JP2020049440A - Thin film forming method, thin film forming device, and functional thin film - Google Patents

Thin film forming method, thin film forming device, and functional thin film Download PDF

Info

Publication number
JP2020049440A
JP2020049440A JP2018182232A JP2018182232A JP2020049440A JP 2020049440 A JP2020049440 A JP 2020049440A JP 2018182232 A JP2018182232 A JP 2018182232A JP 2018182232 A JP2018182232 A JP 2018182232A JP 2020049440 A JP2020049440 A JP 2020049440A
Authority
JP
Japan
Prior art keywords
thin film
raw material
solvent
intermediate transfer
material liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018182232A
Other languages
Japanese (ja)
Other versions
JP7434705B2 (en
Inventor
菊池 雅博
Masahiro Kikuchi
雅博 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2018182232A priority Critical patent/JP7434705B2/en
Publication of JP2020049440A publication Critical patent/JP2020049440A/en
Application granted granted Critical
Publication of JP7434705B2 publication Critical patent/JP7434705B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Nozzles (AREA)
  • Electrostatic Spraying Apparatus (AREA)

Abstract

To provide a thin film forming method, a thin film forming device, and a functional thin film which reduce defectives and do not damage functionality even when a droplet containing raw material of a thin film is refined.SOLUTION: A thin film forming method is a method for forming a thin film on a base material, and includes a process of supplying a solvent, which dissolves or disperses raw material of the thin film, on the base material, and a process of conveying and depositing droplets of a raw material liquid, which are made by dissolving or dispersing the raw material of the thin film in the solvent, on the base material. Another thin film forming method is a method for forming the thin film on the base material, and includes a process of supplying the solvent, which dissolves or disperses the raw material of the thin film, on an intermediate transfer medium, a process of conveying and depositing the droplets of the raw material liquid, which are made by dissolving or dispersing the raw material of the thin film in the solvent, on the intermediate transfer medium, and a process of transferring the solvent and the raw material liquid, which are contained in the intermediate transfer medium, to the base material.SELECTED DRAWING: Figure 1

Description

本発明は、原料をミスト化して、薄膜を形成する手法に関する。   The present invention relates to a technique for forming a thin film by converting a raw material into mist.

近年のネットワークの拡充や生活スタイルの多様化に伴い、フレキシブル性や大面積といった従来のSi半導体では実現困難な付加価値が機能デバイスに求められており、フィルム上に成膜・パターニング可能な機能性デバイスが注目されている。種々の機能デバイスにおいて、性能向上には機能の異なる材料を積層成膜することが重要になる。薄膜の作製方法として、一般的に真空蒸着法等のドライプロセス、およびスピンコート法等のウエットプロセスが知られている。   With the expansion of networks and the diversification of lifestyles in recent years, functional devices that are difficult to realize with conventional Si semiconductors, such as flexibility and large area, are required for functional devices. The device is getting attention. In various functional devices, it is important to laminate materials having different functions to improve performance. As a method for producing a thin film, a dry process such as a vacuum evaporation method and a wet process such as a spin coating method are generally known.

前記ドライプロセスは、厚み一定の均一な薄膜を積層して成膜することが可能であるが、成膜する材料に高エネルギーを加えるため熱的に不安定な材料、例えば有機材料には適用できず、基材もガラスなどの耐熱性のある材料に限定されてしまうため、材料および基材に制約がある。また、多くが真空プロセスであることから生産性が低いという問題があった。   The dry process can be formed by laminating a uniform thin film having a constant thickness, but can be applied to a thermally unstable material such as an organic material because high energy is applied to the material to be formed. In addition, since the substrate is limited to a heat-resistant material such as glass, there are restrictions on the material and the substrate. In addition, there is a problem that productivity is low because most are vacuum processes.

ウエットプロセスでは、フィルムのようなフレキシブル性のある基材上に容易に成膜できるため、生産性や大面積化の観点では、ドライプロセスと比べ格段に優れている。また、ウエットプロセスでは、種々の印刷方法によりパターン形成が可能であるが、プロセス上、粘弾性特性の調整が必要となり、用いる塗料・インクに、工程上の流動性などを調整するための混ぜ物をする。この混ぜ物は、工程を経て基材上に形成した機能性パターンに混入することがあり、パターン内の機能性材料の純度を低下させ、パターンに求められる機能を低下させる問題がある。ウエットプロセスで、原料に混ぜ物を必要としないコーティング方法に、材料を微小液滴化し、基材に搬送して成膜を行うミストコーティング手法がある。   In the wet process, a film can be easily formed on a flexible base material such as a film. Therefore, from the viewpoint of productivity and a large area, the wet process is significantly superior to the dry process. In the wet process, patterns can be formed by various printing methods.However, viscoelastic properties must be adjusted in the process, and a mixture of paints and inks used to adjust fluidity in the process is used. do. This mixture may be mixed into the functional pattern formed on the base material through the process, which causes a problem that the purity of the functional material in the pattern is reduced and the function required for the pattern is reduced. As a coating method that does not require a mixture with a raw material in a wet process, there is a mist coating method in which a material is formed into fine droplets and transported to a substrate to form a film.

ミストコーティングでは、材料に流動に関わる混ぜ物をする必要がなく、純度の高い材料を成膜することが可能であり、機能材料の薄膜形成や薄膜パターンを形成する場合には有利である。
また、ミスト液滴を基材へ搬送する時に液滴から溶媒成分を減少させる調整が容易であり、調整を加え、溶媒分を最適化することで積層時に下層を侵すことなくコートが可能なため、ウエットプロセスで薄膜積層も可能である。前記ミストコーティングで薄膜パターンを得るには、貫通孔のパターンがあるマスク版を通じて、ミストコートすることでパターン膜を形成する手法が用いられている。また、特許文献1のミスト手法では、基材に予め親水と撥水からなるパターンを形成しておき、ミスト材料を搬送してミスト液滴の基材への付着度合いにより、マスク版を用いずにパターンを形成する手法が提案されている。しかしながら、ミストコーティングで、微細パターンを形成する場合、ミスト液滴寸法がパターン解像度の限界になる。
In mist coating, it is not necessary to mix the material with a fluid, and a high-purity material can be formed. This is advantageous when a thin film or a thin film pattern of a functional material is formed.
In addition, it is easy to adjust to reduce the solvent component from the droplets when transporting the mist droplets to the base material, and it is possible to coat without eroding the lower layer during lamination by adding adjustment and optimizing the solvent component It is also possible to laminate thin films by a wet process. In order to obtain a thin film pattern by the mist coating, a method of forming a pattern film by mist coating through a mask plate having a pattern of through holes is used. In the mist method of Patent Document 1, a pattern composed of hydrophilic and water-repellent is formed on a base material in advance, and a mist material is conveyed and a mask plate is not used depending on the degree of adhesion of mist droplets to the base material. A method of forming a pattern has been proposed. However, when a fine pattern is formed by mist coating, the mist droplet size is the limit of the pattern resolution.

超音波ミスト法では、生成するミスト径は、一般的にはラング式によりに規定されるとされるが、超音波振動子により生成したミスト液滴を、基材へ搬送する工程中に溶媒を蒸散させることで、堆積前にミスト径を小径化することが可能である。例えば、ミスト搬送経路を溶媒の蒸発温度以上に加熱することで、搬送中のミスト液滴から溶媒分を蒸散させることが可能である。また、エレクトロスプレー法では、スプレー距離を離すことで液滴がクーロン力による自己分裂することで、原理的には分散材料サイズ(マイクロメートル、ナノメートル)まで小径化することが可能である。   In the ultrasonic mist method, the mist diameter to be generated is generally defined by a Lang method, but during the process of transporting the mist droplets generated by the ultrasonic vibrator to the substrate, the solvent is removed. By evaporating, it is possible to reduce the mist diameter before deposition. For example, by heating the mist transport path to a temperature equal to or higher than the evaporation temperature of the solvent, it is possible to evaporate the solvent from mist droplets being transported. In the electrospray method, droplets self-divide by Coulomb force by increasing the spray distance, so that the diameter can be reduced to the size of a dispersed material (micrometer, nanometer) in principle.

国際公開第2015/064438号International Publication No. WO 2015/064438

薄膜形成や薄膜パターニングする際、ミスト液滴を微小化して基材に配置する必要がある。ミスト液滴を分裂させ微小化する方法、ミスト液滴から溶媒を蒸散させて微小化する方法により、基材配置時にミスト液滴を微小化することは可能であるが、液滴の粘度が上昇することで粒子形状を維持したまま基材に堆積してしまい、膜に空隙などの欠陥が生じることになる。また、ミスト液滴から微小パターンを基材に薄膜パターニングしたい場合、ミスト液滴を微小径化して基材に搬送することで液滴寸法を解像度限界とするパターンを形成することが可能となるが、液滴粘度が上昇するため流動性が低下することでレベリング性が低下し、形成したパターンに欠陥が発生し、パターンの連続性が低下する問題があった。   When forming a thin film or patterning a thin film, it is necessary to miniaturize a mist droplet and arrange it on a substrate. By dividing the mist droplets and miniaturizing them, or by evaporating the solvent from the mist droplets and miniaturizing them, it is possible to miniaturize the mist droplets when disposing the substrate, but the viscosity of the droplets increases As a result, the particles are deposited on the substrate while maintaining the particle shape, and defects such as voids are generated in the film. Also, when a thin pattern is to be formed on a base material from a mist droplet, it is possible to form a pattern in which the size of the mist droplet is reduced to a resolution limit by reducing the diameter of the mist droplet and transporting it to the base material. In addition, there has been a problem that the fluidity is reduced due to an increase in the viscosity of the liquid droplet, the leveling property is reduced, a defect occurs in the formed pattern, and the continuity of the pattern is reduced.

薄膜を形成する方法としては、スパッタリングや印刷法も存在するが、スパッタリングは、蒸着させる物質に高いエネルギーを付与して成膜する。このため、樹脂のような高分子化合物は、スパッタリングのエネルギーで分解、変性してしまう可能性が高く、スパッタリングを用いた成膜に適していない面がある。   As a method for forming a thin film, there is a sputtering method or a printing method. Sputtering is performed by applying high energy to a substance to be deposited. For this reason, a high molecular compound such as a resin is likely to be decomposed or denatured by the energy of sputtering, and is not suitable for film formation using sputtering.

また、印刷法では、成膜対象物をインキにする必要があり、目詰まり防止や流動性確保等の必要性から、成膜対象物(例えば高分子材料)以外の添加物(混ぜ物)を混合する必要があり、成膜対象物の純度(濃度)を高めることが難しく、インキ化(インキ製造)の際の添加物等が、製造した薄膜の欠陥の原因にもなっていた。   In the printing method, it is necessary to use an ink as a film-forming target, and an additive (mixture) other than the film-forming target (for example, a polymer material) is used because of the necessity of preventing clogging and ensuring fluidity. It is necessary to mix, and it is difficult to increase the purity (concentration) of the film-forming target, and additives and the like at the time of ink formation (ink production) have caused defects of the produced thin film.

本発明では、このような問題に鑑みて、薄膜の原料を含んだ液滴を微細化した際にも、欠陥が少なく機能性を損なわない、薄膜形成方法、薄膜形成装置、および機能性薄膜を提供することを目的とする。   In view of the above problems, the present invention provides a thin film forming method, a thin film forming apparatus, and a functional thin film that have a small number of defects and do not impair the functionality even when the droplets containing the raw material of the thin film are miniaturized. The purpose is to provide.

上記課題を解決するための本発明の一局面は、基材上に薄膜を形成する方法であって、薄膜の原料を溶解または分散させるための溶媒を、前記基材上に供給する工程と、薄膜の原料を溶媒中に溶解または分散してなる原料液の液滴を、基材上に搬送して堆積させる工程とを含む、薄膜形成方法である。   One aspect of the present invention for solving the above problems is a method of forming a thin film on a substrate, a solvent for dissolving or dispersing a raw material of the thin film, a step of supplying the solvent on the substrate, Transporting and depositing droplets of a raw material liquid obtained by dissolving or dispersing a raw material of the thin film in a solvent on a substrate.

本発明によれば、薄膜の原料を含んだ液滴を微細化した際にも、欠陥が少なく機能性を損なわない、薄膜形成方法、薄膜形成装置、および機能性薄膜を提供することができる。この薄膜形成方法は、ミストコート技術を基にした材料純度の高いパターン形成を可能とし、機能性パターン形成を可能とするものである。   According to the present invention, it is possible to provide a thin film forming method, a thin film forming apparatus, and a functional thin film, which have few defects and do not impair the functionality even when the droplet containing the raw material of the thin film is miniaturized. This thin film forming method enables the formation of a pattern with high material purity based on the mist coating technique, and enables the formation of a functional pattern.

本発明の一実施形態に係る薄膜形成方法の工程図Process diagram of a thin film forming method according to an embodiment of the present invention 本発明の一実施形態に係る薄膜形成装置の模式図Schematic diagram of a thin film forming apparatus according to one embodiment of the present invention 変形例に係る薄膜形成装置の模式図Schematic diagram of a thin film forming apparatus according to a modification 本薄膜形成方法を用いた潜像形成方法の図である。FIG. 4 is a diagram of a latent image forming method using the present thin film forming method. 実施例および比較例で作成した薄膜のSEM観察像SEM observation images of thin films prepared in Examples and Comparative Examples

(薄膜形成方法)
本発明の一実施形態に係る薄膜形成方法は、基材上に薄膜を形成する方法であって、薄膜の原料を溶解または分散させるための溶媒を、基材上に供給する工程と、薄膜の原料を前記溶媒中に溶解または分散してなる原料液の液滴を、基材上に搬送して堆積させる工程とを含む。
(Thin film formation method)
The method of forming a thin film according to one embodiment of the present invention is a method of forming a thin film on a substrate, comprising supplying a solvent for dissolving or dispersing the raw material of the thin film onto the substrate, Transporting and depositing droplets of a raw material liquid obtained by dissolving or dispersing the raw material in the solvent on the base material.

また、上述の薄膜形成方法の変形例として、薄膜を基材上に直接形成せず、中間転写体上に形成し、この薄膜を中間転写体から基材に転写するようにしてもよい。具体的には、薄膜の原料を溶解または分散させるための溶媒を、中間転写体上に供給し、原料液の液滴を、中間転写体上に搬送して堆積させた後、中間転写体に含有された溶媒および原料液を基材へ転写して形成することができる。   Further, as a modification of the above-described thin film forming method, the thin film may not be formed directly on the base material, but may be formed on an intermediate transfer body, and the thin film may be transferred from the intermediate transfer body to the base material. Specifically, a solvent for dissolving or dispersing the raw material of the thin film is supplied on the intermediate transfer body, and droplets of the raw material liquid are conveyed and deposited on the intermediate transfer body, and then are deposited on the intermediate transfer body. It can be formed by transferring the contained solvent and raw material liquid to the substrate.

本発明で使用可能な溶媒は、水、有機溶媒、イオン性液体等が挙げられる。溶媒には、酸、アルカリ等が含まれていても良い。また、水とエタノールのように相溶性を有する溶媒を混合しても良い。   Solvents usable in the present invention include water, organic solvents, ionic liquids and the like. The solvent may contain an acid, an alkali or the like. Further, a compatible solvent such as water and ethanol may be mixed.

本発明で使用可能な薄膜の原料(成膜物質)は、高分子化合物(樹脂)、無機物、セルロースなどの天然高分子が挙げられる。薄膜の原料は、上記の溶媒に溶解、分散可能なものが利用可能である。   Raw materials (film-forming substances) of the thin film usable in the present invention include polymer compounds (resins), inorganic substances, and natural polymers such as cellulose. As the raw material for the thin film, those that can be dissolved and dispersed in the above-mentioned solvents can be used.

本発明の一実施形態に係る薄膜形成方法を図1を用いて説明する。図1の左には、一実施形態に係る薄膜形成方法(方法1)の工程図を示し、図1の右には、中間転写体を用いた変形例に係る薄膜形成方法(方法2)の工程図を示す。本発明の一実施形態に係る薄膜形成方法では、原料を溶媒に溶解、または分散した原料液を、物理的に微細液滴化し、目的の基材2に搬送して液滴を堆積させて薄膜を形成する手法を基本としている。   A method for forming a thin film according to one embodiment of the present invention will be described with reference to FIG. The left side of FIG. 1 shows a process diagram of a thin film forming method (method 1) according to one embodiment, and the right side of FIG. 1 shows a thin film forming method (method 2) according to a modification using an intermediate transfer member. The process diagram is shown. In the method for forming a thin film according to one embodiment of the present invention, a raw material solution in which a raw material is dissolved or dispersed in a solvent is physically converted into fine droplets, and the liquid droplets are transported to the target substrate 2 to deposit the liquid droplets. The method is based on

方法1では、初めに基板2上に、溶媒供給装置1を用いて溶媒4を供給する。次に、ミスト供給装置5を用いて、薄膜の原料を溶媒4中に溶解または分散してなる原料液の微細な液滴6を、基材2上に搬送して堆積させる。図1に示すように、方法2では、これらの工程において溶媒4および液滴6を供給、堆積させる対象は中間転写体3となる。   In the method 1, the solvent 4 is first supplied onto the substrate 2 using the solvent supply device 1. Next, using the mist supply device 5, fine droplets 6 of a raw material liquid obtained by dissolving or dispersing the raw material of the thin film in the solvent 4 are transported and deposited on the base material 2. As shown in FIG. 1, in the method 2, the target to which the solvent 4 and the droplet 6 are supplied and deposited in these steps is the intermediate transfer body 3.

図1のミスト供給装置5は、原料液を細分化液滴化し搬送する装置である。微細液滴化する装置には、一例として、原料液に超音波を当ててキャピラリー原理により原料液から微細な液滴6を発生させ、基材2または中間転写体3に搬送する手法を取ることができる。また他の手法として、原料液をノズルから噴出させノズルと基材2または中間転写体3間に高電圧を印加して、ノズルから噴出した液滴6を電圧印加により荷電し、クーロン力の斥力により液滴6を細分化して基材2または中間転写体3に堆積させる、エレクトロスプレー(ESC)法を取ることができる。   The mist supply device 5 in FIG. 1 is a device that converts the raw material liquid into finely divided liquid droplets and transports them. As an example, the apparatus for forming fine droplets employs a method in which ultrasonic waves are applied to the raw material liquid to generate fine droplets 6 from the raw material liquid by the capillary principle and transport the fine liquid droplets 6 to the base material 2 or the intermediate transfer body 3. Can be. As another method, a raw material liquid is ejected from a nozzle, a high voltage is applied between the nozzle and the base material 2 or the intermediate transfer body 3, and the droplet 6 ejected from the nozzle is charged by applying a voltage, and the repulsive force of Coulomb force is applied. Thus, an electrospray (ESC) method of subdividing the droplets 6 and depositing them on the base material 2 or the intermediate transfer body 3 can be performed.

図1に示すように、基材2または中間転写体3に液滴6が着弾する時に、基材2または中間転写体3の表面には、別途溶媒供給装置1から溶媒4が予め供給されている。このため、着弾した液滴6へ溶媒4が供給され、付着した液滴6は溶媒リッチな状態になる。   As shown in FIG. 1, when the droplet 6 lands on the base material 2 or the intermediate transfer body 3, the solvent 4 is separately supplied from the solvent supply device 1 to the surface of the base material 2 or the intermediate transfer body 3 in advance. I have. Therefore, the solvent 4 is supplied to the landed droplets 6, and the adhered droplets 6 are in a solvent-rich state.

また、液滴6がミスト供給装置5のノズルから基材2または中間転写体3へ移動する工程中に、液滴6中の溶媒4が気化して抜けていく。このため、液滴6は薄膜の原料の固形物の比率が多くなり、基材2または中間転写体3に着弾したときには、流動性を失っていることが多い。基材2に着弾して流動性を失った液滴6により形成される膜(薄膜)表面は、凹凸を形成していることが多く、この状態のまま液滴6を堆積させると凹凸形状が残ったままの荒れた表面の薄膜となってしまい、所望の表面形状、機能性を得ることが困難な場合がある。これを解消するため、液滴6を一定量堆積した後に、基材上に堆積した液滴6により形成される膜(薄膜)表面に、さらに溶媒4のみを噴霧してもよい。   In addition, during the process in which the droplet 6 moves from the nozzle of the mist supply device 5 to the base material 2 or the intermediate transfer body 3, the solvent 4 in the droplet 6 evaporates and escapes. For this reason, the droplet 6 has a large ratio of solids as a raw material of the thin film, and often loses fluidity when it lands on the base material 2 or the intermediate transfer member 3. In many cases, the surface of a film (thin film) formed by the droplets 6 that have lost the fluidity due to impact on the base material 2 has irregularities. In some cases, a thin film having a rough surface is left, and it is difficult to obtain a desired surface shape and functionality. In order to solve this, after depositing a certain amount of droplets 6, only the solvent 4 may be further sprayed on the surface of the film (thin film) formed by the droplets 6 deposited on the base material.

このようにして堆積した液滴6が溶媒4の補給(供給)を受けることで流動性が増え、堆積した液滴6により形成される膜(薄膜)が流動することによってレベリングされ、平滑な薄膜8を形成することができる。中間転写体3に薄膜8を一旦形成した場合は、基材2に中間転写体3に含有された薄膜8を転写することで、基材2上に目的材料からなる薄膜8を形成することになる。   The liquid droplets 6 deposited in this manner receive replenishment (supply) of the solvent 4 to increase the fluidity, and the film (thin film) formed by the deposited droplets 6 flows and is leveled, so that a smooth thin film 8 can be formed. Once the thin film 8 is formed on the intermediate transfer member 3, the thin film 8 contained in the intermediate transfer member 3 is transferred to the base material 2 to form the thin film 8 made of the target material on the base material 2. Become.

最後に、加熱乾燥することで薄膜8から余分な溶媒を蒸発させることで、材料純度が高い薄膜8が形成される。中間転写体3に用いられる材料は、原料液の溶媒4を吸収、放出できる材料であればよく、特に限定されないが、一例としてシリコーンゴムのポリジメチルシロキサン(PDMS)が挙げられ、構造としては多孔質体を用いることができる。   Finally, the excess solvent is evaporated from the thin film 8 by heating and drying, so that the thin film 8 with high material purity is formed. The material used for the intermediate transfer member 3 is not particularly limited as long as it can absorb and release the solvent 4 of the raw material liquid, and examples thereof include polydimethylsiloxane (PDMS) of silicone rubber, and the structure is porous. Can be used.

以上説明した薄膜形成方法によれば、溶媒と、薄膜の原料が当該溶媒に溶解または分散している液体(原料液)とを用いるだけでよく、インキ化する際に必要であった添加物等が不要となる。このため、本発明では、スパッタリング法では成膜できなかった物質の膜化、印刷法では実現できなかった、成膜対象物質の純度(濃度)の高い膜を成膜することが可能となり、従来得られなかった膜物性を得ることが可能となる。   According to the thin film forming method described above, it is only necessary to use a solvent and a liquid in which the raw material of the thin film is dissolved or dispersed in the solvent (raw material liquid). Becomes unnecessary. For this reason, according to the present invention, it is possible to form a film having a high purity (concentration) of a substance to be formed, which cannot be realized by a printing method, and which cannot be realized by a printing method. It is possible to obtain film properties that were not obtained.

(薄膜形成装置)
図2、3は、本発明の一実施形態に係る薄膜形成方法を実現できる薄膜形成装置100、200の模式図である。薄膜形成装置は、原料液の液滴6を基材2上へ噴霧することができる原料液供給部を備え、原料液供給部により基材2上に原料液の液滴6を噴霧した後、または原料液の液滴6の噴霧と同時に、基材2上に溶媒4を噴霧することができる。また、薄膜形成装置は、溶媒4を基材2上に噴霧することができる溶媒供給部をさらに備えてもよい。なお、以下の説明では、液滴6および溶媒4の噴霧対象として基板2を例示しているが、中間転写体3に噴霧するように構成してもよい。
(Thin film forming equipment)
2 and 3 are schematic diagrams of thin film forming apparatuses 100 and 200 that can realize the thin film forming method according to one embodiment of the present invention. The thin film forming apparatus includes a raw material liquid supply unit capable of spraying the raw material liquid droplets 6 onto the base material 2, and after the raw material liquid supply unit sprays the raw material liquid droplets 6 onto the base material 2, Alternatively, the solvent 4 can be sprayed on the base material 2 simultaneously with the spraying of the droplets 6 of the raw material liquid. Further, the thin film forming apparatus may further include a solvent supply unit capable of spraying the solvent 4 onto the substrate 2. In the following description, the substrate 2 is illustrated as a target to be sprayed with the droplet 6 and the solvent 4, but may be configured to be sprayed on the intermediate transfer body 3.

図2に示す薄膜形成装置100では、原料液供給部および溶媒供給部としてエレクトロスプレー法のノズルを2本準備し、一方のノズル11を原料液の液的6の吐出(噴霧)、もう一方のノズル12を原料液の溶媒の吐出(噴霧)に用いる。基材2上には、ノズル11、12からそれぞれ、原料液の液滴6からなるミスト13と溶媒4からなるミスト14が吐出される。基材2の下方には、ノズル11、12と基板2との間に電圧を印加できる対向電極10が設けられる。薄膜形成装置100は、ノズル11と基材2との間の距離を調整することができ、この距離が近い場合は、液滴6の径が大きく、距離を離すことで液滴6の径を小さく調整可能である。ノズル11、12からの吐出を同時または、溶媒吐出を先行させることで、基材2上に適度な溶媒6を供給することができるため、ミスト13の基材2への着弾時に液滴6に溶媒4が供給される。この結果、基材2の表面に形成される薄膜の粘度が低下してレベリングされ、均一な薄膜8が形成される。基材2とノズル11、12の水平面の相対位置は適宜移動することを可能にしても良い。   In the thin film forming apparatus 100 shown in FIG. 2, two nozzles of the electrospray method are prepared as a raw material liquid supply unit and a solvent supply unit, and one of the nozzles 11 discharges (sprays) the liquid 6 of the raw material liquid and the other nozzle. The nozzle 12 is used for discharging (spraying) the solvent of the raw material liquid. A mist 13 composed of droplets 6 of the raw material liquid and a mist 14 composed of the solvent 4 are discharged from the nozzles 11 and 12 onto the substrate 2, respectively. An opposing electrode 10 to which a voltage can be applied between the nozzles 11 and 12 and the substrate 2 is provided below the substrate 2. The thin film forming apparatus 100 can adjust the distance between the nozzle 11 and the substrate 2. When the distance is short, the diameter of the droplet 6 is large. It is small and adjustable. Simultaneous ejection from the nozzles 11 and 12 or advancement of solvent ejection allows an appropriate solvent 6 to be supplied onto the base material 2. A solvent 4 is supplied. As a result, the viscosity of the thin film formed on the surface of the substrate 2 is reduced and leveled, and a uniform thin film 8 is formed. The relative positions of the base 2 and the horizontal planes of the nozzles 11 and 12 may be appropriately movable.

図3に示す薄膜形成装置200では、ミスト13およびミスト14の生成に超音波ミスト法を用いる。薄膜形成装置200は、超音波チャンバ21に原料液を、超音波チャンバ22に溶媒4をセットした後、各チャンバ21、22に設置された超音波振動子によりチャンバ内の原料液および溶媒4をミスト液滴化する。その後、各チャンバ21、22内に搬送エアを送り込むことで、原料供給ヘッド23及び、溶媒供給ヘッド24からそれぞれのミスト13、14を基材2に搬送(噴霧)することができる。図3では、薄膜形成装置は、ミスト13、14を基材2上で個別に搬送している状態を示しているが、各チャンバ21、22から出たミスト13、14を合流させ、ひとつのヘッドで原料液と溶媒の混合エアロゾルを基材2上に供給してもよい。   In the thin film forming apparatus 200 shown in FIG. 3, the mist 13 and the mist 14 are generated by an ultrasonic mist method. After setting the raw material liquid in the ultrasonic chamber 21 and the solvent 4 in the ultrasonic chamber 22, the thin film forming apparatus 200 removes the raw material liquid and the solvent 4 in the chamber by the ultrasonic vibrators installed in the respective chambers 21 and 22. Mist droplets are formed. Thereafter, by feeding the carrier air into each of the chambers 21 and 22, the respective mist 13 and 14 can be carried (sprayed) from the raw material supply head 23 and the solvent supply head 24 to the base material 2. FIG. 3 shows a state in which the mist 13 and 14 are individually conveyed on the base material 2 by the thin film forming apparatus. However, the mist 13 and 14 coming out of the respective chambers 21 and 22 are merged to form one The head may supply the mixed aerosol of the raw material liquid and the solvent onto the base material 2.

薄膜形成装置200の場合にも、基材2上で着弾したミスト13中の液滴6が別途供給された溶媒4を吸収して、粘度が低下することでレベリングした薄膜8を形成することになる。ミスト13の供給経路には乾燥装置を導入し液滴6の溶媒量を調整してもよい。   Also in the case of the thin film forming apparatus 200, the droplet 6 in the mist 13 that has landed on the base material 2 absorbs the separately supplied solvent 4 to form the leveled thin film 8 by lowering the viscosity. Become. A drying device may be introduced into the supply path of the mist 13 to adjust the solvent amount of the droplet 6.

図4は、上述の薄膜形成方法を用いて、中間転写体3に溶媒4によりパターニングを行い、潜像を形成する方法を説明する図である。   FIG. 4 is a diagram for explaining a method of forming a latent image by patterning the intermediate transfer member 3 with the solvent 4 using the above-described thin film forming method.

図4の(a)は、パターンマスク40を用いて中間転写体3にパターニングする手法を示している。マスクされた部分は、溶媒4の供給が遮られて開口部分のみに溶媒4が供給され、所定のパターンに基づく潜像43状に溶媒4が含有される。溶媒スプレー41は、溶媒4を霧状にして供給する塗工方式であれば限定されず、例えば超音波ミスト法による供給でも、エレクトロスプレーによる供給でも良い。   FIG. 4A shows a method of patterning the intermediate transfer body 3 using the pattern mask 40. In the masked portion, the supply of the solvent 4 is interrupted and the solvent 4 is supplied only to the opening portion, and the solvent 4 is contained in the form of a latent image 43 based on a predetermined pattern. The solvent spray 41 is not limited as long as it is a coating method in which the solvent 4 is supplied in the form of a mist, and may be, for example, an ultrasonic mist method or an electrospray method.

図4の(b)は、インクジェット(IJ)ヘッド42を用いて溶媒4を所定のパターン状に供給する手法を示している。インクジェットヘッド42より溶媒4を供給し、中間転写体3上に溶媒4の含有する所定のパターンに基づく潜像43を形成する。   FIG. 4B shows a method of supplying the solvent 4 in a predetermined pattern using the inkjet (IJ) head 42. The solvent 4 is supplied from the inkjet head 42 to form a latent image 43 on the intermediate transfer member 3 based on a predetermined pattern contained in the solvent 4.

図4の(a)または(b)に示した工程の後、図は省略するが、潜像43を形成した中間転写体3に液滴6を重力下で上方に設置した中間転写体3に吹きつけると、溶媒4が含有していない部分(すなわち、潜像43が形成されていない部分)では、微細化した液滴6は弾性体として跳ね返り付着しない。一方、溶媒4が含有する部分には着弾時に液滴6に溶媒4が供給されてそのまま吸着し、粘度が低下することでレベリングして潜像43に沿ったパターンが形成される。   After the process shown in FIG. 4A or 4B, although not shown, the droplet 6 is transferred onto the intermediate transfer member 3 on which the latent image 43 has been formed by gravity. When sprayed, the micronized droplet 6 does not rebound and adhere as an elastic body in a portion where the solvent 4 is not contained (that is, a portion where the latent image 43 is not formed). On the other hand, the solvent 4 is supplied to the droplets 6 at the time of impact and is directly adsorbed on the portion containing the solvent 4, and is leveled due to a decrease in viscosity to form a pattern along the latent image 43.

このように本発明によれば、原料が溶解または分散した原料液をミスト液滴化し、工程中に溶媒比率を下げて微細液滴化して基材2に着弾したときに、溶媒4を液滴に供給することで粘度を低下させてレベリングを可能とし、均一な薄膜8と薄膜パターニングを可能とするものである。   As described above, according to the present invention, when the raw material liquid in which the raw material is dissolved or dispersed is converted into mist droplets, and the solvent ratio is reduced during the process to form fine droplets and land on the substrate 2, the solvent 4 is dropped. To lower the viscosity to enable leveling, thereby enabling uniform thin film 8 and thin film patterning.

(実施例1)
ミスト発生部を2つ備える超音波方式のミストコート装置を用いて薄膜を形成した。第一のミスト発生部(原料液供給部)からは原料液が供給されるように、コート材料(薄膜の原料)であるPEDOT/PSS混合物(SV−3、ヘレウス社)をエタノールにて重量比で4倍希釈した原料液を充填した。第二のミスト発生部(溶媒供給部)からは溶媒が供給されるように、エタノール(溶媒)を100%充填した。
(Example 1)
A thin film was formed using an ultrasonic type mist coater having two mist generating sections. A PEDOT / PSS mixture (SV-3, Heraeus), which is a coating material (a raw material for a thin film), is ethanol-weight ratio so that the raw material liquid is supplied from the first mist generating section (raw material liquid supply section). The raw material liquid diluted 4 times with the above was filled. 100% of ethanol (solvent) was filled so that the solvent was supplied from the second mist generation section (solvent supply section).

第一と第二のミスト発生部の超音波振動子は、2.4MHz駆動の振動子(HM−2412、本多電子社製)を用いて、電圧24Vで駆動した。第一と第二のミスト発生部で発生したミスト液滴を0.8kg/cmの空気により搬送し、搬送経路途中で合流させて、0.7mm厚のガラス基材(EGLE−XG、コーニング社)に搬送して、ミスト液滴を3分間堆積させ、膜厚300nmのPEDOT/PSS膜を得た。PEDOTは、poly(3,4−ethylenedioxythiophene)の、PSSは、poly ( 4−styrenesulfonate)の略号である。 The ultrasonic transducers of the first and second mist generating sections were driven at a voltage of 24 V using a transducer (HM-2412, manufactured by Honda Electronics) driven by 2.4 MHz. The mist droplets generated in the first and second mist generating sections are transported by air of 0.8 kg / cm 2 and merged along the transport path to form a 0.7 mm thick glass substrate (EGLE-XG, Corning And the mist droplets were deposited for 3 minutes to obtain a PEDOT / PSS film having a thickness of 300 nm. PEDOT is an abbreviation for poly (3,4-ethylenedioxythiophene), and PSS is an abbreviation for poly (4-styrenesulfonate).

(実施例2)
ミスト発生するノズルを2本持つ、エレクトロスプレー方式のミストコート装置において、第一ノズル(原料液供給部)からは、実施例と同じミスト原料が、第二ノズル(溶媒供給部)からはエタノール溶媒100%が供給されるようにした。第一と第二のミスト発生部では、ノズル径100μm、ノズルへの送液を0.1cc/分、ノズル−基材間電圧を14kVで行い、第一のノズルと基材の距離を70mm、第二のノズルと基材の距離を30mmとした。0.7mm厚のガラス基材(EGLE−XG、コーニング社)に対して、第二ノズル、第一ノズルの順にノズルを速度50mm/秒で走査させ、膜厚300nmのPEDOT/PSS膜を得た。
(Example 2)
In an electrospray type mist coating apparatus having two nozzles for generating mist, the same mist material as in the embodiment is supplied from a first nozzle (raw material supply unit), and an ethanol solvent is supplied from a second nozzle (solvent supply unit). 100% was supplied. In the first and second mist generating sections, the nozzle diameter is 100 μm, liquid supply to the nozzle is 0.1 cc / min, the voltage between the nozzle and the substrate is 14 kV, the distance between the first nozzle and the substrate is 70 mm, The distance between the second nozzle and the substrate was 30 mm. The nozzle was scanned at a speed of 50 mm / sec in the order of the second nozzle and the first nozzle on a glass substrate (EGLE-XG, Corning) having a thickness of 0.7 mm to obtain a PEDOT / PSS film having a thickness of 300 nm. .

(実施例3)
実施例1の第二のミスト発生部を用いて、3分間、溶媒ミストを中間転写体(ポリジメチルシロキサン;PDMS)に含有させておき、実施例1の第一ミスト発生部と同じミスト原料とミスト発生条件により中間転写体上にミスト原料を3分間堆積した後、中間転写体上に形成された薄膜をガラス基材に転写して膜厚300nmのPEDOT/PSS膜を得た。
(Example 3)
Using the second mist generator of Example 1, a solvent mist was contained in the intermediate transfer member (polydimethylsiloxane; PDMS) for 3 minutes, and the same mist material as that of the first mist generator of Example 1 was used. After depositing a mist raw material on the intermediate transfer member for 3 minutes under mist generation conditions, the thin film formed on the intermediate transfer member was transferred to a glass substrate to obtain a PEDOT / PSS film having a thickness of 300 nm.

(比較例1)
実施例1と同じコート原料を用いて、2000RPMでスピンコート、80℃10分の乾燥を、コートと乾燥を4回繰り返して、膜厚300nmのPEDOT/PSS膜を得た。
(Comparative Example 1)
Using the same coating material as in Example 1, spin coating at 2000 RPM and drying at 80 ° C. for 10 minutes were repeated four times to obtain a PEDOT / PSS film having a thickness of 300 nm.

(比較例2)
実施例2において、第二のノズルから溶媒吐出をしなかった以外は、実施例2と同様の材料と工程で、ガラス基材上に膜厚300μmのPEDOT/PSS膜を得た。
(Comparative Example 2)
In Example 2, a PEDOT / PSS film having a thickness of 300 μm was obtained on a glass substrate by using the same materials and steps as in Example 2 except that the solvent was not discharged from the second nozzle.

(比較例3)
実施例3において、中間転写体への予め溶媒を含有させる工程を省いた以外は実施例3と同じ材料と工程でガラス基材上に膜形成を試みたが、膜にはならなかった。
(Comparative Example 3)
In Example 3, an attempt was made to form a film on a glass substrate using the same materials and steps as in Example 3, except that the step of preliminarily including a solvent in the intermediate transfer member was omitted, but no film was formed.

実施例1〜3、比較例1と2で得られたPEDOT/PSS膜について、表面状態を走査電子顕微鏡(日立S4800)により観察した像を図5に示す。また、それぞれの膜の表面抵抗を四探針抵抗測定装置(MCP−T610、三菱ケミカル)で測定した。表1に表面抵抗値と、表面抵抗値が低くSEM観察で粒状物の混入がほぼ見られないものを○、多少の混入があるものを△、表面抵抗値が高く全面に混入しているものを×とした成膜性の結果を示す。   FIG. 5 shows images obtained by observing the surface state of the PEDOT / PSS films obtained in Examples 1 to 3 and Comparative Examples 1 and 2 using a scanning electron microscope (Hitachi S4800). The surface resistance of each film was measured with a four-probe resistance measuring device (MCP-T610, Mitsubishi Chemical). Table 1 shows the surface resistance values, those with low surface resistance values and almost no inclusion of particulate matter observed by SEM observation, ○, those with some contamination, and those with high surface resistance values that are mixed all over. The results of the film forming properties are indicated by x.

上記結果より、比較例では、膜の表面性が悪く表面抵抗値も高くなることが分かる。一方、本発明の実施例では、成膜性の良い薄膜が得られており、表面抵抗値も低い良好な特性を持つ薄膜が得られている。   From the above results, it can be seen that in the comparative example, the surface property of the film is poor and the surface resistance value is high. On the other hand, in the examples of the present invention, a thin film having good film-forming properties was obtained, and a thin film having low surface resistance and good characteristics was obtained.

(実施例4)
パターンマスクを介して第二のミスト発生部を用いて溶媒をコートした以外は、実施例3と同様の手順で基材にコートしたところ、パターンマスクに従った膜厚300nmのパターンが形成された。
(Example 4)
When a substrate was coated in the same procedure as in Example 3 except that the solvent was coated using the second mist generating portion via the pattern mask, a pattern having a thickness of 300 nm was formed according to the pattern mask. .

(実施例5)
インクジェットヘッドを用いて、パターンコートした以外は、実施例3と同様の手順で基材にコートしたところ、インクジェットで形成したパターンに従った膜厚300nmのパターンが形成された。
(Example 5)
The substrate was coated in the same procedure as in Example 3 except that the pattern was coated using an inkjet head, and a pattern having a thickness of 300 nm was formed according to the pattern formed by inkjet.

本発明は、機能性薄膜の製造に用いることができる。   INDUSTRIAL APPLICATION This invention can be used for manufacture of a functional thin film.

1 溶媒供給装置
2 基材
3 中間転写体
4 供給溶媒
5 ミスト供給装置
6 ミスト液滴
8 材料薄膜
10 対向電極
11 ESCノズル1
12 ESCノズル2
13 原料ミスト
14 溶媒ミスト
21 超音波チャンバ1
22 超音波チャンバ2
23 原料ミスト供給ヘッド
24 溶媒ミスト供給ヘッド
30 マクス潜像形成
31 IJ潜像形成
40 パターンマスク
41 溶媒スプレー
42 溶媒IJヘッド
43 溶媒含有潜像
100、200 薄膜形成装置
REFERENCE SIGNS LIST 1 solvent supply device 2 base material 3 intermediate transfer member 4 supply solvent 5 mist supply device 6 mist droplet 8 material thin film 10 counter electrode 11 ESC nozzle 1
12 ESC nozzle 2
13 Raw material mist 14 Solvent mist 21 Ultrasonic chamber 1
22 Ultrasonic chamber 2
23 Raw material mist supply head 24 Solvent mist supply head 30 Max latent image formation 31 IJ latent image formation 40 Pattern mask 41 Solvent spray 42 Solvent IJ head 43 Solvent-containing latent image 100, 200 Thin film forming apparatus

Claims (8)

基材上に薄膜を形成する方法であって、
前記薄膜の原料を溶解または分散させるための溶媒を、前記基材上に供給する工程と、
前記薄膜の原料を前記溶媒中に溶解または分散してなる原料液の液滴を、前記基材上に搬送して堆積させる工程とを含む、
薄膜形成方法。
A method of forming a thin film on a substrate,
Supplying a solvent for dissolving or dispersing the raw material of the thin film onto the base material,
A step of transporting and depositing a droplet of a raw material liquid obtained by dissolving or dispersing the raw material of the thin film in the solvent, on the base material,
Thin film formation method.
基材上に薄膜を形成する方法であって、
前記薄膜の原料を溶解または分散させるための溶媒を、中間転写体上に供給する工程と、
前記薄膜の原料を前記溶媒中に溶解または分散してなる原料液の液滴を、前記中間転写体上に搬送して堆積させる工程と、
前記中間転写体に含有された前記溶媒および前記原料液を前記基材へ転写する工程とを含む、
薄膜形成方法。
A method of forming a thin film on a substrate,
Supplying a solvent for dissolving or dispersing the raw material of the thin film onto the intermediate transfer member,
A step of transporting and depositing a droplet of a raw material liquid obtained by dissolving or dispersing the raw material of the thin film in the solvent, on the intermediate transfer body,
Transferring the solvent and the raw material liquid contained in the intermediate transfer body to the base material,
Thin film formation method.
基材上に薄膜を形成する薄膜形成装置であって、
前記薄膜の原料を溶媒中に溶解または分散してなる原料液の液滴を前記基材上へ噴霧することができる原料液供給部を備え、
前記原料液供給部により前記基材上に前記原料液の液滴を噴霧した後、または前記原料液の液滴の噴霧と同時に、前記基材上に前記溶媒を噴霧する、
薄膜形成装置。
A thin film forming apparatus for forming a thin film on a base material,
A raw material liquid supply unit that can spray droplets of a raw material liquid obtained by dissolving or dispersing the raw material of the thin film in a solvent onto the base material,
After spraying the droplets of the raw material liquid onto the base material by the raw material liquid supply unit, or simultaneously with spraying the droplets of the raw material liquid, spraying the solvent onto the base material,
Thin film forming equipment.
前記溶媒を前記基材上に噴霧することができる溶媒供給部をさらに備える、
請求項3に記載の薄膜形成装置。
Further comprising a solvent supply unit capable of spraying the solvent on the substrate,
The thin film forming apparatus according to claim 3.
基材上に薄膜を形成する薄膜形成装置であって、
前記薄膜の原料を溶媒中に溶解または分散してなる原料液の液滴を中間転写体上へ噴霧することができる原料液供給部を備え、
前記原料液供給部により前記中間転写体上に前記原料液の液滴を噴霧した後、または前記原料液の液滴の噴霧と同時に、前記中間転写体上に前記溶媒を噴霧し、前記中間転写体に含有された前記原料液および前記溶媒を前記基材上に転写することができる、
薄膜形成装置。
A thin film forming apparatus for forming a thin film on a base material,
A raw material liquid supply unit that can spray droplets of the raw material liquid obtained by dissolving or dispersing the raw material of the thin film in a solvent onto the intermediate transfer body,
After spraying the droplets of the raw material liquid onto the intermediate transfer body by the raw material liquid supply unit, or simultaneously with the spraying of the droplets of the raw material liquid, the solvent is sprayed onto the intermediate transfer body, and the intermediate transfer is performed. The raw material liquid and the solvent contained in the body can be transferred onto the substrate,
Thin film forming equipment.
機能性薄膜であって、
前記機能性薄膜の原料を溶解または分散させるための溶媒を、基材上に供給し、
前記機能性薄膜の原料を前記溶媒中に溶解または分散してなる原料液の液滴を、前記基材上に搬送して堆積させることにより形成された、
機能性薄膜。
A functional thin film,
A solvent for dissolving or dispersing the raw material of the functional thin film is supplied on the substrate,
A droplet of a raw material liquid obtained by dissolving or dispersing the raw material for the functional thin film in the solvent, formed by transporting and depositing the liquid on the substrate,
Functional thin film.
機能性薄膜であって、
前記機能性薄膜の原料を溶解または分散させるための溶媒を、中間転写体上に供給し、
前記機能性薄膜の原料を前記溶媒中に溶解または分散してなる原料液の液滴を、前記中間転写体上に搬送して堆積させ、
前記中間転写体に含有された前記溶媒および前記原料液を基材へ転写することにより形成された、
機能性薄膜。
A functional thin film,
A solvent for dissolving or dispersing the raw material for the functional thin film is supplied on the intermediate transfer member,
Drops of a raw material liquid obtained by dissolving or dispersing the raw material for the functional thin film in the solvent are transported and deposited on the intermediate transfer body,
Formed by transferring the solvent and the raw material liquid contained in the intermediate transfer body to a substrate,
Functional thin film.
前記機能性薄膜の原料はPEDOT/PSSであって、表面抵抗値が300Ω/□未満である、
請求項6または7に記載の機能性薄膜。
The raw material of the functional thin film is PEDOT / PSS, and has a surface resistance of less than 300Ω / □.
The functional thin film according to claim 6.
JP2018182232A 2018-09-27 2018-09-27 Thin film forming method, thin film forming apparatus, and functional thin film Active JP7434705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018182232A JP7434705B2 (en) 2018-09-27 2018-09-27 Thin film forming method, thin film forming apparatus, and functional thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018182232A JP7434705B2 (en) 2018-09-27 2018-09-27 Thin film forming method, thin film forming apparatus, and functional thin film

Publications (2)

Publication Number Publication Date
JP2020049440A true JP2020049440A (en) 2020-04-02
JP7434705B2 JP7434705B2 (en) 2024-02-21

Family

ID=69995156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018182232A Active JP7434705B2 (en) 2018-09-27 2018-09-27 Thin film forming method, thin film forming apparatus, and functional thin film

Country Status (1)

Country Link
JP (1) JP7434705B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5344915A (en) * 1976-10-04 1978-04-22 Tdk Electronics Co Ltd Ultrasonic atomizers
JPH0714771A (en) * 1993-06-26 1995-01-17 Taiyo Yuden Co Ltd Method and equipment for forming thin film
JPH076263U (en) * 1993-06-26 1995-01-27 太陽誘電株式会社 Thin film forming equipment
JP2002172355A (en) * 2000-12-05 2002-06-18 Auto Network Gijutsu Kenkyusho:Kk Thin film forming method and apparatus
JP2008117689A (en) * 2006-11-07 2008-05-22 Konica Minolta Holdings Inc Method of forming functional laminated film, laminate thin film device, and organic electroluminescent display device
WO2009069210A1 (en) * 2007-11-29 2009-06-04 Kabushiki Kaisha Nihon Micronics Atomizer, method of atomization, apparatus for wiring formation, and method of wiring formation
JP2009199757A (en) * 2008-02-19 2009-09-03 Konica Minolta Holdings Inc Method of manufacturing organic electroluminescent panel
JP2011200761A (en) * 2010-03-24 2011-10-13 Fujifilm Corp Method for producing thin film
JP2013078748A (en) * 2011-10-05 2013-05-02 Sokudo Co Ltd Coating method and coating apparatus
JP2017039316A (en) * 2015-08-19 2017-02-23 ゼロックス コーポレイションXerox Corporation Sacrificial coating and indirect printing apparatus employing sacrificial coating on intermediate transfer member

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5344915A (en) * 1976-10-04 1978-04-22 Tdk Electronics Co Ltd Ultrasonic atomizers
JPH0714771A (en) * 1993-06-26 1995-01-17 Taiyo Yuden Co Ltd Method and equipment for forming thin film
JPH076263U (en) * 1993-06-26 1995-01-27 太陽誘電株式会社 Thin film forming equipment
JP2002172355A (en) * 2000-12-05 2002-06-18 Auto Network Gijutsu Kenkyusho:Kk Thin film forming method and apparatus
JP2008117689A (en) * 2006-11-07 2008-05-22 Konica Minolta Holdings Inc Method of forming functional laminated film, laminate thin film device, and organic electroluminescent display device
WO2009069210A1 (en) * 2007-11-29 2009-06-04 Kabushiki Kaisha Nihon Micronics Atomizer, method of atomization, apparatus for wiring formation, and method of wiring formation
JP2009199757A (en) * 2008-02-19 2009-09-03 Konica Minolta Holdings Inc Method of manufacturing organic electroluminescent panel
JP2011200761A (en) * 2010-03-24 2011-10-13 Fujifilm Corp Method for producing thin film
JP2013078748A (en) * 2011-10-05 2013-05-02 Sokudo Co Ltd Coating method and coating apparatus
JP2017039316A (en) * 2015-08-19 2017-02-23 ゼロックス コーポレイションXerox Corporation Sacrificial coating and indirect printing apparatus employing sacrificial coating on intermediate transfer member

Also Published As

Publication number Publication date
JP7434705B2 (en) 2024-02-21

Similar Documents

Publication Publication Date Title
US8136922B2 (en) Self-assembly monolayer modified printhead
JP2004160388A (en) Production method and equipment for thin film
JP6328104B2 (en) How to apply powder
KR101519453B1 (en) Inkjet printing of nanoparticulate functional inks
US8586132B2 (en) Device and method for coating a micro- and/or nano-structured structural substrate and coated structural substrate
WO2017177159A2 (en) Apparatus and method for atomization of fluid
WO2004074172A1 (en) Fixing method, fixing apparatus and method for producing microstructure
JP2015217360A (en) Film forming device of phosphor layer and film forming method of phosphor layer
WO2005012161A1 (en) Method of producing three-dimensional structure and fine three-dimensional structure
US20170136492A1 (en) Method of applying powder or granular material
US20040175503A1 (en) Method for producing thin homogenenous layers with the help of screen printing technology, device for carrying out said method and the use thereof
TW201105423A (en) Drop deposition materials for imprint lithography
CN107180744A (en) A kind of method for manufacturing thin film and film based on solwution method
JP2020049440A (en) Thin film forming method, thin film forming device, and functional thin film
KR100525227B1 (en) Manufacturing methods of water repellent member and inkjet head
CN114902444A (en) Method for manufacturing secondary battery, or secondary battery
Tseng et al. Particulate dispersion and freeform fabrication of BaTiO 3 thick films via direct inkjet printing
US20220410203A1 (en) Application or film formation method for particulate matter
WO2014174329A1 (en) Method for producing a digitally printed decorative coating on a solid surface
CN1269288A (en) Ink jetector and mfg. method thereof
JP7318247B2 (en) Composite membrane and composite membrane pattern manufacturing method and manufacturing apparatus
JP2015115462A (en) Coater and coating method
KR102407368B1 (en) Deposition apparatus
US11499234B2 (en) Liquid low temperature oxide
JP7047317B2 (en) Manufacturing method and manufacturing equipment for hierarchical structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240122

R150 Certificate of patent or registration of utility model

Ref document number: 7434705

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150