JP7440191B2 - 荷電粒子ビーム偏向装置および粒子線治療システム - Google Patents

荷電粒子ビーム偏向装置および粒子線治療システム Download PDF

Info

Publication number
JP7440191B2
JP7440191B2 JP2021007099A JP2021007099A JP7440191B2 JP 7440191 B2 JP7440191 B2 JP 7440191B2 JP 2021007099 A JP2021007099 A JP 2021007099A JP 2021007099 A JP2021007099 A JP 2021007099A JP 7440191 B2 JP7440191 B2 JP 7440191B2
Authority
JP
Japan
Prior art keywords
particle beam
coil
charged particle
switching
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021007099A
Other languages
English (en)
Other versions
JP2022111578A (ja
Inventor
貴啓 山田
和也 永嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2021007099A priority Critical patent/JP7440191B2/ja
Publication of JP2022111578A publication Critical patent/JP2022111578A/ja
Application granted granted Critical
Publication of JP7440191B2 publication Critical patent/JP7440191B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radiation-Therapy Devices (AREA)

Description

本発明は、荷電粒子ビーム偏向装置および粒子線治療システムに関し、特に、磁場によって荷電粒子ビームを偏向させる技術に関する。
陽子線や炭素イオン線等の荷電粒子ビームを患部に照射する粒子線治療が広く行われている。粒子線治療を行う粒子線治療システムでは、加速器によって必要なエネルギーを有するまで加速された荷電粒子に基づく荷電粒子ビームが、ビーム輸送装置によって照射ノズルまで輸送され、照射ノズルから患部に照射される。
粒子線治療では、荷電粒子ビームの照射位置を変更しながら患部に照射するスキャニング照射が行われることがある。スキャニング照射では、荷電粒子ビームのエネルギーを変更することで荷電粒子ビームの照射位置の深さが変更される。また、荷電粒子ビームを横切る方向の磁場を発生させて荷電粒子ビームを偏向させることで、深さ方向に垂直な面内における照射位置が変更される。そのため、加速器には、荷電粒子ビームのエネルギーを制御する装置が備えられ、照射ノズルには、荷電粒子ビームを横切る磁場を発生させる走査電磁石が備えられる。
以下の特許文献1には、二次元的に荷電粒子ビームを走査する走査電磁石が記載されている。この走査電磁石では、2系統のコイルによって磁場が制御され、荷電粒子ビームが偏向する。2系統のコイルのそれぞれは、各コイルに対して個別に設けられた電源に接続されている。
特開2020-41971号公報
一般に、荷電粒子ビームを迅速に走査させようとする程、走査電磁石に印加する電圧および走査電磁石に流す電流は大きくなる。したがって、荷電粒子ビームの照射位置を迅速に変更し、荷電粒子ビームの応答性を良好にするためには、供給可能な電力が大きい電源が必要となる。近年では、比較的小さい建造物内に粒子線治療システムを設置する必要性が高まっており、粒子線治療システムに用いられる走査電磁石およびその周辺装置の構成を単純化し小型化することが望まれている。
本発明の目的は、荷電粒子ビームを偏向させる荷電粒子ビーム偏向装置の構成を単純化することである。
本発明は、荷電粒子ビームを偏向させる荷電粒子ビーム偏向装置であって、一端が共通に接続され、異なる方向の磁場を発生する第1コイルおよび第2コイルと、前記第1コイルと前記第2コイルとの共通接続端、前記第1コイルの他端および前記第2コイルの他端のそれぞれにおける電位をスイッチングする電磁石制御装置と、を備えることを特徴とする。
本発明によれば、荷電粒子ビームを偏向させる荷電粒子ビーム偏向装置の構成を単純化することができる。
粒子線治療システムの全体構成を示す図である。 照射ノズルおよびその周辺装置を示す図である。 走査電磁石の断面図である。 荷電粒子ビーム偏向装置の回路構成を示す図である。 走査電磁石の各コイルが発生する磁場と、荷電粒子ビームが偏向する方向を模式的に示す図である。 走査電磁石の各コイルが発生する磁場と、荷電粒子ビームが偏向する方向を模式的に示す図である。 電位V1~V3、端子間電圧V1-V2および端子間電圧V2-V3の関係を示す図である。 各電位状態に対応する各端子間電圧の値を(V1-V2)(V2―V3)平面に示した図である。 従来の電磁石制御装置の例を示す図である。 粒子線治療システムの全体構成を示す図である。 軌道補正電磁石の断面図である。
本発明の実施形態に係る粒子線治療システムが、各図面を参照しながら以下に説明される。複数の図面に示された同一の事項については同一の符号が付されており、説明の重複が避けられている。本明細書における「上」、「下」、「右」、「左」等の用語は、図面における方向を示す。これらの用語は説明の便宜上のものであり、各構成要素を配置する際の姿勢を限定するものではない。
図1には、本発明の第1実施形態に係る粒子線治療システム1の全体構成が示されている。粒子線治療システム1は、患者51の患部に照射ノズル30から放射線を照射するシステムである。粒子線治療システム1は、荷電粒子ビームを加速する加速器10、加速された荷電粒子ビームを照射ノズル30まで輸送するビーム輸送装置20、患部に荷電粒子ビームを照射する照射ノズル30、および治療台50を備えている。
粒子線治療システム1は、さらに、全体制御装置40、加速器・ビーム輸送系制御装置41、照射ノズル制御装置42およびディスプレイ43を備えている。全体制御装置40、加速器・ビーム輸送系制御装置41および照射ノズル制御装置42は、プロセッサによって構成されてよい。全体制御装置40、加速器・ビーム輸送系制御装置41および照射ノズル制御装置42を構成するプロセッサは、粒子線治療システム1が備えるメモリに記憶されたプログラムや外部から読み込まれたプログラムを実行することで、制御対象の装置を制御する処理を実行する。ディスプレイ43は、全体制御装置40の制御に応じて、粒子線治療システム1の操作に必要な情報等を表示する。
加速器10は、入射器11とシンクロトロン加速器12を備えている。加速器10で光速の6割~7割程度まで加速され、取り出された荷電粒子ビームは、ビーム輸送装置20に配置された偏向電磁石21により真空中を偏向しながら照射ノズル30まで輸送される。荷電粒子ビームは、照射ノズル30で照射領域の形状に合致するように整形され、照射対象に照射される。照射対象は、例えば治療台50に横たえられた患者51の患部である。
次に、照射ノズル30およびその周辺装置が図2を参照して説明される。図2には粒子線スキャニング用の照射ノズル30の構成が示されている。照射ノズル30では、荷電粒子ビーム90の通過方向に対して垂直な二次元平面内に荷電粒子ビーム90が走査される。走査電磁石60によって走査された荷電粒子ビーム90は、患部に照射される。
線量モニタ31は、照射される荷電粒子ビーム90の線量を演算するために、荷電粒子ビーム90の通過によって生じた電子を収集するモニタである。線量モニタ31の検出信号(電子を収集して得られたパルス信号)は線量モニタ制御装置33に出力される。
線量モニタ制御装置33および位置モニタ制御装置34は、プロセッサによって構成されてよい。線量モニタ制御装置33および位置モニタ制御装置34を構成するプロセッサは、粒子線治療システム1が備えるメモリに記憶されたプログラムや外部から読み込まれたプログラムを実行することで、それぞれの制御対象の装置を制御する処理を実行する。線量モニタ制御装置33は、線量モニタ31から出力された検出信号に基づいて照射量を演算し、演算した照射量を照射ノズル制御装置42に出力する。
位置モニタ32は荷電粒子ビーム90の照射位置(例えば重心の位置)を演算するために、荷電粒子ビーム90の通過によって生じた電子を収集するためのモニタである。位置モニタ32の検出信号(電子を収集して得られたパルス信号)は位置モニタ制御装置34に出力される。
位置モニタ制御装置34は、位置モニタ32から出力された検出信号に基づいて照射線量をカウントし、演算したカウント値を照射ノズル制御装置42に出力する。
照射ノズル制御装置42は、位置モニタ制御装置34から出力された信号に基づき荷電粒子ビーム90の通過位置を求め、求めた通過位置のデータから照射位置および幅の演算を行い、荷電粒子ビーム90の照射位置を確認する。さらには、照射ノズル制御装置42は、線量モニタ制御装置33から出力された検出信号に応じて荷電粒子ビーム90の照射の制御を進行する。
図3には走査電磁石60の断面図が示されている。走査電磁石60は2層のコイル61Aおよび61Bとヨーク62を備えている。ヨーク62は磁性体によって円筒状に形成されている。ヨーク62は、円柱状の中空部を有するその他の形状を有してもよい。コイル61Bはヨーク62の内壁面に沿って形成され、コイル61Aはコイル61Bの内側に形成されている。
コイル61Aおよび61Bはコサインθ型の巻線構造を有している。すなわち、コイル61Aを形成する導体は、電流分布がcosθ1またはcosθ1に近似した値に比例するように配置されている。ただし、ヨーク62の中空部の中心軸から見て右方向を0°とし、左方向を180°とし、反時計回り方向を正として方位角θ1が定義される。中心軸に方向を揃えて延びる複数の導線の区間をコイル61Aが含む場合は、左右において導線が密に配置され、上下において導線が疎に配置される。
コイル61Bを形成する導体は、電流分布がcosθ2またはcosθ2に近似した値に比例するように配置されている。ただし、ヨーク62の中空部の中心軸から見て上方向を0°とし、下方向を180°とし、反時計回り方向を正として方位角θ2が定義される。中心軸に方向を揃えて延びる複数の導線の区間をコイル61Bが含む場合は、上下において導線が密に配置され、左右において導線が疎に配置される。
コイル61Aに励磁電流を流した場合にヨーク62内に発生する磁場92Aと、コイル61Bに励磁電流を流した場合にヨーク62内に発生する磁場92Bは中心軸の方向に対して垂直であり、これらの磁場は直交する。コイル61Aおよび60Bのそれぞれに流れる励磁電流の大きさを調整することで、コイル61Aによる磁場92Aとコイル61Bによる磁場92Bのそれぞれの大きさが調整され、ヨーク62内の合成磁場の方向が調整される。各コイルを形成する導体がコサインθ型の巻線構造を有していることで、各コイルから発生する磁場の横切り方向分布が一様になり、合成磁場の方向が高精度で制御される。ここで、磁場の横切り方向分布は、中心軸に垂直な面内において、磁場の方向に直交する方向に見たときの磁場の分布として定義される。
図4には、粒子線治療システム1に含まれる荷電粒子ビーム偏向装置2の回路構成が示されている。荷電粒子ビーム偏向装置2は、コイル61Aおよび61Bと、コイル61Aおよび61Bに流れる励磁電流を制御する電磁石制御装置70を備えている。コイル61Aおよび61Bは一端が共通に接続され、共通接続端P2と、コイル61Aおよび61Bのそれぞれの他端P1およびP3が、電磁石制御装置70に接続されている。
電磁石制御装置70は、スイッチング回路71、直流電源回路72およびコントローラ73を備えている。スイッチング回路71は、スイッチングアームAu、AvおよびAwを備えている。各スイッチングアームは、直列接続された上スイッチング素子74Uおよび下スイッチング素子74Lを備えている。図4に示されている例では、上スイッチング素子74Uおよび下スイッチング素子74Lのそれぞれにはバイポーラトランジスタが用いられている。この場合、上スイッチング素子74Uのエミッタと下スイッチング素子74Lのコレクタを接続することが直列接続として定義される。各スイッチング素子は、エミッタにカソードが接続され、コレクタにアノードが接続されたダイオードを備えている。各スイッチング素子には、バイポーラトランジスタの他、FET(Field Effect Transistor)、サイリスタ等、その他の半導体素子が用いられてもよい。
スイッチングアームAu、AvおよびAwは並列接続されている。各スイッチングアームの上端は直流電源回路72の正極端子に接続され、下端は直流電源回路72の負極端子に接続されている。
スイッチングアームAvを構成する上スイッチング素子74Uと下スイッチング素子74Lとの直列接続点には、コイル61Aおよび61Bの共通接続端P2が接続されている。スイッチングアームAuを構成する上スイッチング素子74Uと下スイッチング素子74Lとの直列接続点には、コイル61Aの上端P1(共通接続端とは反対側の一端)が接続されている。スイッチングアームAwを構成する上スイッチング素子74Uと下スイッチング素子74Lとの直列接続点には、コイル61Bの下端P3(共通接続端とは反対側の一端)が接続されている。
すなわち、コイル61Aは、3つのスイッチングアームAu、AvおよびAwのうちの1つであるスイッチングアームAu(第1スイッチングアーム)の直列接続点と、別の1つであるスイッチングアームAv(第2スイッチングアーム)の直列接続点との間に接続されている。コイル61Bは、スイッチングアームAvの直列接続点と、3つのスイッチングアームAu、Av、およびAwのうちの残りの1つであるスイッチングアームAw(第3スイッチングアーム)の直列接続点との間に接続されている。
直流電源回路72は、正極端子の電位をハイ電位V、負極端子の電位をロー電位Vとして、正極端子と負極端子から直流電圧を出力する。コントローラ73は、上記の照射ノズル制御装置42に含まれている。コントローラ73は、各スイッチングアームが備える上スイッチング素子74Uおよび下スイッチング素子74Lのそれぞれをオンからオフ、あるいはオフからオンにしてスイッチングをする。
これによって、コイル61Aの上端P1、共通接続端P2およびコイル61Bの下端P3の電位がハイ電位Vまたはロー電位Vにスイッチングされ、コイル61Aおよび61Bのそれぞれの端子間電圧(端子間電位差)がスイッチングされる。このような端子間電圧のスイッチングによって、コイル61Aおよびコイル61Bに流れる励磁電流が制御される。
図5には、走査電磁石60のコイル61Aおよび61Bが発生する磁場92Aおよび92Bと、走査電磁石60のコイル61Aおよび61Bによって荷電粒子ビーム90が偏向する方向が、模式的に示されている。中心軌道91は磁場が発生していない場合の荷電粒子ビーム90の軌道である。x軸およびy軸は、中心軌道91に垂直な面内におけるアイソセンターで直交する2軸である。アイソセンターは、荷電粒子ビーム90が集中的に照射される点である。x軸は水平方向に延び、y軸は鉛直方向に延びている。
偏向量93Aおよび偏向量93Bは、それぞれ、磁場92Aおよび92Bによって荷電粒子ビーム90が走査される方向への偏向量を示している。なお、磁場および偏向量はいずれもベクトル量である。磁場の大きさは、例えば、磁束密度(Wb/m)、磁界(A/m)等で表されてよい。偏向量の大きさは、例えば、偏向した荷電粒子ビーム90が中心軌道91に対してなす角度として定義されてよい。
磁場92Aおよび92Bを示す破線の矢印は、図4に示されているコイル61Aの上端から下端に向かって直流電流I1が流れ、コイル61Bの上端から下端に向かって直流電流I2が流れた場合の向きを示している。偏向量93Aおよび93Bを示す矢印は、図4に示されるコイル61Aの上端から下端に向かって直流電流I1が流れ、コイル61Bの上端から下端に向かって直流電流I2が流れた場合に、荷電粒子ビーム90が偏向される方向を示している。x軸正方向を基準として、偏向量93Aの方位が135°となり、偏向量93Bの方位が45°となる姿勢で走査電磁石60が配置されている。走査電磁石60による総合的な走査方向は、偏向量93Aおよび93Bをベクトル合成して得られる偏向量の方向となる。
図6には、中心軌道91を軸として走査電磁石60を図5に対して時計回りに90°だけ回転させて配置した場合の各コイルが発生する磁場と、各コイルによって荷電粒子ビーム90が偏向する方向が模式的に示されている。
頭部から胴体に向かう方向がx軸方向に一致する姿勢で、患者51が治療台50上に横たえられる場合、図5に示されている磁場92Aおよび92Bが発生するように走査電磁石60が設置されてよい。すなわち、偏向量93Aおよび偏向量93Bの合成ベクトルがy軸方向を向く姿勢で走査電磁石60が設置されてよい。
一方、患者51が立位や座位の体位にある状態、すなわち、頭部から胴体に向かう方向がy軸方向に一致する姿勢で、荷電粒子ビーム90を患者51に照射する場合、図6に示されるように、偏向量93Aおよび偏向量93Bの合成ベクトルがx軸方向を向く姿勢で走査電磁石60が設置されてよい。
本発明の実施形態に係る電磁石制御装置70によって実行される処理が図7および図8を参照して説明される。図7には、コイル61Aの上端P1の電位V1、共通接続端P2の電位V2、およびコイル61Bの下端P3の電位V3と、コイル61Aの端子間電圧V1-V2およびコイル61Bの端子間電圧V2-V3との関係が示されている。電位V1、V2およびV3のそれぞれは、ハイ電位Vまたはロー電位Vのいずれかとなり得る。電位V1、V2およびV3のそれぞれが、ハイ電位Vまたはロー電位Vのいずれかとなる電位状態として電位状態♯1~♯8がある。コイル61Aの端子間電圧V1-V2およびコイル61Bの端子間電圧V2-V3は、V=V-Vとして、+V、0または-Vの値を取り得る。
電位状態♯1~♯8に対し、端子間電圧V1-V2は、それぞれ、0、0、+V、+V、-V、-V、0、0となる。また、電位状態♯1~♯8に対し、端子間電圧V2-V3は、それぞれ、0、+V、-V、0、0、+V、-V、0となる。
図8には、電位状態♯1~♯8に対応する端子間電圧V1-V2および端子間電圧V2-V3の値が、(V1-V2)(V2―V3)平面に示されている。電位状態♯1~♯8における端子間電圧V1-V2と端子間電圧V2-V3の値は、(V1-V2)(V2―V3)平面上に付された状態点Q1~Q6のうちいずかによって示される。電位状態♯1は点Q1に対応しており、以下の説明において、この対応関係は(#1,Q1)のように表記される。
電位状態#2~#8についての対応関係は、それぞれ、(#2,Q2)、(#3,Q3)、(#4,Q4)、(#5,Q5)、(#6,Q6)、(#7,Q7)、(#8,Q1)と表記される。電磁石制御装置70では、電位状態#1~#8のいずれかの電位状態から他の電位状態にスイッチングアームAu、AvおよびAwの電位状態が時間経過と共に遷移する。これによって、点Q4、点Q2、点Q6、点Q5、点Q7、点Q3、点Q4を順に結ぶ線で囲まれた過渡応答領域に応じた励磁電流が、コイル61Aおよび61Bに流れる。すなわち、点Q1~点Q6のうちの2点間を結ぶ直線を、(V1-V2)軸および(V2―V3)軸にそれぞれ投影させたときの投影長に相当する電圧がスイッチングされ、コイル61Aおよび61Bにそれぞれ印加される。コイル61Aおよび61Bには、そのスイッチングに応じた過渡電流(応答電流)が励磁電流として流れる。
コントローラ73は、電位状態#1~#8のうちいずれかの電位状態から、他の電位状態へと、スイッチングアームAu、AvおよびAwの電位状態を時間経過と共に遷移させる。コントローラ73は、電位状態が遷移するパターンと、各電位状態に滞留する時間を変化させることで、コイル61Aおよびコイル61Bに流れる励磁電流を制御する。
例えば、(V1-V2)(V2―V3)平面上で電位状態を示す状態点が、点Q1と点Q4との間を交互に遷移する場合、コイル61Aの上端から下端に向けて直流電流I1が励磁電流として流れる。これによって、図5の偏向量93Aを示す矢印の方向に荷電粒子ビーム90が偏向される。例えば、点Q1と点Q4との間を交互に状態点が遷移する遷移周期をTとし、遷移周期Tのうちα・T時間だけ状態点を点Q4に滞留させた場合、デューティ比αが大きい程、直流電流I1は大きい値となる。ただし、デューティ比αは0より大きい1未満の値である。したがって、デューティ比αが大きい程、コイル61Aが発する磁場が大きくなり、偏向量93Aが矢印方向に大きくなる。
点Q1と点Q4との間を交互に状態点を遷移させる場合、コントローラ73は、電位状態♯1と電位状態#4が交互に繰り返されるように、スイッチングアームAu、AvおよびAwのスイッチングを行う。あるいは、コントローラ73は、電位状態♯8と電位状態#4が交互に繰り返されるように、スイッチングアームAu、AvおよびAwのスイッチングを行ってもよい。
また、状態点が点Q1と点Q5との間を交互に遷移する場合、コイル61Aの下端から上端に向けて直流電流I1が励磁電流として流れる。これによって、図5の偏向量93Aの矢印の方向とは逆方向に荷電粒子ビーム90が偏向される。例えば、点Q1と点Q5との間を交互に状態点が遷移する遷移周期をTとし、遷移周期Tのうちα・T時間だけ状態点が点Q5に滞留した場合、直流電流I1はデューティ比αが大きい程大きい値となる。したがって、デューティ比αが大きい程、コイル61Aが発する磁場が大きくなり、図5の偏向量93Aが矢印の反対方向に大きくなる。
点Q1と点Q5との間を交互に状態点を遷移させる場合、コントローラ73は、電位状態♯1と電位状態#5が交互に繰り返されるように、スイッチングアームAu、AvおよびAwのスイッチングを行う。スイッチングアームAu、AvおよびAwを電位状態#1にスイッチングする動作は、スイッチングアームAu、AvおよびAwを電位状態#8にスイッチングする動作に置き換えられてもよい。
同様の原理によって、状態点が点Q1と点Q2との間を交互に遷移する場合、図5の偏向量93Bを示す矢印の方向に荷電粒子ビーム90が偏向される。偏向量93Bの大きさは、状態点が点Q1および点Q2のそれぞれに滞留する時間に応じて定まる。そして、状態点が点Q1と点Q7との間を交互に遷移する場合、図5の偏向量93Bの矢印の方向とは逆方向に荷電粒子ビーム90が偏向される。偏向量の大きさは、状態点が点Q1および点Q7のそれぞれに滞留する時間に応じて定まる。
点Q1と点Q2との間を交互に状態点を遷移させる場合、コントローラ73は、電位状態♯1と電位状態#2が交互に繰り返されるように、スイッチングアームAu、AvおよびAwのスイッチングを行う。また、点Q1と点Q7との間を交互に状態点を遷移させる場合、コントローラ73は、電位状態♯1と電位状態#7が交互に繰り返されるように、スイッチングアームAu、AvおよびAwのスイッチングを行う。スイッチングアームAu、AvおよびAwを電位状態#1にスイッチングする動作は、スイッチングアームAu、AvおよびAwを電位状態#8にスイッチングする動作に置き換えられてもよい。
同様の原理によって、状態点が点Q1と点Q6との間を交互に遷移する場合、図5の偏向量93Aとは逆方向の偏向量、および偏向量93Bの合成ベクトルの方向(x軸正方向)に荷電粒子ビーム90が偏向される。偏向量の大きさは、状態点が点Q1および点Q6のそれぞれに滞留する時間に応じて定まる。そして、状態点が点Q1と点Q3との間を交互に遷移する場合、図5の偏向量93A、および偏向量93Bとは逆方向の偏向量の合成ベクトルの方向(x軸負方向)に荷電粒子ビーム90が偏向される。偏向量の大きさは、状態点が点Q1および点Q3のそれぞれに滞留する時間に応じて定まる。
点Q1と点Q6との間を交互に状態点を遷移させる場合、コントローラ73は、電位状態♯1と電位状態#6が交互に繰り返されるように、スイッチングアームAu、AvおよびAwのスイッチングを行う。また、点Q1と点Q3との間を交互に状態点を遷移させる場合、コントローラ73は、電位状態♯1と電位状態#3が交互に繰り返されるように、スイッチングアームAu、AvおよびAwのスイッチングを行う。なお、スイッチングアームAu、AvおよびAwを電位状態#1にスイッチングする動作は、スイッチングアームAu、AvおよびAwを電位状態#8にスイッチングする動作に置き換えられてもよい。
同様の原理によって、状態点が点Q1、点Q4および点Q2のうちの1つから他の1つに遷移するという動作が繰り返される場合、図5の偏向量93Aおよび93Bの合成ベクトルで示される方向に荷電粒子ビーム90が偏向される。荷電粒子ビーム90が偏向する向きおよび偏向量の大きさは、状態点が点Q1、点Q4および点Q2のそれぞれに滞留する時間に応じて定まる。そして、状態点が点Q1、点Q5および点Q7のうちの1つから他の1つに遷移するという動作が繰り返される場合、図5の偏向量93Aおよび93Bの合成ベクトルで示される方向とは逆方向に荷電粒子ビーム90が偏向される。荷電粒子ビーム90が偏向する向きおよび偏向量の大きさは、状態点が点Q1、点Q5および点Q7のそれぞれに滞留する時間に応じて定まる。
点Q1、点Q4および点Q2のうちの1つから他の1つに状態点を遷移させる場合、コントローラ73は、電位状態#1、#4および#2のうちの1つから他の1つに電位状態が変化するように、スイッチングアームAu、AvおよびAwのスイッチングを行う。また、点Q1、点Q5および点Q7のうちの1つから他の1つに状態点を遷移させる場合、コントローラ73は、電位状態#1、#5および#7のうち1つから他の1つに電位状態が変化するように、スイッチングアームAu、AvおよびAwのスイッチングを行う。スイッチングアームAu、AvおよびAwを電位状態#1にスイッチングする動作は、スイッチングアームAu、AvおよびAwを電位状態#8にスイッチングする動作に置き換えられてもよい。
より一般的には、点Q1~点Q7のうちの1つから他の1つに状態点を遷移させ、状態点が各点に滞留する時間を調整することで、荷電粒子ビーム90が偏向される向きと、偏向量の大きさが制御され得る。すなわち、コントローラ73は、電位状態#1~#8のうちの1つから他の1つに電位状態が変化するように、スイッチングアームAu、AvおよびAwのスイッチングを行うことで、荷電粒子ビーム90が偏向される向きと、偏向量の大きさを制御する。
このように、本実施形態に係る荷電粒子ビーム偏向装置2は、一端が共通に接続され、異なる方向の磁場を発生する第1コイルおよび第2コイルとして、コイル61Aおよび61Bを備えている。コイル61Aおよび61Bは、荷電粒子ビームを走査する走査電磁石60に含まれている。また、荷電粒子ビーム偏向装置2は、電磁石制御装置70を備えている。電磁石制御装置70は、コイル61Aおよび61Bの共通接続端P2、コイル61Aの上端P1(第1コイルの他端)およびコイル61Bの下端P3(第2コイルの他端)のそれぞれにおける電位をスイッチングする。
電磁石制御装置70は、共通接続端P2、コイル61Aの上端P1およびコイル61Bの下端P3のそれぞれにおける電位を、複数通りの電位状態#1~#8のうちいずれかに応じた電位に設定する。電磁石制御装置70は、各電位状態に留まる時間を制御することで、コイル61Aおよび61Bに流れる励磁電流を制御する。電位状態#1~#8は、共通接続端P2、コイル61Aの上端およびコイル61Bの下端のそれぞれにおける電位が、ハイ電位Vまたはロー電位Vに個別に設定される状態である。
電磁石制御装置70は、コイル61Aおよび61Bが接続されたスイッチング回路71と、コントローラ73を備えている。スイッチング回路71は、並列に接続された3つのスイッチングアームAu、AvおよびAwを備えている。各スイッチングアームは、直列接続された上スイッチング素子74Uおよび下スイッチング素子74Lを備えている。コントローラ73は、各スイッチングアームのスイッチングによって、コイル61Aおよび61Bの電位状態を、電位状態#1~#8のうちいずれかに設定する。コントローラ73は、上記のように各スイッチングアームをスイッチングするためのプログラムを実行するプロセッサを含んでもよい。
この場合、プロセッサは、コントローラ73が備える記憶デバイス(図示せず)に記憶されたプログラムを読み込み実行する。プロセッサは、CPU(Central Procesing Unit)やメモリ、インターフェース等を備えたコンピュータや、FPGA(Field Programmable Gate Array)等のプログラム可能な演算デバイスであってよい。プロセッサが実行するプログラムは、外部に設けられたコンピュータからプロセッサに読み込まれ、プロセッサにインストールされてもよい。外部のコンピュータは、コントローラ73に直接接続されたものでもよいし、インターネット等の通信回線に接続されたものでもよい。また、プロセッサが実行する処理の一部は、外部の1つまたは複数のコンピュータが実行してもよい。
図8に示されているように、(V1-V2)(V2-V3)平面では、第一象限および第三象限において、コイル61Aおよび61Bに印加される電圧が制限される。すなわち、コイル61AにV1-V2=+Vの電圧が印加された状態において、コイル61BにV2-V3=+Vの電圧が印加されることはない。また、コイル61AにV1-V2=-Vの電圧が印加された状態において、コイル61BにV2-V3=-Vの電圧が印加されることない。これによって、以下に説明するように走査方向に対して走査速度にばらつきが生じる。
具体的には、図5に示される走査電磁石60の配置の場合、x軸方向と比較してy軸方向の走査速度が遅くなる。その理由は次の通りである。x軸方向に荷電粒子ビーム90を走査する場合、状態点は点Q1と点Q6との間を交互に遷移し、あるいは、点Q1と点Q3との間を交互に遷移する。したがって、x軸方向に荷電粒子ビーム90を走査する場合のコイル61Aおよび61Bのそれぞれの端子間電圧の変化幅Dxは、点Q1と点Q6との間の距離または点Q1と点Q3との間の距離を(V1―V2)軸および(V2-V3)軸に投影した値Vである。
一方、y軸方向に荷電粒子ビーム90を走査する場合、状態点は点Q1、点Q4および点Q2のうちの1つから他の1つに遷移するという動作を繰り返す。あるいは、状態点は点Q1、点Q5および点Q7のうちの1つから他の1つに遷移するという動作を繰り返す。したがって、y軸方向に荷電粒子ビーム90を走査する場合のコイル61Aおよび61Bのそれぞれの端子間電圧の実効的な変化幅Dyは、線分Q4Q2の中点と点Q1との間の距離、または、線分Q5Q7の中点と点Q1との間の距離を(V1―V2)軸および(V2-V3)軸に投影した値V/2である。
このように、y軸方向に荷電粒子ビーム90を走査する場合の各コイル61Aの端子間電圧の実効的な変化幅Dy=V/2は、x軸方向に荷電粒子ビーム90を走査する場合の各コイルの端子間電圧の変化幅Dx=Vよりも小さい。したがって、y軸方向に荷電粒子ビーム90を走査する場合には、各コイルに流れる励磁電流が変化する際の応答時間が、x軸方向に荷電粒子ビーム90を走査する場合に比べて長くなり、x軸方向と比較してy軸方向の走査速度が遅くなる。
同様の理由によって、図6に示すように走査電磁石60を配置した場合、y軸方向に比べてx軸方向の走査速度が遅くなる。
一般に、走査速度が走査方向によって変化する粒子線治療システムを用いて、肺や肝臓等の患者の体内で動く標的に対して荷電粒子ビームを照射する場合、標的の動きの方向と走査速度が速い方向とが位置している程、線量分布の乱れが小さくなる。また、肺や肝臓等は、患者の頭尾方向に動くことが多い。
そのため、頭部から胴体に向かう方向がx軸方向に一致する姿勢で、患者51が治療台50上に横たえられる場合、図5に示すように走査電磁石60を設定することで、標的の動きの方向と走査速度が速い方向とが揃えられる可能性が高い。一方、患者51が立位や座位の体勢で照射する治療室の構成の場合、図6に示すように走査電磁石60を設定することで、標的の動きの方向と走査速度が速い方向とが揃えられる可能性が高い。
したがって、患者の体位を設定する治療台等の患者設定機構は、荷電粒子ビームの走査速度が極大となるビーム走査方向と、患者における照射対象の組織(標的)の移動方向とが揃えられるように、患者の体位を設定するように構成されてよい。このように患者の体位が設定されることで、線量分布の乱れが小さくなる。
次に、本実施形態に係る粒子線治療システム1による効果が述べられる。従来の電磁石制御装置には、2つのコイル61Aおよび61Bのそれぞれに対して、個別にスイッチング回路が設けられたものがあった。そのため、電磁石制御装置が大型化してしまう場合があった。
図9には、従来の荷電粒子ビーム偏向装置4の例が示されている。荷電粒子ビーム偏向装置4は、電磁石制御装置100およびコイル61Aを備えている。電磁石制御装置100は、スイッチング回路101、直流電源回路72およびコントローラ103を備えている。スイッチング回路101は、スイッチングアームApおよびAnを備えている。各スイッチングアームは、直列接続された上スイッチング素子74Uおよび下スイッチング素子74Lを備えている。スイッチングアームApおよびAnは並列接続されている。各スイッチングアームの上端は直流電源回路72の正極端子に接続され、下端は直流電源回路72の負極端子に接続されている。
スイッチングアームApを構成する上スイッチング素子74Uと下スイッチング素子74Lとの直列接続点には、コイル61Aの一端が接続されている。スイッチングアームAnを構成する上スイッチング素子74Uと下スイッチング素子74Lとの直列接続点には、コイル61Aの他端が接続されている。
コントローラ103は、各スイッチングアームが備える上スイッチング素子74Uおよび下スイッチング素子74Lのそれぞれをオンからオフ、あるいはオフからオンにしてスイッチングをする。これによって、コイル61Aの一端および他端の電位がハイ電位Vまたはロー電位Vにスイッチングされ、コイル61Aの端子間電圧(端子間電位差)がスイッチングされる。このような端子間電圧のスイッチングによって、コイル61Aに流れる励磁電流が制御される。ここでは、コイル61Aに流れる励磁電流を制御する電磁石制御装置100が示されたが、コイル61Bに対しても電磁石制御装置100が用いられる。
本実施形態に係る電磁石制御装置70では、コイル61Aおよび61Bの一端が共通に接続され、共通接続端に1つのスイッチングアームAvが用いられる。したがって、スイッチング回路71の構成が単純化され、電磁石制御装置70の構成が単純化される。例えば、図9に示された従来の電磁石制御装置100をコイル61Aおよび61Bに対して用いた場合、4個のスイッチングアームが用いられるのに対し、本実施形態に係る電磁石制御装置70では3個のスイッチングアームが用いられ、必要なスイッチング素子の個数が削減される。
図10には、本発明の第2実施形態に係る粒子線治療システム3の全体構成が示されている。粒子線治療システム3は、図1に示された粒子線治療システム1における加速器10とビーム輸送装置20に、軌道補正電磁石80を追加したものである。軌道補正電磁石80は、荷電粒子ビーム90が通過する経路の壁面等に、荷電粒子ビーム90が衝突する頻度を低減するため、荷電粒子ビーム90の軌道を補正する電磁石である。軌道補正電磁石80は、入射器11とシンクロトロン加速器12との間、およびビーム輸送装置20の入射部に設けられている。
図11には、軌道補正電磁石80の断面図が示されている。軌道補正電磁石80は、中空部が四角柱状であるヨーク83、ヨーク83の4つの内壁面のそれぞれから内側に突出した磁極82、および4つの磁極82のそれぞれの周りに巻かれた導線によるコイル81を備えている。ヨーク83は、四角柱状の中空部を有するその他の形状を有してもよい。磁極82およびヨーク83は磁性材料で形成されている。対向する磁極82に設けられたコイル81は直列または並列に接続されており、2系統のコイル対84Aおよび84Bが形成されている。2系統のコイル対84Aおよび84Bのそれぞれには、個別に励磁電流が流れる。
コイル対84Aに励磁電流を流した場合に発生する磁場の向きと、コイル対84Bに励磁電流を流した場合に発生する磁場の向きは直交し、これらの磁場がベクトル合成された磁場によって、荷電粒子ビーム90が偏向する。コイル対84Aおよび84Bに流れる励磁電流は、図4に示された電磁石制御装置70によって制御されてよい。この場合、図4に示されるコイル61Aおよび61Bが、それぞれ、コイル対84Aおよび84Bに置き換えられる。
電磁石制御装置70は、コイル対84Aおよび84Bに流れる励磁電流を制御することで、軌道補正電磁石80を通過する荷電粒子ビームを偏向させて、加速器10の壁面やビーム輸送装置20の壁面に荷電粒子が衝突する頻度を低減し、または0とする。
上記では、加速器10およびビーム輸送装置20の両者に軌道補正電磁石80が設けられた実施形態が示された。軌道補正電磁石80は、加速器10およびビーム輸送装置20のうちいずれか一方のみに設けられてもよい。
第2実施形態に係る粒子線治療システム3によれば、第1実施形態と同様の原理によっって、電磁石制御装置の構成が単純化される。
なお、本発明は、上記の実施形態に限定されるものではなく、本発明には様々な変形例が含まれる。上記の各実施形態は本発明を分かり易く説明するためのものであり、本発明は、必ずしも説明した総ての構成を備えるものに限定されない。
また、ある実施形態の構成の一部が他の実施形態の構成に置き換えられてもよく、ある実施形態の構成に他の実施形態の構成が加えられてもよい。また、各実施形態の構成の一部について、他の構成の追加、削除、または他の構成との置き換えがされてもよい。
また、第1実施形態における走査電磁石60にはコサインθ型の電磁石が用いられたが、走査電磁石60には、軌道補正電磁石80と同様の4極型の電磁石が用いられてもよい。
また、走査電磁石60および軌道補正電磁石80は1台の電磁石で二次元的に荷電粒子ビーム90を偏向する機能結合型電磁石として述べられたが、荷電粒子ビーム90を一次元的に偏向する電磁石が2台用いられてもよい。この場合、これら2つの電磁石は、荷電粒子ビーム90の軌道に沿って縦続に配置され、互いに直交する方向に荷電粒子ビーム90を偏向させる。
また、加速器10には、シンクロトロン加速器12の他に、サイクロトロン加速器やシンクロサイクロトロン加速器等の様々な公知の加速器が用いられてよい。また、加速器10で加速する荷電粒子は、陽子や炭素等の重粒子等であってよい。
1,3 粒子線治療システム、2,4 荷電粒子ビーム偏向装置、10 加速器、11 入射器、12 シンクロトロン加速器、20 ビーム輸送装置、21 偏向電磁石、30 照射ノズル、31 線量モニタ、32 位置モニタ、33 線量モニタ制御装置、34 位置モニタ制御装置、40 全体制御装置、41 加速器・ビーム輸送系制御装置、42 照射ノズル制御装置、50 治療台、51 患者、60 走査電磁石、61A,61B,81 コイル、62,83 ヨーク、70,100 電磁石制御装置、71,101 スイッチング回路、72 直流電源回路、73,103 コントローラ、74U 上スイッチング素子、74L 下スイッチング素子、90 荷電粒子ビーム、91 中心軌道、92A,92B 磁場、93A,93B 偏向量、80 軌道補正電磁石、82 磁極、84A,84B コイル対。

Claims (8)

  1. 荷電粒子ビームを偏向させる荷電粒子ビーム偏向装置であって、
    一端が共通に接続され、異なる方向の磁場を発生する第1コイルおよび第2コイルと、
    前記第1コイルと前記第2コイルとの共通接続端、前記第1コイルの他端および前記第2コイルの他端のそれぞれにおける電位をスイッチングする電磁石制御装置と、
    を備えることを特徴とする荷電粒子ビーム偏向装置。
  2. 請求項1に記載の荷電粒子ビーム偏向装置であって、
    前記電磁石制御装置は、
    前記共通接続端、前記第1コイルの他端および前記第2コイルの他端のそれぞれにおける電位を、複数通りの電位状態のうちいずれかに応じた電位に設定し、各前記電位状態に留まる時間を制御することで、前記第1コイルおよび前記第2コイルに流れる電流を制御することを特徴とする荷電粒子ビーム偏向装置。
  3. 請求項1または請求項2に記載の荷電粒子ビーム偏向装置であって、
    前記複数通りの電位状態は、
    前記共通接続端、前記第1コイルの他端および前記第2コイルの他端のそれぞれにおける電位が、ハイ電位またはロー電位に個別に設定される状態であることを特徴とする荷電粒子ビーム偏向装置。
  4. 請求項1または請求項2に記載の荷電粒子ビーム偏向装置であって、
    前記電磁石制御装置は、
    並列に接続された3つのスイッチングアームであって、直列接続された上スイッチング素子および下スイッチング素子を各スイッチングアームが備える3つのスイッチングアームを備え、
    前記第1コイルは、
    前記3つのスイッチングアームのうちの1つである第1スイッチングアームの直列接続点と、前記3つのスイッチングアームのうちの別の1つである、第2スイッチングアームの直列接続点との間に接続され、
    前記第2コイルは、
    前記第2スイッチングアームの直列接続点と、前記3つのスイッチングアームのうちの残りの1つである第3スイッチングアームの直列接続点との間に接続されていることを特徴とする荷電粒子ビーム偏向装置。
  5. 請求項1または請求項2に記載の荷電粒子ビーム偏向装置において、
    前記第1コイルおよび前記第2コイルは、
    前記荷電粒子ビームを走査する走査電磁石に含まれることを特徴とする荷電粒子ビーム偏向装置。
  6. 請求項1または請求項2に記載の荷電粒子ビーム偏向装置において、
    前記第1コイルおよび前記第2コイルは、
    前記荷電粒子ビームの軌道を補正する軌道補正電磁石に含まれることを特徴とする荷電粒子ビーム偏向装置。
  7. 加速器と、
    前記加速器から取り出された前記荷電粒子ビームを輸送するビーム輸送装置と、
    前記ビーム輸送装置によって輸送された前記荷電粒子ビームを患者に照射する照射ノズルと、
    請求項1または請求項2に記載の荷電粒子ビーム偏向装置と、を備え、
    前記加速器、前記ビーム輸送装置および前記照射ノズルのうち少なくとも1つは、前記第1コイルおよび前記第2コイルを備えることを特徴とする粒子線治療システム。
  8. 加速器と、
    前記加速器から取り出された前記荷電粒子ビームを輸送するビーム輸送装置と、
    前記ビーム輸送装置によって輸送された前記荷電粒子ビームを患者に照射する照射ノズルと、
    患者の体位を設定する患者設定機構と、
    請求項1または請求項2に記載の荷電粒子ビーム偏向装置と、を備え、
    前記照射ノズルは、前記第1コイルおよび前記第2コイルを備え、
    前記電磁石制御装置は、
    前記第1コイルと前記第2コイルとの共通接続端、前記第1コイルの他端および前記第2コイルの他端のそれぞれにおける電位をスイッチングすることで、前記照射ノズルを通過する前記荷電粒子ビームを走査し、
    前記患者設定機構は、
    走査速度が極大となるビーム走査方向と、前記患者における照射対象の組織の移動方向とが揃えられるように、前記患者の体位を設定することを特徴とする粒子線治療システム。
JP2021007099A 2021-01-20 2021-01-20 荷電粒子ビーム偏向装置および粒子線治療システム Active JP7440191B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021007099A JP7440191B2 (ja) 2021-01-20 2021-01-20 荷電粒子ビーム偏向装置および粒子線治療システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021007099A JP7440191B2 (ja) 2021-01-20 2021-01-20 荷電粒子ビーム偏向装置および粒子線治療システム

Publications (2)

Publication Number Publication Date
JP2022111578A JP2022111578A (ja) 2022-08-01
JP7440191B2 true JP7440191B2 (ja) 2024-02-28

Family

ID=82655495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021007099A Active JP7440191B2 (ja) 2021-01-20 2021-01-20 荷電粒子ビーム偏向装置および粒子線治療システム

Country Status (1)

Country Link
JP (1) JP7440191B2 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3580254B2 (ja) 1999-09-27 2004-10-20 株式会社日立製作所 荷電粒子ビーム照射装置及びその制御方法
US20130043403A1 (en) 2011-08-19 2013-02-21 Pyramid Technical Consultants, Inc. System, apparatus and method for deflecting a particle beam
JP2014093211A (ja) 2012-11-05 2014-05-19 Jeol Ltd 荷電粒子ビームの偏向装置及びそれを備えた荷電粒子ビーム装置
JP2020041971A (ja) 2018-09-13 2020-03-19 株式会社東芝 走査電磁石装置及び荷電粒子ビーム照射システム
JP2020183894A (ja) 2019-05-08 2020-11-12 東芝エネルギーシステムズ株式会社 電磁石の制御装置、その制御方法及びその制御プログラム並びに粒子線照射装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3580254B2 (ja) 1999-09-27 2004-10-20 株式会社日立製作所 荷電粒子ビーム照射装置及びその制御方法
US20130043403A1 (en) 2011-08-19 2013-02-21 Pyramid Technical Consultants, Inc. System, apparatus and method for deflecting a particle beam
JP2014093211A (ja) 2012-11-05 2014-05-19 Jeol Ltd 荷電粒子ビームの偏向装置及びそれを備えた荷電粒子ビーム装置
JP2020041971A (ja) 2018-09-13 2020-03-19 株式会社東芝 走査電磁石装置及び荷電粒子ビーム照射システム
JP2020183894A (ja) 2019-05-08 2020-11-12 東芝エネルギーシステムズ株式会社 電磁石の制御装置、その制御方法及びその制御プログラム並びに粒子線照射装置

Also Published As

Publication number Publication date
JP2022111578A (ja) 2022-08-01

Similar Documents

Publication Publication Date Title
KR100226381B1 (ko) 자기이온빔 스캐닝 및 침착 시스템
US7868301B2 (en) Deflecting a beam of electrically charged particles onto a curved particle path
US7129807B2 (en) Undulator and method of operation thereof
KR101974425B1 (ko) 집속 전자석 및 하전 입자 빔 조사 장치
JP6364141B1 (ja) 収束電磁石及び荷電粒子ビーム照射装置
JP6527239B2 (ja) 焦点調節のための磁気四重極及び操向のための磁気双極子を有するx線管
US7190764B2 (en) Electron accelerator and radiotherapy apparatus using same
JPS63226899A (ja) 超電導ウイグラ−
US9728371B2 (en) Ion beam scanner for an ion implanter
JP6243263B2 (ja) 荷電粒子線治療装置
JPH0636893A (ja) 粒子加速器
JP7440191B2 (ja) 荷電粒子ビーム偏向装置および粒子線治療システム
CN115499994A (zh) 紧凑型束流切换偏转装置及其应用
TWI792220B (zh) 粒子線裝置
WO2021020004A1 (ja) 走査電磁石および粒子線治療システム
WO2022209300A1 (ja) 電磁石装置、電磁石装置の制御方法、および、粒子線治療装置
JP6537067B2 (ja) 粒子線照射装置およびその制御方法
JP3964769B2 (ja) 医療用荷電粒子照射装置
JPH11238600A (ja) 粒子線治療装置
JP3547812B2 (ja) 粒子ビーム装置及びそれを用いた医療装置
JP2022176617A (ja) セプタム電磁石、加速器および粒子線治療システム
US8598971B2 (en) Magnetic field control apparatus and dipole magnet
JP2022063925A (ja) 走査電磁石制御装置および粒子線治療システム
JP2023130921A (ja) 走査電磁石制御システム、粒子線治療システムおよび走査電磁石制御方法
JP2001015299A (ja) 多重通過型加速器、加速空胴、及びこれらを用いた電子線・x線照射処理装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240206

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20240214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240213

R150 Certificate of patent or registration of utility model

Ref document number: 7440191

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150