JP7428617B2 - 超電導線材の接続部および超電導線材の接続方法 - Google Patents

超電導線材の接続部および超電導線材の接続方法 Download PDF

Info

Publication number
JP7428617B2
JP7428617B2 JP2020148180A JP2020148180A JP7428617B2 JP 7428617 B2 JP7428617 B2 JP 7428617B2 JP 2020148180 A JP2020148180 A JP 2020148180A JP 2020148180 A JP2020148180 A JP 2020148180A JP 7428617 B2 JP7428617 B2 JP 7428617B2
Authority
JP
Japan
Prior art keywords
superconducting
container
superconducting wire
wire
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020148180A
Other languages
English (en)
Other versions
JP2022042678A (ja
Inventor
晋士 藤田
洋太 一木
一宗 児玉
毅 和久田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2020148180A priority Critical patent/JP7428617B2/ja
Priority to CN202180050371.9A priority patent/CN115956275A/zh
Priority to US18/022,328 priority patent/US20230317318A1/en
Priority to PCT/JP2021/029424 priority patent/WO2022050000A1/ja
Publication of JP2022042678A publication Critical patent/JP2022042678A/ja
Application granted granted Critical
Publication of JP7428617B2 publication Critical patent/JP7428617B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • H01B12/08Stranded or braided wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/58Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation characterised by the form or material of the contacting members
    • H01R4/68Connections to or between superconductive connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G1/00Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines
    • H02G1/14Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for joining or terminating cables
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G15/00Cable fittings
    • H02G15/34Cable fittings for cryogenic cables
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

本発明は、二ホウ化マグネシウム(MgB)を用いた超電導線材(MgB線材)の接続部、および、MgB線材を超伝導接続させる超電導線材の接続方法に関する。
MRI(Magnetic Resonance Imaging:磁気共鳴イメージング)装置や、NMR(Nuclear Magnetic Resonance:核磁気共鳴)装置には、超電導マグネットが用いられている。MRI装置やNMR装置では、高い磁場安定度が必要なため、超電導体で形成された閉回路で、永久電流モードの運転が行われる。
図17は、超電導マグネットの一例を模式的に示す断面図である。
図17に示すように、超電導マグネット50は、冷却容器51と、超電導コイル52と、永久電流スイッチ53と、支持板54と、超電導接続部55と、を備えている。
冷却容器51は、超電導コイル52、永久電流スイッチ53および支持板54を収納している。超伝導コイル52と永久電流スイッチ53は、支持板54上に支持されている。超電導コイル52および永久電流スイッチ53は、不図示の冷凍機によって、支持板54を介して伝導冷却される。
超電導コイル52は、不図示の電源と電流リードを介して電気的に接続される。図17において、超電導線材同士が接続された超電導接続部55は、超電導コイル52と永久電流スイッチ53との間に設けられている。永久電流スイッチ53がOFFの状態において、電源から超電導コイル52に励磁電流が供給されて、超電導コイル52が励磁される。
永久電流スイッチ53が超電導状態に転移すると、永久電流スイッチ53がONの状態に切り替わり、超電導コイル52や永久電流スイッチ53で構成される閉回路に、減衰しない永久電流が流れる。永久電流モードでは、超電導マグネット50によって、高い磁場安定度の静磁場が得られる。
永久電流モードでは、閉回路に実質的にゼロ抵抗で電流を流すため、超電導コイル52、永久電流スイッチ53、これらを接続する配線等を、相互に超電導接続させる技術が必須である。超電導接続部55のような箇所で、超電導線材同士を、超電導体を介して接続することが求められる。
従来、超電導マグネットには、ニオブチタン(NbTi)、ニオブ三スズ(NbSn)等で形成された超電導線材が用いられてきた。これらの超電導線材は、臨界温度が低いため、液体ヘリウムによる冷却が行われている。このような臨界温度が低い超電導線材については、鉛ビスマス(PbBi)合金等の超電導半田を用いて超電導接続する技術が確立されている。
近年、NbTi、NbSn等と比較して、臨界温度が高い超電導体である二ホウ化マグネシウム(MgB)が発見されている。MgBは、液体ヘリウムによる冷却を必要とせず、冷凍機冷却が可能である。また、従来の超電導体と比較して、磁場安定度が高く、永久電流モードの運転にも適している。そのため、MgBの工業的な実用化が期待されている。
MgBの臨界温度は約39Kであるのに対し、従来の超電導半田の臨界温度は10K未満である。超電導半田を用いると、全体としての運転温度が、超電導半田の臨界温度以下に制約されるため、MgB線材に従来の超電導半田を用いることはできない。このような状況下、MgB線材を適切に超電導接続する技術の開発が進められている。
特許文献1には、MgB線材を、超電導被覆層を介して互いに接して超電導半田を充填させた接続金属管内において超電導接続する技術が記載されている。MgB線材は、接続用の金属管に挿入された状態で超電導接続されている。このような超伝導半田を用いた超電導接続は、NbTi等の一般的な超電導線材に利用されている。
特許文献2には、複数の超電導線材を接続用の容器に挿入し、その容器にマグネシウムとホウ素の混合粉末を充填し、混合粉末を加圧および熱処理して超電導接続する技術が記載されている。特許文献2では、容器に充填したマグネシウムとホウ素の混合粉末を熱処理することにより、超電導線材同士の間にMgBの焼結体を生成させている。
特許文献3には、接続用の容器に挿入した超電導線材と隣接するようにMgを配置する方法が記載されている。接続用の容器には、超電導線材の挿入方向と異なる方向に開口部が設けられており、この開口部から加圧用の金属ピンが挿入されている。
特開2006-174546号公報 特開2012-094413号公報 特開2017-208156号公報
特許文献1に記載されている技術では、臨界温度が約9Kと低い超電導半田が用いられている。そのため、超電導線材についても、超電導半田の臨界温度以下に冷却する必要がある。例えば、MgB線材を超電導マグネットに用いる場合には、巻線部を含む全体の運転温度を、超電導半田の臨界温度以下にしなければならない。このような技術では、臨界温度が高いMgBの利点を十分に活かすことができない。
特許文献2に記載されている技術では、超電導線材同士がMgBを含む焼結体を介して容器内で超電導接続されている。しかし、容器内においては、超電導線材の大部分が固定されていない状態である。特許文献1では、超電導線材が容器内の全体にわたって超電導半田で固定されている。これに対し、特許文献2では、超電導線材が容器の開口付近やMgBを含む焼結体と接する箇所のみで固定されている。
特許文献2のように、超電導線材の周囲に固定されていない領域が存在すると、輸送電流の通電によって超電導線材に電磁力が作用したとき、その両側の固定部に機械的な負荷がかかる。超電導フィラメントとMgBを含む焼結体とが接合している箇所は、機械的に脆弱である。このような箇所に機械的な負荷がかかると、臨界電流密度等の通電特性が悪化する虞がある。
特許文献3に記載されている技術では、MgBの焼結体を生成する熱処理前に、Mgを過剰に充填し、熱処理後に半田を流し込んで、ばらつき小さく高い通電特性を得ている。しかし、MgBの生成を阻害する銅、銅合金等の安定化材が超電導線材に使用されている場合には、安定化材とMgが反応するため、MgBの生成が阻害されて、通電特性にばらつきを生じてしまう。
また、特許文献2、3に記載されている技術では、超伝導接続に用いる容器に、超電導線材を挿入するための開口部とは別に、原料粉末の投入や加圧部材の挿入のための開口部を設けている。容器に充填された原料粉末は、容器に挿入される超電導線材の長手方向に対して略直交する方向から加圧されている。しかし、このような加圧法であると、超電導線材に曲げ方向の力が加わるため、超伝導フィラメントにクラックを生じ、通電特性が悪化する虞がある。
特許文献3には、超伝導接続に用いる容器に対し、超電導線材の挿入、原料粉末の投入、金属ピンの挿入等に用いる一つの開口部を設けることも記載されている。この容器では、超電導線材を開口部の内壁面に沿って挿入してる。しかし、超電導線材を内壁面に沿って挿入すると、超電導フィラメントの片側のみがMgBを含む焼結体と接触することになる。超電導フィラメントとMgBを含む焼結体との接触面積が小さくなるため、接続部の通電特性が悪化する虞がある。
また、特許文献2、3に記載されている技術では、超電導線材を接続用の容器に挿入するとき、超電導線材の末端を鋭角になるように斜めに切削している。このように切削すると、超電導フィラメントとMgBを含む焼結体との接触面積が大きくなるため、接続部の通電特性を向上させることができる。しかし、MgBを含む焼結体を生成させる熱処理温度は、500~900℃の高温であるのに対し、超電導マグネットの運転温度は、-234℃付近の低温である。超電導線材の末端を斜めに切削すると、鋭角である先端側と鈍角である反対側とで、超電導線材の長さに差を生じるため、熱処理後に冷却したとき、熱応力によって反りを生じる。超電導線材が容器内で反りを生じると、MgBを含む焼結体から超電導フィラメントが剥離するため、通電特性が悪化することが問題になる。
そこで、本発明は、複数の超電導線材がMgBを含む焼結体によって一体化されており、高い通電特性が得られる超電導線材の接続部および超電導線材の接続方法を提供することを目的とする。
本発明者らは、前記の課題を解決すべく検討した結果、超電導フィラメントとMgBを含む焼結体とを接触させる構造と、接続用の容器に充填した原料粉末を加圧する方法および容器の構造との改良によって、前記課題を解決できることを見出し、本発明を完成させた。
前記課題を解決するために本発明に係る超電導線材の接続部は、複数の超電導線材がMgBを含む焼結体によって一体化された超電導線材の接続部であって、前記超電導線材は、超電導フィラメントを有し、前記超電導フィラメントの外周面を露出させた前記超電導線材の端部が、互いに並列状に容器に挿入されており、前記容器は、前記容器に挿入される前記超電導線材の長手方向の少なくとも一方側に、前記超電導線材の線径よりも大きい開口部を有する構造であり、前記焼結体は、前記容器の内部で、前記超電導線材のそれぞれの前記超電導フィラメントの外周面と接触している。前記超電導線材は、前記容器の内壁面から離隔するように前記容器の中央側に挿入されており、前記容器に挿入された前記超電導線材と前記容器との間に、前記焼結体が満たされているか、または、前記超電導線材は、超電導フィラメントと、前記超電導フィラメントの外周を覆う金属シースと、を有し、前記金属シースは、前記超電導フィラメントの前記外周面が露出するように、前記超電導線材の長手方向における中間部に位置する部位を除去されているか、もしくは、前記金属シースは、前記超電導線材の中心軸に対して点対称に位置する部位を除去されており、前記焼結体は、前記中心軸に対する両側で前記超電導フィラメントの外周面と接触している。
また、本発明に係る超電導線材の接続方法は、複数の超電導線材をMgBを含む焼結体を介して一体化させる超電導線材の接続方法であって、前記超電導線材の金属シースを除去して超電導フィラメントの外周面を露出させる工程と、前記超電導フィラメントを露出させた前記超電導線材を互いに並列状に容器に挿入する工程と、前記容器にMgBの原料を充填する工程と、前記容器に充填された前記原料を熱処理してMgBを含む焼結体を生成させる工程と、を含み、前記金属シースは、前記超電導フィラメントの前記外周面が露出するように、前記超電導線材の長手方向における中間部に位置する部位を除去され、前記容器は、前記容器に挿入された前記超電導線材の長手方向の少なくとも一方側に、前記超電導線材の線径よりも大きい開口部を有する構造であり、前記容器に充填された前記原料を、前記開口部に加圧治具または蓋部材を挿入して前記超電導線材の長手方向に対して平行に加圧した後に熱処理する。
本発明によると、複数の超電導線材がMgBを含む焼結体によって一体化されており、高い通電特性が得られる超電導線材の接続部および超電導線材の接続方法を提供することができる。
超電導線材を超電導接続させた接続部の構造を示す図である。 超電導線材の端部の構造を示す図である。 超伝導線材の横断面の構造を示す図である。 超電導線材の金属シースを除去する位置を示す図である。 接続用容器に超電導線材を挿入した状態を示す図である。 超電導線材を挿入した接続用容器にホウ素粉末を充填した状態を示す図である。 接続用容器に充填したホウ素粉末を加圧した状態を示す図である。 ホウ素粉末を充填した接続用容器にマグネシウムを充填した状態を示す図である。 マグネシウムとホウ素を充填した接続用容器に熱処理を施した状態を示す図である。 変形例に係る超電導線材の金属シースを除去する位置を示す図である。 ホウ素粉末を充填した接続用容器にマグネシウムを充填した状態を示す図である。 マグネシウムとホウ素を充填した接続用容器に熱処理を施した状態を示す図である。 ホウ素粉末を充填した接続用容器にマグネシウムを充填した状態を示す図である。 マグネシウムとホウ素を充填した接続用容器に熱処理を施した状態を示す図である。 マグネシウムとホウ素の混合粉末を接続用容器に充填した状態を示す図である。 マグネシウムとホウ素の混合粉末を充填した接続用容器に熱処理を施した状態を示す図である。 超電導マグネットの一例を模式的に示す断面図である。
以下、本発明の一実施形態に係る超電導線材の接続部および超電導線材の接続方法について、図を参照しながら説明する。なお、以下の各図において、共通する構成については同一の符号を付して重複した説明を省略する。
本実施形態に係る超電導線材の接続部は、複数の超電導線材がMgBを含む焼結体を介して一体化された構造を有する。この超電導線材の接続部は、複数の超電導線材と、MgBを含む焼結体と、超電導接続のための接続用容器によって構成される。複数の超電導線材は、接続用容器の内部で、MgBを含む焼結体を介して互いに一体化されることにより超電導接続される。
超電導線材は、臨界温度以下で超電導体となる超電導フィラメントと、超電導フィラメントを覆う金属シースと、を備える。超電導線材同士を超電導接続させる際には、各超電導線材に切削、研磨等を施して、金属シースに覆われている超電導フィラメントを露出させる。そして、超電導フィラメントを露出させた各超電導線材を接続用容器に挿入し、その容器内にMgBの原料粉末を充填し、原料粉末を加圧して圧密化させる。
MgBの原料粉末を充填・加圧した後に、原料を熱処理すると、反応焼結や粒子同士の焼結によって、露出させた超電導フィラメント同士の間にMgBを含む焼結体が生成される。このような方法により、超電導線材同士がMgBを含む焼結体を介して一体化されており、超電導状態で通電可能な超電導線材の接続部を得ることができる。
従来、超電導線材を超電導接続させる際には、特許文献2、3に記載されているように、超電導線材の末端に切削、研磨等を施し、末端に露出させた超電導フィラメントの端面を、超電導接続用の容器内に露出させていた。MgBを含む焼結体は、容器内において、超電導フィラメントの端面と接触するように形成されていた。
また、従来、超電導線材を超電導接続させる際には、特許文献2や、特許文献3の図4~7に記載されているように、超電導接続用の容器にMgBの原料粉末を充填した後に、その原料粉末を、超電導線材の長手方向に対して略直交する方向から加圧していた。超電導接続用の容器には、加圧用の治具を挿入するための挿入口が、超電導線材を挿入するための挿入口に対して、略直交するように設けられていた。
特許文献3の図2~3に記載されているように、超電導接続用の容器に充填されたMgBの原料粉末を、超電導線材の長手方向に対して平行な方向から加圧することもあったが、超電導フィラメントを末端側に露出させた超電導線材は、超電導接続用の容器の内壁に沿って挿入されていた。MgBを含む焼結体は、超電導フィラメントの端面の片側のみと接触しており、反対側は焼結体に接していなかった。
これに対し、本実施形態に係る超電導線材の接続部は、超電導接続用の容器に充填されたMgBの原料粉末を、超電導線材の長手方向に対して略平行な方向から加圧し、且つ、MgBを含む焼結体を、超電導フィラメントの端面ではなく、超電導フィラメントの末端付近の中間部の外周面と接触している状態にするものである。
本実施形態において、超電導フィラメントを覆う金属シースは、超電導線材の末端ではなく、末端付近の中間部が除去される。そのため、超電導フィラメントの端面ではなく、超電導フィラメントの外周面が露出した状態になる。また、超電導線材は、露出した超電導フィラメントの外周面同士が近接するように、互いに並列状に挿入されるが、超電導接続用の容器の内壁面に沿って挿入されるのではなく、内壁面から離隔するように中央側に挿入される。
このような状態において、MgBの原料粉末を、超電導接続用の容器に充填し、容器に加圧治具を挿入して、超電導線材の長手方向と略平行な方向、すなわち、超電導線材を挿入する方向と略同じ方向に加圧した後に、MgBを含む焼結体を生成させるための熱処理を施し、超電導線材同士をMgBを含む焼結体を介して超電導接続させる。超電導線材の長手方向と略平行な方向の加圧は、少なくともホウ素粉末に対して行うが、好ましくはホウ素粉末とマグネシウムの両方に対して行う。
MgBを含む焼結体を介して超電導接続させる超電導線材としては、例えば、MgBで形成された超電導フィラメントを有するMgB線材を用いることができる。MgB線材を用いると、接続部を含めた全体の運転温度を、臨界温度が9K程度である従来の超電導半田を用いる場合と比較して、MgBの臨界温度である39Kに近い高温にすることができる。
また、MgBを含む焼結体を介して超電導接続させる超電導線材としては、NbTi、NbSn等で超電導フィラメントが形成された超電導線材を用いることもできる。MgB線材以外を用いる場合であっても、超電導線材同士が、臨界温度が高いMgBを介して接続されるため、従来の超電導半田を用いる場合と比較して、安定性が高い超電導接続を得ることができる。
以下、MgBを含む焼結体を介して超電導接続させる超電導線材として、MgBで形成された超電導フィラメントを有する多芯線構造のMgB線材を用いる場合を例にとり、超電導線材の接続部および超電導線材の接続方法の具体的な説明を行う。
図1は、超電導線材を超電導接続させた接続部の構造を示す図である。
図1には、2本の超電導線材1が、接続用容器5の内部で、互いに超電導接続された構造を示している。接続用容器5は、超電導線材1が貫通する構造に設けられた蓋部材8によって封止されている。接続用容器5の内部には、MgBを含む焼結体9が形成されている。
図1に示すように、接続用容器5は、有底の円筒状に設けられる。接続用容器5は、一端に開口部5aを有している。開口部5aは、超電導線材1の端部側を通す他に、MgBの原料粉末の投入や、原料粉末を加圧するための加圧治具の挿入に用いられる。開口部5aには、接続用容器5を封止するために、蓋部材8が取り付けられる。
また、接続用容器5は、開口部5aの反対に位置する他端に、互いに超伝導接続される2本の超電導線材1に対応するように、2つの貫通孔5bを有している。貫通孔5bは、超電導線材1の端部側を通すために用いられる。貫通孔5bは、接続用容器5の底部の中央付近に設けられている。貫通孔5bに通された超電導線材1の末端側は、接続用容器5の内壁面から離隔した中央付近に支持される。
互いに超伝導接続される2本の超電導線材1は、接続用容器5を長手方向に貫通し、超電導線材1の末端付近の中間部2が容器内に位置するように、端部側が貫通孔5bに通され、開口部5aの側に引き出される。接続用容器5は、2本の超電導線材1を末端に近い中間部2同士で超伝導接続させるために、超電導線材1を貫通させる構造になっている。
接続用容器5は、熱処理時の600℃以上の高温に耐え、熱処理中にマグネシウムやホウ素と反応し難い材料によって形成される。接続用容器5の材料としては、Fe、Ni、Nb、Ta、これらの合金等が挙げられる。これらの材料は、MgBを含む焼結体9を生成させる熱処理中にマグネシウムやホウ素と反応し難いため、均一性が高い焼結体9の生成を可能にする。
貫通孔5bの直径は、MgB線材1の線径よりも僅かに大きく設けることができる。このような直径に設けると、超電導線材1が貫通孔5bの内壁で支持されるため、互いに超伝導接続させる超電導線材1を、接続用容器5に対して、少なくとも一箇所以上で固定されている状態にすることができる。超電導線材1を一箇所以上で固定すると、原料粉末の充填時、加圧時、熱処理時等に、超伝導線材1の末端側を接続用容器5の内壁面から離隔した中央付近に静止させることができるため、露出させた超電導フィラメント12とMgBを含む焼結体9との結合を緻密にすることができる。また、このような直径に設けると、超電導線材1と貫通孔5bとの隙間が小さくなるため、原料粉末の漏出の防止や熱処理中の封止を簡単に行うことができる。
図2は、超電導線材の端部の構造を示す図である。図3は、超伝導線材の横断面の構造を示す図である。
図2および図3に示すように、MgB線材である超伝導線材1は、金属シース11と、金属シース11に覆われたコア部(12,13,14)と、を備えている。コア部は、MgBで形成された超電導フィラメント12と、超電導の電気的安定性・熱的安定性を確保するための安定化材13と、超電導フィラメント12の外周を覆う母材14で構成されている。
超電導線材1は、複数の超電導フィラメント12を有する多芯線構造として設けられている。一般に、多芯線は、電流容量、線材長、電磁気的安定性、交流損失等の観点から広く用いられている。図3においては、8本の超電導フィラメント12が円状に配置されている。但し、超電導フィラメント12の本数や配置は、損失が低減し、必要な運転電流を流せる限り、特に制限されるものではない。
図3に示すように、超電導線材1は、安定化材13を超電導フィラメント12よりも内側の中心部に備えている。安定化材13の外側には、複数の超電導フィラメント12が、線材の周方向に間隔を空けて規則的に配置されている。超電導フィラメント12の外周は、母材14で個別に覆われている。超電導フィラメント12や母材14の外側には、管状の金属シース11が配置されている。
一般に、MgB線材は、パウダーインチューブ(Powder In Tube:PIT)法によって作製される。PIT法は、原料粉末を金属管に充填し、金属管に伸線加工を施す方法である。そのため、MgB線材である超伝導線材1において、超電導フィラメント12を覆う母材14は、原料粉末の充填に用いた金属管で形成されている。
MgBの原料粉末を充填する金属管は、マグネシウムやホウ素と反応し難いバリア材によって形成される。バリア材は、MgBを生成させる熱処理の際に、MgBの原料粉末と安定化材13として用いられる銅等との反応を防止するための材料である。バリア材としては、Fe、Ni、Nb、Ta、これらの合金等が挙げられる。
図4は、超電導線材の金属シースを除去する位置を示す図である。
図4には、超電導線材1を互いに超伝導接続させるとき、超電導フィラメント12を露出させるために、金属シース11を除去する位置を示している。金属シース11は、超電導フィラメント12の外周面として表面または断面を露出させるが、超電導線材1の中心に配置されている安定化材13が露出しないように除去される。
図4に示すように、超電導線材1を互いに超電導接続させる際には、超電導フィラメント12の外周面が露出するように、超電導線材1の末端に近い中間部2の金属シース11を除去する。図4において、金属シース11は、超電導線材1の中間部2の全周にわたって除去されている。金属シース11を除去する方法としては、機械的切削、機械的研磨、エッチング等の化学的研磨、放電加工等の電気的切削、電解研磨のような電気的研磨等を用いることができる。
超電導線材1の中間部2の金属シース11を除去すると、末端の金属シース11を除去する場合とは異なり、超電導線材1を接続用容器5に挿入したときに、超電導フィラメント12の端面を露出させず、超電導フィラメント12の外周面のみを容器内に露出させることができる。超電導フィラメント12の外周面を露出させると、端面を露出させる場合とは異なり、超電導線材1の中心に配置されている安定化材13が、接続用容器5に充填された原料粉末に接触するのを避けることができる。
安定化材13として用いられる銅等は、熱処理中に、マグネシウムやホウ素と反応して、MgBの生成を妨げることが知られている。超電導フィラメント12の外周面を露出させると、安定化材13が接続用容器5に充填された原料粉末に接触せず、MgBの生成が妨げられ難くなる。そのため、均一性が高いMgBを含む焼結体9を超電導フィラメント12に対して密着的に生成させて、通電特性が良好な接続部を形成することができる。
図5は、接続用容器に超電導線材を挿入した状態を示す図である。図6は、超電導線材を挿入した接続用容器にホウ素粉末を充填した状態を示す図である。図5および図6は、容器構造に関して、図1のI-I線断面図に相当する。
図5には、中間部2の金属シース11を除去した2本の超電導線材1を、接続用容器5に並列状に挿入した状態を示している。図6には、超電導線材1を挿入した接続用容器5に、MgBの原料であるホウ素粉末3を充填した状態を示している。
図5に示すように、超電導線材1を互いに超電導接続させる際には、超電導線材1の末端を、接続用容器5の貫通孔5bに通し、開口部5aの側に引き出す。超電導線材1を接続用容器5に挿入するとき、超電導フィラメント12を露出させた中間部2は、接続用容器5の開口部5aの側ではなく、貫通孔5bの側に配置することが好ましい。
超電導フィラメント12を露出させた中間部2を貫通孔5bの側に配置すると、中間部2の付近に充填されるホウ素粉末3を、開口部5aから挿入される加圧治具で適切に加圧することができる。ホウ素粉末3を圧密化させると、均一性が高く、粗大な空隙が少ないMgBを含む焼結体9を、超電導フィラメント12に対して密着的に生成させることができるため、通電特性が良好な接続部を形成することができる。
なお、超電導線材1を互いに超電導接続させる際には、超電導フィラメント12は、MgBが生成した状態であってもよいし、マグネシウムとホウ素が未反応の状態であってもよい。マグネシウムとホウ素が未反応の状態である場合には、MgBを含む焼結体9を生成させるための熱処理時に、超電導線材1に対しても熱処理を施して、超電導フィラメント12としてのMgBを生成させることができる。
図6に示すように、超電導線材1を接続用容器5に挿入した後に、接続用容器5にMgBの原料であるホウ素粉末3を充填する。接続用容器5の開口部5aは、互いに超伝導接続される2本の超電導線材1を挿通可能、且つ、加圧治具4を挿入可能な直径に設けられるため、超電導線材1が挿通された開口部5aからホウ素粉末3を投入することができる。
接続用容器5に投入したホウ素粉末3は、手作業によるタッピングや、ボルテックスミキサ等による微小振動で、嵩密度を高くすることが好ましい。マグネシウムとホウ素の反応は、熱処理中、溶融・揮発したマグネシウムがホウ素粒子中に拡散することによって進む。そのため、ホウ素粉末3の充填率を高くすると、粗大な空隙が少ない緻密なMgBを含む焼結体9を生成させることができる。
ホウ素粉末3は、水等の分散媒に分散させてスラリ化し、超電導フィラメント12を露出させた中間部2等に塗布してもよい。超電導フィラメント12の表面に、ホウ素粉末3のスラリを塗布して乾燥させると、ホウ素粉末3を高密度に付着させることができる。このような状態でマグネシウムと反応させると、MgBを含む焼結体9を超電導フィラメント12に対して密着的に生成させることができるため、通電特性が良好な接続部を形成することができる。
図7は、接続用容器に充填したホウ素粉末を加圧した状態を示す図である。図7は、容器構造に関して、図1のI-I線断面図に相当する。
図7には、超電導線材1を挿入した接続用容器5に、MgBの原料であるホウ素粉末3を充填した後、粉末を加圧するための加圧治具4を挿入して、ホウ素粉末3を加圧した状態を示している。
図7に示すように、ホウ素粉末3を接続用容器5に充填した後に、開口部5aに加圧治具4を挿入する。そして、加圧治具4をプレス機等で押圧し、容器内のホウ素粉末3を加圧して、露出させた超電導フィラメント12の周囲を圧密化させる。このような状態でマグネシウムと反応させると、均一性が高いMgBを含む焼結体9を生成させることができるため、通電特性が良好な接続部を形成することができる。
加圧治具4は、一端側にフランジ部が設けられた略円柱状であり、中心に貫通孔4aが設けられている。加圧治具4の円柱部は、接続用容器5の内径よりも僅かに小径に設けられており、接続用容器5の開口部5aに挿入可能とされている。貫通孔4aは、ホウ素粉末3を漏出させず、且つ、2本の超電導線材1を挿通可能なように、2本の超電導線材1の線径の合計よりも僅かに大径に設けることが好ましい。或いは、互いに超伝導接続される2本の超電導線材1に対応するように、2つの貫通孔を設けてもよい。加圧治具4は、接続用容器5と同様の材料や、加圧に耐える強度を持つ材料で形成することができる。
接続用容器5に充填されたホウ素粉末3は、超電導線材1が挿入されている接続用容器5の開口部5aに加圧治具4を挿入して、超電導線材1の長手方向と平行に加圧するものとする。このような加圧法を用いると、超電導線材1の長手方向と略直交する方向から加圧する場合と比較して、MgBの原料粉末を圧密化させるにあたり、超電導フィラメント12に曲げ方向の力が加わるのを抑制することができる。超電導フィラメント12の曲げ変形や、熱処理後に生じる熱歪みが低減し、超電導フィラメント12についてクラック等の発生が抑制されるため、通電特性が良好な接続部を形成することができる。
図8は、ホウ素粉末を充填した接続用容器にマグネシウムを充填した状態を示す図である。図9は、マグネシウムとホウ素を充填した接続用容器に熱処理を施した状態を示す図である。図8および図9は、容器構造に関して、図1のI-I線断面図に相当する。
図8には、超電導線材1を挿入した後、ホウ素粉末3を充填して加圧した接続用容器5に、MgBの原料であるマグネシウム7を充填した状態を示している。図9には、ホウ素粉末3とマグネシウム7を充填して加圧した後に、熱処理を施してMgBを含む焼結体9を生成させた状態を示している。
図8に示すように、ホウ素粉末3を接続用容器5に充填し、加圧治具4を挿入して加圧した後に、接続用容器5から加圧治具4を抜き取り、圧密化したホウ素粉末3上にマグネシウム7を充填する。マグネシウムは、ホウ素よりも低温で揮発・溶融し、固体のホウ素の側に拡散して反応が進行する。そのため、MgBの原料のマグネシウムとしては、粉末および金属塊のいずれを用いることもできる。但し、粉末を用いる場合は、接続用容器5に充填した後に、十分に加圧することが好ましい。
図9に示すように、ホウ素粉末3とマグネシウム7を接続用容器5に充填して加圧した後に、接続用容器5の開口部5aを封止する。開口部5aの封止は、蓋部材8を用いて行うことができる。開口部5aの封止を行うと、熱処理中に揮発したマグネシウムが容器外に漏出するのを防ぐことができるため、均一性が高いMgBを含む焼結体9を生成させることができる。
蓋部材8は、一端側にフランジ部が設けられた略円柱状であり、中心に貫通孔8aが設けられている。蓋部材8の円柱部は、接続用容器5の内径よりも僅かに小径に設けられており、接続用容器5の開口部5aに挿入可能とされている。貫通孔8aは、接続用容器5を封止しつつ、2本の超電導線材1を挿通可能なように、2本の超電導線材1の線径の合計よりも僅かに大径に設けることが好ましい。或いは、互いに超伝導接続される2本の超電導線材1に対応するように、2つの貫通孔を設けてもよい。蓋部材8は、接続用容器5と同様の材料で形成することができる。
ホウ素粉末3が充填されている接続用容器5に粉末のマグネシウム7を充填する場合は、超電導線材1が挿入されている接続用容器5の開口部5aに、加圧機能と封止機能を兼ねた蓋部材8を挿入するか、または、加圧治具を再挿入して、超電導線材1の長手方向と平行に加圧するものとする。このような加圧法を用いると、超電導線材1の長手方向と略直交する方向から加圧する場合と比較して、超電導フィラメント12に曲げ方向の力が加わるのを抑制することができる。
図9に示すように、ホウ素粉末3とマグネシウム7を接続用容器5に充填し、接続用容器5を封止した後、原料粉末に熱処理を施して、MgBを含む焼結体9を生成させる。熱処理は、例えば、電気炉等で行うことができる。熱処理の雰囲気は、アルゴンガス、窒素ガス等の不活性ガス雰囲気とすることが好ましい。
熱処理の温度は、500~900℃が好ましく、650~850℃がより好ましい。熱処理温度が650℃以上であると、マグネシウムが融点以上に加熱されるため、液体のマグネシウムを流動・拡散させることができる。そのため、MgBを生成する反応や焼結を促進させることができる。また、熱処理温度が850℃以下であると、マグネシウムが揮発し難いため、容器外への漏出を抑制することができる。
ホウ素粉末3とマグネシウム7を熱処理すると、超電導線材1同士がMgBを含む焼結体9を介して一体化した超電導線材の接続部が得られる。MgBを含む焼結体9は、マグネシウムとホウ素との反応によって、原料粉末よりも体積が小さくなり、超電導フィラメント12の端面ではなく、超電導フィラメント12の外周面と接触した状態となる。超電導線材1は、接続用容器5の内壁面から離隔するように中央側に挿入されるため、接続用容器5に挿入された超電導線材1と接続用容器5との間に、超電導線材1の全周にわたって、MgBを含む焼結体9が満たされている状態が得られる。
MgBを含む焼結体9は、MgBの充填率が70体積%以上であることが好ましい。MgBの充填率が高いほど、超電導線材の接続部の通電特性を向上させることができる。このようなMgBの充填率は、MgBの原料粉末をメカニカルミル法を用いて調製する方法や、原料粉末を適切に加圧する方法等によって得ることができる。なお、本明細書において、MgBの充填率とは、MgBを含む焼結体において空隙以外の領域が占める割合を意味する。
以上の超電導線材の接続部および超電導線材の接続方法によると、超電導接続に用いられる接続用容器や、原料粉末の加圧に用いられる加圧治具が、接続用容器に挿入される超電導線材の長手方向の少なくとも一方側に、超電導線材の線径よりも大きい開口部を有する構造であるため、接続用容器に充填された原料粉末を、超電導線材の長手方向と平行に加圧することができる。超電導線材や超電導フィラメントに曲げ方向の力を加えることなく、露出させた超電導フィラメントの周囲を圧密化させることができるため、マグネシウムとホウ素との反応による体積減少が起こっても、粗大な空隙が生じ難くなると共に、均一性が高い焼結体が生成し易くなる。よって、臨界電流、臨界電流密度等の通電特性が良好であり、通電特性の領域毎のバラツキが小さい接続部が得られる。
また、以上の超電導線材の接続部および超電導線材の接続方法によると、超電導線材の長手方向における中間部に位置する金属シースが除去されており、MgBを含む焼結体が、接続用容器の内部で、超電導線材のそれぞれの超電導フィラメントの外周面と接触している状態になるため、超電導フィラメントの端面を斜めに切削して接触させる場合とは異なり、超電導フィラメントの長さを均一に揃えることができる。熱応力によって生じる反りを防止することができるため、MgBを含む焼結体から超電導フィラメントが剥離するのを避けつつ、超電導フィラメントとMgBを含む焼結体との接触面積を確保することができる。中間部に位置する金属シースを除去すると、線材の中心の安定化材がMgBの生成を妨げるのも防止される。
MgBの線膨張係数は比較的低いため、通常、金属シースの線膨張係数は、MgBを含む焼結体の線膨張係数よりも大きくなる。このような場合、線材の末端を斜めに切削していない場合であっても、線材が熱処理後に冷却されたときに、金属シース11とMgBを含む焼結体9との間で大きな熱歪みの差が生じる。金属シース11が大きく熱収縮することになるため、超電導フィラメント12とMgBを含む焼結体9とが接合している界面に、ずれが生じて、接続部の通電特性が悪化する虞がある。
これに対し、以上の超電導線材の接続部および超電導線材の接続方法では、MgBを含む焼結体を、超電導フィラメント12の外周面と接触させるため、金属シース11とMgBとの線膨張係数差による影響が小さくなる。熱処理後に生じる熱収縮は、線材の長手方向で支配的になる。しかし、線材の長手方向における中間部2に位置する金属シース11等が除去されるため、超電導フィラメント12が線材の長手方向に沿って熱歪みを生じるのを抑制することができる。そのため、超電導フィラメント12がMgBを含む焼結体9から剥離するのを抑制して、高い通電特性を得ることができる。
また、以上の超電導線材の接続部および超電導線材の接続方法によると、超電導線材が接続用容器の内壁面から離隔するように中央側に挿入され、接続用容器に挿入された超電導線材と接続用容器との間に、超電導線材1の全周にわたって、MgBを含む焼結体が満たされている状態が得られるため、超電導線材を接続用容器の内壁面に沿って挿入する場合とは異なり、超電導フィラメントとMgBを含む焼結体との接触面積を容易に確保することができる。接続用容器に充填された原料粉末は、超電導線材の長手方向と平行に加圧されるため、中央側に挿入された超電導線材の周囲を均一に圧密化させることも可能になる。そのため、均一性が高いMgBを含む焼結体を密着的に生成させて、通電特性が良好な接続部を形成することができる。
次に、変形例に係る超伝導線材の接続部および超電導線材の接続方法について、図を参照しながら説明する。
図10は、変形例に係る超電導線材の金属シースを除去する位置を示す図である。
図10に示すように、MgBを含む焼結体を介して超電導接続させる超電導線材としては、線材の中間部の全周にわたって金属シース11を除去した線材(図4参照)に代えて、線材の中間部の周方向における一部の金属シース11のみを除去した超電導線材1Aを用いることもできる。
図10において、金属シース11や、超電導フィラメント12よりも外側の母材14は、線材の中心軸に対して点対称に位置する部位を除去されている。金属シース11や母材14は、線材の外周面の片側と、これに点対称な反対側とのそれぞれにおいて、線材の長手方向に延びる部位を除去されている。
金属シース11や母材14が除去された部位は、線材の周長の半分よりも短い幅とされている。金属シース11や母材14を除去する部位の長さは、超電導フィラメント12について所定の露出面積が確保され、MgBを含む焼結体9に対して必要な運転電流を流せる接触面積となるように決めることができる。
線材のコア部(12,13,14)の末端側と中央側とは、線材の中心軸に対して点対称に残された金属シース11によって、線材の長手方向に連結されている。金属シース11等を除去する方法としては、機械的切削、機械的研磨、エッチング等の化学的研磨、放電加工等の電気的切削、電解研磨のような電気的研磨等を用いることができる。
なお、図10において、金属シース11や、母材14は、線材の中心軸に対して点対称となる2箇所が除去されているが、除去する部位の数、線材の長手方向における長さ、線材の周方向における幅、線材の周方向における位置等は、特に制限されるものではない。金属シース11や母材14を除去する部位同士は、長手方向の長さおよび周方向の幅(部分周長)が同等であることが好ましい。
図11は、ホウ素粉末を充填した接続用容器にマグネシウムを充填した状態を示す図である。図12は、マグネシウムとホウ素を充填した接続用容器に熱処理を施した状態を示す図である。
図11には、変形例に係る超電導線材1Aを挿入した後、ホウ素粉末3を充填して加圧した接続用容器5に、MgBの原料であるマグネシウム7を充填し、加圧機能と封止機能を兼ねた蓋部材8を挿入して加圧した状態を示している。図12には、ホウ素粉末3とマグネシウム7を充填して加圧した後に、熱処理を施してMgBを含む焼結体9を生成させた状態を示している。
図11および図12に示すように、前記の超電導線材1を超伝導接続する場合と同様に、接続用容器5に超電導線材1Aを挿入し、ホウ素粉末3を接続用容器5に充填し、加圧治具4を挿入して加圧した後に、接続用容器5から加圧治具4を抜き取り、加圧によって圧密化したホウ素粉末3上にマグネシウム7を充填し、必要に応じて再加圧する。そして、接続用容器5を封止し、原料粉末に熱処理を施して、MgBを含む焼結体9を生成させる。
接続用容器5に充填されたホウ素粉末3は、超電導線材1Aが挿入されている接続用容器5の開口部5aに加圧治具4を挿入して、超電導線材1Aの長手方向と平行に加圧するものとする。また、ホウ素粉末3が充填されている接続用容器5に粉末のマグネシウム7を充填する場合は、超電導線材1Aが挿入されている接続用容器5の開口部5aに、加圧機能と封止機能を兼ねた蓋部材8を挿入するか、または、加圧治具を再挿入して、超電導線材1Aの長手方向と平行に加圧するものとする。
以上の変形例に係る超電導線材の接続部および超電導線材の接続方法によると、超電導線材1Aの周方向における一部の金属シース11を除去するため、線材の全周にわたる金属シース11を除去する場合とは異なり、金属シース11を除去した部位に対する線材の長手方向における両側を、除去されていない金属シース11で連結された状態にすることができる。金属シース11を除去した部位よりも末端側と中央側との両方の金属シース11が変形に対して拘束されるため、線材が熱処理後に冷却されたときに、線材の長手方向に生じる熱歪みを抑制することができる。
特に、線材の中心軸に対して点対称に位置する部位を除去すると、線材の中心軸に対して熱収縮が偏り難くなるため、線材が熱歪みによる反りを生じ難くなる。そのため、超電導フィラメント12がMgBを含む焼結体9から剥離するのを抑制することができる。また、接続用容器5に充填されたMgBの原料粉末を、線材の長手方向に対して略平行な方向から加圧するため、略直交する方向から加圧する場合とは異なり、金属シース11を除去した各部位に対して、均一性高く圧力を加えることができる。そのため、線材の周方向に均一な焼結体を生成させるのに有利となる。
図13は、ホウ素粉末を充填した接続用容器にマグネシウムを充填した状態を示す図である。図14は、マグネシウムとホウ素を充填した接続用容器に熱処理を施した状態を示す図である。
図13には、超電導線材1を挿入した後、ホウ素粉末3を充填して加圧した接続用容器5に、MgBの原料であるマグネシウム7を充填した状態を示している。図14には、ホウ素粉末3とマグネシウム7を充填して加圧した後に、熱処理を施してMgBを含む焼結体9を生成させた状態を示している。
図13および図14に示すように、熱処理前の接続用容器5において、接続用容器5の貫通孔5bと線材との隙間や、蓋部材8の開口部8aと線材との隙間等は、耐熱接着剤6を用いて封止することができる。耐熱接着剤6としては、耐熱性のセラミックボンド等を用いることができる。
接続用容器5の封止に耐熱接着剤6を用いると、接続用容器5が、線材の線径よりも大きい開口部5aや、線材を通す貫通孔5bを有する構造に設けられている場合であっても、これらの部位を適切に封止することができる。揮発したマグネシウムの漏出や、不純物の混入を防ぐことができるため、均一性が高い焼結体を生成させて、通電特性が良好な接続部を形成することができる。
また、接続用容器5の封止に耐熱接着剤6を用いると、超電導線材1が接続用容器5や蓋部材8に接着されるため、互いに超伝導接続させる超電導線材1を、接続用容器5、または、接続用容器5を封止する蓋部材8に対して、少なくとも一箇所以上で固定されている状態にすることができる。超電導線材1を一箇所以上で固定すると、原料粉末の熱処理時等に、超伝導線材1の末端側を接続用容器5の内壁面から離隔した中央付近に静止させることができるため、露出させた超電導フィラメント12とMgBを含む焼結体9との結合を緻密にすることができる。
図15は、マグネシウムとホウ素の混合粉末を接続用容器に充填した状態を示す図である。図16は、マグネシウムとホウ素の混合粉末を充填した接続用容器に熱処理を施した状態を示す図である。
図15には、超電導線材1を挿入した接続用容器5に、MgBの原料であるマグネシウム7とホウ素粉末3との混合粉末を充填した後、加圧機能と封止機能を兼ねた蓋部材8を挿入して加圧した状態を示している。図16には、混合粉末を充填して加圧した後に、熱処理を施してMgBを含む焼結体9を生成させた状態を示している。
図15に示すように、超電導線材1を挿入した接続用容器5には、予め混合したマグネシウム7とホウ素粉末3との混合粉末を充填することもできる。マグネシウム7とホウ素粉末3との混合粉末は、メカニカルミル法を用いて調製することが好ましい。メカニカルミル法は、粉末の粒子を、ジルコニア製のボール等のメディアやポットの内壁と激しく衝突させて、強加工しながら粉砕および混合を行う方法である。
メカニカルミル法によると、マグネシウム中にホウ素の粒子が練り込まれ、ホウ素がマグネシウムに内包されて微細に分散した粉末組織が得られる。そのため、均一性や充填率が高く、粗大な空隙が少ないMgBを含む焼結体を得ることができる。メカニカルミル法を用いる場合、MgBが明確には生成しない程度の衝突エネルギを加えることが好ましい。なお、MgBが明確に生成しないとは、粉末X線回折においてMgBのピークが実質的に確認されないことを意味する。
図15および図16に示すように、前記の超電導線材1を超伝導接続する場合と同様に、接続用容器5に超電導線材1を挿入し、マグネシウム7とホウ素粉末3との混合粉末を接続用容器5に充填し、充填された混合粉末を加圧する。そして、接続用容器5を封止し、原料粉末に熱処理を施して、MgBを含む焼結体9を生成させる。
接続用容器5に充填されたマグネシウム7とホウ素粉末3との混合粉末は、超電導線材1が挿入されている接続用容器5の開口部5aに、加圧機能と封止機能を兼ねた蓋部材8を挿入するか、または、加圧治具を挿入して、超電導線材1の長手方向と平行に加圧するものとする。耐熱性が低く、バリア材で形成されていない加圧治具を用いる場合、熱処理前に加圧治具を抜き取り、封止機能を持つバリア材で形成された蓋部材で接続用容器5を封止することが好ましい。
以上の変形例に係る超電導線材の接続部および超電導線材の接続方法によると、マグネシウム7とホウ素粉末3との混合粉末を接続用容器5に充填し、混合粉末を超電導線材1の長手方向と平行に加圧するため、超電導線材や超電導フィラメントに曲げ方向の力を加えることなく、露出させた超電導フィラメントの周囲の原料粉末を圧密化させることができる。マグネシウム7とホウ素粉末3との混合粉末を用いると、ホウ素粉末3上にマグネシウム7を加える必要がなく、一回の加圧操作で原料粉末を圧密化させることができるため、長さが異なる複数の加圧用の治具・部材の用意が不要になる。
以上、本発明の実施形態について説明したが、本発明は、前記の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更が可能である。例えば、本発明は、必ずしも前記の実施形態が備える全ての構成を備えるものに限定されない。或る実施形態の構成の一部を他の構成に置き換えたり、或る実施形態の構成の一部を他の形態に追加したり、或る実施形態の構成の一部を省略したりすることができる。
例えば、前記の実施形態に係る超電導線材の接続部および超電導線材の接続方法では、2本の単芯線構造の超電導線材が、互いに並列的な配置で超電導接続されている。しかしながら、超電導接続させる超電導線材の構造や本数や配置は、特に制限されるものではない。超電導線材は、単芯線構造および多芯線構造のいずれであってもよい。互いに超電導接続させる超電導線材の本数は、2本であってもよいし、3本以上であってもよい。また、超伝導線材は、容器に対して並列的に挿入して超電導接続させてもよいし、容器に対して対向する方向から挿入して超電導接続させてもよい。
MgBの原料粉末を超電導線材の長手方向と平行に加圧する加圧法は、接続用容器の長手方向の少なくとも一方側に、互いに超伝導接続される超電導線材の線径の合計よりも大径の開口部が設けられており、貫通孔が設けられた加圧治具を用いることによって可能になる。前記の超電導線材の接続部および超電導線材の接続方法では、このような大径の開口部が、接続用容器の長手方向の一方に設けられているが、長手方向の両側に設けてもよい。両側に設ける場合には、両側から加圧治具を挿入する方法や、一方の開口部を閉塞させて加圧する方法を用いることが好ましい。
また、前記の実施形態に係る超電導線材の接続部および超電導線材の接続方法では、ホウ素粉末を加圧するための手段として、加圧治具を用いているが、加圧治具に代えて、加圧機能と封止機能を兼ねた蓋部材を用いてもよい。すなわち、ホウ素粉末の加圧と、マグネシウム粉末の加圧と、容器の封止とを、一つの治具・部材を抜き差しして行うこともできる。このような蓋部材は、耐熱性を備えたバリア材で形成されることが好ましい。
1 超電導線材
2 中間部
3 ホウ素粉末
4 加圧治具
5 接続用容器(容器)
5a 開口部
5b 貫通孔
6 耐熱接着剤
7 マグネシウム
8 蓋部材
9 MgBを含む焼結体
11 金属シース
12 超電導フィラメント
13 安定化材
14 母材

Claims (7)

  1. 複数の超電導線材がMgB を含む焼結体によって一体化された超電導線材の接続部であって、
    前記超電導線材は、超電導フィラメントを有し、容器の内壁面から離隔するように前記容器の中央側に挿入されており、前記超電導フィラメントの外周面を露出させた前記超電導線材の端部が、互いに並列状に前記容器に挿入されており、
    前記容器は、前記容器に挿入される前記超電導線材の長手方向の少なくとも一方側に、前記超電導線材の線径よりも大きい開口部を有する構造であり、
    前記焼結体は、前記容器の内部で、前記超電導線材のそれぞれの前記超電導フィラメントの外周面と接触しており、
    前記容器に挿入された前記超電導線材と前記容器との間に、前記焼結体が満たされている超電導線材の接続部。
  2. 複数の超電導線材がMgB を含む焼結体によって一体化された超電導線材の接続部であって、
    前記超電導線材は、超電導フィラメントと、前記超電導フィラメントの外周を覆う金属シースと、を有し、前記超電導フィラメントの外周面を露出させた前記超電導線材の端部が、互いに並列状に容器に挿入されており、
    前記容器は、前記容器に挿入される前記超電導線材の長手方向の少なくとも一方側に、前記超電導線材の線径よりも大きい開口部を有する構造であり、
    前記金属シースは、前記超電導フィラメントの前記外周面が露出するように、前記超電導線材の長手方向における中間部に位置する部位を除去されており、
    前記焼結体は、前記容器の内部で、前記超電導線材のそれぞれの前記超電導フィラメントの外周面と接触している超電導線材の接続部。
  3. 複数の超電導線材がMgB を含む焼結体によって一体化された超電導線材の接続部であって、
    前記超電導線材は、超電導フィラメントと、前記超電導フィラメントの外周を覆う金属シースと、を有し、前記超電導フィラメントの外周面を露出させた前記超電導線材の端部が、互いに並列状に容器に挿入されており、
    前記容器は、前記容器に挿入される前記超電導線材の長手方向の少なくとも一方側に、前記超電導線材の線径よりも大きい開口部を有する構造であり、
    前記金属シースは、前記超電導線材の中心軸に対して点対称に位置する部位を除去されており、
    前記焼結体は、前記容器の内部で、前記中心軸に対する両側で前記超電導線材のそれぞれの前記超電導フィラメントの外周面と接触している超電導線材の接続部。
  4. 請求項1から請求項3のいずれか一項に記載の超電導線材の接続部であって、
    前記超電導線材は、前記容器、または、前記容器を封止する蓋部材に対して、一箇所以上が固定されている超電導線材の接続部。
  5. 請求項1から請求項のいずれか一項に記載の超電導線材の接続部であって、
    前記超電導フィラメントがMgBで形成されている超電導線材の接続部。
  6. 請求項1から請求項のいずれか一項に記載の超電導線材の接続部であって、
    前記焼結体は、MgBの充填率が70体積%以上である超電導線材の接続部。
  7. 複数の超電導線材をMgBを含む焼結体を介して一体化させる超電導線材の接続方法であって、
    前記超電導線材の金属シースを除去して超電導フィラメントの外周面を露出させる工程と、
    前記超電導フィラメントを露出させた前記超電導線材を互いに並列状に容器に挿入する工程と、
    前記容器にMgBの原料を充填する工程と、
    前記容器に充填された前記原料を熱処理してMgBを含む焼結体を生成させる工程と、を含み、
    前記金属シースは、前記超電導フィラメントの前記外周面が露出するように、前記超電導線材の長手方向における中間部に位置する部位を除去され、
    前記容器は、前記容器に挿入された前記超電導線材の長手方向の少なくとも一方側に、前記超電導線材の線径よりも大きい開口部を有する構造であり、
    前記容器に充填された前記原料を、前記開口部に加圧治具または蓋部材を挿入して前記超電導線材の長手方向と平行に加圧した後に熱処理する超電導線材の接続方法。
JP2020148180A 2020-09-03 2020-09-03 超電導線材の接続部および超電導線材の接続方法 Active JP7428617B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020148180A JP7428617B2 (ja) 2020-09-03 2020-09-03 超電導線材の接続部および超電導線材の接続方法
CN202180050371.9A CN115956275A (zh) 2020-09-03 2021-08-06 超导线材的连接部以及超导线材的连接方法
US18/022,328 US20230317318A1 (en) 2020-09-03 2021-08-06 Connection portion for superconducting wire and method for connecting superconducting wire
PCT/JP2021/029424 WO2022050000A1 (ja) 2020-09-03 2021-08-06 超電導線材の接続部および超電導線材の接続方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020148180A JP7428617B2 (ja) 2020-09-03 2020-09-03 超電導線材の接続部および超電導線材の接続方法

Publications (2)

Publication Number Publication Date
JP2022042678A JP2022042678A (ja) 2022-03-15
JP7428617B2 true JP7428617B2 (ja) 2024-02-06

Family

ID=80492003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020148180A Active JP7428617B2 (ja) 2020-09-03 2020-09-03 超電導線材の接続部および超電導線材の接続方法

Country Status (4)

Country Link
US (1) US20230317318A1 (ja)
JP (1) JP7428617B2 (ja)
CN (1) CN115956275A (ja)
WO (1) WO2022050000A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012094413A (ja) 2010-10-28 2012-05-17 Hitachi Ltd 超電導線材の接続部及び超電導線材の接続方法
WO2015015627A1 (ja) 2013-08-02 2015-02-05 株式会社 日立製作所 超電導マグネット及びその製造方法
WO2016143416A1 (ja) 2015-03-10 2016-09-15 株式会社日立製作所 超電導線材の接続部
WO2017212869A1 (ja) 2016-06-08 2017-12-14 株式会社日立製作所 超電導線材の接続部及び超電導線材の接続方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012094413A (ja) 2010-10-28 2012-05-17 Hitachi Ltd 超電導線材の接続部及び超電導線材の接続方法
WO2015015627A1 (ja) 2013-08-02 2015-02-05 株式会社 日立製作所 超電導マグネット及びその製造方法
WO2016143416A1 (ja) 2015-03-10 2016-09-15 株式会社日立製作所 超電導線材の接続部
WO2017212869A1 (ja) 2016-06-08 2017-12-14 株式会社日立製作所 超電導線材の接続部及び超電導線材の接続方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J. Ling et al.,Monofilament MgB2 Wire for a Whole-Body MRI Magnet: Superconducting Joints and Test Coils,IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY,米国,INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS,2013年06月,VOL. 23, NO. 3,p.1-p.4

Also Published As

Publication number Publication date
WO2022050000A1 (ja) 2022-03-10
CN115956275A (zh) 2023-04-11
US20230317318A1 (en) 2023-10-05
JP2022042678A (ja) 2022-03-15

Similar Documents

Publication Publication Date Title
JP5560160B2 (ja) 超電導線材の接続部及び超電導線材の接続方法
EP2392036B1 (en) Low loss joint for superconducting wire
JP4058920B2 (ja) 超電導接続構造
JP5518203B2 (ja) 2つの超伝導体間の接続構造を製作する方法及び2つの超伝導体を接続するための構造
US8420558B2 (en) Superconducting connection between MgB2 superconducting wires via a compressed element made from HTS powder
US8809685B2 (en) Superconductive connecting device for the end pieces of two superconductors and method for the production thereof
US20230008754A1 (en) Superconducting wire, method for manufacturing superconducting wire, and mri device
JP7428617B2 (ja) 超電導線材の接続部および超電導線材の接続方法
JP6628877B2 (ja) 超電導線材の接続部及び超電導線材の接続方法
US10714238B2 (en) Joint for superconducting wire
WO2015015627A1 (ja) 超電導マグネット及びその製造方法
EP2673815B1 (en) Joints with very low resistance between superconducting wires and methods for making such joints
JP7351771B2 (ja) 超電導線材の接続部および超電導線材の接続方法
US11972877B2 (en) Superconducting wire connector and method of connecting superconducting wires
JP6563581B1 (ja) ダイバータ用異種金属接合体
WO2016031283A1 (ja) 超電導線材の接続部及び超電導線材の接続方法
KR102429818B1 (ko) 다심 이붕화마그네슘 초전도선 접합체 및 이의 제조방법
JP2013093401A (ja) 超電導マグネット及びその製造方法
JP2023000395A (ja) 永久電流スイッチ、永久電流スイッチの製造方法および超電導磁石装置
JP2022046126A (ja) 超電導線材の接続方法及び超電導磁石装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240125

R150 Certificate of patent or registration of utility model

Ref document number: 7428617

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150