WO2022209300A1 - 電磁石装置、電磁石装置の制御方法、および、粒子線治療装置 - Google Patents
電磁石装置、電磁石装置の制御方法、および、粒子線治療装置 Download PDFInfo
- Publication number
- WO2022209300A1 WO2022209300A1 PCT/JP2022/004630 JP2022004630W WO2022209300A1 WO 2022209300 A1 WO2022209300 A1 WO 2022209300A1 JP 2022004630 W JP2022004630 W JP 2022004630W WO 2022209300 A1 WO2022209300 A1 WO 2022209300A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnetic field
- coils
- electromagnet device
- current
- electromagnet
- Prior art date
Links
- 239000002245 particle Substances 0.000 title claims description 35
- 238000002560 therapeutic procedure Methods 0.000 title claims description 14
- 238000000034 method Methods 0.000 title claims description 13
- 238000004364 calculation method Methods 0.000 claims abstract description 19
- 230000032258 transport Effects 0.000 claims description 25
- 238000005452 bending Methods 0.000 description 30
- 238000012937 correction Methods 0.000 description 28
- 238000013461 design Methods 0.000 description 11
- 238000004804 winding Methods 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 7
- 230000005405 multipole Effects 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 206010028980 Neoplasm Diseases 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 238000001959 radiotherapy Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- -1 carbon ions Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000001064 degrader Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000013213 extrapolation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21K—TECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
- G21K1/00—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
- G21K1/08—Deviation, concentration or focusing of the beam by electric or magnetic means
- G21K1/093—Deviation, concentration or focusing of the beam by electric or magnetic means by magnetic means
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21K—TECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
- G21K5/00—Irradiation devices
- G21K5/04—Irradiation devices with beam-forming means
Definitions
- the present invention relates to an electromagnet device for beam transportation, and more particularly to a magnet configuration and operating method having a magnetic field adjustment function.
- a particle beam therapy system is known that accelerates heavy particles such as protons and carbon with an accelerator to form a particle beam and irradiates a patient's tumor, etc.
- a particle beam therapy system accelerates a beam with an accelerator, transports the particle beam emitted from the accelerator to an irradiation nozzle while deflecting it at a required location by a transport system, and irradiates the beam from the irradiation nozzle toward a patient.
- a large number of electromagnet devices are used in accelerators and transport systems to apply high-precision magnetic fields to beams.
- an irradiation method in which a finely focused beam is scanned so as to match the shape of the tumor (scanning irradiation method) is widely used. Electromagnets are used.
- Magnetic fields used in accelerators include dipole magnetic fields (deflecting magnetic fields) that bend beams, quadrupole magnetic fields that converge and diverge beams, and sextupole magnetic fields that correct chromatic aberration of beams.
- the arrangement of these bending magnets, quadrupole magnets, etc. is determined by optical design so as to satisfy the specified beam specifications, and these magnets must generate accurate magnetic fields.
- the error magnetic field is required to be on the order of 1 ⁇ 10 ⁇ 4 or less with respect to the bending magnetic field strength.
- Patent Document 1 As an example of a superconducting magnet device for beam transport, the one described in Patent Document 1, for example, is known.
- the present invention by arranging four or more flat concentrated winding coils at predetermined positions around the beam duct for beam transportation, a low-distortion deflection magnetic field distribution necessary for beam transportation is obtained.
- Patent Document 1 An electromagnet device for beam transport requires an extremely high-precision magnetic field.
- Patent Document 1 four or more coils of flat concentrated winding are arranged to form a magnetic field.
- the configuration of Patent Document 1, which combines the discretized magnetomotive force source, has a discretized winding of each coil compared to the cosine-theta coil, which is an ideal winding method for generating a polarizing magnetic field.
- Geometrical errors and their placement errors (assembly errors) can give rise to error magnetic fields.
- the error magnetic field can be minimized by increasing the manufacturing precision of the coil. And it is difficult to satisfy.
- trim coil magnetic field correction electromagnet
- the strength of the multipolar magnetic field drops sharply as the magnetomotive force source moves away from the magnetic field center, it is desirable to place the trim coils on the magnetic field center side (inside the main magnetic field magnet). Therefore, a space for arranging the trim coil is secured around the beam duct, and the main magnetic field magnet is arranged outside it.
- the main magnetic field magnet is moved away from the beam duct, the magnetic field strength required for beam transportation is reduced accordingly, so it becomes necessary to increase the magnetomotive force of the magnet.
- a power source or the like is required for operating the trim coil. Therefore, there arises a problem that the scale of the apparatus is increased.
- An object of the present invention is to provide an electromagnet device for beam transportation with a simple configuration that maintains a highly accurate spatial distribution of the magnetic field.
- the electromagnet device of the present invention has a plurality of coils arranged so that at least a portion of the generated magnetic field overlaps, and a plurality of power supplies.
- the electromagnet device of the present invention has four coils arranged to surround the beam path, at least two power supplies that supply current to the coils, and a power supply controller that controls the two power supplies.
- the power supply controller superimposes the magnetic fields generated by the four coils to form a main magnetic field that traverses the beam path diametrically at a predetermined angle, and maintains the direction and strength of the main magnetic field while maintaining the direction and strength of the main magnetic field.
- a supply control unit for supplying the calculated supply current from the power supply to the four coils.
- the present invention although it has a simple configuration, it is possible to compensate for error magnetic fields caused by manufacturing errors and generate a highly accurate magnetic field in the space through which the beam passes.
- FIG. 1 is a block diagram showing the overall configuration of a particle beam therapy system according to an embodiment
- FIG. FIG. 2 is a side view of a bending magnet 203 for a heavy ion radiotherapy system to which the electromagnet device of the embodiment is applied
- FIG. 3 is a perspective view showing the arrangement of superconducting coils 101, 102, 103, and 104 in the bending magnet 203 of FIG. 2
- 4 is a diagram showing an example of a table showing currents C1, C2, C3 and C4 set to superconducting coils 101, 102, 103 and 104 of the electromagnet device of the embodiment
- 4 is a flow chart showing the control operation of the power supply controller 620 of the embodiment; Explanatory drawing which shows how to take the coordinate system of the multipolar component magnetic field of embodiment. Explanatory drawing which shows arrangement
- Fig. 1 shows the overall configuration of the particle beam therapy system.
- the particle beam therapy system includes an accelerator 500 that forms a particle beam, a beam transport system 200 that transports the particle beam, an irradiation device 300 that irradiates a patient 301 with the particle beam, and a patient 301. It comprises a bed 302 , a rotating gantry 400 and a control system 600 .
- the accelerator 500 has a configuration including a linac 501, which is a front-stage accelerator, and a synchrotron 502 that further accelerates the particle beam formed by the linac 501.
- a linac 501 which is a front-stage accelerator
- a synchrotron 502 that further accelerates the particle beam formed by the linac 501.
- the beam transport system 200 includes a duct 204 that transports the particle beam formed by the accelerator 500, bending magnets 201, 202, and 203 that apply a polarizing magnetic field to the particle beam (also referred to as a beam) in the duct 204, and the particle beam.
- a quadrupole magnet 211 for applying a converging magnetic field and an orbit correction magnet 212 are provided.
- the duct 204 is provided with a rotary connecting portion 214 , and the distal end side of the rotary connecting portion 214 is connected to a fixed portion closer to the accelerator 500 than the rotary connecting portion 214 by the mechanism of the rotary connecting portion 214 . is configured to be rotatable around the
- the rotating gantry 400 includes a ring-shaped structure (rotating ring) 401 arranged around the bed 302 and rotating around a rotating shaft 1213, and a driving section 402 rotating the rotating ring.
- a ring-shaped structure (rotating ring) 401 arranged around the bed 302 and rotating around a rotating shaft 1213, and a driving section 402 rotating the rotating ring.
- the beam transport system 200 and the irradiation device 300 on the tip side of the rotary connecting part 214 are mounted on the rotating ring 401 and rotate about the rotating shaft 1213 as the rotating ring 401 rotates.
- the irradiation device 300 is equipped with a scanning electromagnet 303 for moving the beam irradiation position according to the shape of the affected area.
- the beam emitted from the accelerator 500 is bent and transported along the beam transport path by the bending magnets 201 , 202 , and 203 while passing through the beam transport system 200 , and is transformed into the beam by the quadrupole magnet 211 and the trajectory correction magnet 212 . is adjusted in shape and position. Further, the beam is swung in a direction perpendicular to the axial direction 216 of the beam by the scanning electromagnet 303 installed in the irradiation device 300, thereby irradiating the affected area so as to trace it.
- the generated magnetic field intensity of these bending magnets 201, 202, 203, quadrupole magnet 211, and trajectory correction magnet 212 is changed according to the energy of the beam.
- the deflection magnet 203 will be described later in detail.
- the energy of the beam may be changed in the accelerator 500, or the energy may be changed by placing a degrader in the middle of the transportation system 200 and attenuating the beam by a desired amount.
- the control system 600 includes a control device 610 that controls the entire device, and a power supply controller 620 .
- the control device 610 controls the intensity of the beam emitted by the accelerator 500 and controls the driving section 402 of the rotating gantry 400 .
- a power supply controller 620 controls the power supplies 41, 42, 43 of the bending magnets 201-203.
- the bending magnet 203 will be described below with reference to FIGS. 2, 3 and 4.
- FIG. The deflection magnet 203 has a configuration in which three electromagnets 1230 that deflect the particle beam by 30 degrees are arranged along the duct 204 to deflect the particle beam by 90 degrees.
- the bending magnets 201 and 202 are different from the bending magnet 203 in the number of superconducting coils, but have the same basic configuration.
- FIG. 2 is a side view of the bending magnet 203
- FIG. 3 is a cross-sectional view taken along line A-A' in FIG.
- FIG. 4 is a perspective view showing the arrangement of the superconducting coils within the bending magnet 203.
- the bending magnet 203 includes an insulated container 110 , a refrigerator 120 , and three electromagnets 1230 arranged inside the insulated container 110 .
- the three electromagnets 1230 each include at least four superconducting coils 101, 102, 103, and 104 arranged around the beam path (duct 204), and at least two or more for supplying current to the superconducting coils 101, 102, 103, and 104. It includes (here four) power supplies 41 , 42 , 43 , 44 and a power supply controller 620 that controls the power supplies 41 , 42 , 43 , 44 .
- the superconducting coils 101, 102, 103, and 104 are flat coils, and the main planes of the superconducting coils 103 and 104 face each other across the beam axial direction 216. are arranged as The superconducting coil 101 and the superconducting coil 102 are arranged so that the side faces face each other across the axial direction 216 of the beam.
- the superconducting coils 101, 102, 103, and 104 are wound in a flat shape having a major axis and a minor axis within the main plane, and the major axis extends along the axial direction of the duct 204 (the axial direction 216 of the beam). are arranged as The longitudinal direction is curved along the curve of the duct 204 .
- Superconducting coils 101, 102, 103, and 104 are arranged in four directions around duct 204 so that their principal planes are parallel to the plane that deflects the particle beam.
- the superconducting coils 101 and 102 are arranged so that their main planes face each other across the axial direction 216 of the beam passing through the duct 204, and the side faces of the superconducting coils 103 and 104 are arranged in the axial direction 216 of the beam. They are arranged so as to face each other on both sides.
- the heat insulating container 110 comprises a vacuum container 111 and a radiation shield 112 arranged inside.
- the refrigerator 120 is mounted on the heat insulating container 110 .
- the refrigerator 120 has the first stage (for example, 40 k) thermally connected to the radiation shield, and cools the radiation shield 112 to the temperature of the first stage.
- the second stage (eg, 4k) is thermally connected to the superconducting coils 101, 102, 103, 104 by a copper mesh or the like (not shown), and cools the superconducting coils 101, 102, 103, 104 by conduction cooling. do.
- Superconducting coils 101 , 102 , 103 , 104 forming electromagnet 1230 are electrically connected in series with superconducting coils 101 , 102 , 103 , 104 at corresponding positions forming other electromagnets 1230 in heat insulating container 110 .
- the four sets of superconducting coils connected in series are, as shown in FIG. connected to the ends.
- the other ends of the current leads 31a and 31b, the current leads 32a and 32b, the current leads 33a and 33b, and the current leads 34a and 34b are pulled out from the inside of the heat insulation container 110, and the power source 41 installed outside the heat insulation container 110. , 42, 43, 44.
- superconducting coils 101, 102, 103 and 104 are driven by currents supplied from power sources 41, 42, 43 and 44, respectively.
- the superconducting coils 101 , 102 , 103 , 104 superimpose the magnetic fields they form to form and apply a main magnetic field 213 with a predetermined intensity distribution to the particle beam transported in the duct 204 .
- the main magnetic field 213 is applied in a direction that crosses a beam axial direction 216, which is the traveling direction of the particle beam, at a predetermined angle (perpendicular here).
- the particle beam is deflected in a direction 215 orthogonal to the magnetic field direction of the main magnetic field 213 and the axial direction 216 of the beam, which is the traveling direction of the particle beam.
- the power supply controller 620 includes a calculation unit 621 that calculates supply currents to the four superconducting coils 101, 102, 103, and 104, and a supply control unit 622 for supplying to the three superconducting coils 101, 102, 103 and 104, respectively.
- the superposition of the magnetic fields generated by the four superconducting coils 101, 102, 103, 104 forms a main magnetic field 213 that traverses the beam path (duct 204) diametrically at a given angle, and the direction of the main magnetic field 213 and
- the calculator 621 is configured to calculate a supply current that suppresses the multipolar magnetic field of four or more poles generated along with the main magnetic field 213 while maintaining the strength.
- the multipolar magnetic field of four or more poles changes with changes in beam intensity and changes in the positional relationship between the bending magnet 203 and other components due to the rotation of the rotating gantry 400 . Therefore, based on the beam intensity and the rotation angle of the rotating gantry 400, the calculation unit 621 can suppress the multipolar magnetic field of four or more poles while maintaining the direction and intensity of the main magnetic field 213. , 103 and 104 are calculated.
- the power supply controller receives the beam intensity and the rotation angle of the rotating gantry 400 from the control device 610. However, the beam intensity and the rotation angle are measured by a sensor or the like, and the calculation unit 621 calculates the supply current value. May be used for calculation.
- the calculation unit 621 calculates the supply current to the four coils using a predetermined formula or table.
- a predetermined formula or table As an example of the table, as shown in FIG. ) is used.
- the supply current values in the table are obtained in advance by calculation or experiment.
- the calculation unit 621 obtains the supply current value based on the formula, for a combination of two or more representative values of the rotation angle of the rotating gantry 400 and two or more representative values of the beam intensity, Supply current values are obtained in advance by calculation or experiment, and the calculation unit 621 uses these values to perform interpolation calculations, extrapolation calculations, or the like to obtain supply current values corresponding to the actual beam intensity and the rotation angle of the rotating gantry 400 . It can be configured to calculate the current value.
- the power supply controller 620 can be configured by a computer or the like including a processor such as a CPU (Central Processing Unit) or a GPU (Graphics Processing Unit) and a memory 623 .
- the memory 623 stores programs in advance in addition to the table 624 .
- the CPU implements the functions of the calculation unit 621 and the supply control unit 622 by reading and executing programs stored in the memory 623 .
- the power supply controller 620 can also be configured partially or entirely by hardware.
- a custom IC such as ASIC (Application Specific Integrated Circuit) or a programmable IC such as FPGA (Field-Programmable Gate Array) is used to implement the functions of the calculation unit 621 and the supply control unit 622. should be done.
- ASIC Application Specific Integrated Circuit
- FPGA Field-Programmable Gate Array
- the calculator 621 When the calculator 621 receives a signal indicating that beam emission has started from the controller 610 (step 61), it takes in the current gantry rotation angle and beam intensity from the controller 610 (step 62).
- the gantry rotation angle is acquired by the calculation unit 621 fetching the control signal indicating the rotation angle output from the control device 610 to the driving unit 402 of the rotating gantry 400 .
- the beam intensity is acquired by the calculator 621 fetching a control signal for setting the beam intensity to the accelerator 500 by the controller 610 .
- the calculation unit 621 refers to the table 624 in the memory 623 and obtains current values C1, C2, C3, and C4 corresponding to the gantry rotation angle and beam intensity acquired in step 62 (step 63).
- the calculator 621 sets the current values C1, C2, C3, and C4 in the supply controller 622 (step 64). Thereby, the supply control unit 622 controls the output currents of the power sources 41, 42, 43, 44 to be the current values C1, C2, C3, C4.
- the current values C1, C2, C3, and C4 change according to changes in the rotation angle of the rotating gantry 400 and the beam intensity.
- the generated multipolar magnetic field of four or more poles is suppressed.
- the calculation unit 621 determines whether or not the control device 610 has finished beam extraction, and if the beam extraction continues, the process returns to step 62 to continue current control.
- current control of the power supplies 41, 42, 43, and 44 by the power supply controller 620 also ends (step 65).
- the coils for generating the main magnetic field 213 necessary for deflecting the particle beam are divided into the superconducting coils 101, 102, 103, and 104, and the power supplies 41, 42, 43, and 44
- the currents supplied independently are controlled to the current values calculated by the power supply controller 620 .
- the magnetic fields generated by the superconducting coils 101, 102, 103, and 104 can be superimposed to form a main magnetic field 213 in a desired direction within the duct 204, while reducing the multipolar magnetic field.
- the superconducting coils 101, 102, 103, 104 are positioned to generate a characteristic multi-pole expanding magnetic field within the duct 204, so by adjusting the magnetomotive forces of those coils It is possible to mix multipolar magnetic fields with the main magnetic field 213 . That is, unnecessary multipolar magnetic fields generated by manufacturing errors of magnets can be canceled by magnetomotive force adjustment.
- An electromagnet can be provided.
- the main magnetic field 213 should be kept constant according to the energy of the beam.
- the beam is deflected by the main magnetic field 213 in which the magnetic fields generated by the superconducting coils 101, 102, 103 and 104 respectively excited by the four power sources (41, 42, 43 and 44) are superimposed. Therefore, the current values C1, C2, C3, C4 of the power sources (41, 42, 43, 44) are appropriately controlled so that the main magnetic field 213 has a predetermined value.
- Electromagnets for beam transport require magnetic field stability. If the strength of the bending magnetic field at the magnet with a deflection radius of 2.4 m differs from the design value by 1 ⁇ 10 ⁇ 4 , the beam position will be shifted by 0.24 mm at the exit of the bending magnet. Therefore, a magnet for a rotating gantry for a particle beam therapy system is required to have a main magnetic field with stability better than 1 ⁇ 10 ⁇ 4 .
- Magnets for beam transport need to change the main magnetic field strength according to the beam strength, and magnets for heavy ion radiotherapy equipment change the magnetic field strength between 20% and 100% of the rated magnetic field strength.
- the magnetic field uniformity changes slightly due to the deformation of the coil due to electromagnetic force, and in the case of a magnet with a magnetic body such as an iron core or a magnetic shield, the magnetic field uniformity changes further due to changes in the magnetization of the magnetic material. (A multipolar magnetic field component is generated).
- cryostat magnetic material shield
- a sextupole magnetic field component the strength of which is on the order of 1 ⁇ 10 ⁇ 4 with respect to the integrated strength of the main magnetic field, and correction is required.
- the rotating gantry At the most downstream of the rotating gantry, there is a bending magnet that bends the beam by 90 degrees, and this magnet is composed of three superconducting magnets.
- the superconducting magnet is adiabatically supported in an adiabatic vacuum vessel (cryostat), but along with the rotation of the rotating gantry, slight displacement and rotation occur due to the magnet's own weight.
- the quadrupole magnetic field and hexapole magnetic field generated by 0.1 degree of magnet rotation are about 1.5 ⁇ 10 ⁇ 5 , but since a magnetic field accuracy of 10 ⁇ 4 is required, the amount cannot be ignored.
- the quadrupole magnetic field, sextupole magnetic field, and octapole magnetic field can each be reduced to 1 ⁇ 10 ⁇ 5 or less while maintaining the strength of the main magnetic field at the strength required for beam deflection.
- the current values of C1, C2, C3, and C4 can be calculated as follows. When each coil is energized with a unit current (density), the magnetic field generated by each coil on the beam path is calculated in advance and multipolar development is performed. Data of the integrated multipole magnetic field are obtained by integrating the magnetic field expanded by the multipole along the path. Furthermore, the magnetic field distribution in the beam duct is measured by energizing the single magnet before it is assembled in the rotating gantry housing. By matching the two, data (sensitivity data) of integrated multipolar magnetic field intensity when a unit current is applied to each coil for magnetic field correction is generated. Using this sensitivity data, the current values of C1, C2, C3, and C4 are calculated by solving an inverse problem to determine a current distribution that corrects the observed magnetic field distribution or beam spot shape.
- a current correction table After assembling the magnets into the rotating gantry housing, after adjusting the beam to some extent, create a current correction table.
- the beam energy is set to a certain value
- the rotating gantry is fixed at a certain angular position
- the beam is passed through
- the beam shape is observed by the beam monitor
- the current value is adjusted to correct the residual error multipolar magnetic field estimated from the shape.
- this task is performed to build a correction current table.
- table interpolation processing is performed to determine correction current amounts.
- FIG. 7 is an explanatory diagram of how to set a coordinate system for explaining the multipolar component magnetic field.
- a coordinate system as shown in FIG. 7 is considered. It is assumed that the source of magnetomotive force is a linear current I, and that the current flows perpendicularly to the plane of the paper from the front side to the back side. The direction of the magnetic field is taken along the z-axis. The position of the current is given by f, which is the distance from the coordinate origin, and ⁇ , which is the angle from the x-axis. Similarly, the position of the magnetic field evaluation point is given by r and ⁇ .
- a uniform magnetic field is necessary to deflect the beam flight path with a constant curvature.
- the magnetic field design is performed so that the order magnetic field components (also referred to as multipolar component magnetic fields) are zero.
- Cosine theta winding is often used as a coil winding method (current arrangement method) to obtain a two-pole magnetic field. This is a method of distributing the intensity of current (current distribution) in the coordinate system of FIG.
- the bending magnet is realized by a system in which rectangular cross-section coils are discretely arranged, instead of a so-called cosine-theta-wound distributed winding coil in which the current density distribution changes continuously.
- the only magnetic fields to be considered in the design are those whose n is an even number.
- a magnetic field design that cancels the polar magnetic field, . . . The higher the order of the n-order magnetic field, the smaller the strength of the n-th power of (r/f). It is determined by the required magnetic field accuracy in the region through which it passes.
- FIG. 9 shows a graph showing the angular position dependence of the normal magnetic field component intensity of the magnetomotive force source.
- a main positive magnetomotive force is arranged in the region of .5 or more and 1 or less, and a main negative magnetomotive force is arranged in the region of -1 or more and -0.5 or less.
- n 2nd order magnetic field.
- ⁇ ⁇ 30 degrees and ⁇ 150 degrees in consideration of vertical symmetry and left-right symmetry.
- Coils of the same shape are arranged in the first and second low-angle regions bounded by the line, and coils of the same shape are arranged in the first and second high-angle regions.
- a normal 8-pole magnetic field can be generated by adjusting the amount of current in the coils (101, 102) arranged in the first and second low angle regions.
- a quadrupole magnet is separately arranged to adjust the beam shape. Magnetic field correction for octupole magnetic fields is possible.
- a normal 10-pole magnetic field can be generated by current regulation of all coils (101, 102, 103, 104) of the region.
- a skew quadrupole magnetic field can be generated by adjusting the amount of current in the coils (103, 104) located in the first and second high angle regions.
- the vertically symmetrical magnetomotive force source (with the same sign of magnetomotive force and at ⁇ degrees) has its output Therefore, the skewed sextupole magnetic field cannot be adjusted by adjusting the current of the symmetrical coils (101, 102) with respect to the equatorial plane located in the first and second low angle regions.
- a set of anti-symmetric magnetomotive force sources (magnetomotive forces of opposite sign and position 180°- ⁇ ) will not have its output, so the anti-symmetric magnetomotive force sources located in the first and second high angle regions will not have their outputs.
- Adjusting the current in the nominal coils (103, 104) cannot adjust the skewed sextupole magnetic field. Therefore, in this embodiment, which has a laterally symmetrical and vertically symmetrical magnetomotive force arrangement, the skewed sextupole magnetic field cannot be corrected.
- the vertically symmetrical magnetomotive force source (with the same magnetomotive force sign and position ⁇ degrees) has its output Therefore, the skew octapole magnetic field cannot be adjusted by adjusting the current of the symmetrical coils (101, 102) with respect to the equatorial plane located in the first and second low angle regions.
- the anti-symmetrical coils (103, 104) located in the first and second high angle regions have an inherent output for skewed octapole magnetic fields
- the first and second The coils (103, 104) placed in the high angle region are vertically symmetrical and laterally symmetrical coils of the coils placed in the range of 30 degrees to 60 degrees in the first quadrant. Since the output of the skew octupole magnetic field becomes zero when the source is at the position of 45 degrees, this embodiment has almost no ability to correct the skew octupole magnetic field.
- the magnet of the present embodiment essentially has no magnetic field correction capability for skew components other than the quadrupole magnetic field.
- the skewed multipolar magnetic field is generated by a vertically asymmetric magnetomotive force source. can be suppressed and does not pose a problem.
- the magnetic field correction of the following multipolar magnetic field components can be performed.
- the coils are arranged in the first and second low angle regions.
- a correction magnetic field can be generated by making a difference in the magnetomotive forces of (101, 102), but due to the lack of freedom, a normal quadrupole magnetic field is used by using an external quadrupole magnet that adjusts the beam shape. can be adjusted independently.
- the total magnetomotive force of the coils (101, 102) arranged in the first and second low-angle regions and the total magnetomotive force of the coils (103, 104) arranged in the first and second high-angle regions It is possible to independently adjust the normal six-pole magnetic field by making a difference between the total amount of magnetomotive force and changing the magnetomotive force of the coils arranged in the first and second high-angle regions by the same amount. .
- skew quadrupole magnetic field it is possible to independently adjust the skew quadrupole magnetic field by making a difference in the magnetomotive forces of the coils (103, 104) arranged in the first and second high-angle regions.
- the load factor of these coils is determined by magnet design. It is not possible to add a large correction current as it will be large.
- a normal-conducting quadrupole magnet 211 for correcting the beam shape is installed outside the superconducting bending magnet. This quadrupole magnet is configured to generate a normal quadrupole magnetic field, and is also used to correct the error magnetic field of the normal quadrupole magnetic field. It is possible to generate a skewed quadrupole magnetic field.
- the strength of the skewed quadrupole magnetic field generated by the superconducting bending magnet is measured in advance, and the quadrupole magnet 211 is rotated so as to roughly cancel this magnetic field. Since the skew 4-pole magnetic field that must be compensated for by adjusting the magnetomotive force of the superconducting bending magnets is reduced, it is possible to supply a larger amount of additional correction current for normal 6-pole magnetic field correction.
- the electromagnet device of the present invention is a superconducting magnet for beam transportation and can be applied to various devices that require beam transportation.
- it is useful as an electromagnet for a particle beam therapy system, and can improve performance and reduce the size of the particle beam therapy system.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pathology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Radiology & Medical Imaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Radiation-Therapy Devices (AREA)
- Particle Accelerators (AREA)
Abstract
発生する磁場の少なくとも一部が重なり合うように配置された複数のコイル101,102,103,104と、複数の電源41,42,43,44とを有する。電源コントローラ620の算出部621と供給制御部622は、複数のコイル101,102,103,104に通電する電流量を調整することにより、ビーム輸送に必要な磁場強度を保ったまま不要な誤差磁場を抑制する。これにより、高精度な磁場の空間分布を維持する簡素な構成のビーム輸送用電磁石装置を提供する。
Description
本発明は、ビーム輸送用の電磁石装置に関し、特に、磁場調整機能を有する磁石構成および運転方法に関する。
陽子や炭素等の重粒子を加速器で加速して粒子ビームを形成し、患者の腫瘍等に照射する粒子線治療装置が知られている。粒子線治療装置は、ビームを加速器によって加速し、加速器から出射された粒子ビームを、輸送系によって必要個所において偏向させながら照射ノズルまで輸送し、照射ノズルよりビームを患者に向かって照射する。加速器や輸送系には、多数の電磁石装置が用いられ、ビームに高精度の磁場を印加する。
粒子線治療装置では、細く絞ったビームを腫瘍の形状に合わせてなぞるように走査する照射方法(スキャニング照射法)が普及しており、ビームを走査するために、高速で磁場を変更可能な走査電磁石が用いられる。
近年、重い炭素イオン等の重粒子ビームを患者に対して360度任意の角度から照射する回転ガントリを備えた粒子線治療装置が実用化されつつある。重粒子ビームを小さな半径で曲げるためには、陽子よりも強い磁場を必要とするため、超電導偏向磁石が用いられる。
加速器に利用される磁場としては、ビームを曲げる2極磁場(偏向磁場)、ビームを収束・発散させる4極磁場、ビームの色収差を補正する6極磁場などがある。加速器では所定のビームの仕様を満足するように、これら偏向磁石、4極磁石等の配置が光学設計により決められ、それらの磁石は正確な磁場を発生する必要がある。例えば、ビーム輸送用の偏向磁石においては偏向磁場強度に対して誤差磁場はその1×10-4のオーダーもしくはそれ以下であることが要求される。
ビーム輸送用の超電導磁石装置の一例としては、例えば特許文献1に記載のものが知られている。この発明では、4個以上のフラット状の集中巻線コイルをビーム輸送用のビームダクト周辺の所定の位置に配置することによってビーム輸送に必要な低ひずみの偏向磁場分布を得ている。
ビーム輸送用の電磁石装置には非常に精度の高い磁場が要求される。特許文献1では、フラットな集中巻線のコイルを4個以上配置して磁場を形成している。離散化された起磁力源を組み合わせた特許文献1の構成は、偏向磁場を発生するための理想的な巻線方法であるコサインシータ巻きのコイルと比べると、離散化された各コイルの巻線形状の誤差およびそれらの設置誤差(組み立て誤差)によって、誤差磁場が発生することがある。
コイルの製作精度を高めることによってその誤差磁場は最小化されるが、ビーム輸送用の磁石においては、誤差磁場は主磁場強度の1×10-4以下に抑える必要があり、コイルの製作精度だけで、それを満足させることは困難である。
製作上制御できない誤差磁場に対しては、補正磁場手段を持たせることが必要となり、トリムコイル(磁場補正用電磁石)を配置することとなる。具体的には、製作誤差から発生すると予想される誤差磁場量を推測し、その誤差磁場を補償するためのトリムコイルを配置する。例えば、誤差磁場を多極成分に分解し、分解されたそれぞれの多極磁場成分を発生させるトリムコイルを設置する。
しかしながら、多極磁場は起磁力源が磁場中心から遠ざかると急激にその強度が下がるため、トリムコイルは磁場中心側(主磁場磁石の内側)に配置することが望ましい。そのため、ビームダクトの周辺にトリムコイルを配置するためのスペースを確保し、その外側に主磁場磁石を配置することになる。主磁場磁石をビームダクトから遠ざけると、その分ビーム輸送に必要な磁場強度が下がるため、磁石の起磁力を大きくする必要が生じる。また、トリムコイルを運転するための電源などが必要となる。そのため、装置が大規模化するという問題が発生する。
本発明の目的は、高精度な磁場の空間分布を維持する簡素な構成のビーム輸送用電磁石装置を提供することにある。
上記目的を達成するために、本発明の電磁石装置は、発生する磁場の少なくとも一部が重なり合うように配置された複数のコイルと、複数の電源とを有する。複数のコイルに通電する電流量を調整することにより、ビーム輸送に必要な磁場強度を保ったまま不要な誤差磁場を抑制する。
具体的には、本発明の電磁石装置は、ビーム経路を取り巻くように配置された4つのコイルと、コイルに電流を供給する少なくとも2つの電源と、2つの電源を制御する電源コントローラとを有する。電源コントローラは、4つのコイルの発生する磁場の重ね合わせにより、ビーム経路を所定の角度の直径方向に横切る主磁場が形成され、かつ、主磁場の方向および強度を維持しながら、主磁場に伴って発生する4極以上の多極磁場が抑制される4つのコイルへの供給電流を算出する算出部と、算出した供給電流を電源から4つのコイルに供給させる供給制御部とを備える。
本発明によれば、簡素な構成でありながら、製作誤差などで生じる誤差磁場を補償し、高精度な磁場をビームが通過する空間に発生することができる。
本発明の一実施形態について説明する。ただし、本発明はここで取り上げた実施形態に限定されるものではなく、要旨を変更しない範囲で適宜組み合わせや改良が可能である。
<粒子線治療装置>
まず、本実施形態の電磁石装置をビーム輸送用の電磁石装置として用いる粒子線治療装置について、図面を参照しながら説明する。
<粒子線治療装置>
まず、本実施形態の電磁石装置をビーム輸送用の電磁石装置として用いる粒子線治療装置について、図面を参照しながら説明する。
粒子線治療装置の全体構成を図1に示す。図1のように、粒子線治療装置は、粒子線を形成する加速器500と、粒子線を輸送するビーム輸送系200と、患者301に粒子線を照射する照射装置300と、患者301を搭載するベッド302と、回転ガントリ400と、制御系600とを備えて構成される。
加速器500は、図1の例では、前段加速器であるライナック501と、ライナック501が形成した粒子線をさらに加速するシンクロトロン502とを備えた構成であるが、この構成に限らず、サイクロトロン等を用いることももちろん可能である。
ビーム輸送系200は、加速器500で形成された粒子線を輸送するダクト204と、ダクト204内の粒子線(ビームとも呼ぶ)に偏向磁場を印加する偏向磁石201,202,203と、粒子線を収束させる磁場を印加する4極磁石211と、軌道補正磁石212とを備えている。
ダクト204には、回転連結部214が設けられ、回転連結部214よりも先端側は、回転連結部214よりも加速器500寄りの固定部に対して、回転連結部214の機構によって、回転軸1213を中心に回転可能に構成されている。
回転ガントリ400は、ベッド302の周囲に配置され、回転軸1213を中心に回転するリング状の構造体(回転リング)401と、回転リングを回転駆動する駆動部402を含む。
回転連結部214よりも先端側のビーム輸送系200および照射装置300は、回転リング401に搭載され、回転リング401が回転するのに伴って、回転軸1213を中心に回動する。
照射装置300には患部の形に合わせてビーム照射位置を移動するための走査用電磁石303が搭載されている。
加速器500から出射されたビームは、ビーム輸送系200を通過する間に、偏向磁石201,202,203によってビーム輸送経路に沿って曲げられて移送され、4極磁石211や軌道補正磁石212によってビームの形状や位置が調整される。また、ビームは、照射装置300に設置された走査用電磁石303によって、ビームの軸方向216に対して垂直な方向に振られ、これにより患部をなぞるように照射される。
これらの偏向磁石201,202,203、4極磁石211、および、軌道補正磁石212は、ビームのエネルギーに合わせて発生磁場強度が変更される。偏向磁石203については、後で詳しく説明する。
なお、ビームのエネルギー変更は、加速器500において行ってもよいし、輸送系200の途中にディグレーダを配置して所望量減衰させることによりエネルギーを変更してもよい。
制御系600は、装置全体を制御する制御装置610と、電源コントローラ620とを含む。制御装置610は、加速器500の出射するビーム強度の制御や、回転ガントリ400の駆動部402の制御を行う。電源コントローラ620は、偏向磁石201-203の電源41,42,43を制御する。
<偏向磁石203の構成例>
以下、図2、図3および図4を用いて、偏向磁石203について説明する。偏向磁石203は、粒子線を30度偏向させる電磁石1230を、ダクト204に沿って3つ並べ、90度偏向させる構成である。なお、偏向磁石201,202も、構成する超電導コイルの個数が偏向磁石203とは異なるが、基本的な構成は同様である。
以下、図2、図3および図4を用いて、偏向磁石203について説明する。偏向磁石203は、粒子線を30度偏向させる電磁石1230を、ダクト204に沿って3つ並べ、90度偏向させる構成である。なお、偏向磁石201,202も、構成する超電導コイルの個数が偏向磁石203とは異なるが、基本的な構成は同様である。
図2は、偏向磁石203の側面図、図3は、図2のA-A’断面図である。図4は、偏向磁石203内の超電導コイルの配置を示す斜視図である。偏向磁石203は、断熱容器110と、冷凍機120と、断熱容器110の内部に配置された3つの電磁石1230とを備えている。3つの電磁石1230は、それぞれビーム経路(ダクト204)の周囲に配置された少なくとも4つの超電導コイル101,102,103,104と、超電導コイル101,102,103,104に電流を供給する少なくとも2以上(ここでは4つ)の電源41,42,43,44と、電源41,42,43,44を制御する電源コントローラ620を含む。
超電導コイル101,102,103,104にはそれぞれ電流リード31a,31b,32a,32b,33a,33b,34a,34bが接続され、電流リード31a等を介して、電源41,42,43,44にそれぞれ接続されている。電流リード31a等は、断熱容器110を貫通している。
図2乃至図4に示すように、超電導コイル101,102,103,104は、それぞれフラットコイルであり、超電導コイル103と超電導コイル104は、主平面が、ビームの軸方向216を挟んで対向するように配置されている。超電導コイル101と超電導コイル102は、側面が、ビームの軸方向216を挟んで対向するように配置されている。
具体的には、超電導コイル101,102,103,104は、主平面内に長径と短径を有する扁平な形状に巻回され、長径がダクト204の軸方向(ビームの軸方向216)に沿うように配置されている。長径方向は、ダクト204の湾曲に沿うように湾曲している。超電導コイル101,102,103,104は、いずれもその主平面が、粒子線を偏向させる面内に平行になるように、ダクト204の周囲の4方向に配置されている。超電導コイル101と102は、その主平面が、ダクト204を通過するビームの軸方向216を挟んで対向するように配置され、超電導コイル103と超電導コイル104は、側面が、ビームの軸方向216を挟んで対向するように配置されている。
断熱容器110は、真空容器111とその内側に配置された輻射シールド112とを備えている。冷凍機120は、断熱容器110に搭載されている。例えば、冷凍機120は、1段目(例えば40k)が輻射シールドに熱的に接続されており、輻射シールド112を1段目の温度まで冷却する。2段目(例えば4k)は、銅のメッシュ等(不図示)により超電導コイル101,102,103,104に熱的に接続されており、伝導冷却により超電導コイル101,102,103,104を冷却する。
電磁石1230を構成する超電導コイル101,102,103,104は、それぞれ断熱容器110内の他の電磁石1230を構成する対応する位置の超電導コイル101,102,103,104と電気的に直列接続されている。直列接続された4組の超電導コイルは、図3に示すように、それぞれ断熱容器110に設置された電流リード31a,31b、電流リード32a,32b、電流リード33a,33b、電流リード34a,34bの端部に接続されている。電流リード31a,31b、電流リード32a,32b、電流リード33a,33b、電流リード34a,34bの他端は、断熱容器110の内部から外部に引き出され、断熱容器110の外部に設置された電源41,42,43,44に接続されている。これにより、超電導コイル101,102,103,104は、それぞれ電源41,42,43,44から供給される電流によって運転される。
超電導コイル101,102,103,104は、それぞれが形成する磁場を重ね合わせて、ダクト204内を輸送される粒子線に対して所定の強度分布の主磁場213を形成して印加する。具体的には、粒子線の進行方向であるビームの軸方向216を所定の角度(ここでは垂直)に横切る方向に主磁場213を印加する。これにより、主磁場213の磁場方向および粒子線の進行方向であるビームの軸方向216に対して直交する方向215へ粒子線を偏向させる。
電源コントローラ620は、図2に示すように、4つの超電導コイル101,102,103,104への供給電流を算出する算出部621と、算出した供給電流を電源41,42,43,44から4つの超電導コイル101,102,103,104にそれぞれ供給させる供給制御部622とを備えている。4つの超電導コイル101,102,103,104の発生する磁場の重ね合わせにより、ビーム経路(ダクト204)を所定の角度の直径方向に横切る主磁場213が形成され、かつ、主磁場213の方向および強度を維持しながら、主磁場213に伴って発生する4極以上の多極磁場が抑制される供給電流を算出部621は算出するように構成されている。
4極以上の多極磁場は、ビーム強度の変化や、回転ガントリ400の回転により偏向磁石203と他の構成物との位置関係の変化、に伴って変化する。よって、算出部621は、ビームの強度や回転ガントリ400の回転角度に基づいて、主磁場213の方向および強度を維持しながら4極以上の多極磁場を抑制することができる超電導コイル101,102,103,104への供給電流値を算出する。ビームの強度や回転ガントリ400の回転角度は、本実施形態では電源コントローラが制御装置610から受け取る構成であるが、ビーム強度や回転角度をセンサ等により計測して、算出部621が供給電流値の算出に用いてもよい。
具体的には、算出部621は、予め定めたおいた数式やテーブルを用いて4つのコイルへの供給電流を算出する。テーブルとしては、例えば、図5に一例を示すように、回転ガントリ400の回転角度と、ビームの強度と、超電導コイル101,102,103,104への供給電流値(C1,C2,C3,C4)との対応関係を示すものを用いる。テーブル内の供給電流値は、予め計算または実験により求めておく。
また、算出部621が数式に基づいて、供給電流値を求める場合、回転ガントリ400の回転角度の代表的な2以上の値と、ビームの強度の代表的な2以上の値との組み合わせについて、予め計算または実験により供給電流値を求めておき、算出部621は、それらの値を用いて、補間計算や外挿計算等により、実際のビームの強度や回転ガントリ400の回転角度に対応する供給電流値を算出する構成にすることができる。
<電源コントローラ620による電源41,42,43,44の制御動作>
電源コントローラ620による偏向磁石203の制御について図6のフローを用いて説明する。
電源コントローラ620による偏向磁石203の制御について図6のフローを用いて説明する。
電源コントローラ620は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等のプロセッサーと、メモリ623とを備えたコンピュータ等によって構成することができる。メモリ623内には、テーブル624の他にプログラムが予め格納されている。CPUは、メモリ623に格納されたプログラムを読み込んで実行することにより、算出部621と供給制御部622の機能を実現する。
なお、電源コントローラ620は、その一部または全部を、ハードウエアにより構成することも可能である。例えば、ASIC(Application Specific Integrated Circuit)のようなカスタムICや、FPGA(Field-Programmable Gate Array)のようなプログラマブルICを用いて、算出部621や供給制御部622の機能を実現するように回路設計を行えばよい。
算出部621は、制御装置610からビーム出射を開始したことを示す信号を受け取ったならば(ステップ61)、制御装置610から現在のガントリ回転角、ビーム強度を取り込む(ステップ62)。ガントリ回転角は、制御装置610が、回転ガントリ400の駆動部402に出力している回転角を指示する制御信号を、算出部621が取り込むことにより取得する。ビーム強度は、制御装置610が加速器500へビーム強度を設定する制御信号を、算出部621が取り込むことにより取得する。
算出部621は、メモリ623内のテーブル624を参照し、ステップ62で取り込んだガントリ回転角、ビーム強度に対応する電流値C1,C2,C3,C4を求める(ステップ63)。算出部621は、供給制御部622に電流値C1,C2,C3,C4を設定する(ステップ64)。これにより、供給制御部622は、電源41,42,43,44の出力電流が電流値C1,C2,C3,C4になるように制御する。
これにより、ビーム経路(ダクト204)を所定の角度の直径方向に横切る主磁場213が形成される。また、回転ガントリ400の回転角やビーム強度の変化に応じて、電流値C1,C2,C3,C4が変化することにより、主磁場213の方向および強度を維持しながら、主磁場213に伴って発生する4極以上の多極磁場が抑制される。
算出部621は、制御装置610がビームの出射を終了したかどうかを判定し、出射が継続している場合は、ステップ62に戻って、電流制御を継続する。ビーム出射が終了したならば電源コントローラ620による、電源41,42,43,44の電流制御も終了する(ステップ65)。
<実施形態の効果>
このように、本実施形態の偏向磁石203では、粒子線の偏向に必要な主磁場213を発生するコイルを超電導コイル101,102,103,104に分割し、電源41,42,43,44からそれぞれ独立に供給する電流を、電源コントローラ620が算出した電流値にコントロールして制御する。これにより、超電導コイル101,102,103,104がつくる磁場を重ね合わせてダクト204内に所望の方向の主磁場213を形成しながら、多極磁場を低減することができる。
このように、本実施形態の偏向磁石203では、粒子線の偏向に必要な主磁場213を発生するコイルを超電導コイル101,102,103,104に分割し、電源41,42,43,44からそれぞれ独立に供給する電流を、電源コントローラ620が算出した電流値にコントロールして制御する。これにより、超電導コイル101,102,103,104がつくる磁場を重ね合わせてダクト204内に所望の方向の主磁場213を形成しながら、多極磁場を低減することができる。
言い換えるならば、超電導コイル101,102,103,104は、ダクト204内に特徴的な多極展開磁場を発生するような位置に配置されており、したがってそれらのコイルの起磁力を調整することによって主磁場213に対して、多極磁場を混合することが可能である。すなわち、磁石の製作誤差によって発生する不要な多極磁場を起磁力調整によってキャンセルすることができる。
これにより、トリムコイル等の磁場補正手段を設置することなく、製作誤差や、ビーム強度の変化や、回転ガントリ400の回転によって発生する不要な多極磁場を補償することが可能なビーム輸送用の電磁石を提供することができる。
<超電導コイル101,102,103,104の電流値C1,C2,C3,C4の算出方法>
上述したように主磁場213は、ビームのエネルギーに応じて一定に保たれる必要がある。本実施形態では、4つの電源(41,42,43,44)によってそれぞれ励磁された超電導コイル101,102,103,104が発生する磁場が重ねあわされた主磁場213によってビームが偏向されることから、主磁場213が所定の値となるように電源(41,42,43,44)の電流値C1,C2,C3,C4は適切に制御される。
上述したように主磁場213は、ビームのエネルギーに応じて一定に保たれる必要がある。本実施形態では、4つの電源(41,42,43,44)によってそれぞれ励磁された超電導コイル101,102,103,104が発生する磁場が重ねあわされた主磁場213によってビームが偏向されることから、主磁場213が所定の値となるように電源(41,42,43,44)の電流値C1,C2,C3,C4は適切に制御される。
ビーム輸送用の電磁石では磁場の安定度が必要である。偏向半径2.4mに磁石において偏向磁場の強度が設計値から1×10-4だけ異なると、偏向磁石出口においてビーム位置が0.24mmずれることになる。そのため、粒子線治療装置用の回転ガントリ用の磁石では主磁場の安定度が1×10-4よりも良好であることが要求される。
ビーム輸送用の磁石ではビーム強度に応じて主磁場強度も変化させる必要があり、重粒子線治療装置用の磁石では、定格磁場強度に対し20%~100%の間で磁場強度を変化させる。空芯磁石では電磁力によるコイルの変形によって磁場均一性がわずかに変化し、鉄芯、磁性体シールドなど磁性体を備える磁石の場合にはさらにその磁性材料の磁化の変化によって磁場均一性は変化(多極磁場成分が発生)する。鉄製のクライオスタット(磁性体シールド)の場合には対称性により主に6極磁場成分を発生し、その強度は主磁場の積分強度に対して1×10-4のオーダーとなり補正が必要である。
回転ガントリの最下流にはビームを90度曲げる偏向磁石があり、この磁石は3つの超電導磁石で構成されている。超電導磁石は断熱真空容器(クライオスタット)内に断熱支持されているが、回転ガントリの回転とともに磁石自重によりわずかな位置ずれ、回転が生じる。0.1度の磁石回転によって生じる4極磁場、6極磁場は1.5×10-5程度であるが10-4の磁場精度が要求されるため無視はできない量である。
本実施の形態の電流制御によれば、主磁場の強度をビーム偏向に必要な強度に維持しながら、4極磁場、6極磁場、8極磁場をそれぞれ1×10-5以下にできる。
C1,C2,C3,C4の電流値は、以下のようにして算出することができる。各コイルに単位電流(密度)の電流を通電した時に、各コイルがビーム経路上につくる磁場を予め計算し多極展開をしておく。そしてその多極展開した磁場を経路に沿って積分することによって積分多極磁場のデータを得る。さらに、回転ガントリ筐体に組みつける前の単体磁石の状態で通電を行ってビームダクト内の磁場分布の計測を行う。両者の突き合わせによって、磁場補正用の各コイルに単位電流を通電した時の積分多極磁場強度のデータ(感度データ)を生成する。この感度データを用いて、観測された磁場分布またはビームスポット形状を補正するような電流配分を逆問題を解いて決定することによって、C1,C2,C3,C4の電流値が算出される。
磁石を回転ガントリ筐体に組付け後、ある程度ビームが通るように調整を行った後、電流補正テーブルを作成する。ビームエネルギーをある値に設定し回転ガントリをある角度位置に固定した状態でビームを通し、ビームモニターによってビーム形状を観測し、形状から推定される残留誤差多極磁場を補正するように電流値の微調整を行う。代表的なガントリ角度およびビームエネルギー強度に対して、この作業を行って補正電流テーブルを構築する。中間のガントリ位置やエネルギー状態に対しては、テーブル補間処理を行って補正電流量を決定する。
<多極磁場とコイル配置について>
(磁場設計について)
以下に、ビーム輸送用電磁石の設計に関し磁場の表式と磁場設計の概念について説明する。円弧状にビームを輸送する電磁石であっても、まずは、無限直線状起磁力源を用いた磁場設計を行い、それをベースにして3次元化する手法がとられる。無限直線状起磁力(電流)がつくる磁場について説明する。
(磁場設計について)
以下に、ビーム輸送用電磁石の設計に関し磁場の表式と磁場設計の概念について説明する。円弧状にビームを輸送する電磁石であっても、まずは、無限直線状起磁力源を用いた磁場設計を行い、それをベースにして3次元化する手法がとられる。無限直線状起磁力(電流)がつくる磁場について説明する。
図7は、多極成分磁場についての説明をするための座標系の取り方ついての説明図である。ここでは、図7に示すような座標系を考える。起磁力源を直線状の電流Iとし、電流は紙面に対して垂直に手前から奥に向って流れているものとする。磁場の方向をz軸方向に取る。電流の位置は、座標原点からの距離をfとし、x軸からなす角をφで与える。磁場評価点の位置は同様に、rとθで与えることとする。
この時、原点周辺の磁場Bz(r、θ)は、
と、原点からの距離rのべき乗で展開した表式で書くことができる。ここでnは展開次数である。
次数nの磁場にBn(r、θ)を
のようにBn、nl(r、θ)とBn、sw(r、θ)の2成分の和の形で表現する。
Bn、nl(r、θ)とBn、sw(r、θ)は
の表式で書き表され、それぞれをノーマル2(n+1)極磁場、スキュー2(n+1)極磁場と呼ぶことにする。n=0の場合にはスキュー磁場はゼロになるからノーマル磁場しか存在しない。n=0の磁場がビーム輸送に使われる偏向磁場であり、n=1のノーマル4極磁場がビームの収束・発散に利用される。
ビーム飛行経路を一定の曲率で偏向させるためには一様な磁場が必要であり、偏向用電磁石では、基本的にn=0次の一様磁場(2極磁場)だけを残してそれ以外の次数の磁場成分(多極成分磁場ともいう)はゼロにする磁場設計を行う。
2極磁場が得られるコイル巻線方法(電流配置方法)としてはコサインシータ巻線がよく使われている。これは、図7における座標系において電流の強度(電流分布)をx軸からなす角θに対してcos(θ)状に分布させる配置方法である。
式3および式4において、多極展開磁場強度の電流ソースの角度位置に関する依存性はcos[(n+1)φ]およびsin[(n+1)φ]の部分であるが、電流の強度分布としてcos(φ)の分布をもたせて積分をすればn=0以外の項はゼロとなることからわかるように、コサインシータ巻線では2極磁場のみが得られる。
本発明及び/又は本実施形態では、いわゆるコサインシータ巻きの電流密度分布が連続的に変化する分布巻線コイルではなく、矩形断面のコイルが離散的に配置された体系によって偏向磁石を実現しようとしている。
この場合であっても、コサインシータ巻線の場合と同様に、n=0以外の多極成分磁場をゼロ(又は、ゼロに近い値、無視できる値、等)とするようなコイル配置としなければならない。
本実施形態のように、2次元平面内で電流起磁力源を上下対称(x軸に対して)に配置すると、式4から分かるようにスキュー成分の磁場はすべてキャンセルされるため、ノーマル成分のみに着目して磁石の設計ができる。さらに、左右反対称(z軸に対して)に起磁力源を配置することによって、ノーマル成分の磁場のうちnが奇数次の磁場成分はキャンセルされる。ここで左右反対称とはコイル断面形状がz軸に対して対称であり、電流の向きが反対であることをいう。図8での丸の中央に点が打たれた印は電流が紙面奥から手前に向かって流れていることを示し、丸にバツの印は電流が紙面奥に向かって流れていることを示す。
したがって設計上考慮すべき磁場はnが偶数次の項のみであり、残すべきn=0の2極磁場以外のn=2の6極磁場、n=4の10極磁場、n=6の14極磁場、…、等をキャンセルする磁場設計を行なうこととなる。n次の磁場は次数が高いほど(r/f)のn乗でその強度は小さくなっていくため、無限に高い次数の磁場までをキャンセルする必要はなく、キャンセルすべき磁場に関しては、ビームが通過する領域において要求される磁場精度によって決定される。
(コイル配置の原理)
図9に起磁力源のノーマル磁場成分強度の角度位置依存性を示すグラフを示す。ノーマル磁場成分の角度依存性はcos[(n+1)φ]であり、n=0、2、4に対して図示した。
図9に起磁力源のノーマル磁場成分強度の角度位置依存性を示すグラフを示す。ノーマル磁場成分の角度依存性はcos[(n+1)φ]であり、n=0、2、4に対して図示した。
n=0次の磁場は電流の角度位置に対してcos[φ]の依存性があるため、なるべくx軸に近づけて電流(コイル)を配置するのが効率が良く、cos[φ]が0.5以上1以下となる領域に正の主たる起磁力を、-1以上-0.5以下となる領域に負の主たる起磁力を配置する。x>0、z>0の第一象限を考えると、偏向磁場を発生させるためにx軸から60度の範囲に正の起磁力を配置する。(すなわち、外側に配置される漏洩磁場低減用の逆向きの起磁力源考慮にいれない)。
次にn=2次の磁場を考える。第一象限で0度から60度範囲でcos[3φ]はφ=30度のところで符号が変化する。0から60度の範囲に正の起磁力のみを配置することにするので、n=2次の磁場をキャンセルするために、このφ=30度のラインをまたぐように起磁力源を配置する。
したがって、図8に示すように本実施形態のように最小個数の4つのコイルで偏向磁石を実現するためには、上下対称性、左右反対称性を考えφ=±30度および±150度のラインを境とする第一および第二の低角度領域に同じ形状の、第一と第二の高角度領域に同じ形状のコイルを配置する。
<ノーマル4極、8極磁場の調整>
n=1のノーマル4磁場の電流ソースの角度位置に関する依存性はcos(2φ)であり、左右反対称の起磁力源(起磁力の符号が逆で位置が180度―φ)のセットは、その出力を持たないので、第一および第二の高角度領域に配置される左右反対称のコイル(103,104)の電流を調整してもノーマル4極磁場を調整することはできない。第一および第二の低角度領域に配置されるコイル(101,102)の電流量を調整することによってノーマル4極磁場を発生することができる。
n=1のノーマル4磁場の電流ソースの角度位置に関する依存性はcos(2φ)であり、左右反対称の起磁力源(起磁力の符号が逆で位置が180度―φ)のセットは、その出力を持たないので、第一および第二の高角度領域に配置される左右反対称のコイル(103,104)の電流を調整してもノーマル4極磁場を調整することはできない。第一および第二の低角度領域に配置されるコイル(101,102)の電流量を調整することによってノーマル4極磁場を発生することができる。
n=3のノーマル8磁場の電流ソースの角度位置に関する依存性はcos(4φ)であり、左右反対称の起磁力源(起磁力の符号が逆で位置が180度―φ)のセットは、その出力を持たないので、第一および第二の高角度領域に配置される左右対称のコイル(103,104)の電流を調整してもノーマル8極磁場を調整することはできない。第一および第二の低角度領域に配置されるコイル(101,102)の電流量を調整することによってノーマル8極磁場を発生することができる。
n=1とn=3の磁場成分を独立に調整するためには自由度が不足しているが、
一般にビーム輸送用の電磁石装置には、ビーム形状を調整するために4極磁石が別途配置されることから、この外部に設置される4極磁石の出力を調整することによって、ノーマル4極とノーマル8極磁場についての磁場補正が可能となる。
一般にビーム輸送用の電磁石装置には、ビーム形状を調整するために4極磁石が別途配置されることから、この外部に設置される4極磁石の出力を調整することによって、ノーマル4極とノーマル8極磁場についての磁場補正が可能となる。
なお、n=5以上の磁場成分に対しては、磁石自体が発生する磁場強度が小さいため、誤差磁場の量も小さく磁場補正対象とはならないし、また、起磁力調整によってわずかに発生する磁場についてもビーム輸送に影響はないので無視できる。
ノーマル6、10極磁場の調整
n=2のノーマル6磁場の電流ソースの角度位置に関する依存性はcos(3φ)であり、左右反対称の起磁力源(起磁力の符号が逆で位置が180度―φ)のセットにおいてもその出力を有する。したがって、第一および第二の高角度領域のすべてのコイル(103,104)と第一および第二の低角度領域のすべてのコイル(101,102)の電流調整によりノーマル6極磁場を発生させることができる。
n=2のノーマル6磁場の電流ソースの角度位置に関する依存性はcos(3φ)であり、左右反対称の起磁力源(起磁力の符号が逆で位置が180度―φ)のセットにおいてもその出力を有する。したがって、第一および第二の高角度領域のすべてのコイル(103,104)と第一および第二の低角度領域のすべてのコイル(101,102)の電流調整によりノーマル6極磁場を発生させることができる。
n=4のノーマル10磁場の電流ソースの角度位置に関する依存性はcos(5φ)であり、ノーマル6極磁場と同様に、第一および第二の高角度領域と第一および第二の低角度領域のすべてのコイル(101,102,103,104)の電流調整によりノーマル10極磁場を発生させることができる。
n=2とn=4の磁場成分を独立に調整するためには自由度が不足しているが、なお、n=4以上の磁場成分に対しては、磁石自体が発生する磁場強度が小さいため、誤差磁場の量も小さく磁場補正対象とはならないし、また、起磁力調整によってわずかに発生する磁場についてもビーム輸送に影響はないので無視できる。
<スキュー4、6、8極磁場の調整>
n=1のスキュー4磁場の電流ソースの角度位置に関する依存性はsin(2φ)であり、上下対称の起磁力源(起磁力の符号が同じで位置が―φ度)は、その出力を持たないので、第一および第二の低角度領域に配置される赤道面に対して対称形状のコイル(101,102)の電流を調整してもスキュー4極磁場を調整することはできない。第一および第二の高角度領域に配置されるコイル(103,104)の電流量を調整することによってスキュー4極磁場を発生することができる。
n=1のスキュー4磁場の電流ソースの角度位置に関する依存性はsin(2φ)であり、上下対称の起磁力源(起磁力の符号が同じで位置が―φ度)は、その出力を持たないので、第一および第二の低角度領域に配置される赤道面に対して対称形状のコイル(101,102)の電流を調整してもスキュー4極磁場を調整することはできない。第一および第二の高角度領域に配置されるコイル(103,104)の電流量を調整することによってスキュー4極磁場を発生することができる。
n=2のスキュー6磁場の電流ソースの角度位置に関する依存性はsin(3φ)であり、上下対称の起磁力源(起磁力の符号が同じで位置が―φ度)は、その出力を持たないので、第一および第二の低角度領域に配置される赤道面に対して対称形状のコイル(101,102)の電流を調整してもスキュー6極磁場を調整することはできない。さらに、左右反対称の起磁力源(起磁力の符号が逆で位置が180度―φ)のセットは、その出力を持たないので、第一および第二の高角度領域に配置される左右反対称のコイル(103,104)の電流を調整してもスキュー6極磁場を調整することはできない。したがって、左右反対称、上下対称の起磁力配置をもつ本実施の形態ではスキュー6極磁場を補正することはできない。
n=3のスキュー8磁場の電流ソースの角度位置に関する依存性はsin(4φ)であり、上下対称の起磁力源(起磁力の符号が同じで位置が―φ度)は、その出力を持たないので、第一および第二の低角度領域に配置される赤道面に対して対称形状のコイル(101,102)の電流を調整してもスキュー8極磁場を調整することはできない。第一および第二の高角度領域に配置される左右反対称のコイル(103,104)はスキュー8極磁場に対しては本来出力を有するが、本実施の磁石では、第一および第二の高角度領域に配置されるコイル(103,104)は、第一象限において30度から60度の範囲に置かれたコイルの上下対称、左右反対称のコイルとなる。スキュー8極磁場はソースが45度の位置あるときにその出力はゼロとなるため、本実施の形態ではスキュー8極磁場の補正能力はほとんどない。
このように、本実施の形態の磁石ではスキュー成分に関しては4極磁場以外の磁場補正能力は本質的にない。しかし、スキュー多極磁場は上下非対称の起磁力源によって発生するものであり、ペアリングをすることによって上下対称を厳しく管理して磁石を製作することにより、n=2以上のスキュー成分の誤差磁場の発生は抑制でき、問題とはならない。
<磁場補正まとめ>
本実施の形態では、以下の多極磁場成分の磁場補正を行うことができる。
1)ノーマル4極磁場
2)ノーマル6極磁場
3)ノーマル8極磁場
4)スキュー4極磁場
ノーマル4極磁場とノーマル8極磁場については、第一および第二の低角度領域に配置されたコイル(101,102)の起磁力に差をつけることによって補正磁場を発生できるが、自由度が不足するために外部に設置されたビーム形状を調整する4極磁石を利用しノーマル4極磁場を活用することによって、独立に調整が可能である。
本実施の形態では、以下の多極磁場成分の磁場補正を行うことができる。
1)ノーマル4極磁場
2)ノーマル6極磁場
3)ノーマル8極磁場
4)スキュー4極磁場
ノーマル4極磁場とノーマル8極磁場については、第一および第二の低角度領域に配置されたコイル(101,102)の起磁力に差をつけることによって補正磁場を発生できるが、自由度が不足するために外部に設置されたビーム形状を調整する4極磁石を利用しノーマル4極磁場を活用することによって、独立に調整が可能である。
ノーマル6極磁場について、第一および第二の低角度領域に配置されたコイル(101,102)の起磁力総量と第一および第二の高角度領域に配置されたコイル(103,104)の起磁力総量との間に差をつけ、その際に第一および第二の高角度領域に配置されたコイルの起磁力を同じだけ変化させることによってノーマル6極磁場を単独に調整が可能である。
スキュー4極磁場については、第一および第二の高角度領域に配置されたコイル(103,104)の起磁力に差をつけることによってスキュー4極磁場を単独に調整が可能である。
<スキュー4極補助磁場補正手段>
4つの多極磁場成分に対しては独立に誤差磁場補正が可能であり、それぞれの多極補正磁場を発生させるために必要な電流を重ね合わせた補正電流を各コイルに追加することによって、磁場補正可能である。しかし、超電導コイルに通電しうる電流には限界があり磁場補正能力は追加できる補正電流の量によって制限される。
4つの多極磁場成分に対しては独立に誤差磁場補正が可能であり、それぞれの多極補正磁場を発生させるために必要な電流を重ね合わせた補正電流を各コイルに追加することによって、磁場補正可能である。しかし、超電導コイルに通電しうる電流には限界があり磁場補正能力は追加できる補正電流の量によって制限される。
特に、スキュー4極磁場とノーマル6極磁場の補正磁場を発生する第一と第二の高角度領域に配置されるコイル(103,104)に対しては、このコイルの負荷率は磁石設計上大きくなることから、大きな補正電流を追加することはできない。
ノーマル6極磁場の補正能力を大きく保つためには、起磁力調整によるスキュー4極磁場の調整能力の割り当てを減らす必要がある。そのためには補助的なスキュー4極磁場補正手段の活用が有効である。超電導偏向磁石の外部にはビーム形状を補正するための常電導の4極磁石211が設置されている。この4極磁石はノーマル4極磁場を発生するように構成されており、ノーマル4極磁場の誤差磁場の補正に対しても活用されるが、さらにこの磁石をわずかに回転させて設置することによりスキュー4極磁場を発生することが可能である。
あらかじめ超電導偏向磁石は発生するスキュー4極磁場強度を測定しておき、この磁場を大まかにキャンセルするように4極磁石211を回転させて設置する。超電導偏向磁石の起磁力調整によって補償しないといけないスキュー4極磁場が減るため、ノーマル6極磁場補正のための追加補正電流をより多く流すことが可能となる。
以上のように、追加の補正磁場発生手段を新たに設置することなく、偏向磁石の起磁力調整によって、製作誤差によって生じる、ノーマル4極、6極、8極磁場およびスキュー4極磁場を補償することが可能となる。
本発明の電磁石装置は、ビーム輸送用の超電導磁石であり様々なビーム輸送を必要とする装置に対して適用可能である。例えば、粒子線治療装置の電磁石として有用であり、粒子線治療装置を高性能化および小型化できる。
20,21…コイル、20m,21m…磁場、
31a,31b,32a,32b,33a,33b,34a,34b…電流リード、
41,42,43,44…電源(励磁電源)
101,102,103,104…コイル、110…断熱容器、120…冷凍機、200…ビーム輸送系、
201,202,203…偏向磁石、204…ダクト、211…4極磁石、212…軌道補正磁石、214…回転連結部、301…患者、300…照射装置、302…ベッド、303…走査用電磁石、400…回転ガントリ、500…加速器、501…ライナック、502…シンクロトロン、1213…回転軸、1230…電磁石
31a,31b,32a,32b,33a,33b,34a,34b…電流リード、
41,42,43,44…電源(励磁電源)
101,102,103,104…コイル、110…断熱容器、120…冷凍機、200…ビーム輸送系、
201,202,203…偏向磁石、204…ダクト、211…4極磁石、212…軌道補正磁石、214…回転連結部、301…患者、300…照射装置、302…ベッド、303…走査用電磁石、400…回転ガントリ、500…加速器、501…ライナック、502…シンクロトロン、1213…回転軸、1230…電磁石
Claims (8)
- ビーム経路の周囲に配置された少なくとも4つのコイルと、前記コイルに電流を供給する少なくとも2つの電源と、前記2つの電源を制御する電源コントローラとを有し、
前記電源コントローラは、前記4つのコイルの発生する磁場の重ね合わせにより、前記ビーム経路を所定の角度に横切る主磁場が形成され、かつ、前記主磁場の方向および強度を維持しながら、前記主磁場に伴って発生する4極以上の多極磁場が抑制される前記4つのコイルへの供給電流を算出する算出部と、前記算出した供給電流を前記電源から前記4つのコイルに供給させる供給制御部とを備えることを特徴とする電磁石装置。 - 請求項1に記載の電磁石装置であって、前記算出部は、前記ビームの強度に基づいて、前記供給電流を算出することを特徴とする電磁石装置。
- 請求項1に記載の電磁石装置であって、前記4つのコイルは、回転装置に搭載され、前記回転装置は、前記4つのコイルの位置関係を保ったまま、予め定めた軸を中心に回転させ、
前記算出部は、前記回転装置の回転の角度に応じて、前記供給電流を算出することを特徴とする電磁石装置。 - 請求項1に記載の電磁石装置であって、前記算出部は、予め定めておいた数式および/またはテーブルを用いて前記4つのコイルへの供給電流を算出することを特徴とする電磁石装置。
- 請求項4に記載の電磁石装置であって、前記4つのコイルは、回転装置に搭載され、前記回転装置は、前記4つのコイルの位置関係を保ったまま、予め定めた軸を中心に回転させ、
前記テーブルは、前記回転装置の回転角度と、前記ビームの強度と、前記供給電流の値との対応関係を示すものであることを特徴とする電磁石装置。 - 請求項1に記載の電磁石装置であって、前記4つのコイルは、それぞれフラットコイルであり、前記4つのコイルのうち第1および第2のコイルは、主平面が、前記ビームの軸方向を挟んで対向するように配置され、第3および第4のコイルは、側面が、前記ビームの軸方向を挟んで対向するように配置されていることを特徴とする電磁石装置。
- ビーム経路の周囲に配置された少なくとも4つのコイルと、前記コイルに電流を供給する少なくとも2つの電源とを有する電磁石装置の制御方法であって、
前記4つのコイルの発生する磁場の重ね合わせにより、前記ビーム経路を所定の角度の直径方向に横切る主磁場が形成され、かつ、前記主磁場の方向および強度を維持しながら、前記主磁場に伴って発生する4極以上の多極磁場が抑制される前記4つのコイルへの供給電流を算出し、
前記算出した供給電流を前記電源から前記4つのコイルに供給させることを特徴とする電磁石装置の制御方法。 - 粒子線のビームを出射する加速器と、前記ビームを輸送する輸送系と、前記ビームを被検体に対して照射する照射装置とを有し、
前記輸送系は、前記ビームを偏向させる電磁石装置を含み、前記電磁石装置は、請求項1ないし6のいずれか1項に記載の電磁石装置であることを特徴とする粒子線治療装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-063136 | 2021-04-01 | ||
JP2021063136A JP2022158334A (ja) | 2021-04-01 | 2021-04-01 | 電磁石装置、電磁石装置の制御方法、および、粒子線治療装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022209300A1 true WO2022209300A1 (ja) | 2022-10-06 |
Family
ID=83455843
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/004630 WO2022209300A1 (ja) | 2021-04-01 | 2022-02-07 | 電磁石装置、電磁石装置の制御方法、および、粒子線治療装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2022158334A (ja) |
WO (1) | WO2022209300A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115568084A (zh) * | 2022-11-22 | 2023-01-03 | 中国科学院近代物理研究所 | 一种在线式磁场动态效应补偿系统、方法和可读介质 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02174099A (ja) * | 1988-12-27 | 1990-07-05 | Mitsubishi Electric Corp | 超電導偏向電磁石 |
JP2012254123A (ja) * | 2011-06-07 | 2012-12-27 | Sumitomo Heavy Ind Ltd | 荷電粒子線照射装置 |
JP2017167012A (ja) * | 2016-03-17 | 2017-09-21 | 株式会社日立製作所 | ビーム輸送用超電導磁石装置、ビーム輸送システム、粒子線治療システム、ビーム輸送用超伝導磁石配置方法 |
-
2021
- 2021-04-01 JP JP2021063136A patent/JP2022158334A/ja active Pending
-
2022
- 2022-02-07 WO PCT/JP2022/004630 patent/WO2022209300A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02174099A (ja) * | 1988-12-27 | 1990-07-05 | Mitsubishi Electric Corp | 超電導偏向電磁石 |
JP2012254123A (ja) * | 2011-06-07 | 2012-12-27 | Sumitomo Heavy Ind Ltd | 荷電粒子線照射装置 |
JP2017167012A (ja) * | 2016-03-17 | 2017-09-21 | 株式会社日立製作所 | ビーム輸送用超電導磁石装置、ビーム輸送システム、粒子線治療システム、ビーム輸送用超伝導磁石配置方法 |
Non-Patent Citations (2)
Title |
---|
BAJARD M, F. KIRCHER: "ROTATIVE GANTRY FOR DOSE DISTRIBUTION IN HADRONTHERAPY", PROCEEDINGS OF EPAC08, 27 June 2008 (2008-06-27), pages 1779 - 1781, XP055974154 * |
CALZOLAIO CIRO; SANFILIPPO STEPHANE; CALVI MARCO; GERBERSHAGEN ALEXANDER; NEGRAZUS MARCO; SCHIPPERS MARCO; SEIDEL MIKE: "Preliminary Magnetic Design of a Superconducting Dipole for Future Compact Scanning Gantries for Proton Therapy", IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, IEEE, USA, vol. 26, no. 3, 1 April 2016 (2016-04-01), USA, pages 1 - 5, XP011601268, ISSN: 1051-8223, DOI: 10.1109/TASC.2016.2524448 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115568084A (zh) * | 2022-11-22 | 2023-01-03 | 中国科学院近代物理研究所 | 一种在线式磁场动态效应补偿系统、方法和可读介质 |
CN115568084B (zh) * | 2022-11-22 | 2023-03-10 | 中国科学院近代物理研究所 | 一种在线式磁场动态效应补偿系统、方法和可读介质 |
Also Published As
Publication number | Publication date |
---|---|
JP2022158334A (ja) | 2022-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8378312B1 (en) | System, apparatus and method for deflecting a particle beam | |
US10463884B2 (en) | Systems and methods for linear accelerator radiotherapy with magnetic resonance imaging | |
US10249419B2 (en) | Superconductive electromagnet and charged particle beam therapy apparatus | |
WO2022209300A1 (ja) | 電磁石装置、電磁石装置の制御方法、および、粒子線治療装置 | |
JP2020041971A (ja) | 走査電磁石装置及び荷電粒子ビーム照射システム | |
JP2009301992A (ja) | 超電導コイル装置 | |
KR20190059950A (ko) | 입자선빔 수송 장치, 회전 겐트리 및 입자선빔 조사 치료 시스템 | |
JP2013096949A (ja) | 走査電磁石および荷電粒子ビーム照射装置 | |
JP6588849B2 (ja) | ビーム輸送用超電導磁石装置、ビーム輸送システム、粒子線治療システム、ビーム輸送用超伝導磁石配置方法 | |
JP2002022900A (ja) | 荷電粒子線照射装置、及び、これを用いた治療装置 | |
WO2021260988A1 (ja) | 粒子加速器および粒子線治療装置 | |
JP2019082389A (ja) | ビーム輸送系および粒子線治療装置 | |
JP6832711B2 (ja) | 超伝導電磁石装置及び超伝導電磁石装置における磁場補正方法 | |
TWI565498B (zh) | 中隔電磁石之控制方法 | |
JPH11238600A (ja) | 粒子線治療装置 | |
WO2018123063A1 (ja) | 粒子線治療装置 | |
WO2024204426A1 (ja) | 荷電粒子ビーム照射システム、オフセット装置、制御方法 | |
Jang et al. | Error tolerance studies for the superconducting linac of RAON | |
JP2010049965A (ja) | 荷電粒子ビーム加速器およびその加速器を用いた粒子線照射医療システム | |
JP4085176B2 (ja) | 電子ビームの軌道補正装置及び軌道補正方法 | |
JP2001231873A (ja) | 荷電粒子ビーム照射方法および装置 | |
WO2015015579A1 (ja) | 荷電粒子ビーム照射装置 | |
Shatunov et al. | Magnet structure of the VEPP-2000 electron-positron collider | |
Variale et al. | New beam scanning device for active beam delivery system (BDS) in proton therapy | |
Dolinskii et al. | Orbit Correction System at the Collector Ring |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22779529 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22779529 Country of ref document: EP Kind code of ref document: A1 |