドリル工法、ベノト工法、リバースサーキュレーションドリル工法などによって構真柱の下部を基礎台柱に埋め込み、逆打ちによってSRC柱を構築する。 Conventionally, the reverse striking method (construction pillar construction method) has been widely adopted for the structure of the underground floor of a skyscraper. In the reverse striking method, the foundation pedestal is usually constructed at the column formation position of the underground skeleton, and the main or temporary columns such as steel pipes, H-shaped steel, and cross H-shaped steel are constructed at the true position of the foundation pedestal. (Also called a pillar) is built, and while the upper skeleton is built on the structural pillar, the lower skeleton is built by counter-strike in parallel with it. In the conventional reverse striking method, it is common that the columns on the underground floor of a skyscraper are made of steel-framed reinforced concrete. In this case, for example, a steel frame such as cross-H-section steel with a reinforcing member such as a gusset, bracket, or stiffener attached at the beam mounting position is used as a structural pillar, and the earth drill method, benot method, and reverse circulation drill method are used. The lower part of the structural pillar is embedded in the foundation pillar by such means, and the SRC pillar is constructed by reverse striking.

ここで、特許文献1には、地下躯体の柱形成位置に形成した小径の縦穴の下部にセメントミルクを注入して圧延H形鋼の構真柱を建て込んで基礎台柱を形成するとともに構真柱の下部を基礎台柱に固定する工程と、地盤を順次根切りしながら各階の梁形成位置に対応する構真柱の部分の周囲にRC梁の梁主筋の仕口の部分を位置させ、逆打ちによってRC梁、RC床およびこれらに対応するSRC柱の短い部分のみを形成する工程と、各階の室空間に略対応する構真柱の周囲に柱鉄筋を配置し、地下躯体の下方の階から上方の階に向けて順次、構真柱および柱鉄筋の周囲にコンクリートを打設して構真柱を主鉄骨とするSRC柱を形成する工程とを含む逆打ち工法が記載されている。これによって、鉄骨工場での構真柱の製作が不要になり、地下躯体のSRC柱とRC梁との取り合いがよくなり、施工性が向上する。 Here, in Patent Document 1, cement milk is injected into the lower part of a small-diameter vertical hole formed at a beam forming position of an underground skeleton to build a structure pillar of rolled H-shaped steel to form a foundation pillar and a structure. The process of fixing the lower part of the pillar to the foundation pillar, and the part of the beam main bar of the RC beam is positioned around the part of the structural pillar corresponding to the beam formation position of each floor while sequentially cutting the ground, and vice versa. The process of forming only the RC beams, RC floors and the short parts of the corresponding SRC pillars by striking, and the pillar reinforcing bars are placed around the structural pillars that roughly correspond to the room space on each floor, and the floor below the underground skeleton. A reverse striking method including a step of placing concrete around the structural pillar and the pillar reinforcing bar to form an SRC pillar having the structural pillar as the main steel frame is described in order from the upper floor to the upper floor. This eliminates the need to manufacture structural pillars at a steel frame factory, improves the connection between the SRC columns of the underground frame and the RC beams, and improves workability.

さらに、特許文献1には、RC梁およびRC床が荷重によって下方にずれるのを防止するために、地下躯体のRC梁の形成位置に対応する構真柱の部分に、例えば先端に膨出部が形成された頭付きスタッドなどのシアーコネクタを固定することも記載されている。特許文献1に記載された逆打ち工法では、各階の室空間に略対応する構真柱の周囲で構真柱を柱鉄骨とするSRC柱が形成されており、RC梁およびRC床に作用する荷重がSRC柱のRC部分で支持されているため、シアーコネクタを簡単な構成にすることが可能であり、建築現場で構真柱の建て込みの前後に取り付けることができる。 Further, in Patent Document 1, in order to prevent the RC beam and the RC floor from being displaced downward due to the load, a bulging portion at the tip, for example, in the portion of the structural pillar corresponding to the formation position of the RC beam in the underground skeleton. It is also described to fix a shear connector such as a headed stud on which is formed. In the reverse striking method described in Patent Document 1, SRC columns having the structural pillars as pillar steel frames are formed around the structural pillars substantially corresponding to the room space on each floor, and act on the RC beams and the RC floor. Since the load is supported by the RC portion of the SRC column, the shear connector can be easily configured and can be installed before and after the construction of the structural column at the construction site.

特開平5−156654号公報Japanese Unexamined Patent Publication No. 5-156654

しかしながら、特許文献1に記載された逆打ち工法においてシアーコネクタを取り付ける場合、簡単な構成であっても、RC梁の主筋とシアーコネクタとが柱梁接合部で交錯することになるため、現場での配筋やコンクリート打設の工程が煩雑なものになる可能性があった。 However, when the shear connector is attached by the reverse striking method described in Patent Document 1, even if the configuration is simple, the main bar of the RC beam and the shear connector will intersect at the column-beam joint, so that the shear connector will intersect at the site. There was a possibility that the process of bar arrangement and concrete placement would be complicated.

そこで、本発明は、シアーコネクタのような追加の部材を取り付けることなく、鉄骨鉄筋コンクリート柱に対する鉄筋コンクリート梁の下方へのずれを防止することが可能な、新規かつ改良された地下躯体構造を提供することを目的とする。 Therefore, the present invention provides a new and improved underground skeleton structure capable of preventing a downward displacement of a reinforced concrete beam with respect to a steel-framed reinforced concrete column without attaching an additional member such as a shear connector. With the goal.

本発明のある観点によれば、H形鋼からなる鉄骨を含む鉄骨鉄筋コンクリート柱と、H形鋼の断面における弱軸方向にのみ延びて鉄骨鉄筋コンクリート柱に接合される鉄筋コンクリート梁とを備える地下躯体構造が提供される。鉄筋コンクリート梁の主筋を構成する少なくとも一部の鉄筋は、H形鋼のウェブに形成された貫通孔に挿通される。H形鋼は、下部が基礎台柱に埋め込まれた構真柱を形成していてもよい。また、貫通孔の直径は、鉄筋の直径の2倍以下であってもよい。さらに、貫通孔は水平方向に複数並設されていて、隣り合う貫通孔の間の間隔は、鉄筋の直径の2.5倍以上としてもよい。 According to a certain aspect of the present invention, an underground skeleton structure including a steel-framed reinforced concrete column including a steel frame made of H-shaped steel and a reinforced concrete beam extending only in the weak axis direction in the cross section of the H-shaped steel and joined to the steel-framed reinforced concrete column. Is provided. At least a part of the reinforcing bars constituting the main reinforcing bars of the reinforced concrete beam is inserted into the through holes formed in the web of the H-section steel. The H-section steel may form a structural pillar whose lower portion is embedded in the foundation pillar. Further, the diameter of the through hole may be twice or less the diameter of the reinforcing bar. Further, a plurality of through holes are arranged side by side in the horizontal direction, and the distance between adjacent through holes may be 2.5 times or more the diameter of the reinforcing bar.

上記の構成によれば、H形鋼のウェブに形成された貫通孔が鉄筋コンクリート梁のジベル(ずれ止め)として機能するため、シアーコネクタのような追加の部材を取り付けることなく、鉄骨鉄筋コンクリート柱に対する鉄筋コンクリート梁の下方へのずれを防止することができる。さらに貫通孔のジベル効果は、貫通孔に鉄筋を通すことでさらに強度上昇が期待できる。すなわち、鉄筋コンクリート梁の鉄筋を貫通孔に通すことでより強固な柱と梁のずれ止めの機構を構築することができる。 According to the above configuration, the through holes formed in the web of the H-section steel function as the gibber (slip prevention) of the reinforced concrete beam, so that the reinforced concrete for the reinforced concrete column without attaching an additional member such as a shear connector. It is possible to prevent the beam from shifting downward. Further, the gibber effect of the through hole can be expected to further increase the strength by passing a reinforcing bar through the through hole. That is, by passing the reinforcing bar of the reinforced concrete beam through the through hole, a stronger column and beam slip prevention mechanism can be constructed.

本発明の一実施形態に係る地下躯体構造の断面図である。It is sectional drawing of the underground skeleton structure which concerns on one Embodiment of this invention. 図1の鉄骨鉄筋コンクリート柱付近の拡大図である。It is an enlarged view of the vicinity of the steel-framed reinforced concrete column of FIG. 図2の異なる方向の断面図である。2 is a cross-sectional view of FIG. 2 in different directions.

以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 A preferred embodiment of the present invention will be described in detail below with reference to the accompanying drawings. In the present specification and the drawings, components having substantially the same functional configuration are designated by the same reference numerals, so that duplicate description will be omitted.

図1は、本発明の一実施形態に係る地下躯体構造の簡略化された断面図である。図1に示されているように、地下躯体構造1は、鉄骨鉄筋コンクリート柱2と、鉄筋コンクリート梁3と、鉄筋コンクリート床4と、鉄筋コンクリート壁5とを含む。鉄筋コンクリート梁3は鉄骨鉄筋コンクリート柱2に接合され、鉄筋コンクリート床4は鉄筋コンクリート梁3および鉄筋コンクリート壁5に接合される。鉄骨鉄筋コンクリート柱2は、H形鋼21からなる鉄骨を含む。 FIG. 1 is a simplified cross-sectional view of an underground skeleton structure according to an embodiment of the present invention. As shown in FIG. 1, the underground skeleton structure 1 includes a steel-framed reinforced concrete column 2, a reinforced concrete beam 3, a reinforced concrete floor 4, and a reinforced concrete wall 5. The reinforced concrete beam 3 is joined to the reinforced concrete column 2, and the reinforced concrete floor 4 is joined to the reinforced concrete beam 3 and the reinforced concrete wall 5. The steel-framed reinforced concrete column 2 includes a steel frame made of H-shaped steel 21.

図示されているように、本実施形態において、鉄筋コンクリート梁3は、H形鋼21の断面における弱軸方向(図中のy方向)にのみ延びる。ここで、本明細書において、部材の断面における弱軸方向は、断面の対称軸のうち、断面二次モーメントが最小になる軸の方向を意味する。H形鋼21の場合は、断面においてウェブの中央を通過しウェブに対して垂直な軸の方向が弱軸方向になる。これによって、後述するように、鉄筋コンクリート梁3の主筋がH形鋼21の弱軸方向にのみ延び、主筋を構成する少なくとも一部の鉄筋をH形鋼21のウェブに形成された貫通孔に挿通することが可能になる。 As shown in the figure, in the present embodiment, the reinforced concrete beam 3 extends only in the weak axis direction (y direction in the drawing) in the cross section of the H-shaped steel 21. Here, in the present specification, the weak axis direction in the cross section of the member means the direction of the axis of symmetry of the cross section in which the moment of inertia of area is minimized. In the case of the H-section steel 21, the direction of the axis that passes through the center of the web and is perpendicular to the web in the cross section is the weak axis direction. As a result, as will be described later, the main bar of the reinforced concrete beam 3 extends only in the weak axis direction of the H-shaped steel 21, and at least a part of the reinforcing bars constituting the main bar is inserted into the through hole formed in the web of the H-shaped steel 21. It becomes possible to do.

地下躯体構造1では、鉄筋コンクリート梁3が図中のy方向に直交する図中のx方向、すなわちH形鋼21の断面における強軸方向には延びていない。しかしながら、地下躯体構造1において、鉄筋コンクリート床4は地盤を順次根切りしながら構築されるため、地盤を構築時の支持体として利用することができる。従って、地下躯体構造1の構築にあたって、x方向に鉄筋コンクリート梁3が延びていなくても鉄筋コンクリート床4の施工は容易である。また、地下躯体構造1では、地震時などに発生する大きな水平荷重が鉄筋コンクリート壁5を介して地盤へと逃がされるため、x方向に鉄筋コンクリート梁3が延びていないことは地下躯体構造1の耐荷重性に実質的な影響を及ぼさない。 In the underground skeleton structure 1, the reinforced concrete beam 3 does not extend in the x direction in the figure orthogonal to the y direction in the figure, that is, in the strong axis direction in the cross section of the H-shaped steel 21. However, in the underground skeleton structure 1, since the reinforced concrete floor 4 is constructed while sequentially cutting the ground, the ground can be used as a support at the time of construction. Therefore, in constructing the underground skeleton structure 1, it is easy to construct the reinforced concrete floor 4 even if the reinforced concrete beam 3 does not extend in the x direction. Further, in the underground skeleton structure 1, a large horizontal load generated at the time of an earthquake or the like is released to the ground through the reinforced concrete wall 5, so that the reinforced concrete beam 3 does not extend in the x direction is the load capacity of the underground skeleton structure 1. Has no substantial effect on sex.

上記のような地下躯体構造1の構築にあたっては、まずH形鋼21を地盤に掘削された縦穴に建て込む。例えば、縦穴の下部にセメントミルクを注入した上でH形鋼21を縦穴に建て込むことによって、下部が基礎台柱に埋め込まれた構真柱が形成される。次に、地盤を順次根切りしながら、地下躯体構造1の各階の室空間を構成する鉄骨鉄筋コンクリート柱2、鉄筋コンクリート梁3、および鉄筋コンクリート床4を構築する。具体的には、H形鋼21の周囲に柱鉄筋を配筋し、根切りによって露出された地盤上に梁鉄筋および床鉄筋を配筋し、その後それぞれの鉄骨および鉄筋の周囲にコンクリートを打設する。既に述べたように、このように地盤を構築時の支持体として利用できるため、鉄筋コンクリート梁3が図中のx方向に延びていなくても鉄筋コンクリート床4の施工は容易である。 In constructing the underground skeleton structure 1 as described above, first, the H-shaped steel 21 is built in a vertical hole excavated in the ground. For example, by injecting cement milk into the lower part of the vertical hole and then building the H-shaped steel 21 in the vertical hole, a structural pillar whose lower part is embedded in the foundation pedestal is formed. Next, the steel-framed reinforced concrete columns 2, the reinforced concrete beams 3, and the reinforced concrete floor 4 that constitute the room space of each floor of the underground skeleton structure 1 are constructed while sequentially cutting the ground. Specifically, column reinforcing bars are arranged around the H-shaped steel 21, beam reinforcing bars and floor reinforcing bars are arranged on the ground exposed by root cutting, and then concrete is cast around the respective steel frames and reinforcing bars. Set up. As described above, since the ground can be used as a support at the time of construction, the reinforced concrete floor 4 can be easily constructed even if the reinforced concrete beam 3 does not extend in the x direction in the drawing.

図2は、図1に示す地下躯体構造における鉄骨鉄筋コンクリート柱付近の拡大図であり、図3は図2の異なる方向の断面図である。図2および図3には、それぞれの図の断面がII−II線およびIII−III線で示されている。図示されているように、鉄骨鉄筋コンクリート柱2は、鉄骨を構成するH形鋼21と、H形鋼21の周囲に配筋される柱鉄筋22と、H形鋼21および柱鉄筋22の周囲に打設されるコンクリート23とを含む。H形鋼21は、フランジ211,212とウェブ213とからなり、ウェブ213には複数の貫通孔214が形成される。本実施形態の場合、貫通孔214は水平方向に2つ並設されていて、図3に示すものの場合、2つの貫通孔214,214の組を異なる高さに複数段設けたもののとなっている。ここで、H形鋼21の断面における弱軸方向(図中のy方向、図1と共通)は、ウェブ213の中央を通過しウェブ213に対して垂直な軸の方向である。従って、ウェブ213に形成される貫通孔214はH形鋼21の弱軸方向に向けて開口する。 FIG. 2 is an enlarged view of the vicinity of the steel-framed reinforced concrete column in the underground skeleton structure shown in FIG. 1, and FIG. 3 is a cross-sectional view of FIG. 2 in different directions. In FIGS. 2 and 3, the cross sections of the respective figures are shown by lines II-II and III-III, respectively. As shown in the figure, the steel-framed reinforced concrete columns 2 are formed around the H-shaped steel 21 constituting the steel frame, the column reinforcing bars 22 arranged around the H-shaped steel 21, and the H-shaped steel 21 and the column reinforcing bars 22. Includes the concrete 23 to be cast. The H-section steel 21 is composed of flanges 211, 212 and web 213, and a plurality of through holes 214 are formed in the web 213. In the case of the present embodiment, two through holes 214 are arranged side by side in the horizontal direction, and in the case of the one shown in FIG. 3, a set of two through holes 214 and 214 is provided in a plurality of stages at different heights. There is. Here, the weak axis direction (y direction in the drawing, common to FIG. 1) in the cross section of the H-section steel 21 is the direction of the axis that passes through the center of the web 213 and is perpendicular to the web 213. Therefore, the through hole 214 formed in the web 213 opens in the weak axis direction of the H-shaped steel 21.

また、図示されているように、鉄筋コンクリート梁3は、梁鉄筋31と、梁鉄筋31の周囲に打設されるコンクリート32とを含む。梁鉄筋31は主筋311と肋筋312とを含む。上述の通り、本実施形態において鉄筋コンクリート梁3はH形鋼21の断面における弱軸方向にのみ延びるため、鉄筋コンクリート梁3の主筋311もH形鋼21の断面における弱軸方向にのみ延び、主筋311を構成する鉄筋311AをH形鋼21のウェブ213に形成された貫通孔214に挿通することが可能になる。このように、鉄筋コンクリート梁3の主筋311を構成する鉄筋311Aを貫通孔214に挿通することによって、貫通孔214が、鉄筋コンクリート梁3が荷重によって鉄骨鉄筋コンクリート柱2に対して下方にずれることを防止するジベル(ずれ止め)として機能する。 Further, as shown in the drawing, the reinforced concrete beam 3 includes a beam reinforcing bar 31 and a concrete 32 cast around the beam reinforcing bar 31. The beam reinforcing bar 31 includes a main reinforcing bar 311 and a rib reinforcing bar 312. As described above, in the present embodiment, since the reinforced concrete beam 3 extends only in the weak axis direction in the cross section of the H-shaped steel 21, the main bar 311 of the reinforced concrete beam 3 also extends only in the weak axis direction in the cross section of the H-shaped steel 21, and the main bar 311 It becomes possible to insert the reinforcing bar 311A constituting the above through the through hole 214 formed in the web 213 of the H-shaped steel 21. In this way, by inserting the reinforcing bar 311A constituting the main bar 311 of the reinforced concrete beam 3 into the through hole 214, the through hole 214 prevents the reinforced concrete beam 3 from shifting downward with respect to the steel-framed reinforced concrete column 2 due to the load. Functions as a gibber (anti-slip).

ここで、鉄骨鉄筋コンクリート柱2のコンクリート23、および鉄筋コンクリート梁3のコンクリート32が打設された後、H形鋼21および鉄筋311Aはいずれもコンクリート中に定着する。従って、鉄筋311Aと貫通孔214との間に隙間がある場合にも、貫通孔214はジベルとして機能することができる。具体的には、例えば、貫通孔214の直径が鉄筋311Aの直径の2倍以下であれば、貫通孔214はジベルとして機能することができる。 Here, after the concrete 23 of the steel-framed reinforced concrete column 2 and the concrete 32 of the reinforced concrete beam 3 are cast, both the H-shaped steel 21 and the reinforcing bar 311A are fixed in the concrete. Therefore, the through hole 214 can function as a gibber even when there is a gap between the reinforcing bar 311A and the through hole 214. Specifically, for example, if the diameter of the through hole 214 is twice or less the diameter of the reinforcing bar 311A, the through hole 214 can function as a gibber.

なお、図示された例において、主筋311を構成する別の鉄筋311Bは貫通孔214に挿通されていない。このように、本実施形態では、鉄筋コンクリート梁3の主筋311を構成する少なくとも一部の鉄筋が貫通孔214に挿通されていればよい。他の実施形態では、鉄筋コンクリート梁の主筋を構成する全部の鉄筋が、H形鋼のウェブに形成された貫通孔に挿通されていてもよい。
また、水平方向に並設された隣り合う貫通孔214,214の間の間隔d(貫通孔214の周縁間の間隔)は鉄筋の定着を確保する観点では主筋311の直径の2.5倍以上とすることが望ましい。これらの貫通孔214,214の間の間隔は、複数併設される鉄筋の間にコンクリートの骨材が十分に充填されて、鉄筋の間のコンクリートが所定の強度をより安定的に発揮するために必要な間隔である。隣り合う貫通孔214,214の間の間隔が2.5倍以上の場合には、鉄筋の間にコンクリートの骨材が十分に充填されるため、鉄筋の定着をより安定的に確保することができ、これにより、鉄筋の間のコンクリートの強度が不足することによる早期の割裂破壊や付着破壊が一層安定的に防止される。なお、隣り合う貫通孔間の間隔の上限については特に規定はないが、H形鋼のウェブの幅や貫通孔の大きさ、鉄筋の直径等の諸条件に応じた可能な範囲で適宜設定することができる。
In the illustrated example, another reinforcing bar 311B constituting the main bar 311 is not inserted through the through hole 214. As described above, in the present embodiment, at least a part of the reinforcing bars constituting the main reinforcing bar 311 of the reinforced concrete beam 3 may be inserted through the through hole 214. In another embodiment, all the reinforcing bars constituting the main reinforcing bar of the reinforced concrete beam may be inserted through the through holes formed in the web of the H-section steel.
Further, the distance d between adjacent through holes 214 and 214 arranged side by side in the horizontal direction (distance between the peripheral edges of the through holes 214) is 2.5 times or more the diameter of the main bar 311 from the viewpoint of ensuring the fixation of the reinforcing bar. Is desirable. The spacing between these through holes 214 and 214 is such that the aggregate of concrete is sufficiently filled between the plurality of reinforcing bars, and the concrete between the reinforcing bars exerts a predetermined strength more stably. The required interval. When the distance between the adjacent through holes 214 and 214 is 2.5 times or more, the concrete aggregate is sufficiently filled between the reinforcing bars, so that the fixing of the reinforcing bars can be secured more stably. This makes it possible to more stably prevent early split fracture and adhesion fracture due to insufficient strength of concrete between the reinforcing bars. The upper limit of the distance between adjacent through holes is not particularly specified, but it is appropriately set within the possible range according to various conditions such as the width of the web of the H-section steel, the size of the through holes, and the diameter of the reinforcing bar. be able to.

上記で説明したような本実施形態の構成によれば、シアーコネクタやガセット、ブラケット、スチフナのような梁取付用の補強部材を用いることなく、鉄筋コンクリート梁3が荷重によって鉄骨鉄筋コンクリート柱2に対して下方にずれることを防止できる。梁取付用の補強部材が不要になることによって、例えば梁鉄筋31とシアーコネクタとが柱梁接合部で交錯することがなく、現場での配筋やコンクリート打設の工程が簡略化される。また、梁取付用の補強部材がH形鋼の断面から突出することがないため、H形鋼を地盤に掘削された縦穴に建て込むときに穴径を最小化することができる。 According to the configuration of the present embodiment as described above, the reinforced concrete beam 3 is loaded against the steel-framed reinforced concrete column 2 without using a reinforcing member for beam mounting such as a shear connector, a gusset, a bracket, and a stiffener. It is possible to prevent it from shifting downward. By eliminating the need for a reinforcing member for attaching the beam, for example, the beam reinforcing bar 31 and the shear connector do not intersect at the column-beam joint, and the process of bar arrangement and concrete placement at the site is simplified. Further, since the reinforcing member for mounting the beam does not protrude from the cross section of the H-shaped steel, the hole diameter can be minimized when the H-shaped steel is built into the vertical hole excavated in the ground.

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範囲内において、各種の変形例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。 Although the preferred embodiments of the present invention have been described in detail with reference to the accompanying drawings, the present invention is not limited to such examples. It is clear that a person having ordinary knowledge in the field of technology to which the present invention belongs can come up with various modifications or modifications within the scope of the technical ideas described in the claims. , These are also naturally understood to belong to the technical scope of the present invention.

1…地下躯体構造、2…鉄骨鉄筋コンクリート柱、3…鉄筋コンクリート梁、4…鉄筋コンクリート床、5…鉄筋コンクリート壁、21…H形鋼、213…ウェブ、214…貫通孔、22…柱鉄筋、31…梁鉄筋、311…主筋群、311A,311B…鉄筋。 1 ... Underground skeleton structure, 2 ... Reinforced concrete columns, 3 ... Reinforced concrete beams, 4 ... Reinforced concrete floors, 5 ... Reinforced concrete walls, 21 ... H-shaped steel, 213 ... Web, 214 ... Through holes, 22 ... Reinforcing bars, 31 ... Beams Reinforcing bar, 311 ... Main bar group, 311A, 311B ... Reinforcing bar.

Claims (4)

H形鋼からなる鉄骨を含む鉄骨鉄筋コンクリート柱と、
前記H形鋼の断面における弱軸方向にのみ延びて前記鉄骨鉄筋コンクリート柱に接合される鉄筋コンクリート梁と
を備え、
前記鉄筋コンクリート梁の主筋を構成する少なくとも一部の鉄筋は、前記H形鋼のウェブに形成された貫通孔に挿通される地下躯体構造。
Steel-framed reinforced concrete columns including steel frames made of H-shaped steel,
It is provided with a reinforced concrete beam that extends only in the weak axis direction in the cross section of the H-section steel and is joined to the steel-framed reinforced concrete column.
An underground skeleton structure in which at least a part of the reinforcing bars constituting the main reinforcing bar of the reinforced concrete beam is inserted into a through hole formed in the web of the H-shaped steel.
前記H形鋼は、下部が基礎台柱に埋め込まれた構真柱を形成する、請求項1の地下躯体構造。 The underground skeleton structure according to claim 1, wherein the H-section steel forms a structural pillar whose lower portion is embedded in a foundation pedestal. 前記貫通孔の直径は、前記鉄筋の直径の2倍以下である、請求項1または請求項2に記載の地下躯体構造。 The underground skeleton structure according to claim 1 or 2, wherein the diameter of the through hole is not more than twice the diameter of the reinforcing bar. 前記貫通孔は水平方向に複数並設されていて、隣り合う前記貫通孔の間の間隔は、前記鉄筋の直径の2.5倍以上である、請求項1〜3のいずれか1項に記載の地下躯体構造。 The one according to any one of claims 1 to 3, wherein a plurality of the through holes are arranged side by side in the horizontal direction, and the distance between the adjacent through holes is 2.5 times or more the diameter of the reinforcing bar. Underground skeleton structure.
JP2019058907A 2019-03-26 2019-03-26 underground structure Active JP7442268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019058907A JP7442268B2 (en) 2019-03-26 2019-03-26 underground structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019058907A JP7442268B2 (en) 2019-03-26 2019-03-26 underground structure

Publications (2)

Publication Number Publication Date
JP2020159035A true JP2020159035A (en) 2020-10-01
JP7442268B2 JP7442268B2 (en) 2024-03-04

Family

ID=72642217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019058907A Active JP7442268B2 (en) 2019-03-26 2019-03-26 underground structure

Country Status (1)

Country Link
JP (1) JP7442268B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5367924A (en) * 1976-11-30 1978-06-16 Taisei Corp Method of working reinforcing bars in reinforcing frame works
JPH0372119A (en) * 1989-08-11 1991-03-27 Takenaka Komuten Co Ltd Constructing method for underground construction provided with column having capital using reverse-driving method
JPH05156654A (en) * 1991-12-10 1993-06-22 Takenaka Komuten Co Ltd Top-down construction method
JP2000073496A (en) * 1998-09-01 2000-03-07 Maeda Corp Method for anchoring and jointing reinforcing bar
JP2000234386A (en) * 1999-02-15 2000-08-29 Maeda Corp Column-beam junction reinforcing method for steel encased reinforced concrete
JP2002088909A (en) * 2000-09-13 2002-03-27 Nippon Steel Corp Joint structure of steel column and reinforced concrete beam
CN105604182A (en) * 2016-01-20 2016-05-25 重庆大学 Round steel tube confined reinforced concrete column-steel beam frame joint with through steel beam

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4285212B2 (en) 2003-11-21 2009-06-24 富士ゼロックス株式会社 Additive for electrophotographic photoreceptor, electrophotographic photoreceptor, image forming apparatus and process cartridge
US7500807B2 (en) 2006-04-25 2009-03-10 Arcelormittal Commercial S.A.R.L. Method of construction using sheet piling sections
JP5156654B2 (en) 2009-01-20 2013-03-06 本田技研工業株式会社 Imaging control device
JP5367924B1 (en) 2012-03-23 2013-12-11 株式会社Neomaxマテリアル Solder-coated ball and method for manufacturing the same
JP2018100508A (en) 2016-12-20 2018-06-28 大成建設株式会社 Building construction method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5367924A (en) * 1976-11-30 1978-06-16 Taisei Corp Method of working reinforcing bars in reinforcing frame works
JPH0372119A (en) * 1989-08-11 1991-03-27 Takenaka Komuten Co Ltd Constructing method for underground construction provided with column having capital using reverse-driving method
JPH05156654A (en) * 1991-12-10 1993-06-22 Takenaka Komuten Co Ltd Top-down construction method
JP2000073496A (en) * 1998-09-01 2000-03-07 Maeda Corp Method for anchoring and jointing reinforcing bar
JP2000234386A (en) * 1999-02-15 2000-08-29 Maeda Corp Column-beam junction reinforcing method for steel encased reinforced concrete
JP2002088909A (en) * 2000-09-13 2002-03-27 Nippon Steel Corp Joint structure of steel column and reinforced concrete beam
CN105604182A (en) * 2016-01-20 2016-05-25 重庆大学 Round steel tube confined reinforced concrete column-steel beam frame joint with through steel beam

Also Published As

Publication number Publication date
JP7442268B2 (en) 2024-03-04

Similar Documents

Publication Publication Date Title
JP6166560B2 (en) Extension structure of seismic isolation building
JP2013256793A (en) Construction method for underground structure, and underground structure
JP6122740B2 (en) Seismic reinforcement structure
JP3690437B2 (en) Seismic reinforcement structure for existing buildings
KR101006411B1 (en) System and method for underground downward construction using concrete filled tube
JP4873981B2 (en) Seismic reinforcement structure for existing buildings
KR101521946B1 (en) Enlarged capital of steel framed reinforced concrete column
JP6768477B2 (en) How to build an underground structure
JP6704801B2 (en) Rebuilding building with existing underground outer wall
JP2020159035A (en) Underground skeleton structure
JP2016205054A (en) Steel reinforced concrete column and building using the same
JP2847447B2 (en) Reverse construction method
JP7274332B2 (en) junction structure
JP2018017041A (en) Foundation structure, and foundation construction method for the same
JP6684088B2 (en) Seismic retrofitting structure and method for existing buildings
KR101193074B1 (en) Method of strengthening foundation where above main structure is reinforced with external load bearing precast concrete wall panel
JP2016199915A (en) Foundation structure and foundation construction method
JP3116767B2 (en) Existing building seismic isolation structuring method
KR20120037222A (en) Precast concrete member with junction for reinforcing earthquake resistance of building and method of constructing using it
KR102286505B1 (en) Seismic retrofit structure using existing slab and construction method thereof
JP6877612B2 (en) Rebuilding building with existing underground outer wall
JP5541520B2 (en) Underground construction
JP7283659B2 (en) Mountain retaining structure
KR20130051183A (en) Seismic resistant reinforcement structures and the reinforcing method using it
JP5433035B2 (en) Seismic reinforcement structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220915

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221213

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20230310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240220

R150 Certificate of patent or registration of utility model

Ref document number: 7442268

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150