JP7438533B2 - Ultra-low resistance connection method between high-temperature oxide superconducting wire and metallic superconducting wire - Google Patents
Ultra-low resistance connection method between high-temperature oxide superconducting wire and metallic superconducting wire Download PDFInfo
- Publication number
- JP7438533B2 JP7438533B2 JP2020088019A JP2020088019A JP7438533B2 JP 7438533 B2 JP7438533 B2 JP 7438533B2 JP 2020088019 A JP2020088019 A JP 2020088019A JP 2020088019 A JP2020088019 A JP 2020088019A JP 7438533 B2 JP7438533 B2 JP 7438533B2
- Authority
- JP
- Japan
- Prior art keywords
- superconducting
- wire
- solder
- oxide superconducting
- metallic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 30
- 229910000679 solder Inorganic materials 0.000 claims description 85
- 229910052751 metal Inorganic materials 0.000 claims description 80
- 239000002184 metal Substances 0.000 claims description 80
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 36
- 150000002910 rare earth metals Chemical class 0.000 claims description 36
- 229910052797 bismuth Inorganic materials 0.000 claims description 25
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 18
- 239000011248 coating agent Substances 0.000 claims description 18
- 238000000576 coating method Methods 0.000 claims description 18
- 230000007935 neutral effect Effects 0.000 claims description 7
- 239000002887 superconductor Substances 0.000 claims description 6
- 229910045601 alloy Inorganic materials 0.000 claims description 5
- 239000000956 alloy Substances 0.000 claims description 5
- 229910052718 tin Inorganic materials 0.000 claims description 5
- 229910020830 Sn-Bi Inorganic materials 0.000 claims description 4
- 229910018728 Sn—Bi Inorganic materials 0.000 claims description 4
- 230000006835 compression Effects 0.000 claims description 4
- 238000007906 compression Methods 0.000 claims description 4
- 238000002844 melting Methods 0.000 claims description 4
- 230000008018 melting Effects 0.000 claims description 4
- 229910001152 Bi alloy Inorganic materials 0.000 claims description 3
- 229910020220 Pb—Sn Inorganic materials 0.000 claims description 3
- 229910020836 Sn-Ag Inorganic materials 0.000 claims description 2
- 229910020988 Sn—Ag Inorganic materials 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 37
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- 238000004804 winding Methods 0.000 description 7
- 230000002085 persistent effect Effects 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 239000011241 protective layer Substances 0.000 description 5
- 239000010935 stainless steel Substances 0.000 description 5
- 239000007788 liquid Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 229910000909 Lead-bismuth eutectic Inorganic materials 0.000 description 3
- 239000001307 helium Substances 0.000 description 3
- 229910052734 helium Inorganic materials 0.000 description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 3
- 238000000669 high-field nuclear magnetic resonance spectroscopy Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000002595 magnetic resonance imaging Methods 0.000 description 2
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- 229910000792 Monel Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 229910000856 hastalloy Inorganic materials 0.000 description 1
- 229910001026 inconel Inorganic materials 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical group [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Superconductors And Manufacturing Methods Therefor (AREA)
Description
本発明は高温酸化物超伝導線材と金属系超伝導線材の超低抵抗接続方法に関する。
The present invention relates to an ultra-low resistance connection method for high-temperature oxide superconducting wire and metallic superconducting wire.
レアアース(RE)系酸化物超伝導線材は、超伝導臨界温度、臨界磁場が高く、強磁場NMR(nuclear magnetic resonator:核磁気共鳴)装置や、磁気共鳴映像法(MRI)、超伝導磁気エネルギー貯蔵(SMES)、送電ケーブルなど、様々な応用が期待されている。特に、1GHz超級強磁場NMR装置では、発生磁場が23.5Tを超えるため、RE系超伝導線材などの高温超伝導線材が不可欠となる。 Rare earth (RE)-based oxide superconducting wires have high superconducting critical temperatures and high critical magnetic fields, and are used in high-field NMR (nuclear magnetic resonator) devices, magnetic resonance imaging (MRI), and superconducting magnetic energy storage. Various applications are expected, such as (SMES) and power transmission cables. In particular, in a 1 GHz super strong magnetic field NMR device, the generated magnetic field exceeds 23.5 T, so high-temperature superconducting wires such as RE-based superconducting wires are essential.
こうした超強磁場NMR装置では、サイズ・コスト面の制約から、RE系超伝導コイルだけでなく、外層をNbTiやNb3Snなどの金属系超伝導コイルで構成する必要がある。従って、こうした超強磁場NMR装置を永久電流運転するためには、RE系超伝導線材同士の接続だけでなく、RE系超伝導線材と金属系低温超伝導線材間の超伝導接続が不可欠である。 In such a super strong magnetic field NMR apparatus, due to size and cost constraints, it is necessary to construct the outer layer not only with an RE-based superconducting coil but also with a metal-based superconducting coil such as NbTi or Nb 3 Sn. Therefore, in order to operate such a super strong magnetic field NMR device with persistent current, it is essential not only to connect RE-based superconducting wires to each other, but also to make superconducting connections between RE-based superconducting wires and metallic low-temperature superconducting wires. .
しかしながら、全く性質・製法の異なる両材料の層間組織制御の困難さから、RE系酸化物超伝導線材と金属系超伝導線材の超伝導接続はこれまで実現できていない。そこで、両線材間の擬似超伝導接続を実現するために、接合長さ・面積を増大させて、両線材間の接続抵抗を低減させることが必要になるが、接続抵抗を永久電流運転実現可能な抵抗値以下にするためには、5m以上の接続長が必要となる。接続部をマグネットシステムに配置することを考えると、そうしたスペースを確保することは極めて現実的ではない。そこでそうしたスペースの課題を解決するために、特許文献1に記載されているように、共巻きによる接続構造が提案された。この提案では、高温超伝導テープ線材と金属系低温超伝導テープ線材とが、長手方向にわたって面接触し、その間にはんだを介在させてゼンマイのように巻き上げ一体化することによって、比較的コンパクトな低抵抗接続が実現される。 However, due to the difficulty in controlling the interlayer structure of the two materials, which have completely different properties and manufacturing methods, a superconducting connection between an RE-based oxide superconducting wire and a metal-based superconducting wire has not been achieved so far. Therefore, in order to realize a pseudo-superconducting connection between the two wires, it is necessary to increase the bond length and area and reduce the connection resistance between the two wires, but it is possible to realize persistent current operation of the connection resistance. In order to reduce the resistance value to less than 5 m, a connection length of 5 m or more is required. Considering the arrangement of the connections in the magnetic system, securing such space is extremely impractical. In order to solve this space problem, a co-wound connection structure was proposed as described in Patent Document 1. In this proposal, a high-temperature superconducting tape wire and a metal-based low-temperature superconducting tape wire are brought into surface contact in the longitudinal direction, and by winding them up like a spring with solder interposed between them, they are integrated into a relatively compact low-temperature superconducting tape wire. A resistive connection is realized.
上記方法では、まず第1の問題点として、接続に金属系低温超伝導テープ線が必要とされる。通常、マグネットに使用される金属系超伝導線材は丸線もしくは矩形線材であり、テープ線を使用してマグネットを構成することはまれである。従って、上記の接続方法を利用するためには、接続用に金属系超伝導テープ線を別途用意し、例えば非特許文献1や特許文献2に示される方法で、このテープ線材をあらかじめ丸線もしくは矩形線材とで超伝導接続を構成しておく必要がある。 The first problem with the above method is that a metallic low-temperature superconducting tape wire is required for connection. Usually, the metallic superconducting wire used in magnets is a round wire or a rectangular wire, and it is rare that a tape wire is used to construct a magnet. Therefore, in order to use the above connection method, a metal-based superconducting tape wire is separately prepared for connection, and this tape wire is pre-wired into a round wire or It is necessary to form a superconducting connection with the rectangular wire.
その他の問題点として、機械的に脆い高温超伝導テープ線材と金属系低温超伝導テープ線材との間にはんだを介在させる、同時にゼンマイのように巻き上げる、さらにそれらを一体化させるなど、作業がデリケートで煩雑であるという問題がある。ここで、金属系超伝導テープ線材を巻き上げる必要があることから、金属系超伝導テープ線材には可とう性が不可欠で、Nb3Snのような脆い化合物系超伝導線材との接続には利用できない。
従って、レアアース系超伝導線材とNb3Sn化合物超伝導線材とを接続する場合には、いったん、例えば非特許文献1や特許文献2に示される方法でNb3Sn線材を可とう性のあるNbTi線材に接続しておき、さらに上記方法で、レアアース系超伝導線材と可とう性のあるNbTiテープ線材と接続するという、2段階の接続工程が必要である。
こうした状況は、金属系超伝導線材との超伝導接続が確立されていないBi系酸化物超伝導線材にも同様に当てはまる。
Other problems include interposing solder between the mechanically brittle high-temperature superconducting tape wire and the metallic low-temperature superconducting tape wire, winding them up like a spring at the same time, and integrating them, which requires delicate work. The problem is that it is complicated. Here, since it is necessary to wind up the metal-based superconducting tape wire, flexibility is essential for the metal-based superconducting tape wire, and it can be used for connection with brittle compound-based superconducting wires such as Nb 3 Sn. Can not.
Therefore, when connecting a rare earth superconducting wire and a Nb 3 Sn compound superconducting wire, the Nb 3 Sn wire is first bonded to flexible NbTi by the method shown in Non-Patent Document 1 and Patent Document 2, for example. A two-step connection process is required, in which the rare earth superconducting wire is connected to the wire and then the rare earth superconducting wire is connected to the flexible NbTi tape wire using the method described above.
This situation similarly applies to Bi-based oxide superconducting wires in which superconducting connections with metal-based superconducting wires have not been established.
本発明の目的は、省スペースでかつ簡便な手法で汎用的で、永久電流運転可能な1GHz超級の超強磁場NMRを実現できる高温酸化物超伝導線材と金属系超伝導線材とを超低抵抗接続構造を提供することである。 The purpose of the present invention is to develop high-temperature oxide superconducting wires and metallic superconducting wires with ultra-low resistance, which are space-saving, simple, versatile, and capable of realizing ultra-strong magnetic field NMR of over 1 GHz capable of persistent current operation. The purpose is to provide a connection structure.
本発明者は、上記課題を解決するために鋭意研究を進めた結果、NbTiテープ線材を用いることなく、丸型もしくは矩形の金属系超伝導線材と酸化物系超伝導線材との直接的な低抵抗接続技術が開発されれば、作業の劇的な簡素化、さらなる省スペース化を実現できると考え、具体的には10-9Ω以下の接続抵抗を実現することを目標として、本発明を完成させた。 As a result of intensive research in order to solve the above problems, the present inventors have discovered that a direct reduction in resistance between a round or rectangular metallic superconducting wire and an oxide superconducting wire can be achieved without using an NbTi tape wire. We believed that if resistance connection technology were developed, it would be possible to dramatically simplify the work and further save space, and specifically, we developed the present invention with the goal of realizing a connection resistance of 10 -9 Ω or less. Completed.
〔1〕本発明の高温酸化物超伝導線材と金属系超伝導線材の超低抵抗接続方法は、例えば図5に示すように、高温酸化物超伝導テープ線材の表面を表面コーティングはんだによってコーティングし(S100)、酸化物超伝導層の経験する最大ひずみを-1.5%から0.2%の範囲に抑えながら、前記高温酸化物超伝導テープ線材をコンパクトに巻いて金属ケースに収容し(S102)、溶融した超伝導はんだを前記金属ケースに流し込み(S104)、前記超伝導はんだ及び前記表面コーティングはんだの融点以上で一定時間保持して、前記高温酸化物超伝導テープ線材の間に超伝導はんだを相互拡散させ(S106)、金属系超伝導線材の端部のフィラメントが超伝導はんだでコーティングされた前記金属系超伝導線材を、前記金属ケースの中で溶融状態にある超伝導はんだに浸漬し(S108)、前記超伝導はんだを冷却して固体化し、前記超伝導はんだを介して前記高温酸化物超伝導テープ線材と前記金属系超伝導線材とが一体化する(S110)ものである。 [1] The ultra-low resistance connection method of the present invention between a high-temperature oxide superconducting wire and a metallic superconducting wire includes coating the surface of a high-temperature oxide superconducting tape wire with surface coating solder, as shown in FIG. 5, for example. (S100) The high temperature oxide superconducting tape wire is compactly wound and housed in a metal case while suppressing the maximum strain experienced by the oxide superconducting layer within the range of -1.5% to 0.2%. S102), molten superconducting solder is poured into the metal case (S104), and maintained at a temperature higher than the melting point of the superconducting solder and the surface coating solder for a certain period of time to create superconductivity between the high temperature oxide superconducting tape wires. The solder is mutually diffused (S106), and the metallic superconducting wire, in which the filament at the end of the metallic superconducting wire is coated with superconducting solder, is immersed in the superconducting solder in a molten state in the metal case. (S108), the superconducting solder is cooled and solidified, and the high temperature oxide superconducting tape wire and the metallic superconducting wire are integrated via the superconducting solder (S110).
〔2〕好ましくは、本発明の高温酸化物超伝導線材と金属系超伝導線材の超低抵抗接続方法〔1〕において、前記高温酸化物超伝導テープ線材はレアアース系の酸化物超伝導テープ線材であり、前記レアアース系の酸化物超伝導テープ線材を前記金属ケースの内側に巻き入れる際に、前記レアアース系の酸化物超伝導テープ線材の酸化物超伝導層が前記レアアース系の酸化物超伝導テープ線材の機械的中立面から見て圧縮側に位置するような向きで巻き入れるとよい。
〔3〕好ましくは、本発明の高温酸化物超伝導線材と金属系超伝導線材の超低抵抗接続方法〔2〕において、レアアース系の酸化物超伝導テープ線材の酸化物超伝導層の圧縮ひずみの範囲は、-1.5%以上で0%以下であるとよい。
〔4〕好ましくは、本発明の高温酸化物超伝導線材と金属系超伝導線材の超低抵抗接続方法〔1〕において、前記高温酸化物超伝導テープ線材はビスマス系超伝導線材であり、前記ビスマス系超伝導線材を前記金属ケースの内側に巻き入れる際に、前記ビスマス系超伝導線材の酸化物超伝導層が経験する最大ひずみを0.2%以下とするとよい。
[2] Preferably, in the ultra-low-resistance connection method for high-temperature oxide superconducting wire and metallic superconducting wire of the present invention [1], the high-temperature oxide superconducting tape wire is a rare earth-based oxide superconducting tape wire. When the rare earth oxide superconducting tape wire is wound inside the metal case, the oxide superconducting layer of the rare earth oxide superconducting tape wire becomes the rare earth oxide superconductor. It is preferable to wind the tape wire in such a direction that it is located on the compression side when viewed from the mechanical neutral plane of the tape wire.
[3] Preferably, in the ultra-low resistance connection method of the present invention between a high-temperature oxide superconducting wire and a metallic superconducting wire, compressive strain of the oxide superconducting layer of the rare earth-based oxide superconducting tape wire is applied. The range is preferably -1.5% or more and 0% or less.
[4] Preferably, in the ultra-low-resistance connection method for high-temperature oxide superconducting wire and metallic superconducting wire of the present invention [1], the high-temperature oxide superconducting tape wire is a bismuth-based superconducting wire; When the bismuth-based superconducting wire is wound inside the metal case, the maximum strain experienced by the oxide superconducting layer of the bismuth-based superconducting wire is preferably 0.2% or less.
〔5〕好ましくは、本発明の高温酸化物超伝導線材と金属系超伝導線材の超低抵抗接続方法〔1〕~〔4〕において、前記表面コーティングはんだは、Sn、Pb-Sn、Pb-Sn-Bi、Sn-Ag、Pb-Bi合金の何れか一種類であるとよい。
〔6〕好ましくは、本発明の高温酸化物超伝導線材と金属系超伝導線材の超低抵抗接続方法〔1〕~〔4〕において、前記超伝導はんだは、Pb-Bi、In-Sn-Bi合金の何れか一種類であるとよい。
〔7〕好ましくは、本発明の高温酸化物超伝導線材と金属系超伝導線材の超低抵抗接続方法〔1〕~〔6〕において、前記金属ケースは、前記高温酸化物超伝導テープ線材を少なくとも一回湾曲させて収容すると共に、前記高温酸化物超伝導テープ線材の一端が引き出される形状であり、前記金属系超伝導線材が、前記金属ケースに収容された前記超伝導はんだと一体的に接続されるとよい。
[5] Preferably, in the ultra-low resistance connection method of high temperature oxide superconducting wire and metallic superconducting wire of the present invention [1] to [4], the surface coating solder is Sn, Pb-Sn, Pb- It is preferable to use one of Sn--Bi, Sn--Ag, and Pb--Bi alloys.
[6] Preferably, in the ultra-low resistance connection method of high temperature oxide superconducting wire and metallic superconducting wire of the present invention [1] to [4], the superconducting solder is Pb-Bi, In-Sn- It is preferable to use one type of Bi alloy.
[7] Preferably, in the ultra-low resistance connection method for high temperature oxide superconducting wire and metallic superconducting wire of the present invention [1] to [6], the metal case is configured to connect the high temperature oxide superconducting tape wire to The high-temperature oxide superconducting tape wire is curved at least once and accommodated, and one end of the high-temperature oxide superconducting tape wire is pulled out, and the metallic superconducting wire is integrated with the superconducting solder accommodated in the metal case. It would be nice to be connected.
〔8〕本発明は、例えば図4に示すように、酸化物超伝導テープ線材20と、金属系超伝導線材30と、超伝導はんだ40と、金属ケース10とを備える高温酸化物超伝導線材と金属系超伝導線材の超低抵抗接続体であって、酸化物超伝導テープ線材20が、巻かれた状態で金属ケース10に収容されていると共に、酸化物超伝導テープ線材20の酸化物超伝導層の経験する最大ひずみを-1.5%から0.2%の範囲に抑えられており、酸化物超伝導テープ線材20の間に超伝導はんだ40が相互拡散させられており、酸化物超伝導テープ線材20の一端が金属ケース10から引き出された状態にあり、金属系超伝導線材30と超伝導はんだ40は超伝導状態を維持して接合され、酸化物超伝導テープ線材20と超伝導はんだ40の間で10-8Ω以下の抵抗を得るのに必要な接触面積が確保される、構造である。 [8] For example, as shown in FIG. 4, the present invention provides a high-temperature oxide superconducting wire comprising an oxide superconducting tape wire 20, a metallic superconducting wire 30, a superconducting solder 40, and a metal case 10. and a metal-based superconducting wire, in which an oxide superconducting tape wire 20 is housed in a metal case 10 in a wound state, and the oxide of the oxide superconducting tape wire 20 is The maximum strain experienced by the superconducting layer is suppressed within the range of -1.5% to 0.2%, and the superconducting solder 40 is interdiffused between the oxide superconducting tape wires 20, and the oxidation One end of the oxide superconducting tape wire 20 is pulled out from the metal case 10, and the metal superconducting wire 30 and the superconducting solder 40 are joined while maintaining the superconducting state, and the oxide superconducting tape wire 20 and This structure ensures a contact area between the superconducting solders 40 necessary to obtain a resistance of 10 −8 Ω or less.
〔9〕本発明は、〔8〕に記載の酸化物超伝導テープ線材と金属系超伝導線材の超低抵抗接続体を用いたNMR、MRI、又は超伝導輸送機器である。 [9] The present invention is an NMR, MRI, or superconducting transport device using the ultra-low resistance connection body of the oxide superconducting tape wire and metallic superconducting wire described in [8].
本発明の高温酸化物超伝導線材と金属系超伝導線材の超低抵抗接続方法によれば、コンパクトで設置面積も極めて小さい両線材間の超低抵抗接続を実現でき、より汎用的な永久電流運転可能な1GHz超級の超強磁場NMRを実現することができる。 According to the ultra-low resistance connection method of the present invention between a high-temperature oxide superconducting wire and a metallic superconducting wire, it is possible to realize an ultra-low resistance connection between the two wires that is compact and has an extremely small installation area, and allows for a more general-purpose persistent current connection. Operable ultra-strong magnetic field NMR exceeding 1 GHz can be realized.
以下、図面を用いて本発明を説明する。
図1は、本発明の一実施形態を示すレアアース系の酸化物超伝導テープ線材の金属ケース内への収容状態を説明する構成図で、(A)は平面図、(B)は図1(A)に示すB-B線の断面図である。図2は、本発明の一実施形態を示す、接続部用金属ケースの外観を説明する構成斜視図である。
図において、金属ケース10は小判形状の輪郭を有する皿状の容器で、例えばステンレス鋼を用いて製造される。ステンレス鋼の鋼種は、例えばSUS316、SUS304のような構造用耐食鋼として一般に用いられているものでよい。金属ケース10は、スリット12と湾曲部14を有している。スリット12は、レアアース系の酸化物超伝導テープ線材20の端部を引き出すための開口部である。湾曲部14は、レアアース系の酸化物超伝導テープ線材20を屈曲させるのに必要な曲率を有する部位である。金属ケース10の形状は先端が丸いボート型ケースとし、例えばケース内側の長さは5cm、幅は1cm、ケース両側の曲率半径は5mmとするが、これに限定されるものではない。
The present invention will be explained below using the drawings.
FIG. 1 is a configuration diagram illustrating how a rare earth-based oxide superconducting tape wire according to an embodiment of the present invention is accommodated in a metal case, where (A) is a plan view and (B) is a FIG. 3 is a cross-sectional view taken along line BB shown in FIG. FIG. 2 is a structural perspective view illustrating the appearance of a metal case for a connecting portion, showing an embodiment of the present invention.
In the figure, a metal case 10 is a dish-shaped container with an oval-shaped outline, and is manufactured using, for example, stainless steel. The type of stainless steel may be one commonly used as a structural corrosion-resistant steel, such as SUS316 and SUS304. The metal case 10 has a slit 12 and a curved portion 14. The slit 12 is an opening for pulling out the end of the rare earth oxide superconducting tape wire 20. The curved portion 14 is a portion having a curvature necessary to bend the rare earth oxide superconducting tape wire 20. The shape of the metal case 10 is a boat-shaped case with a rounded tip, for example, the length inside the case is 5 cm, the width is 1 cm, and the radius of curvature on both sides of the case is 5 mm, but the shape is not limited to this.
レアアース系の酸化物超伝導テープ線材20は、金属基板22、酸化物超伝導層24、Ag保護層26、Cu被覆層28を積層して構成しているもので、超伝導臨界温度が液体窒素温度を超える、いわゆる高温超伝導線材といわれている線材である。レアアース系の酸化物超伝導テープ線材20は、例えば非特許文献3に記載した株式フジクラ製の型式名FYSC-SCH04を用いるとよいが、これに限定されるものではない。レアアース系の酸化物超伝導テープ線材20は、金属ケース10の内側で金属系超伝導線材30や超伝導はんだ40と一体化される巻き入れ部20aと、スリット12から引き出された引き出し線部20bで構成される。 The rare earth-based oxide superconducting tape wire 20 is constructed by laminating a metal substrate 22, an oxide superconducting layer 24, an Ag protective layer 26, and a Cu coating layer 28, and has a superconducting critical temperature of liquid nitrogen. This wire is a so-called high-temperature superconducting wire that exceeds the temperature. As the rare earth-based oxide superconducting tape wire 20, for example, model name FYSC-SCH04 manufactured by Fujikura Corporation, which is described in Non-Patent Document 3, may be used, but the present invention is not limited thereto. The rare earth oxide superconducting tape wire 20 has a winding part 20a that is integrated with the metal superconducting wire 30 and superconducting solder 40 inside the metal case 10, and a lead wire part 20b pulled out from the slit 12. Consists of.
金属基板22は、例えばハステロイ(登録商標)、インコネル(登録商標)、モネル(登録商標)のようなニッケル基合金やコバルト基合金であって、熱膨張係数が酸化物超伝導層24と同じ程度の材料が用いられ、板厚は例えば75μmである。
酸化物超伝導層24は、配向テープ基板としての金属基板22上にRE系酸化物超伝導相(例えば、YBaCuO、GdBaCuO等)をエピタキシャル成長させたもので、膜厚は例えば2~5μmである。
Ag保護層26は、脆い酸化物超伝導層24を保護するもので、膜厚は例えば2μmである。
Cu被覆層28は、Ag保護層26の周りをCu等の良導電金属を被覆して線材化したもので、線材での膜厚は例えば20μmである。Cu被覆層28は、例えばメッキを用いてAg保護層26の周りに形成される。
The metal substrate 22 is made of a nickel-based alloy or a cobalt-based alloy such as Hastelloy (registered trademark), Inconel (registered trademark), or Monel (registered trademark), and has a coefficient of thermal expansion similar to that of the oxide superconducting layer 24. The plate thickness is, for example, 75 μm.
The oxide superconducting layer 24 is made by epitaxially growing an RE-based oxide superconducting phase (eg, YBaCuO, GdBaCuO, etc.) on the metal substrate 22 as an alignment tape substrate, and has a film thickness of, for example, 2 to 5 μm.
The Ag protective layer 26 protects the brittle oxide superconducting layer 24, and has a thickness of, for example, 2 μm.
The Cu coating layer 28 is formed by coating the Ag protective layer 26 with a highly conductive metal such as Cu to form a wire, and the thickness of the wire is, for example, 20 μm. The Cu covering layer 28 is formed around the Ag protective layer 26 using, for example, plating.
表面コーティングはんだ層(図示せず)は、酸化物超伝導テープ線材20の端部の表面をコーティングするもので、コーティング長さは超伝導接続に適したものとし、例えば端部から15cmから50cmの範囲に定める。表面コーティングはんだ層の膜厚は、例えば15~25μmが好ましい。表面コーティングはんだ層29の材料には、例えばSn、Pb-Sn、Pb-Sn-Bi、Sn-Ag、などのSn系合金、Pb-BiなどのPb系合金が挙げられる。 The surface coating solder layer (not shown) coats the surface of the end of the oxide superconducting tape wire 20, and the coating length is suitable for superconducting connection, for example, from 15 cm to 50 cm from the end. Define within the range. The thickness of the surface coating solder layer is preferably 15 to 25 μm, for example. Examples of the material of the surface coating solder layer 29 include Sn, Sn-based alloys such as Pb-Sn, Pb-Sn-Bi, and Sn-Ag, and Pb-based alloys such as Pb-Bi.
レアアース系の酸化物超伝導テープ線材20は、金属ケース10の内側にテープ線材20を巻き入れる際に、酸化物超伝導層24が機械的中立面25から見て圧縮側に位置するような向きで巻き入れる(図1(B))。
これはレアアースの酸化物超伝導テープ線材における臨界電流のひずみ劣化が、40K以下の低温において、圧縮側では抑制されるためである(非特許文献2参照)。この時のひずみの範囲は、-1.5%以上で0%以下が望ましい。それ以下となると、酸化物超伝導層が機械的に劣化する恐れがある。さらに望ましくは、-1.0%以上が望ましい。
The rare earth-based oxide superconducting tape wire 20 is constructed such that the oxide superconducting layer 24 is located on the compression side when viewed from the mechanical neutral plane 25 when the tape wire 20 is wound inside the metal case 10. Wind it in the correct direction (Figure 1 (B)).
This is because strain deterioration of the critical current in rare earth oxide superconducting tape wires is suppressed on the compression side at low temperatures of 40K or less (see Non-Patent Document 2). The range of strain at this time is preferably -1.5% or more and 0% or less. If it is less than that, the oxide superconducting layer may be mechanically deteriorated. More preferably, it is −1.0% or more.
なお、酸化物超伝導テープ線材がビスマス系超伝導線材の場合には、酸化物超伝導層は機械的中立面の両側に存在するため、金属ケースに巻き入れる際の向きについては特に注意する必要はない。ただし巻き入れる際、酸化物超伝導層が経験する最大ひずみを0.2%以下にすることが望ましい。0.2%を超えると、酸化物超伝導層が機械的に劣化する恐れがある。 If the oxide superconducting tape wire is a bismuth-based superconducting wire, the oxide superconducting layers exist on both sides of the mechanical neutral plane, so be especially careful about the orientation when winding it into the metal case. There's no need. However, during winding, it is desirable that the maximum strain experienced by the oxide superconducting layer be 0.2% or less. If it exceeds 0.2%, the oxide superconducting layer may be mechanically deteriorated.
テープ線材を巻きいれる長さは、できる限り長い方が望ましく、レアアース系の酸化物超伝導線材の場合には、10-8Ω以下の抵抗を実現するためには、最低でも20cm以上が望ましく、さらに10-9Ω以下の抵抗を実現するためには、2m以上の長さが望ましい。ビスマス系超伝導線材の場合には、10-9Ω以下の抵抗を実現するためには、最低でも5cm以上が望ましく、さらに10-9Ω以下の抵抗を実現するためには、50cm以上の長さが望ましい。 The length of the tape wire to be wound is preferably as long as possible, and in the case of rare earth oxide superconducting wires, in order to achieve a resistance of 10 -8 Ω or less, it is desirable to have a length of at least 20 cm. Further, in order to achieve a resistance of 10 −9 Ω or less, a length of 2 m or more is desirable. In the case of bismuth-based superconducting wires, in order to achieve a resistance of 10 -9 Ω or less, it is desirable that the wire be at least 5 cm long, and furthermore, in order to achieve a resistance of 10 -9 Ω or less, a length of 50 cm or more is required. is desirable.
ここで、ビスマス系超伝導線材の方が、レアアース系超伝導線材よりも、同じ低抵抗値を得るのに短い巻き入れ長さで十分な理由は、一つには線材の断面構成が大きく異なるためである。レアアース系線材は、基板上にエピタキシャル成長した一層の酸化物超伝導層があるのに対して、ビスマス系線材では、酸化物超伝導フィラメントが多数埋め込まれた極細多芯構造を有している。したがって、ビスマス系超伝導線材では、酸化物超伝導層とマトリクスとの間の接触面積が、レアアース系超伝導線材における酸化物超伝導層とシース界面の面積に比べて、著しく大きい。そのため、ビスマス系線材では、接続抵抗に対する酸化物超伝導層とマトリクスとの界面抵抗の寄与を極めて小さくすることができ、これが、同じ巻き入れる長さでも、ビスマス系超伝導線材の方が低い抵抗値を得られる理由となる。 Here, one reason why bismuth-based superconducting wire requires a shorter winding length than rare earth-based superconducting wire to obtain the same low resistance value is that the cross-sectional configuration of the wire is significantly different. It's for a reason. Rare earth wires have a single oxide superconducting layer epitaxially grown on a substrate, whereas bismuth wires have an ultrafine multicore structure in which many oxide superconducting filaments are embedded. Therefore, in the bismuth-based superconducting wire, the contact area between the oxide superconducting layer and the matrix is significantly larger than the area of the interface between the oxide superconducting layer and the sheath in the rare earth-based superconducting wire. Therefore, with the bismuth-based wire, the contribution of the interfacial resistance between the oxide superconducting layer and the matrix to the connection resistance can be extremely small, and this means that even with the same winding length, the bismuth-based superconducting wire has a lower resistance. This is the reason why the value is obtained.
超伝導はんだ及び表面コーティングはんだの融点以上で保持する条件の目安としては、例えば超伝導はんだをPb-56wt%Bi、表面コーティングはんだをPb-60wt%Snとした場合には、200℃~300℃、1分以上1時間以内とすればよい。200℃以下では、超伝導はんだが線材間を十分拡散しきれず、300℃以上では、酸化物超伝導層を劣化させる可能性がある。また1分以内だと、超伝導はんだが線材間を十分拡散しきれず、1時間以上だと酸化物超伝導層を劣化させる可能性がある。 As a guideline for the conditions to maintain the temperature above the melting point of the superconducting solder and the surface coating solder, for example, when the superconducting solder is Pb-56wt%Bi and the surface coating solder is Pb-60wt%Sn, the temperature is 200°C to 300°C. , for a period of at least 1 minute and no more than 1 hour. At temperatures below 200°C, the superconducting solder cannot sufficiently diffuse between the wires, and at temperatures above 300°C, the oxide superconducting layer may deteriorate. Furthermore, if the heating time is less than 1 minute, the superconducting solder will not be able to diffuse sufficiently between the wires, and if the heating time is longer than 1 hour, the oxide superconducting layer may deteriorate.
図3は、本発明の一実施形態を示す超伝導フィラメントが超伝導はんだコーティングされた金属系超伝導線材の構成図である。
金属系超伝導線材30は、金属系超伝導フィラメント32、Cuシース34で構成されると共に、超伝導はんだ40を有している。金属系超伝導フィラメント32は、NbTiやNb3Snなどの金属系超伝導材料よりなるもので、例えば線径が0.6~1.5mmの線条が3本~49本程度で構成されている。
Cuシース34は、金属系超伝導フィラメント32を束ねる筒状の覆いであり、金属系超伝導フィラメント32を機械的に保護する。Cuシース34の端部では、金属系超伝導フィラメント32が数cm程度露出している。
超伝導はんだ40には、Pb-Bi、In-Sn-BiなどのPb系、Sn系合金が挙げられる。超伝導はんだ40は、金属系超伝導フィラメント32のCuシース34の端部から露出した領域を被覆している。
FIG. 3 is a configuration diagram of a metallic superconducting wire in which a superconducting filament is coated with superconducting solder, showing an embodiment of the present invention.
The metallic superconducting wire 30 is composed of a metallic superconducting filament 32 and a Cu sheath 34, and has a superconducting solder 40. The metallic superconducting filament 32 is made of a metallic superconducting material such as NbTi or Nb 3 Sn, and is composed of, for example, about 3 to 49 filaments with a wire diameter of 0.6 to 1.5 mm. There is.
The Cu sheath 34 is a cylindrical cover that bundles the metallic superconducting filaments 32 and mechanically protects the metallic superconducting filaments 32. At the end of the Cu sheath 34, several centimeters of the metallic superconducting filament 32 are exposed.
Examples of the superconducting solder 40 include Pb-based and Sn-based alloys such as Pb-Bi and In-Sn-Bi. The superconducting solder 40 covers the area of the metallic superconducting filament 32 exposed from the end of the Cu sheath 34 .
金属系超伝導フィラメントへの超伝導はんだコーティングの長さ、およびケースの超伝導はんだに浸漬する長さは、2cm以上が望ましい。それ以下では、金属系超伝導線材に大電流を流した際に、金属系超伝導フィラメントと超伝導はんだとの界面を通過する電流密度が超伝導はんだの臨界電流密度を超えてしまい、大きな常電導抵抗を生じてしまう。 The length of the superconducting solder coating on the metallic superconducting filament and the length of the case immersed in the superconducting solder are preferably 2 cm or more. Below that, when a large current is passed through the metallic superconducting wire, the current density passing through the interface between the metallic superconducting filament and the superconducting solder exceeds the critical current density of the superconducting solder, resulting in a large This will cause conductive resistance.
金属系超伝導フィラメントへの超伝導はんだコーティングの製造工程としては、例えば非特許文献1や特許文献2に開示されたような工程による。
まず金属系超伝導線材30の先端を、溶融したSn(250~260℃)に90分浸漬して、金属系超伝導フィラメント32を囲むCuマトリクスをSnで置換する。
次に溶融したPbBi(250~260℃)に5分浸漬して、SnをPbBiで置換する。このようにして、金属系超伝導フィラメント32がPbBi等の超伝導はんだ40でコーティングされる。
The manufacturing process for superconducting solder coating on metallic superconducting filaments is, for example, the process disclosed in Non-Patent Document 1 and Patent Document 2.
First, the tip of the metallic superconducting wire 30 is immersed in molten Sn (250 to 260° C.) for 90 minutes to replace the Cu matrix surrounding the metallic superconducting filament 32 with Sn.
Next, it is immersed in molten PbBi (250 to 260° C.) for 5 minutes to replace Sn with PbBi. In this way, the metallic superconducting filament 32 is coated with the superconducting solder 40 such as PbBi.
図4は、本発明の一実施形態を示す、レアアース系の酸化物超伝導テープ線材と金属系超伝導線材が超伝導はんだを介して一体化した接続部の概念図である。
高温酸化物超伝導線材と金属系超伝導線材の超低抵抗接続体は、金属ケース10、酸化物超伝導テープ線材20、金属系超伝導線材30、超伝導はんだ40で構成されている。
酸化物超伝導テープ線材20は、レアアース系超伝導線材又はビスマス系超伝導線材である。
FIG. 4 is a conceptual diagram of a connection portion in which a rare earth-based oxide superconducting tape wire and a metal-based superconducting wire are integrated via superconducting solder, showing an embodiment of the present invention.
The ultra-low resistance connection body of a high-temperature oxide superconducting wire and a metallic superconducting wire is composed of a metal case 10, an oxide superconducting tape wire 20, a metallic superconducting wire 30, and a superconducting solder 40.
The oxide superconducting tape wire 20 is a rare earth superconducting wire or a bismuth superconducting wire.
図4に示すような高温酸化物超伝導線材と金属系超伝導線材の超低抵抗接続体の製造工程は、図5に示すフローチャートのようになる。図5は、本発明の高温酸化物超伝導線材と金属系超伝導線材の超低抵抗接続方法の一実施形態を示す、フローチャートである。
まず、酸化物超伝導テープ線材20の表面を表面コーティングはんだによってコーティングする(S100)。次に、酸化物超伝導層24の経験する最大ひずみを-1.5%から0.2%の範囲に抑えながら、酸化物超伝導テープ線材20をコンパクトに巻いて金属ケース10に収容する(S102)。続いて、溶融した超伝導はんだ40を金属ケース10に流し込み(S104)、超伝導はんだ40及び表面コーティングはんだの融点以上で一定時間保持して、酸化物超伝導テープ線材20の間に超伝導はんだ40を相互拡散させる(S106)。
次に、金属系超伝導線材30の端部の金属系超伝導フィラメント32が超伝導はんだ40でコーティングされた金属系超伝導線材30を、金属ケース10の中で溶融状態にある超伝導はんだ40に浸漬し(S108)、超伝導はんだ40を冷却して固体化し、超伝導はんだ40を介して酸化物超伝導テープ線材20と金属系超伝導線材30とが一体化する(S110)
このようにして、超伝導はんだ40が冷却されて固体化し、酸化物超伝導テープ線材20と金属系超伝導線材30とに一体化される。金属ケース10は、溶融状態にある超伝導はんだ40を保持する保持体として作用する。
The manufacturing process of an ultra-low resistance connection body of a high-temperature oxide superconducting wire and a metallic superconducting wire as shown in FIG. 4 is as shown in a flow chart shown in FIG. FIG. 5 is a flowchart showing an embodiment of a method for connecting a high-temperature oxide superconducting wire and a metallic superconducting wire with ultra-low resistance according to the present invention.
First, the surface of the oxide superconducting tape wire 20 is coated with surface coating solder (S100). Next, the oxide superconducting tape wire 20 is compactly wound and housed in the metal case 10 while suppressing the maximum strain experienced by the oxide superconducting layer 24 within the range of -1.5% to 0.2% ( S102). Next, the molten superconducting solder 40 is poured into the metal case 10 (S104) and held at a temperature higher than the melting point of the superconducting solder 40 and the surface coating solder for a certain period of time, so that the superconducting solder is formed between the oxide superconducting tape wires 20. 40 are mutually diffused (S106).
Next, the metallic superconducting wire 30 in which the metallic superconducting filament 32 at the end of the metallic superconducting wire 30 is coated with the superconducting solder 40 is placed inside the metal case 10 using the superconducting solder 40 in a molten state. (S108), the superconducting solder 40 is cooled and solidified, and the oxide superconducting tape wire 20 and the metallic superconducting wire 30 are integrated via the superconducting solder 40 (S110).
In this way, the superconducting solder 40 is cooled and solidified, and is integrated into the oxide superconducting tape wire 20 and the metallic superconducting wire 30. The metal case 10 acts as a holder that holds the superconducting solder 40 in a molten state.
このような構成にすることにより、金属系超伝導線材30と超伝導はんだ40は超伝導状態を維持して接合され、酸化物超伝導テープ線材20と超伝導はんだ40の間で十分大きな接触面積が確保され、極めて小さな抵抗を得ることができ、高温酸化物超伝導線材と金属系超伝導線材間の超低抵抗接続を実現することができる。 With this configuration, the metallic superconducting wire 30 and the superconducting solder 40 are joined while maintaining the superconducting state, and a sufficiently large contact area is created between the oxide superconducting tape wire 20 and the superconducting solder 40. is ensured, extremely low resistance can be obtained, and an ultra-low resistance connection between the high-temperature oxide superconducting wire and the metallic superconducting wire can be realized.
レアアース系の酸化物超伝導テープ線材として、フジクラ製GdBCOテープ線材(4mm幅、0.13mm厚さ)を用意した。断面写真を図6に示す。この線材20cmを用い、片端から15cmにわたって、市販のPb-60Snはんだを用いて両面にはんだコーティングした。この時、はんだ層の厚さは約20μmであった。 A GdBCO tape wire manufactured by Fujikura (4 mm width, 0.13 mm thickness) was prepared as a rare earth-based oxide superconducting tape wire. A cross-sectional photograph is shown in FIG. Using this 20 cm wire, both sides were coated with commercially available Pb-60Sn solder over a distance of 15 cm from one end. At this time, the thickness of the solder layer was about 20 μm.
次に、図2に示すように、長さ5.2cm、幅1.2cm、高さ8mmのステンレスの板材を加工して、このテープ線材を巻き入れるためのボート型形状をした金属ケース10を準備した。金属ケース内側の長さは5cm、幅は1cm、ケース両側の曲率半径は5mmである。金属ケース端部には、テープ線材を通すためのスリット12が設けられている。金属ケースに、はんだコーティング済の高温酸化物超伝導テープ線材を、図1(B)に示すように、酸化物超伝導層に圧縮ひずみが印加されるように巻き入れた。はんだコーティング済の高温酸化物超伝導テープ線材の金属ケース内長さは、15cmである。このとき超伝導テープ線材内の酸化物超伝導層は、機械的中立面から38μmの距離に位置し、酸化物超伝導層が経験する最大ひずみは-0.76%と見積もられる。 Next, as shown in FIG. 2, a stainless steel plate with a length of 5.2 cm, a width of 1.2 cm, and a height of 8 mm is processed to form a boat-shaped metal case 10 in which the tape wire is wound. Got ready. The length of the inside of the metal case is 5 cm, the width is 1 cm, and the radius of curvature on both sides of the case is 5 mm. A slit 12 for passing the tape wire is provided at the end of the metal case. A solder-coated high-temperature oxide superconducting tape wire was wound into a metal case so that compressive strain was applied to the oxide superconducting layer, as shown in FIG. 1(B). The length of the solder-coated high-temperature oxide superconducting tape wire inside the metal case was 15 cm. At this time, the oxide superconducting layer in the superconducting tape wire is located at a distance of 38 μm from the mechanical neutral plane, and the maximum strain experienced by the oxide superconducting layer is estimated to be −0.76%.
次に、はんだコーティングされた超伝導テープ線材が巻き入れられた金属ケースを200℃に保持し、Pb-56wt%Biの超伝導はんだを挿入した。このときPb-56wt%Biは完全に溶け、金属ケース内に充満された。
Pb-Bi超伝導はんだが超伝導テープ線間に相互拡散するよう、この状態で30分保持した。
Next, the metal case in which the solder-coated superconducting tape wire was wound was held at 200° C., and Pb-56wt%Bi superconducting solder was inserted. At this time, Pb-56wt%Bi was completely melted and filled in the metal case.
This state was maintained for 30 minutes so that the Pb--Bi superconducting solder would interdiffuse between the superconducting tape wires.
次に、非特許文献1や特許文献2に示される方法で、図3に示すような、端部の超伝導フィラメントがPb-Bi超伝導はんだでコーティングされたNbTi金属系超伝導線材を、Pb-Biが溶融状態にある上記金属ケースに挿入した。これを冷却し、図4に示すような形状の高温酸化物超伝導線材と金属系超伝導線材の接続部を作製した。 Next, by the method shown in Non-Patent Document 1 and Patent Document 2, a NbTi metal-based superconducting wire whose end superconducting filament is coated with Pb-Bi superconducting solder as shown in FIG. - Bi was inserted into the metal case in a molten state. This was cooled, and a connecting portion between the high-temperature oxide superconducting wire and the metallic superconducting wire having the shape shown in FIG. 4 was produced.
次に、高温酸化物超伝導線材と金属系超伝導線材に電極を取り付け、液体ヘリウムに浸漬して、マグネットを用いて、磁場中で4端子法による抵抗測定を実施した。通電電流は100Aとした。その結果を図7に示す。例えば0.2Tでは、接続抵抗は1.1×10-8Ωとなった。1.2T以上で、抵抗値が急激に増大しているのは、Pb-Bi超伝導はんだが臨界磁場に達し常伝導転移したためである。 Next, electrodes were attached to the high-temperature oxide superconducting wire and the metallic superconducting wire, and the wires were immersed in liquid helium, and resistance was measured using a four-probe method in a magnetic field using a magnet. The applied current was 100A. The results are shown in FIG. For example, at 0.2T, the connection resistance was 1.1×10 −8 Ω. The reason why the resistance value increases rapidly above 1.2 T is because the Pb--Bi superconducting solder reaches a critical magnetic field and undergoes a normal conduction transition.
上記実施例1において、接続抵抗が1.1×10-8Ωであったことから、さらなる低抵抗化に、金属ケース内に巻き入れる超伝導テープ線の長さを50cmに増大させた。
実施例1と同様の方法で、図4に示すような形状の高温酸化物超伝導線材と金属系超伝導線材の接続部を作製した。このとき、テープ線は4ターン巻き入れられることになり、テープ線の中立面の最小曲率半径は4.44mmとなることから、酸化物超伝導層が経験する最大ひずみは-0.85%と見積もられる。
In Example 1, the connection resistance was 1.1×10 −8 Ω, so to further reduce the resistance, the length of the superconducting tape wire wound into the metal case was increased to 50 cm.
In the same manner as in Example 1, a connecting portion between a high-temperature oxide superconducting wire and a metallic superconducting wire having a shape as shown in FIG. 4 was produced. At this time, the tape wire will be wound 4 turns, and the minimum radius of curvature of the neutral plane of the tape wire will be 4.44 mm, so the maximum strain experienced by the oxide superconducting layer will be -0.85%. It is estimated that.
実施例1と同様に、高温酸化物超伝導線材と金属系超伝導線材に電極を取り付け、液体ヘリウムに浸漬して、マグネットを用いて、磁場中で4端子法による抵抗測定を実施した。その結果を図8に示す。例えば0.2Tでは、接続抵抗は2.6×10-9Ωとなり、金属ケースに巻き入れる長さにほぼ比例した接続抵抗の減少が確認された。 As in Example 1, electrodes were attached to the high-temperature oxide superconducting wire and the metallic superconducting wire, immersed in liquid helium, and the resistance was measured using a four-probe method in a magnetic field using a magnet. The results are shown in FIG. For example, at 0.2T, the connection resistance was 2.6×10 −9 Ω, and it was confirmed that the connection resistance decreased approximately in proportion to the length wound around the metal case.
金属系超伝導線材と超伝導はんだの接続は超伝導状態であることから、全体的な接続抵抗値は高温超伝導線材と超伝導はんだとの界面抵抗で決まり、その抵抗値は金属ケースに巻き入れる長さに単純に反比例すると仮定できる。そこで、50cmの抵抗値を基準として、接続抵抗値の近似曲線(y=1.3×10-9x-1(Ω))を算出し、図9に示した。これによれば、接続抵抗値は金属ケースに巻き入れる長さを2mとすれば0.65nΩ、20mとすれば6.5×10-11Ωになると見積もられる。ただしこの時、2m、20mの長さの酸化物超伝導テープ線材を金属ケースの中に収めるために、金属ケースの大きさを、酸化物超伝導層の経験する最大ひずみが-1.5%以上になるよう設計しなければならないことは言うまでもない。 Since the connection between the metallic superconducting wire and the superconducting solder is in a superconducting state, the overall connection resistance value is determined by the interfacial resistance between the high-temperature superconducting wire and the superconducting solder, and the resistance value is determined by the interfacial resistance between the high-temperature superconducting wire and the superconducting solder. It can be assumed that it is simply inversely proportional to the length of insertion. Therefore, an approximate curve of the connection resistance value (y=1.3×10 −9 x −1 (Ω)) was calculated using the resistance value of 50 cm as a reference, and is shown in FIG. According to this, the connection resistance value is estimated to be 0.65 nΩ if the length wound around the metal case is 2 m, and 6.5×10 −11 Ω if the length is 20 m. However, at this time, in order to fit the 2 m and 20 m long oxide superconducting tape wires into the metal case, the size of the metal case was changed so that the maximum strain experienced by the oxide superconducting layer was -1.5%. Needless to say, the design must be designed to meet the above requirements.
仮に、同様の方法で、酸化物超伝導層の経験する最大ひずみを-1%に抑えながら5mのテープ線材を巻き入れようとする場合には、内側サイズが長さ7cm、幅2cm、高さ7mm、両端曲率半径が5mmの容器を用意すればよい。このとき、はんだコーティングしたテープ線の厚さが0.17mmであるとすると、テープ線は金属ケース内に約30ターン巻かれることになり、最小曲率半径は5mmとなる。その時の酸化物超伝導層の経験する最大ひずみは-0.76%となる。さらに、内側金属ケースの長さ、幅をそれぞれ10mm増やせば、プラス5m、さらにそれぞれ10mm増やせば、プラス5mの巻き入れが可能である。 If we were to use the same method to wind a 5 m long tape wire while suppressing the maximum strain experienced by the oxide superconducting layer to -1%, the inner dimensions would be 7 cm long, 2 cm wide, and high. A container with a diameter of 7 mm and a radius of curvature at both ends of 5 mm may be prepared. At this time, assuming that the thickness of the solder-coated tape wire is 0.17 mm, the tape wire will be wound around 30 turns in the metal case, and the minimum radius of curvature will be 5 mm. The maximum strain experienced by the oxide superconducting layer at that time is -0.76%. Furthermore, if the length and width of the inner metal case are increased by 10 mm each, it is possible to wind up an additional 5 m, and if each is further increased by 10 mm, it is possible to wind the inner metal case by an additional 5 m.
ビスマス系超伝導テープ線材として、住友電工製DI-BSCCO-Hテープ線材(4.5mm幅、0.23mm厚さ)を用意した。図10は、本発明の一実施形態を示す、ビスマス系超伝導線材の断面写真である。この線材55cmを用い、片端から50cmにわたって、市販のPb-60Snはんだを用いて両面にはんだコーティングした。この時、はんだ層の厚さは約20μmであった。 As a bismuth-based superconducting tape wire, DI-BSCCO-H tape wire (4.5 mm width, 0.23 mm thickness) manufactured by Sumitomo Electric was prepared. FIG. 10 is a cross-sectional photograph of a bismuth-based superconducting wire showing one embodiment of the present invention. Using this 55 cm wire, both sides were coated with commercially available Pb-60Sn solder over a distance of 50 cm from one end. At this time, the thickness of the solder layer was about 20 μm.
次に、厚さ8mmのステンレスの板材を加工して、このテープ線材を巻き入れるための直径15cm、深さ6mmの円型金属ケースを準備した。金属ケース外周の1か所に、外周の接線方向に平行に、テープ線材を通すためのスリットが設けられている。この金属ケースに、上記はんだコーティング済の高温酸化物超伝導テープ線材を50cm巻き入れた。この時の酸化物超伝導層の経験する最大ひずみは、0.153%である。 Next, a stainless steel plate with a thickness of 8 mm was processed to prepare a circular metal case with a diameter of 15 cm and a depth of 6 mm into which the tape wire was wound. A slit is provided at one location on the outer periphery of the metal case, parallel to the tangential direction of the outer periphery, for passing the tape wire through. 50 cm of the solder-coated high-temperature oxide superconducting tape wire was wound into this metal case. The maximum strain experienced by the oxide superconducting layer at this time is 0.153%.
次に、実施例1と同様の方法で、図4に示すような形状の高温酸化物超伝導線材と金属系超伝導線材の接続部を作製した。
実施例1と同様に、高温酸化物超伝導線材と金属系超伝導線材に電極を取り付け、液体ヘリウムに浸漬して、マグネットを用いて、磁場中で4端子法による抵抗測定を実施した。その結果、0.2Tでの5×10-10Ωの接続抵抗値が得られた。
Next, in the same manner as in Example 1, a connecting portion between a high-temperature oxide superconducting wire and a metallic superconducting wire having a shape as shown in FIG. 4 was produced.
As in Example 1, electrodes were attached to the high-temperature oxide superconducting wire and the metallic superconducting wire, immersed in liquid helium, and the resistance was measured using a four-probe method in a magnetic field using a magnet. As a result, a connection resistance value of 5×10 −10 Ω at 0.2T was obtained.
なお、本発明の実施例として、実施例1~実施例3を示したが、本発明はこれに限定されるものではなく、種々の実施態様が、当業者に自明な範囲で考えられるため、このような自明な範囲も本発明の権利範囲に含まれる。
例えば、金属系超伝導線材の代わりに、第2の高温超伝導線材を図4に示すような同様な手順で金属ケースに組み込めば、コンパクトで簡便な、超低抵抗の高温酸化物超伝導テープ線材間接続を得ることもできる。
Although Examples 1 to 3 are shown as examples of the present invention, the present invention is not limited thereto, and various embodiments can be considered within the scope obvious to those skilled in the art. Such an obvious scope is also included in the scope of the present invention.
For example, if a second high-temperature superconducting wire is incorporated into a metal case in the same manner as shown in Figure 4 instead of the metallic superconducting wire, a compact and simple ultra-low resistance high-temperature oxide superconducting tape can be created. Wire-to-wire connections can also be obtained.
以上詳細に説明したように、本発明の高温酸化物超伝導線材と金属系超伝導線材の超低抵抗接続体によれば、これまでに、コンパクトで簡便な、超低抵抗の高温酸化物超伝導テープ線材と金属系超伝導線を接続する技術はなく、強磁場NMR装置など、永久電流運転を必要とする強磁場マグネットシステムの発展・普及に多大な貢献が期待される。
本発明の高温酸化物超伝導線材と金属系超伝導線材の超低抵抗接続体を用いた強磁場NMR装置によれば、汎用的で、永久電流運転可能な1GHz超級の超強磁場NMRを実現することができる。
As explained in detail above, according to the ultra-low resistance connection body of the present invention of high-temperature oxide superconducting wire and metallic superconducting wire, compact and simple ultra-low resistance high-temperature oxide superconducting There is no technology for connecting conductive tape wires and metallic superconducting wires, and this work is expected to make a significant contribution to the development and spread of high-field magnet systems that require persistent current operation, such as high-field NMR devices.
The high-field NMR device using the ultra-low-resistance connection of high-temperature oxide superconducting wire and metallic superconducting wire of the present invention realizes general-purpose ultra-high magnetic field NMR of over 1 GHz capable of persistent current operation. can do.
10 金属シース
12 スリット
14 湾曲部
20、20a、20b レアアース系の酸化物超伝導テープ線材
22 配向テープ基板
23 ビスマス系超伝導線材(BSCCO)
24 RE系酸化物超伝導相
25 機械的中立面
26 Ag保護層
28 Cu良導電金属層
30 金属系超伝導線材
32 金属系超伝導フィラメント
34 Cuシース
40 超伝導はんだ
10 Metal sheath 12 Slit 14 Curved portions 20, 20a, 20b Rare earth-based oxide superconducting tape wire 22 Orientation tape substrate 23 Bismuth-based superconducting wire (BSCCO)
24 RE-based oxide superconducting phase 25 Mechanical neutral plane 26 Ag protective layer 28 Cu well-conducting metal layer 30 Metal-based superconducting wire 32 Metal-based superconducting filament 34 Cu sheath 40 Superconducting solder
Claims (7)
酸化物超伝導層の経験する最大ひずみを-1.5%から0.2%の範囲に抑えながら、前記高温酸化物超伝導テープ線材を巻いて金属ケースに収容し、
溶融した超伝導はんだを前記金属ケースに流し込み、
前記超伝導はんだ及び前記表面コーティングはんだの融点以上で一定時間保持して、前記高温酸化物超伝導テープ線材の間に超伝導はんだを相互拡散させ、
金属系超伝導線材の端部のフィラメントが超伝導はんだでコーティングされた前記金属系超伝導線材を、前記金属ケースの中で溶融状態にある超伝導はんだに浸漬し、
前記超伝導はんだを冷却して固体化し、前記超伝導はんだを介して前記高温酸化物超伝導テープ線材と前記金属系超伝導線材とが一体となった高温酸化物超伝導線材と金属系超伝導線材の超低抵抗接続方法。 The surface of the high-temperature oxide superconducting tape wire is coated with surface coating solder,
The high-temperature oxide superconducting tape wire is wound and housed in a metal case while suppressing the maximum strain experienced by the oxide superconducting layer within a range of -1.5% to 0.2%;
Pour molten superconducting solder into the metal case,
Holding the temperature above the melting point of the superconducting solder and the surface coating solder for a certain period of time to interdiffuse the superconducting solder between the high temperature oxide superconducting tape wires;
immersing the metal-based superconducting wire in which the filament at the end of the metal-based superconducting wire is coated with superconducting solder in the superconducting solder in a molten state in the metal case;
The superconducting solder is cooled and solidified, and the high-temperature oxide superconducting tape wire and the metallic superconducting wire are integrated through the superconducting solder to form a high-temperature oxide superconducting wire and metallic superconducting wire. Ultra-low resistance connection method for wires.
前記レアアース系の酸化物超伝導テープ線材を前記金属ケースの内側に巻き入れる際に、前記レアアース系の酸化物超伝導テープ線材の酸化物超伝導層が前記レアアース系の酸化物超伝導テープ線材の機械的中立面から見て圧縮側に位置するような向きで巻き入れることを特徴とする請求項1に記載の高温酸化物超伝導線材と金属系超伝導線材の超低抵抗接続方法。 The high-temperature oxide superconducting tape wire is a rare earth-based oxide superconducting tape wire,
When the rare earth-based oxide superconducting tape wire is wound inside the metal case, the oxide superconducting layer of the rare earth-based oxide superconducting tape wire is removed from the surface of the rare earth-based oxide superconducting tape wire. 2. The ultra-low-resistance connection method of a high-temperature oxide superconducting wire and a metallic superconducting wire according to claim 1, wherein the wire is wound in such a direction as to be located on the compression side when viewed from a mechanical neutral plane.
前記ビスマス系超伝導線材を前記金属ケースの内側に巻き入れる際に、前記ビスマス系超伝導線材の酸化物超伝導層が経験する最大ひずみを0.2%以下とすることを特徴とする請求項1に記載の高温酸化物超伝導線材と金属系超伝導線材の超低抵抗接続方法。 The high temperature oxide superconducting tape wire is a bismuth-based superconducting wire,
Claim characterized in that when the bismuth-based superconducting wire is wound inside the metal case, the maximum strain experienced by the oxide superconducting layer of the bismuth-based superconducting wire is 0.2% or less. 1. An ultra-low resistance connection method between a high-temperature oxide superconducting wire and a metallic superconducting wire according to 1.
前記金属系超伝導線材が、前記金属ケースに収容された前記超伝導はんだと一体的に接続される請求項1乃至6の何れか1項に記載の高温酸化物超伝導線材と金属系超伝導線材の超低抵抗接続方法。
The metal case has a shape in which the high-temperature oxide superconducting tape wire is curved at least once and accommodated therein, and one end of the high-temperature oxide superconducting tape wire is pulled out;
The high-temperature oxide superconducting wire and metal-based superconductor according to any one of claims 1 to 6, wherein the metal-based superconducting wire is integrally connected to the superconducting solder housed in the metal case. Ultra-low resistance connection method for wires.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020088019A JP7438533B2 (en) | 2020-05-20 | 2020-05-20 | Ultra-low resistance connection method between high-temperature oxide superconducting wire and metallic superconducting wire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020088019A JP7438533B2 (en) | 2020-05-20 | 2020-05-20 | Ultra-low resistance connection method between high-temperature oxide superconducting wire and metallic superconducting wire |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021182528A JP2021182528A (en) | 2021-11-25 |
JP7438533B2 true JP7438533B2 (en) | 2024-02-27 |
Family
ID=78606715
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020088019A Active JP7438533B2 (en) | 2020-05-20 | 2020-05-20 | Ultra-low resistance connection method between high-temperature oxide superconducting wire and metallic superconducting wire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7438533B2 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001283660A (en) | 2000-03-31 | 2001-10-12 | Hitachi Ltd | Connection structure for superconducting wire |
JP2004327593A (en) | 2003-04-23 | 2004-11-18 | Hitachi Ltd | Magnese diboride superconducting wire rod and its manufacturing method |
JP2005516363A (en) | 2002-01-30 | 2005-06-02 | サウスワイヤー カンパニー | Superconducting cable with flexible former |
JP2008024586A (en) | 2006-07-24 | 2008-02-07 | General Electric Co <Ge> | Doped magnesium diboride powder and its production method |
JP2016535431A (en) | 2013-10-04 | 2016-11-10 | ブルーカー バイオスピン ゲゼルシヤフト ミツト ベシユレンクテル ハフツングBruker BioSpin GmbH | Magnet coil system including HTSL tape conductor and LTS wire forming joint |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3397038B2 (en) * | 1996-04-11 | 2003-04-14 | 株式会社神戸製鋼所 | Superconducting connection method and superconducting connection structure for superconducting wires |
-
2020
- 2020-05-20 JP JP2020088019A patent/JP7438533B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001283660A (en) | 2000-03-31 | 2001-10-12 | Hitachi Ltd | Connection structure for superconducting wire |
JP2005516363A (en) | 2002-01-30 | 2005-06-02 | サウスワイヤー カンパニー | Superconducting cable with flexible former |
JP2004327593A (en) | 2003-04-23 | 2004-11-18 | Hitachi Ltd | Magnese diboride superconducting wire rod and its manufacturing method |
JP2008024586A (en) | 2006-07-24 | 2008-02-07 | General Electric Co <Ge> | Doped magnesium diboride powder and its production method |
JP2016535431A (en) | 2013-10-04 | 2016-11-10 | ブルーカー バイオスピン ゲゼルシヤフト ミツト ベシユレンクテル ハフツングBruker BioSpin GmbH | Magnet coil system including HTSL tape conductor and LTS wire forming joint |
Also Published As
Publication number | Publication date |
---|---|
JP2021182528A (en) | 2021-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2686524C1 (en) | Hts-magnetic sections | |
US7684839B2 (en) | Connecting structure for magnesium diboride superconducting wire and a method of connecting the same | |
US8229528B2 (en) | Superconducting coil having a granular superconducting junction | |
CN102834878B (en) | Electrode unit joining structure for superconducting wire material, superconducting wire material, and superconducting coil | |
US20070194870A1 (en) | Permanent current switch | |
JPH0261764B2 (en) | ||
CN104036914B (en) | The high-temperature superconductor band joint preparation method of high-temperature superconductor double-cake coils | |
JP4201331B2 (en) | Phase branching structure of multiphase superconducting cable | |
JP2018170173A (en) | Connection structure | |
US3743986A (en) | Improved resistive envelope for a multifilament superconductor wire | |
JP2011211110A (en) | Superconductive current lead | |
JP6678509B2 (en) | Superconducting tape wire, superconducting current lead using superconducting tape, permanent current switch and superconducting coil | |
JP2014143840A (en) | Terminal structure of tape like superconducting wire material and manufacturing method of the same | |
US4409425A (en) | Cryogenically stabilized superconductor in cable form for large currents and alternating field stresses | |
JP7438533B2 (en) | Ultra-low resistance connection method between high-temperature oxide superconducting wire and metallic superconducting wire | |
KR101343887B1 (en) | Splicing method for superconductive wires containing mg and b | |
JP6913570B2 (en) | Superconducting tape wire, superconducting current lead using this superconducting tape wire, permanent current switch and superconducting coil | |
JP7326347B2 (en) | Superconducting joint | |
JP4414617B2 (en) | Low resistance conductor, its manufacturing method, current lead, power supply cable, coil, magnetic field generator, transformer and AC power supply | |
JPS607324B2 (en) | Twisted compound superconducting cable | |
Fietz et al. | Multifilamentary Nb 3 Sn conductor for fusion research magnets | |
JPH05335145A (en) | Superconducting current lead | |
EP4345476A1 (en) | Superconducting wire and manufacturing method therefore | |
JP3154572B2 (en) | Superconducting wire connection structure | |
JPH03150806A (en) | Superconductor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230317 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20231026 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20231114 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231122 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240202 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240206 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7438533 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |