JP7434705B2 - Thin film forming method, thin film forming apparatus, and functional thin film - Google Patents
Thin film forming method, thin film forming apparatus, and functional thin film Download PDFInfo
- Publication number
- JP7434705B2 JP7434705B2 JP2018182232A JP2018182232A JP7434705B2 JP 7434705 B2 JP7434705 B2 JP 7434705B2 JP 2018182232 A JP2018182232 A JP 2018182232A JP 2018182232 A JP2018182232 A JP 2018182232A JP 7434705 B2 JP7434705 B2 JP 7434705B2
- Authority
- JP
- Japan
- Prior art keywords
- raw material
- solvent
- thin film
- material liquid
- mist droplets
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000010409 thin film Substances 0.000 title claims description 105
- 238000000034 method Methods 0.000 title claims description 72
- 239000002904 solvent Substances 0.000 claims description 120
- 239000002994 raw material Substances 0.000 claims description 102
- 239000003595 mist Substances 0.000 claims description 96
- 239000000463 material Substances 0.000 claims description 70
- 239000007788 liquid Substances 0.000 claims description 67
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical group CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 24
- 239000000758 substrate Substances 0.000 claims description 24
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 claims description 16
- 239000000203 mixture Substances 0.000 claims description 8
- 230000015572 biosynthetic process Effects 0.000 claims description 6
- 238000000151 deposition Methods 0.000 claims description 4
- 238000005507 spraying Methods 0.000 claims description 2
- 238000007865 diluting Methods 0.000 claims 4
- 239000002585 base Substances 0.000 description 28
- 239000010408 film Substances 0.000 description 28
- 238000000576 coating method Methods 0.000 description 12
- 239000011248 coating agent Substances 0.000 description 9
- 238000010586 diagram Methods 0.000 description 9
- 239000007921 spray Substances 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 238000001035 drying Methods 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 239000000654 additive Substances 0.000 description 5
- 230000007547 defect Effects 0.000 description 5
- 239000000976 ink Substances 0.000 description 5
- 238000004544 sputter deposition Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 239000004205 dimethyl polysiloxane Substances 0.000 description 4
- 238000000059 patterning Methods 0.000 description 4
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 4
- 238000007639 printing Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000013618 particulate matter Substances 0.000 description 2
- -1 polydimethylsiloxane Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 230000007261 regionalization Effects 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- MAGFQRLKWCCTQJ-UHFFFAOYSA-M 4-ethenylbenzenesulfonate Chemical compound [O-]S(=O)(=O)C1=CC=C(C=C)C=C1 MAGFQRLKWCCTQJ-UHFFFAOYSA-M 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000003779 heat-resistant material Substances 0.000 description 1
- 239000002608 ionic liquid Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 239000013076 target substance Substances 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
Landscapes
- Application Of Or Painting With Fluid Materials (AREA)
- Nozzles (AREA)
- Electrostatic Spraying Apparatus (AREA)
Description
本発明は、原料をミスト化して、薄膜を形成する手法に関する。 The present invention relates to a method of forming a thin film by turning raw materials into mist.
近年のネットワークの拡充や生活スタイルの多様化に伴い、フレキシブル性や大面積といった従来のSi半導体では実現困難な付加価値が機能デバイスに求められており、フィルム上に成膜・パターニング可能な機能性デバイスが注目されている。種々の機能デバイスにおいて、性能向上には機能の異なる材料を積層成膜することが重要になる。薄膜の作製方法として、一般的に真空蒸着法等のドライプロセス、およびスピンコート法等のウエットプロセスが知られている。 With the expansion of networks and the diversification of lifestyles in recent years, functional devices are required to have added values such as flexibility and large area that are difficult to achieve with conventional Si semiconductors. Devices are attracting attention. In order to improve the performance of various functional devices, it is important to form layers of materials with different functions. Dry processes such as vacuum evaporation, and wet processes such as spin coating are generally known as methods for producing thin films.
前記ドライプロセスは、厚み一定の均一な薄膜を積層して成膜することが可能であるが、成膜する材料に高エネルギーを加えるため熱的に不安定な材料、例えば有機材料には適用できず、基材もガラスなどの耐熱性のある材料に限定されてしまうため、材料および基材に制約がある。また、多くが真空プロセスであることから生産性が低いという問題があった。 The dry process can deposit uniform thin films with a constant thickness, but it cannot be applied to thermally unstable materials such as organic materials because it applies high energy to the material being deposited. First, the base material is limited to heat-resistant materials such as glass, so there are restrictions on the materials and base materials. In addition, since most of the processes are vacuum processes, there is a problem of low productivity.
ウエットプロセスでは、フィルムのようなフレキシブル性のある基材上に容易に成膜できるため、生産性や大面積化の観点では、ドライプロセスと比べ格段に優れている。また、ウエットプロセスでは、種々の印刷方法によりパターン形成が可能であるが、プロセス上、粘弾性特性の調整が必要となり、用いる塗料・インクに、工程上の流動性などを調整するための混ぜ物をする。この混ぜ物は、工程を経て基材上に形成した機能性パターンに混入することがあり、パターン内の機能性材料の純度を低下させ、パターンに求められる機能を低下させる問題がある。ウエットプロセスで、原料に混ぜ物を必要としないコーティング方法に、材料を微小液滴化し、基材に搬送して成膜を行うミストコーティング手法がある。 In the wet process, a film can be easily formed on a flexible substrate such as a film, so it is much superior to the dry process in terms of productivity and increasing the area. In addition, in the wet process, patterns can be formed using various printing methods, but it is necessary to adjust the viscoelastic properties during the process, so additives are added to the paints and inks used to adjust the fluidity during the process. do. This mixture may be mixed into the functional pattern formed on the base material through the process, resulting in a problem of lowering the purity of the functional material within the pattern and reducing the functionality required of the pattern. A wet coating method that does not require any additives in the raw material is the mist coating method, in which the material is made into minute droplets and transferred to the substrate to form a film.
ミストコーティングでは、材料に流動に関わる混ぜ物をする必要がなく、純度の高い材料を成膜することが可能であり、機能材料の薄膜形成や薄膜パターンを形成する場合には有利である。
また、ミスト液滴を基材へ搬送する時に液滴から溶媒成分を減少させる調整が容易であり、調整を加え、溶媒分を最適化することで積層時に下層を侵すことなくコートが可能なため、ウエットプロセスで薄膜積層も可能である。前記ミストコーティングで薄膜パターンを得るには、貫通孔のパターンがあるマスク版を通じて、ミストコートすることでパターン膜を形成する手法が用いられている。また、特許文献1のミスト手法では、基材に予め親水と撥水からなるパターンを形成しておき、ミスト材料を搬送してミスト液滴の基材への付着度合いにより、マスク版を用いずにパターンを形成する手法が提案されている。しかしながら、ミストコーティングで、微細パターンを形成する場合、ミスト液滴寸法がパターン解像度の限界になる。
Mist coating does not require mixing materials that affect flow, and it is possible to form films of highly pure materials, which is advantageous when forming thin films of functional materials or forming thin film patterns.
In addition, it is easy to adjust to reduce the solvent component from the droplets when transporting the mist droplets to the substrate, and by making adjustments and optimizing the solvent content, it is possible to coat without damaging the underlying layer during lamination. It is also possible to stack thin films using a wet process. To obtain a thin film pattern using the above-mentioned mist coating, a method is used in which a patterned film is formed by mist coating through a mask plate having a pattern of through holes. In addition, in the misting method of Patent Document 1, a pattern consisting of hydrophilic and water-repellent materials is formed on the base material in advance, and the mist material is conveyed to determine the degree of adhesion of the mist droplets to the base material without using a mask plate. A method for forming patterns has been proposed. However, when forming fine patterns using mist coating, the size of mist droplets becomes the limit of pattern resolution.
超音波ミスト法では、生成するミスト径は、一般的にはラング式によりに規定されるとされるが、超音波振動子により生成したミスト液滴を、基材へ搬送する工程中に溶媒を蒸散させることで、堆積前にミスト径を小径化することが可能である。例えば、ミスト搬送経路を溶媒の蒸発温度以上に加熱することで、搬送中のミスト液滴から溶媒分を蒸散させることが可能である。また、エレクトロスプレー法では、スプレー距離を離すことで液滴がクーロン力による自己分裂することで、原理的には分散材料サイズ(マイクロメートル、ナノメートル)まで小径化することが可能である。 In the ultrasonic mist method, the diameter of the generated mist is generally determined by Lang's formula, but the solvent is not added during the process of transporting the mist droplets generated by the ultrasonic vibrator to the substrate. By transpiring, it is possible to reduce the mist diameter before deposition. For example, by heating the mist transport path to a temperature higher than the evaporation temperature of the solvent, it is possible to evaporate the solvent from the mist droplets being transported. In addition, in the electrospray method, by increasing the spray distance and allowing the droplets to self-split due to Coulomb force, it is theoretically possible to reduce the diameter to the size of the dispersed material (micrometers, nanometers).
薄膜形成や薄膜パターニングする際、ミスト液滴を微小化して基材に配置する必要がある。ミスト液滴を分裂させ微小化する方法、ミスト液滴から溶媒を蒸散させて微小化する方法により、基材配置時にミスト液滴を微小化することは可能であるが、液滴の粘度が上昇することで粒子形状を維持したまま基材に堆積してしまい、膜に空隙などの欠陥が生じることになる。また、ミスト液滴から微小パターンを基材に薄膜パターニングしたい場合、ミスト液滴を微小径化して基材に搬送することで液滴寸法を解像度限界とするパターンを形成することが可能となるが、液滴粘度が上昇するため流動性が低下することでレベリング性が低下し、形成したパターンに欠陥が発生し、パターンの連続性が低下する問題があった。 When forming a thin film or patterning a thin film, it is necessary to miniaturize the mist droplets and arrange them on the base material. It is possible to make the mist droplets smaller when placing the substrate by splitting the mist droplets and making them smaller by evaporating the solvent from the mist droplets, but the viscosity of the droplets increases. This causes the particles to be deposited on the substrate while maintaining their particle shape, resulting in defects such as voids in the film. In addition, when it is desired to form a thin film pattern from mist droplets onto a base material, by reducing the diameter of the mist droplets and transporting them to the base material, it is possible to form a pattern with the droplet size as the resolution limit. There was a problem that the droplet viscosity increased and the fluidity decreased, resulting in a decrease in leveling properties, causing defects in the formed pattern, and decreasing the continuity of the pattern.
薄膜を形成する方法としては、スパッタリングや印刷法も存在するが、スパッタリングは、蒸着させる物質に高いエネルギーを付与して成膜する。このため、樹脂のような高分子化合物は、スパッタリングのエネルギーで分解、変性してしまう可能性が高く、スパッタリングを用いた成膜に適していない面がある。 Sputtering and printing methods also exist as methods for forming a thin film, but sputtering forms a film by applying high energy to a substance to be deposited. For this reason, polymer compounds such as resins are highly likely to be decomposed and denatured by the energy of sputtering, making them unsuitable for film formation using sputtering.
また、印刷法では、成膜対象物をインキにする必要があり、目詰まり防止や流動性確保等の必要性から、成膜対象物(例えば高分子材料)以外の添加物(混ぜ物)を混合する必要があり、成膜対象物の純度(濃度)を高めることが難しく、インキ化(インキ製造)の際の添加物等が、製造した薄膜の欠陥の原因にもなっていた。 In addition, in the printing method, it is necessary to use ink as the object to be film-formed, and in order to prevent clogging and ensure fluidity, additives (mixtures) other than the object to be film-formed (e.g., polymeric materials) are used. Mixing is required, making it difficult to increase the purity (concentration) of the film-forming target, and additives and the like during ink production (ink production) also cause defects in the produced thin film.
本発明では、このような問題に鑑みて、薄膜の原料を含んだ液滴を微細化した際にも、欠陥が少なく機能性を損なわない、薄膜形成方法、薄膜形成装置、および機能性薄膜を提供することを目的とする。 In view of these problems, the present invention provides a thin film forming method, a thin film forming apparatus, and a functional thin film that have few defects and do not impair functionality even when droplets containing thin film raw materials are miniaturized. The purpose is to provide.
上記課題を解決するための本発明の一局面は、基材上に薄膜を形成する方法であって、溶媒液供給部において薄膜の原料を分散させるための溶媒を、2.4MHz駆動の振動子を電圧24Vで駆動することでミスト液滴化する工程と、原料供給部において薄膜の原料を溶媒中に溶解または分散してなる原料液を、2.4MHz駆動の振動子を電圧24Vで駆動することでミスト液滴化する工程と、溶媒のミスト液滴を溶媒供給部から原料液供給部を経由しないように0.8kg/cm 2 の空気により搬送し、原料液のミスト液滴を原料液供給部から溶媒供給部を経由しないように0.8kg/cm 2 の空気により搬送し、搬送途中の溶媒のミスト液滴と原料液のミスト液滴とを合流させて混合する工程と、混合した溶媒のミスト液滴と原料液のミスト液滴とを、基材上に供給する工程とを含み、溶媒は、エタノールであり、薄膜の原料は、PEDOT/PSSであり、原料液は、原料であるPEDOT/PSSの混合物を溶媒であるエタノールにて重量比で4倍希釈したものである、薄膜形成方法である。 One aspect of the present invention for solving the above problems is a method for forming a thin film on a substrate, in which a solvent for dispersing raw materials for the thin film is supplied to a solvent supply unit using vibrations driven at 2.4 MHz. The process involves turning a vibrator into mist droplets by driving a vibrator with a voltage of 24V , and in the raw material supply section , the raw material liquid obtained by dissolving or dispersing the thin film raw material in a solvent is driven with a 2.4MHz vibrator at a voltage of 24V. In this process, the mist droplets of the solvent are conveyed from the solvent supply part to the raw material liquid supply part by air of 0.8 kg/cm2 so as not to pass through the raw material liquid supply part, and the mist droplets of the raw material liquid are converted into the raw material liquid. A step of conveying from the liquid supply section with air of 0.8 kg/cm2 so as not to go through the solvent supply section, and merging and mixing the mist droplets of the solvent and the mist droplets of the raw material liquid during the conveyance; The solvent is ethanol, the raw material for the thin film is PEDOT /PSS , and the raw material liquid is: This is a thin film forming method in which a mixture of PEDOT/PSS, which is a raw material, is diluted four times by weight with ethanol, which is a solvent .
本発明によれば、薄膜の原料を含んだ液滴を微細化した際にも、欠陥が少なく機能性を損なわない、薄膜形成方法、薄膜形成装置、および機能性薄膜を提供することができる。この薄膜形成方法は、ミストコート技術を基にした材料純度の高いパターン形成を可能とし、機能性パターン形成を可能とするものである。 According to the present invention, it is possible to provide a thin film forming method, a thin film forming apparatus, and a functional thin film that have few defects and do not impair functionality even when droplets containing thin film raw materials are miniaturized. This thin film forming method enables pattern formation with high material purity based on mist coating technology, and enables functional pattern formation.
(薄膜形成方法)
本発明の一実施形態に係る薄膜形成方法は、基材上に薄膜を形成する方法であって、薄膜の原料を溶解または分散させるための溶媒を、基材上に供給する工程と、薄膜の原料を前記溶媒中に溶解または分散してなる原料液の液滴を、基材上に搬送して堆積させる工程とを含む。
(Thin film formation method)
A method for forming a thin film according to an embodiment of the present invention is a method for forming a thin film on a base material, and includes a step of supplying a solvent onto the base material for dissolving or dispersing raw materials for the thin film, and The method includes a step of transporting and depositing droplets of a raw material liquid obtained by dissolving or dispersing raw materials in the solvent onto a base material.
また、上述の薄膜形成方法の変形例として、薄膜を基材上に直接形成せず、中間転写体上に形成し、この薄膜を中間転写体から基材に転写するようにしてもよい。具体的には、薄膜の原料を溶解または分散させるための溶媒を、中間転写体上に供給し、原料液の液滴を、中間転写体上に搬送して堆積させた後、中間転写体に含有された溶媒および原料液を基材へ転写して形成することができる。 Further, as a modification of the above-described thin film forming method, the thin film may not be formed directly on the base material, but may be formed on an intermediate transfer body, and this thin film may be transferred from the intermediate transfer body to the base material. Specifically, a solvent for dissolving or dispersing the raw material of the thin film is supplied onto the intermediate transfer body, droplets of the raw material liquid are transported and deposited on the intermediate transfer body, and then the droplets of the raw material liquid are conveyed and deposited on the intermediate transfer body. It can be formed by transferring the contained solvent and raw material liquid to a base material.
本発明で使用可能な溶媒は、水、有機溶媒、イオン性液体等が挙げられる。溶媒には、酸、アルカリ等が含まれていても良い。また、水とエタノールのように相溶性を有する溶媒を混合しても良い。 Examples of solvents that can be used in the present invention include water, organic solvents, and ionic liquids. The solvent may contain an acid, an alkali, or the like. Furthermore, compatible solvents such as water and ethanol may be mixed.
本発明で使用可能な薄膜の原料(成膜物質)は、高分子化合物(樹脂)、無機物、セルロースなどの天然高分子が挙げられる。薄膜の原料は、上記の溶媒に溶解、分散可能なものが利用可能である。 Examples of thin film raw materials (film-forming substances) that can be used in the present invention include polymer compounds (resins), inorganic substances, and natural polymers such as cellulose. As the raw material for the thin film, those that can be dissolved and dispersed in the above-mentioned solvents can be used.
本発明の一実施形態に係る薄膜形成方法を図1を用いて説明する。図1の左には、一実施形態に係る薄膜形成方法(方法1)の工程図を示し、図1の右には、中間転写体を用いた変形例に係る薄膜形成方法(方法2)の工程図を示す。本発明の一実施形態に係る薄膜形成方法では、原料を溶媒に溶解、または分散した原料液を、物理的に微細液滴化し、目的の基材2に搬送して液滴を堆積させて薄膜を形成する手法を基本としている。 A thin film forming method according to an embodiment of the present invention will be explained using FIG. The left side of FIG. 1 shows a process diagram of a thin film forming method (method 1) according to one embodiment, and the right side of FIG. 1 shows a process diagram of a thin film forming method (method 2) according to a modification using an intermediate transfer body. A process diagram is shown. In the thin film forming method according to an embodiment of the present invention, a raw material liquid in which a raw material is dissolved or dispersed in a solvent is physically formed into fine droplets, and the droplets are deposited on a target base material 2 to form a thin film. It is based on the method of forming.
方法1では、初めに基板2上に、溶媒供給装置1を用いて溶媒4を供給する。次に、ミスト供給装置5を用いて、薄膜の原料を溶媒4中に溶解または分散してなる原料液の微細な液滴6を、基材2上に搬送して堆積させる。図1に示すように、方法2では、これらの工程において溶媒4および液滴6を供給、堆積させる対象は中間転写体3となる。 In method 1, the solvent 4 is first supplied onto the substrate 2 using the solvent supply device 1 . Next, using the mist supply device 5, fine droplets 6 of a raw material liquid obtained by dissolving or dispersing the raw material for the thin film in the solvent 4 are transported and deposited on the base material 2. As shown in FIG. 1, in method 2, the intermediate transfer body 3 is the object to which the solvent 4 and droplets 6 are supplied and deposited in these steps.
図1のミスト供給装置5は、原料液を細分化液滴化し搬送する装置である。微細液滴化する装置には、一例として、原料液に超音波を当ててキャピラリー原理により原料液から微細な液滴6を発生させ、基材2または中間転写体3に搬送する手法を取ることができる。また他の手法として、原料液をノズルから噴出させノズルと基材2または中間転写体3間に高電圧を印加して、ノズルから噴出した液滴6を電圧印加により荷電し、クーロン力の斥力により液滴6を細分化して基材2または中間転写体3に堆積させる、エレクトロスプレー(ESC)法を取ることができる。 The mist supply device 5 in FIG. 1 is a device that divides the raw material liquid into droplets and conveys the finely divided droplets. For example, an apparatus for forming fine droplets may employ a method of applying ultrasonic waves to the raw material liquid to generate fine droplets 6 from the raw material liquid using the capillary principle, and transporting the fine droplets 6 to the base material 2 or intermediate transfer body 3. Can be done. As another method, the raw material liquid is ejected from a nozzle, a high voltage is applied between the nozzle and the base material 2 or the intermediate transfer member 3, and the droplets 6 ejected from the nozzle are charged by the voltage application, and the repulsive force of Coulomb force is applied. An electrospray (ESC) method can be used in which the droplets 6 are divided into small pieces and deposited on the base material 2 or the intermediate transfer body 3.
図1に示すように、基材2または中間転写体3に液滴6が着弾する時に、基材2または中間転写体3の表面には、別途溶媒供給装置1から溶媒4が予め供給されている。このため、着弾した液滴6へ溶媒4が供給され、付着した液滴6は溶媒リッチな状態になる。 As shown in FIG. 1, when the droplets 6 land on the base material 2 or the intermediate transfer body 3, the solvent 4 is supplied in advance from a separate solvent supply device 1 to the surface of the base material 2 or the intermediate transfer body 3. There is. Therefore, the solvent 4 is supplied to the landed droplet 6, and the attached droplet 6 becomes in a solvent-rich state.
また、液滴6がミスト供給装置5のノズルから基材2または中間転写体3へ移動する工程中に、液滴6中の溶媒4が気化して抜けていく。このため、液滴6は薄膜の原料の固形物の比率が多くなり、基材2または中間転写体3に着弾したときには、流動性を失っていることが多い。基材2に着弾して流動性を失った液滴6により形成される膜(薄膜)表面は、凹凸を形成していることが多く、この状態のまま液滴6を堆積させると凹凸形状が残ったままの荒れた表面の薄膜となってしまい、所望の表面形状、機能性を得ることが困難な場合がある。これを解消するため、液滴6を一定量堆積した後に、基材上に堆積した液滴6により形成される膜(薄膜)表面に、さらに溶媒4のみを噴霧してもよい。 Further, during the process in which the droplet 6 moves from the nozzle of the mist supply device 5 to the base material 2 or the intermediate transfer member 3, the solvent 4 in the droplet 6 evaporates and escapes. For this reason, the droplet 6 has a high ratio of solids in the thin film raw material, and when it lands on the base material 2 or the intermediate transfer body 3, it often loses its fluidity. The surface of the film (thin film) formed by the droplets 6 that have lost their fluidity after landing on the base material 2 often has unevenness, and if the droplets 6 are deposited in this state, the uneven shape will occur. A thin film with a rough surface remains, and it may be difficult to obtain the desired surface shape and functionality. To solve this problem, after a certain amount of droplets 6 have been deposited, only the solvent 4 may be further sprayed onto the surface of the film (thin film) formed by the droplets 6 deposited on the base material.
このようにして堆積した液滴6が溶媒4の補給(供給)を受けることで流動性が増え、堆積した液滴6により形成される膜(薄膜)が流動することによってレベリングされ、平滑な薄膜8を形成することができる。中間転写体3に薄膜8を一旦形成した場合は、基材2に中間転写体3に含有された薄膜8を転写することで、基材2上に目的材料からなる薄膜8を形成することになる。 As the droplets 6 deposited in this manner receive replenishment (supply) of the solvent 4, their fluidity increases, and the film (thin film) formed by the deposited droplets 6 flows and is leveled, resulting in a smooth thin film. 8 can be formed. Once the thin film 8 is formed on the intermediate transfer body 3, by transferring the thin film 8 contained in the intermediate transfer body 3 to the base material 2, the thin film 8 made of the target material is formed on the base material 2. Become.
最後に、加熱乾燥することで薄膜8から余分な溶媒を蒸発させることで、材料純度が高い薄膜8が形成される。中間転写体3に用いられる材料は、原料液の溶媒4を吸収、放出できる材料であればよく、特に限定されないが、一例としてシリコーンゴムのポリジメチルシロキサン(PDMS)が挙げられ、構造としては多孔質体を用いることができる。 Finally, excess solvent is evaporated from the thin film 8 by heating and drying, thereby forming a thin film 8 with high material purity. The material used for the intermediate transfer body 3 is not particularly limited as long as it can absorb and release the solvent 4 of the raw material liquid, but an example is polydimethylsiloxane (PDMS) of silicone rubber, and the material has a porous structure. A material can be used.
以上説明した薄膜形成方法によれば、溶媒と、薄膜の原料が当該溶媒に溶解または分散している液体(原料液)とを用いるだけでよく、インキ化する際に必要であった添加物等が不要となる。このため、本発明では、スパッタリング法では成膜できなかった物質の膜化、印刷法では実現できなかった、成膜対象物質の純度(濃度)の高い膜を成膜することが可能となり、従来得られなかった膜物性を得ることが可能となる。 According to the thin film forming method explained above, it is only necessary to use a solvent and a liquid (raw material liquid) in which the raw material for the thin film is dissolved or dispersed in the solvent, and additives etc. that are necessary when forming into ink are required. becomes unnecessary. Therefore, with the present invention, it is possible to form a film of a substance that could not be formed using the sputtering method, and a film with high purity (concentration) of the target substance that could not be formed using the printing method. It becomes possible to obtain film properties that were previously unavailable.
(薄膜形成装置)
図2、3は、本発明の一実施形態に係る薄膜形成方法を実現できる薄膜形成装置100、200の模式図である。薄膜形成装置は、原料液の液滴6を基材2上へ噴霧することができる原料液供給部を備え、原料液供給部により基材2上に原料液の液滴6を噴霧した後、または原料液の液滴6の噴霧と同時に、基材2上に溶媒4を噴霧することができる。また、薄膜形成装置は、溶媒4を基材2上に噴霧することができる溶媒供給部をさらに備えてもよい。なお、以下の説明では、液滴6および溶媒4の噴霧対象として基板2を例示しているが、中間転写体3に噴霧するように構成してもよい。
(Thin film forming device)
2 and 3 are schematic diagrams of thin film forming apparatuses 100 and 200 that can implement a thin film forming method according to an embodiment of the present invention. The thin film forming apparatus includes a raw material liquid supply section that can spray droplets 6 of the raw material liquid onto the substrate 2, and after the raw material liquid supply section sprays the droplets 6 of the raw material liquid onto the substrate 2, Alternatively, the solvent 4 can be sprayed onto the base material 2 at the same time as the droplets 6 of the raw material liquid are sprayed. Further, the thin film forming apparatus may further include a solvent supply unit capable of spraying the solvent 4 onto the base material 2. In the following description, the substrate 2 is exemplified as an object to be sprayed with the droplets 6 and the solvent 4, but it may be configured so that the intermediate transfer body 3 is sprayed.
図2に示す薄膜形成装置100では、原料液供給部および溶媒供給部としてエレクトロスプレー法のノズルを2本準備し、一方のノズル11を原料液の液的6の吐出(噴霧)、もう一方のノズル12を原料液の溶媒の吐出(噴霧)に用いる。基材2上には、ノズル11、12からそれぞれ、原料液の液滴6からなるミスト13と溶媒4からなるミスト14が吐出される。基材2の下方には、ノズル11、12と基板2との間に電圧を印加できる対向電極10が設けられる。薄膜形成装置100は、ノズル11と基材2との間の距離を調整することができ、この距離が近い場合は、液滴6の径が大きく、距離を離すことで液滴6の径を小さく調整可能である。ノズル11、12からの吐出を同時または、溶媒吐出を先行させることで、基材2上に適度な溶媒6を供給することができるため、ミスト13の基材2への着弾時に液滴6に溶媒4が供給される。この結果、基材2の表面に形成される薄膜の粘度が低下してレベリングされ、均一な薄膜8が形成される。基材2とノズル11、12の水平面の相対位置は適宜移動することを可能にしても良い。 In the thin film forming apparatus 100 shown in FIG. 2, two electrospray nozzles are prepared as a raw material liquid supply section and a solvent supply section, one nozzle 11 is used to discharge (spray) a liquid 6 of the raw material liquid, and the other is The nozzle 12 is used to discharge (spray) the solvent of the raw material liquid. A mist 13 consisting of droplets 6 of the raw material liquid and a mist 14 consisting of the solvent 4 are discharged onto the base material 2 from the nozzles 11 and 12, respectively. A counter electrode 10 that can apply a voltage between the nozzles 11 and 12 and the substrate 2 is provided below the base material 2 . The thin film forming apparatus 100 can adjust the distance between the nozzle 11 and the base material 2. When this distance is close, the diameter of the droplet 6 is large, and when the distance is increased, the diameter of the droplet 6 is increased. Small and adjustable. By ejecting the solvent from the nozzles 11 and 12 simultaneously or by ejecting the solvent in advance, an appropriate amount of the solvent 6 can be supplied onto the base material 2, so that when the mist 13 lands on the base material 2, the droplets 6 are Solvent 4 is supplied. As a result, the viscosity of the thin film formed on the surface of the base material 2 is reduced and leveled, and a uniform thin film 8 is formed. The relative positions of the base material 2 and the nozzles 11 and 12 in the horizontal plane may be moved as appropriate.
図3に示す薄膜形成装置200では、ミスト13およびミスト14の生成に超音波ミスト法を用いる。薄膜形成装置200は、超音波チャンバ21に原料液を、超音波チャンバ22に溶媒4をセットした後、各チャンバ21、22に設置された超音波振動子によりチャンバ内の原料液および溶媒4をミスト液滴化する。その後、各チャンバ21、22内に搬送エアを送り込むことで、原料供給ヘッド23及び、溶媒供給ヘッド24からそれぞれのミスト13、14を基材2に搬送(噴霧)することができる。図3では、薄膜形成装置は、ミスト13、14を基材2上で個別に搬送している状態を示しているが、各チャンバ21、22から出たミスト13、14を合流させ、ひとつのヘッドで原料液と溶媒の混合エアロゾルを基材2上に供給してもよい。 In the thin film forming apparatus 200 shown in FIG. 3, an ultrasonic mist method is used to generate the mist 13 and the mist 14. The thin film forming apparatus 200 sets the raw material liquid in the ultrasonic chamber 21 and the solvent 4 in the ultrasonic chamber 22, and then uses the ultrasonic vibrators installed in each chamber 21 and 22 to remove the raw material liquid and the solvent 4 in the chambers. Converts into mist droplets. Thereafter, by sending conveyance air into the respective chambers 21 and 22, the respective mist 13 and 14 can be conveyed (sprayed) onto the base material 2 from the raw material supply head 23 and the solvent supply head 24. In FIG. 3, the thin film forming apparatus is shown conveying the mist 13 and 14 individually on the base material 2, but the mist 13 and 14 coming out from each chamber 21 and 22 are combined to form one A mixed aerosol of the raw material liquid and the solvent may be supplied onto the base material 2 using the head.
薄膜形成装置200の場合にも、基材2上で着弾したミスト13中の液滴6が別途供給された溶媒4を吸収して、粘度が低下することでレベリングした薄膜8を形成することになる。ミスト13の供給経路には乾燥装置を導入し液滴6の溶媒量を調整してもよい。 Also in the case of the thin film forming apparatus 200, the droplets 6 in the mist 13 that landed on the base material 2 absorb the separately supplied solvent 4, and the viscosity decreases, forming a leveled thin film 8. Become. A drying device may be introduced into the supply path of the mist 13 to adjust the amount of solvent in the droplets 6.
図4は、上述の薄膜形成方法を用いて、中間転写体3に溶媒4によりパターニングを行い、潜像を形成する方法を説明する図である。 FIG. 4 is a diagram illustrating a method of forming a latent image by patterning the intermediate transfer member 3 with the solvent 4 using the above-described thin film forming method.
図4の(a)は、パターンマスク40を用いて中間転写体3にパターニングする手法を示している。マスクされた部分は、溶媒4の供給が遮られて開口部分のみに溶媒4が供給され、所定のパターンに基づく潜像43状に溶媒4が含有される。溶媒スプレー41は、溶媒4を霧状にして供給する塗工方式であれば限定されず、例えば超音波ミスト法による供給でも、エレクトロスプレーによる供給でも良い。 FIG. 4A shows a method of patterning the intermediate transfer body 3 using a pattern mask 40. In FIG. In the masked portions, the supply of the solvent 4 is blocked, and the solvent 4 is supplied only to the opening portions, and the solvent 4 is contained in the form of a latent image 43 based on a predetermined pattern. The solvent spray 41 is not limited as long as it is a coating method that supplies the solvent 4 in the form of a mist, and may be supplied by, for example, an ultrasonic mist method or an electrospray method.
図4の(b)は、インクジェット(IJ)ヘッド42を用いて溶媒4を所定のパターン状に供給する手法を示している。インクジェットヘッド42より溶媒4を供給し、中間転写体3上に溶媒4の含有する所定のパターンに基づく潜像43を形成する。 FIG. 4B shows a method of supplying the solvent 4 in a predetermined pattern using an inkjet (IJ) head 42. The solvent 4 is supplied from the inkjet head 42 to form a latent image 43 on the intermediate transfer body 3 based on a predetermined pattern contained in the solvent 4.
図4の(a)または(b)に示した工程の後、図は省略するが、潜像43を形成した中間転写体3に液滴6を重力下で上方に設置した中間転写体3に吹きつけると、溶媒4が含有していない部分(すなわち、潜像43が形成されていない部分)では、微細化した液滴6は弾性体として跳ね返り付着しない。一方、溶媒4が含有する部分には着弾時に液滴6に溶媒4が供給されてそのまま吸着し、粘度が低下することでレベリングして潜像43に沿ったパターンが形成される。 After the process shown in FIG. 4(a) or (b), although not shown, droplets 6 are applied under gravity to the intermediate transfer member 3 on which the latent image 43 has been formed. When sprayed, the fine droplets 6 bounce off as an elastic body and do not adhere to areas where the solvent 4 is not contained (that is, areas where the latent image 43 is not formed). On the other hand, in the portion containing the solvent 4, the solvent 4 is supplied to the droplet 6 at the time of landing and is adsorbed as it is, and the viscosity decreases, leveling occurs and a pattern along the latent image 43 is formed.
このように本発明によれば、原料が溶解または分散した原料液をミスト液滴化し、工程中に溶媒比率を下げて微細液滴化して基材2に着弾したときに、溶媒4を液滴に供給することで粘度を低下させてレベリングを可能とし、均一な薄膜8と薄膜パターニングを可能とするものである。 As described above, according to the present invention, the raw material liquid in which the raw materials are dissolved or dispersed is made into mist droplets, and when the solvent ratio is lowered during the process to make fine droplets and the droplets land on the base material 2, the solvent 4 is made into droplets. By supplying the same, the viscosity is lowered and leveling is made possible, and a uniform thin film 8 and thin film patterning are made possible.
(実施例1)
ミスト発生部を2つ備える超音波方式のミストコート装置を用いて薄膜を形成した。第一のミスト発生部(原料液供給部)からは原料液が供給されるように、コート材料(薄膜の原料)であるPEDOT/PSS混合物(SV-3、ヘレウス社)をエタノールにて重量比で4倍希釈した原料液を充填した。第二のミスト発生部(溶媒供給部)からは溶媒が供給されるように、エタノール(溶媒)を100%充填した。
(Example 1)
A thin film was formed using an ultrasonic mist coater equipped with two mist generators. A PEDOT/PSS mixture (SV-3, Heraeus), which is a coating material (thin film raw material), is mixed with ethanol in a weight ratio so that the raw material liquid is supplied from the first mist generating part (raw material liquid supply part). A raw material solution diluted four times with water was filled. The second mist generation section (solvent supply section) was filled with 100% ethanol (solvent) so that the solvent was supplied.
第一と第二のミスト発生部の超音波振動子は、2.4MHz駆動の振動子(HM-2412、本多電子社製)を用いて、電圧24Vで駆動した。第一と第二のミスト発生部で発生したミスト液滴を0.8kg/cm2の空気により搬送し、搬送経路途中で合流させて、0.7mm厚のガラス基材(EGLE-XG、コーニング社)に搬送して、ミスト液滴を3分間堆積させ、膜厚300nmのPEDOT/PSS膜を得た。PEDOTは、poly(3,4-ethylenedioxythiophene)の、PSSは、poly ( 4-styrenesulfonate)の略号である。 The ultrasonic vibrators of the first and second mist generating sections were driven at a voltage of 24 V using 2.4 MHz driven vibrators (HM-2412, manufactured by Honda Electronics Co., Ltd.). The mist droplets generated in the first and second mist generating parts are transported by air of 0.8 kg/cm 2 and merged in the middle of the transport route, and are placed on a 0.7 mm thick glass substrate (EGLE-XG, Corning Mist droplets were deposited for 3 minutes to obtain a PEDOT/PSS film with a thickness of 300 nm. PEDOT is an abbreviation for poly (3,4-ethylenedioxythiophene) and PSS is an abbreviation for poly (4-styrenesulfonate).
(実施例2)
ミスト発生するノズルを2本持つ、エレクトロスプレー方式のミストコート装置において、第一ノズル(原料液供給部)からは、実施例と同じミスト原料が、第二ノズル(溶媒供給部)からはエタノール溶媒100%が供給されるようにした。第一と第二のミスト発生部では、ノズル径100μm、ノズルへの送液を0.1cc/分、ノズル-基材間電圧を14kVで行い、第一のノズルと基材の距離を70mm、第二のノズルと基材の距離を30mmとした。0.7mm厚のガラス基材(EGLE-XG、コーニング社)に対して、第二ノズル、第一ノズルの順にノズルを速度50mm/秒で走査させ、膜厚300nmのPEDOT/PSS膜を得た。
(Example 2)
In an electrospray mist coating device that has two nozzles that generate mist, the same mist raw material as in the example is supplied from the first nozzle (raw material liquid supply section), and the ethanol solvent is supplied from the second nozzle (solvent supply section). 100% supply was ensured. In the first and second mist generating parts, the nozzle diameter was 100 μm, the liquid was fed to the nozzle at 0.1 cc/min, the voltage between the nozzle and the substrate was 14 kV, and the distance between the first nozzle and the substrate was 70 mm. The distance between the second nozzle and the base material was 30 mm. A 0.7 mm thick glass substrate (EGLE-XG, Corning Inc.) was scanned with the second nozzle and then the first nozzle at a speed of 50 mm/sec to obtain a PEDOT/PSS film with a thickness of 300 nm. .
(実施例3)
実施例1の第二のミスト発生部を用いて、3分間、溶媒ミストを中間転写体(ポリジメチルシロキサン;PDMS)に含有させておき、実施例1の第一ミスト発生部と同じミスト原料とミスト発生条件により中間転写体上にミスト原料を3分間堆積した後、中間転写体上に形成された薄膜をガラス基材に転写して膜厚300nmのPEDOT/PSS膜を得た。
(Example 3)
Using the second mist generating part of Example 1, the intermediate transfer body (polydimethylsiloxane; PDMS) was allowed to contain solvent mist for 3 minutes, and the same mist raw material as the first mist generating part of Example 1 was used. After depositing the mist raw material on the intermediate transfer body for 3 minutes under mist generation conditions, the thin film formed on the intermediate transfer body was transferred to a glass substrate to obtain a PEDOT/PSS film with a thickness of 300 nm.
(比較例1)
実施例1と同じコート原料を用いて、2000RPMでスピンコート、80℃10分の乾燥を、コートと乾燥を4回繰り返して、膜厚300nmのPEDOT/PSS膜を得た。
(Comparative example 1)
Using the same coating material as in Example 1, spin coating at 2000 RPM and drying at 80° C. for 10 minutes was repeated four times to obtain a PEDOT/PSS film with a thickness of 300 nm.
(比較例2)
実施例2において、第二のノズルから溶媒吐出をしなかった以外は、実施例2と同様の材料と工程で、ガラス基材上に膜厚300μmのPEDOT/PSS膜を得た。
(Comparative example 2)
In Example 2, a PEDOT/PSS film with a thickness of 300 μm was obtained on a glass substrate using the same materials and steps as in Example 2, except that the solvent was not discharged from the second nozzle.
(比較例3)
実施例3において、中間転写体への予め溶媒を含有させる工程を省いた以外は実施例3と同じ材料と工程でガラス基材上に膜形成を試みたが、膜にはならなかった。
(Comparative example 3)
In Example 3, an attempt was made to form a film on a glass substrate using the same materials and steps as in Example 3, except that the step of pre-containing a solvent in the intermediate transfer body was omitted, but no film was formed.
実施例1~3、比較例1と2で得られたPEDOT/PSS膜について、表面状態を走査電子顕微鏡(日立S4800)により観察した像を図5に示す。また、それぞれの膜の表面抵抗を四探針抵抗測定装置(MCP-T610、三菱ケミカル)で測定した。表1に表面抵抗値と、表面抵抗値が低くSEM観察で粒状物の混入がほぼ見られないものを○、多少の混入があるものを△、表面抵抗値が高く全面に混入しているものを×とした成膜性の結果を示す。 FIG. 5 shows images of the surface states of the PEDOT/PSS films obtained in Examples 1 to 3 and Comparative Examples 1 and 2 observed using a scanning electron microscope (Hitachi S4800). In addition, the surface resistance of each film was measured using a four-probe resistance measuring device (MCP-T610, Mitsubishi Chemical). Table 1 shows the surface resistance values, and ○ indicates that the surface resistance value is low and almost no particulate matter is observed in SEM observation, △ indicates that there is some contamination, and △ indicates that the surface resistance value is high and that the particulate matter is mixed all over the surface. The film formability results are shown with x as x.
上記結果より、比較例では、膜の表面性が悪く表面抵抗値も高くなることが分かる。一方、本発明の実施例では、成膜性の良い薄膜が得られており、表面抵抗値も低い良好な特性を持つ薄膜が得られている。 From the above results, it can be seen that in the comparative example, the surface properties of the film were poor and the surface resistance value was also high. On the other hand, in the examples of the present invention, thin films with good film formability were obtained, and thin films with low surface resistance and good characteristics were obtained.
(実施例4)
パターンマスクを介して第二のミスト発生部を用いて溶媒をコートした以外は、実施例3と同様の手順で基材にコートしたところ、パターンマスクに従った膜厚300nmのパターンが形成された。
(Example 4)
When the substrate was coated in the same manner as in Example 3 except that the solvent was coated using the second mist generating part through the pattern mask, a pattern with a film thickness of 300 nm was formed according to the pattern mask. .
(実施例5)
インクジェットヘッドを用いて、パターンコートした以外は、実施例3と同様の手順で基材にコートしたところ、インクジェットで形成したパターンに従った膜厚300nmのパターンが形成された。
(Example 5)
When a substrate was coated in the same manner as in Example 3 except that pattern coating was performed using an inkjet head, a pattern with a film thickness of 300 nm was formed in accordance with the pattern formed by inkjet.
本発明は、機能性薄膜の製造に用いることができる。 The present invention can be used to manufacture functional thin films.
1 溶媒供給装置
2 基材
3 中間転写体
4 供給溶媒
5 ミスト供給装置
6 ミスト液滴
8 材料薄膜
10 対向電極
11 ESCノズル1
12 ESCノズル2
13 原料ミスト
14 溶媒ミスト
21 超音波チャンバ1
22 超音波チャンバ2
23 原料ミスト供給ヘッド
24 溶媒ミスト供給ヘッド
30 マクス潜像形成
31 IJ潜像形成
40 パターンマスク
41 溶媒スプレー
42 溶媒IJヘッド
43 溶媒含有潜像
100、200 薄膜形成装置
1 Solvent supply device 2 Base material 3 Intermediate transfer body 4 Supply solvent 5 Mist supply device 6 Mist droplets 8 Material thin film 10 Counter electrode 11 ESC nozzle 1
12 ESC nozzle 2
13 Raw material mist 14 Solvent mist 21 Ultrasonic chamber 1
22 Ultrasonic chamber 2
23 Raw material mist supply head 24 Solvent mist supply head 30 Max latent image formation 31 IJ latent image formation 40 Pattern mask 41 Solvent spray 42 Solvent IJ head 43 Solvent-containing latent image 100, 200 Thin film forming device
Claims (4)
溶媒液供給部において前記薄膜の原料を分散させるための溶媒を、2.4MHz駆動の振動子を電圧24Vで駆動することでミスト液滴化する工程と、
原料供給部において前記薄膜の原料を前記溶媒中に溶解または分散してなる原料液を、2.4MHz駆動の振動子を電圧24Vで駆動することでミスト液滴化する工程と、
前記溶媒のミスト液滴を前記溶媒供給部から前記原料液供給部を経由しないように0.8kg/cm 2 の空気により搬送し、前記原料液のミスト液滴を前記原料液供給部から前記溶媒供給部を経由しないように0.8kg/cm 2 の空気により搬送し、搬送途中の前記溶媒のミスト液滴と前記原料液のミスト液滴とを合流させて混合する工程と、
混合した前記溶媒のミスト液滴と前記原料液のミスト液滴とを前記基材上に供給する工程とを含み、
前記溶媒は、エタノールであり、
前記薄膜の原料は、PEDOT/PSSであり、
前記原料液は、前記原料であるPEDOT/PSSの混合物を前記溶媒であるエタノールにて重量比で4倍希釈したものである、
薄膜形成方法。 A method of forming a thin film on a substrate, the method comprising:
A step of converting the solvent for dispersing the raw material of the thin film into mist droplets by driving a 2.4 MHz-driven vibrator at a voltage of 24 V in a solvent liquid supply section;
A step of converting a raw material liquid obtained by dissolving or dispersing the raw material of the thin film into the solvent into mist droplets by driving a 2.4 MHz-driven vibrator at a voltage of 24 V in a raw material supply section;
The mist droplets of the solvent are conveyed from the solvent supply section by air of 0.8 kg/cm2 so as not to pass through the raw material liquid supply section, and the mist droplets of the raw material liquid are transported from the raw material liquid supply section to the solvent. A step of conveying with air of 0.8 kg/cm 2 so as not to go through a supply part, and merging and mixing the mist droplets of the solvent and the mist droplets of the raw material liquid during conveyance;
a step of supplying mixed mist droplets of the solvent and mist droplets of the raw material liquid onto the base material,
the solvent is ethanol ;
The raw material of the thin film is PEDOT/PSS ,
The raw material liquid is obtained by diluting the raw material PEDOT/PSS mixture by 4 times by weight with the solvent ethanol.
Thin film formation method.
溶媒液供給部において前記薄膜の原料を分散させるための溶媒を、2.4MHz駆動の振動子を電圧24Vで駆動することでミスト液滴化する工程と、
原料供給部において前記薄膜の原料を前記溶媒中に溶解または分散してなる原料液を、2.4MHz駆動の振動子を電圧24Vで駆動することでミスト液滴化する工程と、
前記溶媒のミスト液滴を前記溶媒供給部から前記原料液供給部を経由しないように0.8kg/cm 2 の空気により搬送し、前記原料液のミスト液滴を前記原料液供給部から前記溶媒供給部を経由しないように0.8kg/cm 2 の空気により搬送し、搬送途中の前記溶媒のミスト液滴と前記原料液のミスト液滴とを合流させて混合する工程と、
混合した前記溶媒のミスト液滴と前記原料液のミスト液滴とを、中間転写体上に搬送して堆積させる工程と、
前記中間転写体に含有された前記溶媒および前記原料液を前記基材へ転写する工程とを含み、
前記溶媒は、エタノールであり、
前記薄膜の原料は、PEDOT/PSSであり、
前記原料液は、前記原料であるPEDOT/PSSの混合物を前記溶媒であるエタノールにて重量比で4倍希釈したものである、
薄膜形成方法。 A method of forming a thin film on a substrate, the method comprising:
A step of converting the solvent for dispersing the raw material of the thin film into mist droplets by driving a 2.4 MHz-driven vibrator at a voltage of 24 V in a solvent liquid supply section;
A step of converting a raw material liquid obtained by dissolving or dispersing the raw material of the thin film into the solvent into mist droplets by driving a 2.4 MHz-driven vibrator at a voltage of 24 V in a raw material supply section;
The mist droplets of the solvent are conveyed from the solvent supply section by air of 0.8 kg/cm2 so as not to pass through the raw material liquid supply section, and the mist droplets of the raw material liquid are transported from the raw material liquid supply section to the solvent. A step of conveying with air of 0.8 kg/cm 2 so as not to go through a supply part, and merging and mixing the mist droplets of the solvent and the mist droplets of the raw material liquid during conveyance;
a step of transporting and depositing the mixed mist droplets of the solvent and the mist droplets of the raw material liquid onto an intermediate transfer body;
a step of transferring the solvent and the raw material liquid contained in the intermediate transfer body to the base material,
the solvent is ethanol ;
The raw material of the thin film is PEDOT/PSS ,
The raw material liquid is obtained by diluting the raw material PEDOT/PSS mixture by 4 times by weight with the solvent ethanol.
Thin film formation method.
原料であるPEDOT/PSSの混合物を溶媒であるエタノールにて重量比で4倍希釈してなる原料液を、2.4MHz駆動の振動子を電圧24Vで駆動することでミスト液滴化する原料液供給部と、
前記薄膜の前記原料を分散させるための前記溶媒を、2.4MHz駆動の振動子を電圧24Vで駆動することでミスト液滴化する溶媒供給部とを備え、
前記原料液供給部から前記溶媒供給部を経由しないように0.8kg/cm 2 の空気により搬送された前記原料液のミスト液滴と、前記溶媒供給部から前記原料液供給部を経由しないように0.8kg/cm 2 の空気により搬送された前記溶媒のミスト液滴とを混合し、前記基材上へ噴霧する、
薄膜形成装置。 A thin film forming apparatus that forms a thin film on a base material,
A raw material liquid obtained by diluting a mixture of PEDOT/PSS as a raw material by 4 times by weight with ethanol as a solvent , and turning it into mist droplets by driving a 2.4 MHz driven vibrator at a voltage of 24 V. a supply section ;
a solvent supply unit that converts the solvent for dispersing the raw material of the thin film into mist droplets by driving a 2.4 MHz driven vibrator at a voltage of 24 V ,
Mist droplets of the raw material liquid transported by air of 0.8 kg/cm 2 so as not to go through the solvent supply part from the raw material liquid supply part, and mist droplets of the raw material liquid conveyed by air of 0.8 kg/cm 2 so as not to go through the raw material liquid supply part from the solvent supply part. and 0.8 kg/cm 2 of air- borne mist droplets of the solvent, and spraying onto the substrate.
Thin film forming equipment.
原料であるPEDOT/PSSの混合物を溶媒であるエタノールにて重量比で4倍希釈してなる原料液を、2.4MHz駆動の振動子を電圧24Vで駆動することでミスト液滴化する原料液供給部と、
前記原料を分散させるための前記溶媒を、2.4MHz駆動の振動子を電圧24Vで駆動することでミスト液滴化する溶媒供給部とを備え、
前記原料液供給部から前記溶媒供給部を経由しないように0.8kg/cm 2 の空気により搬送された前記原料液のミスト液滴と、前記溶媒供給部から前記原料液供給部を経由しないように0.8kg/cm 2 の空気により搬送された前記溶媒のミスト液滴とを混合して中間転写体上へ噴霧し、前記中間転写体に含有された前記原料液および前記溶媒を前記基材上に転写することができる、
薄膜形成装置。 A thin film forming apparatus that forms a thin film on a base material,
A raw material liquid obtained by diluting a mixture of PEDOT/PSS as a raw material by 4 times by weight with ethanol as a solvent , and turning it into mist droplets by driving a 2.4 MHz driven vibrator at a voltage of 24 V. a supply section;
a solvent supply unit that converts the solvent for dispersing the raw material into mist droplets by driving a 2.4 MHz-driven vibrator at a voltage of 24 V ;
Mist droplets of the raw material liquid transported by air of 0.8 kg/cm 2 so as not to go through the solvent supply part from the raw material liquid supply part, and mist droplets of the raw material liquid conveyed by air of 0.8 kg/cm 2 so as not to go through the raw material liquid supply part from the solvent supply part. is mixed with mist droplets of the solvent carried by air at 0.8 kg/cm 2 and sprayed onto the intermediate transfer body, and the raw material liquid and the solvent contained in the intermediate transfer body are transferred to the base material. can be transferred onto,
Thin film forming equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018182232A JP7434705B2 (en) | 2018-09-27 | 2018-09-27 | Thin film forming method, thin film forming apparatus, and functional thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018182232A JP7434705B2 (en) | 2018-09-27 | 2018-09-27 | Thin film forming method, thin film forming apparatus, and functional thin film |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020049440A JP2020049440A (en) | 2020-04-02 |
JP7434705B2 true JP7434705B2 (en) | 2024-02-21 |
Family
ID=69995156
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018182232A Active JP7434705B2 (en) | 2018-09-27 | 2018-09-27 | Thin film forming method, thin film forming apparatus, and functional thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7434705B2 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002172355A (en) | 2000-12-05 | 2002-06-18 | Auto Network Gijutsu Kenkyusho:Kk | Thin film forming method and apparatus |
JP2008117689A (en) | 2006-11-07 | 2008-05-22 | Konica Minolta Holdings Inc | Method of forming functional laminated film, laminate thin film device, and organic electroluminescent display device |
WO2009069210A1 (en) | 2007-11-29 | 2009-06-04 | Kabushiki Kaisha Nihon Micronics | Atomizer, method of atomization, apparatus for wiring formation, and method of wiring formation |
JP2009199757A (en) | 2008-02-19 | 2009-09-03 | Konica Minolta Holdings Inc | Method of manufacturing organic electroluminescent panel |
JP2011200761A (en) | 2010-03-24 | 2011-10-13 | Fujifilm Corp | Method for producing thin film |
JP2013078748A (en) | 2011-10-05 | 2013-05-02 | Sokudo Co Ltd | Coating method and coating apparatus |
JP2017039316A (en) | 2015-08-19 | 2017-02-23 | ゼロックス コーポレイションXerox Corporation | Sacrificial coating and indirect printing apparatus employing sacrificial coating on intermediate transfer member |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5344915A (en) * | 1976-10-04 | 1978-04-22 | Tdk Electronics Co Ltd | Ultrasonic atomizers |
JPH076263U (en) * | 1993-06-26 | 1995-01-27 | 太陽誘電株式会社 | Thin film forming equipment |
JPH0714771A (en) * | 1993-06-26 | 1995-01-17 | Taiyo Yuden Co Ltd | Method and equipment for forming thin film |
-
2018
- 2018-09-27 JP JP2018182232A patent/JP7434705B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002172355A (en) | 2000-12-05 | 2002-06-18 | Auto Network Gijutsu Kenkyusho:Kk | Thin film forming method and apparatus |
JP2008117689A (en) | 2006-11-07 | 2008-05-22 | Konica Minolta Holdings Inc | Method of forming functional laminated film, laminate thin film device, and organic electroluminescent display device |
WO2009069210A1 (en) | 2007-11-29 | 2009-06-04 | Kabushiki Kaisha Nihon Micronics | Atomizer, method of atomization, apparatus for wiring formation, and method of wiring formation |
JP2009199757A (en) | 2008-02-19 | 2009-09-03 | Konica Minolta Holdings Inc | Method of manufacturing organic electroluminescent panel |
JP2011200761A (en) | 2010-03-24 | 2011-10-13 | Fujifilm Corp | Method for producing thin film |
JP2013078748A (en) | 2011-10-05 | 2013-05-02 | Sokudo Co Ltd | Coating method and coating apparatus |
JP2017039316A (en) | 2015-08-19 | 2017-02-23 | ゼロックス コーポレイションXerox Corporation | Sacrificial coating and indirect printing apparatus employing sacrificial coating on intermediate transfer member |
Also Published As
Publication number | Publication date |
---|---|
JP2020049440A (en) | 2020-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017098651A1 (en) | Mist applying film forming device and mist applying film forming method | |
US8136922B2 (en) | Self-assembly monolayer modified printhead | |
JP2007500587A (en) | Pattern coating method | |
JP2004160388A (en) | Production method and equipment for thin film | |
US8586132B2 (en) | Device and method for coating a micro- and/or nano-structured structural substrate and coated structural substrate | |
KR101519453B1 (en) | Inkjet printing of nanoparticulate functional inks | |
WO2014171535A1 (en) | Particulate coating or distribution method | |
US10625297B2 (en) | Method of applying powder or granular material | |
WO2018011854A1 (en) | Mist-coating film formation apparatus and mist-coating film formation method | |
JP2015217360A (en) | Film forming device of phosphor layer and film forming method of phosphor layer | |
JP2016000404A (en) | Method for coating structure substrate of micro-structure and/or nano-structure | |
JP7434705B2 (en) | Thin film forming method, thin film forming apparatus, and functional thin film | |
KR100525227B1 (en) | Manufacturing methods of water repellent member and inkjet head | |
KR20090108863A (en) | Method for manufacturing thin film pattern | |
KR101341548B1 (en) | Method of fabricating nano pattern | |
WO2021111947A1 (en) | Application or film formation method for particulate matter | |
TW201607996A (en) | Solder mask ink composition | |
JP2015115462A (en) | Coater and coating method | |
JPH09328367A (en) | Production of ceramic green sheet and apparatus therefor | |
JPH03193160A (en) | Method for continuously forming thin layer coating film | |
JP7047317B2 (en) | Manufacturing method and manufacturing equipment for hierarchical structure | |
JP2012253267A (en) | Function film formation method, manufacturing method of wiring board, and wiring board | |
Kwon et al. | Multi-nozzle electrospray method for high-throughput uniform superhydrophobic coating | |
JP2013115103A (en) | Method of manufacturing moisture-proof insulation mounting circuit board | |
CN108472683A (en) | Improved painting method and equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210825 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220531 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220705 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220826 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230110 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230309 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230711 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230907 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240109 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240122 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7434705 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |