JP7418369B2 - 計測装置、エレベーターシステム、及びエレベーター運行方法 - Google Patents

計測装置、エレベーターシステム、及びエレベーター運行方法 Download PDF

Info

Publication number
JP7418369B2
JP7418369B2 JP2021029657A JP2021029657A JP7418369B2 JP 7418369 B2 JP7418369 B2 JP 7418369B2 JP 2021029657 A JP2021029657 A JP 2021029657A JP 2021029657 A JP2021029657 A JP 2021029657A JP 7418369 B2 JP7418369 B2 JP 7418369B2
Authority
JP
Japan
Prior art keywords
imaging
measuring device
elevator car
moving
elevator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021029657A
Other languages
English (en)
Other versions
JP2022130965A (ja
Inventor
義人 大西
晃 岩本
勇来 齊藤
直人 大沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2021029657A priority Critical patent/JP7418369B2/ja
Publication of JP2022130965A publication Critical patent/JP2022130965A/ja
Application granted granted Critical
Publication of JP7418369B2 publication Critical patent/JP7418369B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Maintenance And Inspection Apparatuses For Elevators (AREA)
  • Elevator Control (AREA)

Description

本発明は、計測装置、エレベーターシステム、及びエレベーター運行方法に関し、例えば、移動体の移動に係る情報を算出する計測装置、エレベーターシステム、及びエレベーター運行方法に適用して好適なものである。
従来、移動体として乗りかご(以下、「エレベーターかご」、あるいは「かご」と記す)を備えるエレベーターでは、エレベーターかごの位置やエレベーターかごの移動速度等を監視するための安全装置としてガバナロープが使われてきた。そして近年、ガバナロープの代わりとなる、非接触式でエレベーターかごの位置及び移動速度を計測するセンサ(以下、「位置・速度センサ」と記す)が知られている。
例えば特許文献1には、エレベーターかご上に設置したイメージセンサにより昇降路内に存在する構造物を撮影し、エレベーターかごの位置及び移動速度を計測する光学式の位置・速度センサが開示されている。非接触式の位置・速度センサでは、ガバナロープのような長尺な構造物が不要となるので、据付性及び保全性が向上するという効果があり、さらに、滑りによる測定誤差が発生しないという効果もある。
国際公開第2019/239536号
ところで最近は、都市部における建屋の高層化に伴ってエレベーターの運行速度が高速化しているため、位置・速度センサに対して、計測可能な最大移動速度(最大計測可能速度)を高速域に拡張することが要求されている。
しかしながら、特許文献1に開示された非接触式の位置・速度センサの場合、イメージセンサの撮像領域が狭く、計測可能な最大移動速度に制限があった。上記問題に対して、検出分解能を維持しつつ、撮像領域を広げようとすると、より画素数の大きいイメージセンサを用いる必要があるが、その場合は、撮像画像の転送処理、及び移動体の位置や速度の算出処理における処理負荷が増加してしまう。一方で、高速エレベーターでは、移動体(エレベーターかご)を安全に停止させるために、エレベーターかごの位置や速度の計測結果の更新に要する時間(更新時間)を十分に短時間に維持することが必要であり、そのためには、撮像画像の転送処理、及び移動体の位置や速度の算出処理における処理時間の増大を抑制しなければならなかった。
本発明は以上の点を考慮してなされたもので、移動体の位置や速度の更新時間を短時間に維持しつつ、イメージセンサの撮像領域を広げて、計測装置が機能する測定レンジ(分解能に対する計測可能な最大量の比)を拡張することにより、移動行路(例えば昇降路)を高速で移動可能な移動体(例えばエレベーターかご)の移動距離及び/または移動速度を、高速かつ高精度に計測することが可能な計測装置、エレベーターシステム、及びエレベーター運行方法を提案しようとするものである。
かかる課題を解決するため本発明においては、移動路を移動する移動体に設置されて、前記移動体の移動距離及び/または移動速度を計測する計測装置であって、所定周期のフレームごとに発生されるゲート信号に応答して、前記移動路において前記移動体の移動方向に平行な第1の方向に沿って配置された静止構造物を照射する光を送信する光送信系と、前記光による前記静止構造物からの散乱光を撮像面に結像する結像系と、前記ゲート信号に基づく露光時間に亘って、前記撮像面に結像された散乱光の光信号を取り込み、電気信号に変換して撮像する撮像系と、前記ゲート信号を生成し、前記撮像系で変換された前記電気信号に基づいて前記移動体の移動距離及び/または移動速度を算出し送信する画像処理部と、を備え、前記撮像系が撮像する前記散乱光は、前記静止構造物において前記第1の方向に直列に配置されるn個(nは2以上の整数)の撮像領域からの散乱光である、計測装置が提供される。
また、かかる課題を解決するため本発明においては、昇降路内を移動するエレベーターかごと、前記昇降路内に前記エレベーターかごの移動方向に平行な第1の方向に沿って配置されたガイドレールと、前記エレベーターかごの動作を制御するエレベーター制御部と、前記エレベーターかごに配置されて前記エレベーターかごの移動距離及び/または移動速度を計測する計測装置と、を備え、前記計測装置は、所定周期のフレームごとに発生されるゲート信号に応答して、前記ガイドレールを照射する光を送信する光送信系と、前記光による前記ガイドレールからの散乱光を撮像面に結像する結像系と、前記ゲート信号に基づく露光時間に亘って、前記撮像面に結像された散乱光の光信号を取り込み、電気信号に変換して撮像する撮像系と、前記ゲート信号を生成し、前記撮像系で変換された前記電気信号に基づいて前記エレベーターかごの移動距離及び/または移動速度を算出し、前記エレベーター制御部に送信する画像処理部と、を有し、前記撮像系が撮像する前記散乱光は、前記ガイドレールにおいて前記第1の方向に直列に配置されるn個(nは2以上の整数)の撮像領域からの散乱光である、エレベーターシステムが提供される。
また、かかる課題を解決するため本発明においては、エレベーターかごの運行を制御するエレベーターシステムによる以下のエレベーター運行方法が提供される。前記エレベーターシステムは、昇降路内を移動するエレベーターかごと、前記昇降路内に前記エレベーターかごの移動方向に平行な第1の方向に沿って配置されたガイドレールと、前記エレベーターかごの動作を制御するエレベーター制御部と、前記エレベーターかごに配置されて前記エレベーターかごの移動速度を計測する計測装置と、前記エレベーターかごを非常止めによって停止させる安全装置と、を有し、前記計測装置は、所定周期のフレームごとに発生されるゲート信号に応答して、前記ガイドレールを照射する光を送信する光送信系と、前記光による前記ガイドレールからの散乱光を撮像面に結像する結像系と、前記ゲート信号に基づく露光時間に亘って、前記撮像面に結像された散乱光の光信号を取り込み、電気信号に変換して撮像する撮像系と、前記ゲート信号を生成し、前記撮像系で変換された前記電気信号に基づいて前記エレベーターかごの移動速度を算出し、算出した移動速度を前記エレベーター制御部に送信する画像処理部と、を有し、前記計測装置において、前記撮像系が撮像する前記散乱光は、前記ガイドレールにおいて前記第1の方向に直列に配置されるn個(nは2以上の整数)の撮像領域からの散乱光であり、前記画像処理部は、前記フレーム間における前記エレベーターかごの前記移動速度を算出して前記エレベーター制御部に送信する。そして、このエレベーター運行方法は、前記計測装置が、前記エレベーターかごの移動速度を計測して前記エレベーター制御部に送信する第1工程と、前記エレベーター制御部が、前記第1工程で計測装置から受信したエレベーターかごの移動速度が運行可能な閾値速度を超えたか否かを判定する第2工程と、前記エレベーター制御部が、前記第2工程で前記エレベーターかごの移動速度が前記閾値速度を超えたと判断した場合に、非常止めを作動させる信号を前記安全装置に送信する第3工程と、前記信号を受信した前記安全装置が、前記非常止めを作動させて前記エレベーターかごを停止させる第4工程と、を備える。
本発明によれば、移動行路を高速で移動可能な移動体の移動距離及び/または移動速度を、高速かつ高精度に計測することができる。
本発明の第1の実施形態に係るエレベーターシステム10の構成例を示す図である。 計測装置110の構成例を示す図である。 画像処理部240の内部構成例を示す図である。 エレベーターかご120が移動しているときの単一の撮像部230による撮像画像の変化を説明するための図である。 エレベーターかご120が移動しているときの、複数の撮像部230による撮像画像の相関を説明するための図である。 撮像時刻が異なる撮像領域の相関例を表形式で示した図である。 撮像タイミングのゲート信号及び撮像画像の入力信号の送信タイミングの一例を示すタイミングチャートである。 移動量算出部330の内部構成例を示す図である。 移動量算出部330による移動量算出処理の処理手順例を示すフローチャートである。 光送信部210及び結像部220と静止構造物との配置関係を説明するための図(その1)である。 光送信部210及び結像部220と静止構造物との配置関係を説明するための図(その2)である。 光送信部210及び結像部220と静止構造物との配置関係から得られる散乱輝度の増幅効果を説明するための概念図(その1)である。 光送信部210及び結像部220と静止構造物との配置関係から得られる散乱輝度の増幅効果を説明するための概念図(その2)である。 第1の実施形態における結像部220の配置構成の一例を示す図である。 第1の実施形態における結像部220の配置構成の別例を示す図である。 計測装置110によるエレベーターかご120の最大計測可能速度の導出を説明するための模式図である。 第2の実施形態に係る計測装置1700における結像部1720の配置構成例を示す図である。 第2の実施形態に係る計測装置1800における結像部1820の配置構成例を示す図である。 第3の実施形態に係る計測装置1900における結像部1920の配置構成例を示す図である。 計測装置110を車両に適用した車両移動距離・速度検出システム2000の構成例を示す図である。 計測装置110をクレーンに適用したクレーン移動距離・速度検出システム2100の構成例を示す図である。
以下、図面を参照して、本発明の実施形態を詳述する。以下に詳述する本発明の各実施形態では、計測部(光送信部、結像部、及び撮像部)を用いて移動体の位置、速度、または加速度等を高速かつ高精度に計測する装置、システム、及び方法等において、移動体の位置及び/または速度の更新時間を高速(短時間)に維持しつつ、移動体の検出可能な測定レンジを拡張することができる技術に関して説明する。但し、本発明は、以下に説明する各実施形態に限定されるものではない。
各実施形態に示す計測装置は、移動体上部に載置され、移動体を案内する行路(移動行路)に沿った移動体の移動に係る情報(具体的には、移動体の移動距離、移動体の移動速度、移動体の加速度、または移動体の振動等の少なくとも何れか)を計測する。例えば、計測装置は、制御部で発生したゲート信号に応答して、移動体から被写体である静止構造物の表面に向けて、光送信部から光を照射(送信)する。そして、計測装置は、静止構造物の表面で跳ね返された光(正反射光及び拡散反射光を含み得る光であり、以下では、「散乱光」と記す)を、結像部を介して撮像部の撮像面に入射し、撮像部において光信号を電気信号に光電変換する。そして、計測装置は、変換した電気信号から生成した画像を基に、画像処理部において、移動体の移動に係る情報を計測する。そして、計測装置は、移動体の移動に係る情報に基づいて、移動体の運行制御あるいは安全装置の制御を行う移動体制御部に送信する。そして移動体制御部は、計測装置で算出された移動体の移動に係る情報に基づいて、移動体の運行制御や安全装置の制御を行う。
また、いくつかの実施形態では、本発明に係る計測装置が設置される移動体として、エレベーターかごを例に挙げて説明するが、本発明を適用可能な移動体はエレベーターかごに限定されない。各実施形態で示す技術は、人工的な研磨の傷があるような静止構造物(例えば、ガイドレール、線路、道路等)に沿って移動する移動体(例えば、自動ドア、列車、車、クレーン等)にも適用できる。なお、本明細書において「光」とは電磁波を指し、具体的には、可視光の他、マイクロ波、テラヘルツ波、赤外線、紫外線、X線等であってもよい。同様に、本発明を適用可能な計測システムも、エレベーターシステムに組み込まれる計測システムに限定されるものではなく、例えば、自動運転が制御される車両の位置決めシステムや、クレーンの位置決めシステム等にも適用可能である。
また、以下の説明では、同種の要素を区別せずに説明する場合には、枝番を含む参照符号のうちの共通部分(枝番を除く部分)を使用し、同種の要素を区別して説明する場合には、枝番を含む参照符号を使用することがある。例えば、光送信部を特に区別せずに説明する場合には「光送信部210」と記載するのに対して、個々の光送信部210を区別して説明する場合には「光送信部210-1」、「光送信部210-2」、・・・、「光送信部210-n」のように記載することがある。
(1)第1の実施形態
(1-1)エレベーターシステム10の構成
図1は、本発明の第1の実施形態に係るエレベーターシステム10の構成例を示す図である。
図1に示すように、エレベーターシステム10は、建屋(図示は省略)の昇降路(移動体の移動行路(移動路))内を昇降するエレベーターかご120の上部に載置された計測装置110を含んで構成される。また、図1に示すように、エレベーターシステム10には、エレベーターかご120、エレベーター制御部130、またはガイドレール140が含まれるが、これらの構成要素の少なくとも何れかは、計測装置110に含まれるとしてもよい。
計測装置110は、エレベーターかご120の運行制御を行うために有用な信号情報(例えば、エレベーターかご120の位置、移動速度、または加速度等に関する信号情報)を、エレベーター制御部130に出力する。エレベーター制御部130は、エレベーターかご120の運行の制御及び安全装置の制御等を行う。なお、計測装置110は、エレベーターかご120の上部に配置場所を限定されるものではなく、上部以外、例えば側面部や下部等に配置されてもよい。
ガイドレール140は、昇降路内に配置された静止構造物の一例であって、昇降路内に移動体の移動方向(図1ではy軸方向)に沿って配置され、エレベーターかご120のガイドローラ(図示は省略)に接触して、移動体(エレベーターかご120)の移動を支持する。
図2は、計測装置110の構成例を示す図である。図2に示すように、計測装置110は、光送信部210、複数(図2ではn個(n≧2))の結像部220、複数(図2ではn個(n≧2))の撮像部230、及び画像処理部240を、含んで構成される。なお、図2では、光路を矢印付きの破線で示し、電気信号の経路を矢印付きの実線で示している。
光送信部210は、光源(図示は省略)を備え、被写体であるガイドレール140に向けて光を照射するように配置される。光送信部210の光源には、LED(Light Emitting Diode)やハロゲンランプのような時間的かつ空間的にインコヒーレントな光源を用いてもよいし、レーザー光源のような時間的かつ空間的にコヒーレントな光源を用いてもよい。なお、図2に示す計測装置110では、結像部220及び撮像部230と同じく、n個(n≧2)の光送信部210を設けているが、光送信部210の個数に制限はなく、例えば、エレベーターかご120の昇降方向に長い単一の光源を用いることによって、最小構成では1個の光送信部210を構成要素とすることもできる。
結像部220は、光送信部210からガイドレール140の表面に向けて照射された光である出射光線(出射光)がガイドレール140の表面で散乱された散乱光を、撮像部230の撮像面に結像させる光学系として構成されている。
撮像部230は、結像部220からの光信号(ガイドレール140の表面における散乱輝度分布を示す光信号)であって、複数の画素(ピクセル)を含む撮像面に結像された光信号を、画素の輝度に応じた電気信号に変換し、変換した電気信号を、暗視野画像を示す画像信号として画像処理部240に送信する。なお、本実施形態において撮像部230が画像処理部240に送信する画像信号は、暗視野画像を示すものに限定されるものではなく、例えば明視野画像等を示すものであってもよい。撮像部230には、例えば、CCD(Charge Coupled Device)イメージセンサ、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサ等を用いることができる。また、撮像部230は、二次元のエリアセンサであってもよいし、かご120の昇降方向に空間分解の機能を有する一次元のラインセンサであってもよい。
なお、計測装置110は、光送信部210からの出射光及びその散乱光の経路中に、結像部220以外にバンドパスフィルタ等の波長選択式フィルタを設けて、所望の波長以外の外光を除去するようにしてもよい。また、計測装置110は、砂塵や埃等が内部に入らないように、計測装置110を防護する目的で、上記入射光及び散乱光の経路中に窓材等を設けるようにしてもよい。
画像処理部240は、撮像部230から受信した画像信号(撮像面に結像された光信号が変換された電気信号)に対して所定の画像処理(詳細は後述する)を実行し、当該画像処理によって生成される撮像画像に基づいて、エレベーターかご120の移動に係る情報(かご移動関連情報)を算出し、これらの情報をエレベーター制御部130に送信する。画像処理部240は、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、またはマイクロコントローラのような情報処理記憶媒体によって構成されてもよいし、FPGA(Field-Programmable Gate Array)のような論理回路素子等によって構成されてもよい。
(1-2)画像処理部240の構成、及び画像処理部240による計測処理
以下に、画像処理部240の内部構成、及び画像処理部240で実施される処理について詳しく説明する。
図3は、画像処理部240の内部構成例を示す図である。図3に示すように、画像処理部240は、タイミング制御部310、複数(図3ではn個(n≧2))の画像生成部320、移動量算出部330、及び通信部340を含んで構成される。
タイミング制御部310は、複数のゲート信号(ゲートパルス信号)を生成し、生成した複数のゲート信号の一部を光送信部210に送信し、別の一部の複数のゲート信号を撮像部230に送信し、残りの複数のゲート信号を画像生成部320に送信する。光送信部210に送信されるゲート信号は、光送信部210における光源の駆動時間を規定するタイミング信号として用いられる。撮像部230に送信されるゲート信号は、撮像部230における露光時間を規定するタイミング信号として用いられる。撮像部230は、画像処理部240のタイミング制御部310から受信したゲート信号に同期して、撮像部230において光電変換した電気信号(例えば暗視野画像を示す画像信号)を画像処理部240の画像生成部320に送信する。
画像生成部320は、撮像部230からの電気信号を受信し、受信した電気信号に対して所定の画像処理を実施し、画像処理後の画像を移動量算出部330に送信する。なお、画像生成部320による画像処理は、具体的には例えば、撮像部230からの電気信号(例えば暗視野画像を示す画像信号)を、ガイドレール140の表面の散乱輝度分布に応じた画像に空間分解する処理である。
移動量算出部330は、画像生成部320から受信した画像処理の結果に基づいて、エレベーターかご120の移動に係る信号情報(かご移動関連情報)を算出し、算出した信号情報を通信部340に送信する。かご移動関連情報には、具体的には例えば、エレベーターかご120の位置(移動位置)や移動速度等を示す情報が含まれる。
通信部340は、移動量算出部330から受信したかご移動関連情報を、エレベーター制御部130が受信可能な通信プロトコル(例えばCAN(Controller Area Network)通信等のプロトコル)に従って変換し、変換後の信号情報をエレベーター制御部130に出力する。
図4は、エレベーターかご120が移動しているときの単一の撮像部230による撮像画像の変化を説明するための図である。移動速度Vで移動するエレベーターかご120から撮像部230がガイドレール140を被写体として撮影したとき、同一の撮像部230の撮像領域はエレベーターかご120とともに移動することから、その撮像画像は時間で変化する。詳しくは、図4に示すように、過去の時刻t-Δtにおける被写体表面(ガイドレール140の表面)の散乱輝度分布411の撮像画像421と、現在の時刻tにおける被写体表面(ガイドレール140の表面)の散乱輝度分布412の撮像画像422との間には、移動方向のずれΔy(移動量Δy)が発生する。
そして、移動量算出部330は、撮像画像421,422のような異なるフレーム間の撮像画像を比較処理することにより、移動量Δyを算出(または計測)する。本実施形態では、分かりやすさのため、相関関数法による移動量算出処理について後述するが、移動量の算出方法は、相関関数法に限定されるものではない。
図5は、エレベーターかご120が移動しているときの、複数の撮像部230による撮像画像の相関を説明するための図である。
計測装置110では、複数の撮像部230(図5の例では4個の撮像部230-1~230-4)が設けられ、各撮像部230の撮像領域が、移動行路方向に直列に配置される。例えば図5の場合、撮像時刻t-Δtにおける撮像部230-1~230-4による撮像領域521-1~521-4は、y軸方向に等間隔で直列に配置されている。以降の説明では、撮像領域の移動行路に沿った方向(y軸方向)の辺の長さを「Lobs」とし、隣り合う撮像領域(撮像画像と読み替えてもよい)の間隔を「Lgap」とする。なお、各撮像領域の大きさは同一または略同一とする。
図5には、エレベーターかご120の移動中に、4個の撮像部230がガイドレール140(より具体的には、ガイドレール140の表面の散乱輝度分布511,512)を被写体として撮影するときの撮像領域(撮像画像)の一例として、時刻t-Δtにおける撮像領域(撮像画像)521と、時刻tにおける撮像領域(撮像画像)522とが示されている。以下に、図5を参照しながら、時刻t-Δtにおける撮像画像521と時刻tにおける撮像画像522との間に生じる移動方向のずれΔy(移動量Δy)について説明する。
エレベーターかご120の移動速度をVとするとき、時刻t-Δtと時刻tとの時間差である時間Δtにおける移動量Δyは、Δy=V×Δtで算出されることから、エレベーターかご120の移動速度Vが速くなるにつれて移動量Δyは増加する。そのため、移動速度Vが速くなったときには、時刻t-Δtにおける撮像画像521-1と、時刻tにおける撮像画像522-1との間に相関がなくなる(共通する画像部分が存在しなくなる)ことが想定され、この場合、単一の撮像部230を設けた構成だと移動量Δyを計測することができない。
上記問題を解決するための構成として、本実施形態に係る計測装置110は、複数の撮像部230を備えて、移動行路に沿った方向に複数の撮像領域を配置することにより、移動速度Vが速くなった場合でも、撮像タイミングが異なる複数の撮像画像の何れかの間で相関を持つようにしている。具体的には例えば、図5の場合、時刻t-Δtにおける撮像部230-1による撮像画像521-1と、時刻tにおける撮像部230-2による撮像画像522-2との間には相関が生じる。したがって、移動量算出部330は、比較処理を行うことによって、相関画像(撮像画像521-1と撮像画像522-2)の間の移動方向のずれΔy’(移動量Δy’)を算出することが可能である。
図6は、撮像時刻が異なる撮像領域の相関例を表形式で示した図である。図6に示す相関表610は、図5の例について、異なる撮像タイミング(過去時刻t-Δt、現在時刻t)における各撮像画像(撮像領域)521,522の間の相関の有無を表したものであり、相関を有する場合には「○」、相関がない場合には「×」が記載されている。例えば、過去時刻t-Δtにおける領域1と現在時刻tにおける領域2の組み合わせに「○」が記載されることにより、前述した撮像画像521-1と撮像画像522-2とが相関を有することが表されている。
図5及び図6によれば、撮像部230-1による撮像画像521-1は、時間Δtが経過したとき、撮像部230-1による撮像画像522-1との間には相関がなく、1つ隣の撮像領域を有する撮像部230-2による撮像画像522-2との間に相関を有している(少なくとも一部が重複している)。そして、相関を有する撮像画像521-1と撮像画像522-2とは、移動経路方向にΔy’だけずれている。したがって、移動量算出部330は、時間Δtの経過に伴う同一の撮像部による撮像画像の移動量Δyを、時間Δtの経過の前後で相関関係を有する撮像画像521,522(相関画像)間のずれΔy’に、相関画像を撮像した撮像部230の同一時刻での撮像領域の中心の間隔(具体的には例えば、時刻t-Δtにおける撮像部230-1の撮像領域521-1の中心と、撮像部230-2の撮像領域521-2の中心との距離であり、Lobs+Lgap)を加えることによって、算出することができる。なお、第1の実施形態では、後述する図14や図15に示すように、n個の撮像部230が移動行路方向に直列に配置されるため、上記した「撮像領域の中心の間隔」は、対応する撮像部230の中心(例えば光軸)の間隔に置き換えても算出可能である。そして、上記のようにして算出される移動量Δyは、移動体(エレベーターかご120)の移動量である。なお、図5、図6の例では、同一の撮像部230による撮像画像の時間経過に伴う移動幅は、撮像領域1つ分であったが、例えば撮像領域2つ分の移動幅であった場合は、ずれΔy’に、Lobs+Lgapの2倍を加えることにより、移動量Δyを算出することができる。
また、本実施形態において、LgapはLobsを超えないように構成される(Lgap≦Lobs)。すなわち、計測装置110では、隣り合う撮像領域の中心の間隔Lobs+Lgapは、移動方向における撮像領域の辺の長さLobsの2倍以下となるように(Lobs+Lgap≦2×Lobs)、複数の撮像部230が配置される。このような構成とすることにより、過去時刻t-Δtにおける各撮像領域521の隙間に、現在時刻tにおける各撮像領域522が位置してしまい、撮像画像間で全く相関が得られない、という状況を防ぐことができる。
図7は、撮像タイミングのゲート信号及び撮像画像の入力信号の送信タイミングの一例を示すタイミングチャートである。図7には、タイミング制御部310から複数の撮像部230-k(k=1,2,・・・,n)に送信されるタイミング信号(ゲート信号)と、複数の撮像部230-kから対応する画像生成部320-k(k=1,2,・・・,n)に送信される、暗視野画像の撮像画像521-k(k=1,2,・・・,n)を示す画像信号(入力信号)とについて、各信号の送受信のタイミングを比較できるタイミングチャートが示されている。
図7に示すように、画像処理部240のタイミング制御部310は、撮像部230に対して、フレーム周期Δtごとに、ゲート信号710を送信する(図7のゲート信号710-1,710-2)。そして、撮像部230は、タイミング制御部310から送信されたゲート信号710のパルスに応答して、パルス幅Tの時間だけ露光を行って(露光時間T)、撮像面に結像された光信号を撮像する。計測装置110では、複数の撮像部230の撮像タイミングにゲート信号710を利用することにより、撮像画像の同時性を担保することができる。そして、撮像した撮像画像521-k(k=1,2,・・・,n)は、電気信号として、それぞれの撮像部230に対応する画像生成部320-kに並列に送信される。撮像画像の画素数をN×Nとし、転送クロック時間をtclkとすると、その転送時間は少なくともN×N×tclkだけかかる。本構成では、並列に撮像画像を転送することにより、同一タイミングに複数の撮像部230で撮像した複数の撮像画像521を複数の画像生成部320に転送する際に要する転送時間を、単一の撮像部230が設けられる構成の場合と同程度に短く維持することができる。
なお、本実施形態に係る計測装置110では、タイミング制御部310から撮像部230へのゲート信号710の送信と並行して、タイミング制御部310から光送信部210にもゲート信号710を送信し、ゲート信号710を受信した光送信部210が、露光時間Tの間だけ光源を点灯するようにしてもよい。このような点灯制御を行うことにより、光送信部210の単位時間あたりの平均出力パワーを下げることができるため、駆動に必要なパワー及び放熱を抑制する効果が得られる。
図8は、移動量算出部330の内部構成例を示す図である。図8に示すように、移動量算出部330は、複数の記憶素子800-k(k=1,2,・・・,n)、n×n個(n≧2)の相関計算部810-(k,l)(k,l=1,2,・・・,n)、及び統合計算部820を含んで構成される。
記憶素子800-kには、対応する画像生成部320-kから送信される暗視野画像I(i)(k=1,2,・・・,n)を表す画像信号を受信し、格納する。なお、記憶素子800には、画像処理部240または計測装置110内の全体的な制御部(不図示)に含まれるレジスタ等の揮発性メモリを用いてもよく、あるいは、画像処理部240または計測装置110に外部接続された不揮発性メモリ等を用いてもよい。また、本説明では、記載の簡略のために、暗視野画像Iを単に画像Iと表記することがある。
移動量算出部330は、記憶素子800-kに格納されたフレームiの暗視野画像I(i)を記憶素子800から読み出すとともに、フレームiよりも前に記憶素子800に格納されたフレーム(i-j)の暗視野画像I(i-j)を記憶素子800から読み出し、読み出した暗視野画像I(i)と暗視野画像I(i-j)とを、n×n個の相関計算部810-(k,l)にそれぞれ入力する。なお、フレーム(i-j)の暗視野画像I(i-j)の選択方法については、フレームiの1フレーム前の暗視野画像を選択するようにしてもよいし(j=1)、複数フレーム前の暗視野画像を選択するようにしてもよい(j=2以上の整数)。
次に、相関計算部810-(k,l)は、入力された暗視野画像I(i)と暗視野画像I(i-j)との相互相関関数C(k,l)を計算する。相互相関関数の計算方法は、特定の計算方法に限定されない。そして相関計算部810-(k,l)は、相互相関関数C(k,l)から、暗視野画像I(i)と暗視野画像I(i-j)との相互相関の有無を判定し、さらに、相互相関関数C(k,l)のピーク座標位置Δy’(k,l)とを推定し、これらの結果を統合計算部820に送信する。相互相関の有無の判定方法としては、例えば、相互相関関数における雑音の程度から定まる閾値に対して、相互相関関数C(k,l)のピークの値が大きい場合は相関有りと判定し、小さい場合は相関無しと判定する方法が挙げられる。
上述したように、統合計算部820は、n×n個の相関計算部810-(k,l)から、各組(k,l)における相互相関の有無と、相互相関関数C(k,l)(k,l=1,2,・・・,n)のピーク座標位置Δy’(k,l)と、を受信する。このとき受信するピーク座標位置Δy’(k,l)は、k×lの各組み合わせによる暗視野画像I(i)と暗視野画像I(i-j)との間のずれを示すものであり、相互相関を有する組(k,l)におけるピーク座標位置Δy’は、図5で説明したずれΔy’に相当する。そこで、統合計算部820は、受信した相互相関の有無を、図6に示した相関表610等の形式に整理し、さらに、相互相関を有する組(k,l)に基づいて、図5,図6を参照しながら前述した方法によって移動量Δyを算出し、算出した移動量Δyを通信部340に送信する。
なお、統合計算部820は、移動量Δyとは別に、あるいは移動量Δyに加えて、移動量Δyにさらなる演算処理を行って得られる結果を通信部340に送信するようにしてもよい。例えば、統合計算部820は、移動量Δyをフレーム時間j×Δtで除算することによって算出される速度または加速度を送信するようにしてもよいし、マーク認識等の方法で計測した基準位置に移動量Δyを累積することで算出される位置情報を送信するようにしてもよい。
以上、図8に示したように、本実施形態の移動量算出部330は、n×n個(n≧2)のマトリクス状の相関計算部810-(k,l)を設け、並列に相互相関関数C(k,l)の計算を行う構成とすることにより、移動体(エレベーターかご120)の移動量Δyを算出する演算処理の処理時間を、単一の相関計算部810が設けられる構成の場合と同程度に短く維持することができる。
図9は、移動量算出部330による移動量算出処理の処理手順例を示すフローチャートである。図9に示す移動量算出処理は、時間Δtが経過する間の移動体(エレベーターかご120)の移動量Δyを算出する処理である。なお、以下では一例として、相関関数法による移動量算出処理について説明するが、本実施形態における移動量Δyの算出方法は、相関関数法を用いるものに限定されるものではない。
移動量算出部330は、タイミング制御部310から測定開始の信号を受信したことをトリガとして図9に示す移動量算出処理を開始し、まず、フレームiごとに全ての暗視野画像I(i)を画像生成部320-kから並列に取得し、取得したフレームiの暗視野画像I(i)を、移動量算出部330内の記憶素子800-kに格納する(ステップS901)。
次に、移動量算出部330は、ステップS901で記憶素子800-kに格納したフレームiの暗視野画像I(i)を記憶素子800-kから読み出すとともに、フレームiよりも前に記憶素子800に格納されたフレーム(i-j)の暗視野画像I(i-j)を記憶素子800から読み出し、読み出した暗視野画像I(i)と暗視野画像I(i-j)とを、n×n個の相関計算部810-(k,l)にそれぞれ入力する(ステップS902)。なお、最新の画像I(i)との差分をとる画像I(i-j)の選択方法は、1フレーム前の画像を選択するようにしてもよいし(j=1)、複数フレーム前の画像を選択するようにしてもよい(j=2以上の整数)。
次に、n×n個(n≧2)のマトリクス状の相関計算部810-(k,l)は、ステップS902で入力された暗視野画像I(i)と暗視野画像I(i-j)との相互相関関数C(k,l)を、k×lの全ての組み合わせに対して並列に計算する(ステップS903)。なお、相互相関関数Cの計算は他の計算方法を採用してもよい。
次に、それぞれの相関計算部810-(k,l)は、ステップS903で計算した相互相関関数C(k,l)から、暗視野画像I(i)と暗視野画像I(i-j)との相互相関の有無を判定し、さらに、相互相関関数C(k,l)のピーク座標位置のy成分(昇降方向と同じ方向の成分)であるピーク座標位置Δy’(k,l)を推定する(ステップS904)。
なお、ステップS904で推定されるそれぞれのピーク座標位置Δy’(k,l)は、k×lの各組み合わせによる暗視野画像I(i)と暗視野画像I(i-j)との間のずれを示すものであり、そのうち、相互相関を有する組(k,l)におけるピーク座標位置Δy’は、図5で説明したずれΔy’(移動量Δy’)に相当するものである。また、ステップS904においてピーク座標位置のy成分から移動量Δy’(k,l)を推定する方法は、特定の方法に限定されない。例えば、最大位置のピーク座標から推定してもよいし、最大位置近傍の数点を用いて最小二乗フィッティングを行って推定する等してもよい。
次に、移動量算出部330では、ステップS904における相互相関の有無の判定結果及びピーク座標位置Δy’(k,l)の推定結果が、それぞれの相関計算部810-(k,l)から結果を統合計算部820に入力され、統合計算部820は、これらの入力情報を用いて、エレベーターかご120の移動量Δyを算出する(ステップS905)。
ステップS905における移動量Δyの算出方法を詳しく説明すると、まず、統合計算部820は、相互相関の有無を整理し、相互相関を有する組(k,l)に対応するピーク座標位置Δy’(k,l)を抽出する。前述したように、このようにして抽出されたピーク座標位置Δy’(k,l)は、図5で説明した移動量Δy’に相当する。そこで、統合計算部820は、移動量Δy’にLobs+Lgapの2倍を加えることにより、相互相関を有する組(k,l)のそれぞれについて、撮像画像間の移動量Δyを算出することができる(Δy=Δy’+(Lobs+Lgap)×2)。このようにして算出されたそれぞれの移動量Δyは、理論上は全て同一の値になるが、実際には多少の差異が生じることもあり得る。そのような場合、統合計算部820は、算出された各移動量Δyの平均値をとる等して、最終的な1つの移動量Δyを決定すればよい。
また、ステップS905において、統合計算部820は、算出した移動量Δyを、暗視野画像I(i-j)の撮像時刻から暗視野画像I(i)の撮像時刻までの経過時間j×Δtによって除算することで、エレベーターかご120の移動速度Vを計算する等してもよい(V=Δy/(j×Δt))。
そして、統合計算部820は、ステップS905で算出したエレベーターかご120の移動に関する情報(かご移動関連情報とも称する。具体的には例えば、移動量Δyや移動速度V)を通信部340に出力する(ステップS906)。さらにステップS906では、タイミング制御部310が、フレームiのi値を「1」加算する。
その後、移動量算出部330は、計測装置110(例えば画像処理部240)に電源が供給されている状態であるか否かを確認し(ステップS907)、電源が供給されている限りは(ステップS907のYES)、ステップS901~S906の処理を繰り返し、電源供給が遮断された場合は(ステップS907のNO)、移動量算出処理を終了する。
以上、図9のステップS901~S907の処理が実行されることにより、移動量算出部330は、計測装置110に電源が供給されている間は継続的に、各フレームにおけるかご移動関連情報を算出し、出力することができる。
(1-3)光送信部210及び結像部220の構成
図10及び図11は、光送信部210及び結像部220と静止構造物との配置関係を説明するための図(その1,その2)である。本例において静止構造物はガイドレール140である。
図10において、光送信部210は、光源の光軸が、ガイドレール140の凹凸方向(図中のx軸方向)とガイドレール140の表面から垂直な方向(図中のz軸方向)とで張られる面内(図中のxz面内)のうち、z軸方向に対して傾斜して入射するように配置されている。そして、結像部220は、ガイドレール140の表面(撮像領域1010)からの散乱光を取り込み、撮像部230の撮像面に結像させる。なお、上記したガイドレール140における凹凸とは、例えば、ガイドレール140の加工時の仕上げで行われる研磨加工による傷などが挙げられ、ガイドレール140上に存在する特徴的な傷を表す。
図11は、図10の俯瞰図に示した配置構成をy軸正方向から見た平面図である。図11では、光送信部210からの出射光線(ガイドレール140に対して入射する入射光)をL1~L3で示し、ガイドレール140からの散乱光線(散乱光)をL11~L13で示している。
図12及び図13は、光送信部210及び結像部220と静止構造物との配置関係から得られる散乱輝度の増幅効果を説明するための概念図(その1,その2)である。図10,図11と同様、本例における静止構造物はガイドレール140である。
図12は、本実施形態に係る計測装置110における光送信部210及び結像部220の配置例を示すものであり、光送信部210がxz面内に配置される。一方、図12と比較するために、図13には、ガイドレール140の凹凸方向に対して垂直な面内(図中のyz面内)に、光送信部210の光軸を含む方向から光線を照射したときの配置例を示している。
図13の配置例の場合は、光送信部210からの出射光線1310が、静止構造物(ガイドレール140)の凹凸に沿った方向に光線が入射するため、ガイドレール140からの散乱光線1320は上記凹凸による散乱が起こりにくい。これに対して、本実施形態における図12の配置例の場合は、光送信部210からの出射光線1210が、ガイドレール140の凹凸方向に対して斜め方向から入射するため、ガイドレール140からの散乱光線1220は上記凹凸による散乱が起こりやすく、散乱輝度を大きく増幅させる効果に期待できる。
図14は、第1の実施形態における結像部220の配置構成の一例を示す図である。図14では、ガイドレール140からの散乱光の光線が矢印付きの破線で示されており、これは、後述する図15でも同様である。
図14に示すように、結像部220は、対物レンズ1421及び絞り1422を含んで構成され、ガイドレール140からの散乱光を撮像部230に結像する。具体的には、対物レンズ1421は、ガイドレール140に相対向して配置され、ガイドレール140で散乱した散乱光を集光する。絞り1422は、対物レンズ1421で集光された散乱光の光量を制限し、撮像部230の撮像面に向けて送出する。
図14に示す配置構成では、n個(n≧2)の結像部220が用いられ、これらの結像部220は、それぞれに対応する撮像領域1430が移動体(エレベーターかご120)の移動行路方向に等間隔で直列に配置され、撮像領域1430からの散乱光を撮像部230に結像するように、移動行路方向に直列に配置される。なお、前述した説明と同様、撮像領域1430の移動行路方向の辺の長さをLobsとし、隣り合う撮像領域1430の間隔をLgapとし、これらは後述する図15,図17~図19でも同様である。
図14に示す配置構成を実現するために具体的には、隣り合う撮像領域の撮像画像(例えば、撮像領域1430-1の撮像画像と撮像領域1430-2の撮像画像)が、移動行路方向にLgapだけ離れた位置となるように、結像部220における焦点距離、倍率、及び隣り合う結像部220間の距離(例えば、結像部220-1と結像部220-2との距離)を定める。すなわち、隣り合う結像部220の中心の間隔(例えば、図14における光軸L1400-1と光軸L1400-2との距離)が、Lobs+Lgapとなるように、結像部220を配置する。但し、図5を参照しながら前述したように、本実施形態において、LgapはLobsを超えない(Lgap≦Lobs)。
なお、本実施形態に係る計測装置110における複数の結像部220の配置構成は、図14の例に限定されるものではない。そこで、結像部220の配置構成の別例について、図15を参照しながら説明する。
図15は、第1の実施形態における結像部220の配置構成の別例を示す図である。図15に示す計測装置110Aは、本実施形態に係る計測装置110の別例であって、複数の結像部220が図14とは異なる構成で配置されている。
図15に示すように、計測装置110Aにおいて結像部220は、対物レンズ1521及び絞り1522を含んで構成され、ガイドレール140からの散乱光を撮像部230に結像する。具体的には、対物レンズ1521は、ガイドレール140に相対向して配置され、ガイドレール140で散乱した散乱光を集光する。絞り1522は、対物レンズ1521で集光された散乱光の光量を制限し、撮像部230の撮像面に向けて送出する。
図15に示す配置構成では、n個(n≧2)の結像部220が用いられ、これらの結像部220は、それぞれに対応する撮像領域1530(移動行路方向の辺の長さはLobs)が移動行路方向に間隔をあけずに直列に配置され、撮像領域1530からの散乱光を撮像部230に結像するように、移動行路方向に直列に配置される。
図15に示す配置構成を実現するために具体的には、隣り合う撮像領域の撮像画像(例えば、撮像領域1530-1の撮像画像と撮像領域1530-2の撮像画像)が、移動行路方向で隣接または部分的に重複するように、結像部220における焦点距離、倍率、及び隣り合う結像部220間の距離(例えば、結像部220-1と結像部220-2との距離)を定める。すなわち、隣り合う結像部220の光軸間の距離(例えば、図15における光軸L1500-1と光軸L1500-2との距離)がLobs以下(換言すればLgap≦0)となるように、結像部220を配置する。但し、図5を参照しながら前述したように、本実施形態において、LgapはLobsを超えない(Lgap≦Lobs)。図15では、分かりやすさのため、隣接する結像部220の光軸L1500間の距離がLobsに等しくなるケースを表しており、この場合、Lgap=0となり、隣り合う撮像領域1530が隣接する。また、隣接する結像部220の光軸L1500間の距離がLobsより小さくなるケースでは、Lgap<0となり、隣り合う撮像領域1530が部分的に重複する。
図15の配置構成に示すように、隣り合う撮像画像同士が接する(または部分的に重複する)ようにすることで、現在時刻における撮像画像と過去時刻における撮像画像との相互相関関数Cを計算するときに、図14の配置構成のように撮像画像の間に間隔が生じる場合と比べて、共通する領域の面積を増やすことができ、相互相関関数Cのピーク値(ピーク座標位置Δy’)を増大する効果が得られる。その結果、ピーク座標位置Δy’の推定精度を高めることができることから、ピーク座標位置Δy’を用いて算出される移動量Δyも、より高精度に算出することができる。
(1-4)計測装置110の測定レンジ
本実施形態に係るエレベーターシステム10は、計測装置110を利用することにより、エレベーターかご120が超高速で移動する仕様である場合にも、エレベーターかご120の速度を高精度かつ短時間で検出することができる。以下ではその理由について、詳しく説明する。
図16は、計測装置110によるエレベーターかご120の最大計測可能速度の導出を説明するための模式図である。図16の例では、計測装置110は、4つの撮像部230を備えるとする。撮像画像1621,1622は、ガイドレール140の表面の散乱輝度分布1611,1612を被写体として、撮像部230で撮像した画像である。より具体的には、例えば、撮像画像1621-1は、過去時刻t-Δtにおいて撮像部230-1が撮像した画像であり、撮像画像1622-4は、現在時刻tにおいて撮像部230-4が撮像した画像である。
図16に示した例では、時刻t-Δtにおける上から1番目の撮像画像1621-1と、時刻tにおける上から4番目の撮像画像1622-4との間には、相関が生じているため、前述した比較処理を移動量算出部330が行うことにより、ずれΔy’を算出することができる。Δtの時間差で撮像領域に重複部分を有する撮像画像同士の比較処理によって算出可能な最大ずれ量Δy’Maxは、撮像領域の大きさ(Lobs)の半分である。すなわち、Δy’Max=Lobs/2である。
そして、図16の実例において算出可能な移動体の最大移動距離ΔyMaxは、上記の最大ずれ量Δy’Maxに、同一時刻で最も離れた撮像領域を撮像する2つの撮像部230の距離(具体的には、撮像部230-1の中心と撮像部230-4の中心との距離であり、Lobs+Lgapの3倍に相当する)を加えることにより、算出できる。すなわち、ΔyMax=Δy’Max+3×(Lobs+Lgap)である。
以上を踏まえると、計測装置110がn個の撮像部230を備える構成の場合、計測装置110が検出可能な最大移動距離ΔyMaxは、以下の式1で与えられる。
Figure 0007418369000001
また、計測装置110が移動体の移動距離Δyを計測する際の分解能δyは、撮像部230の撮像領域の移動経路方向(y軸方向)の画素数Nに応じて定まり、δy=Lobs/Nで与えられる。計測装置110の測定レンジrを、計測分解能δy=Lobs/Nに対する最大移動距離ΔyMaxの比で定義すると、n個の撮像部230を備える構成による計測装置110の測定レンジrは、以下の式2で与えられる。
Figure 0007418369000002
上記の式2によれば、n個の撮像部230を備える構成による計測装置110は、撮像箇所(撮像領域、撮像部)の個数nを増やすことにより、その測定レンジrを拡張することができる。
具体例を挙げると、計測装置110において、直列に配置する撮像部230の個数nが2、撮像領域の大きさLobsが12mm、y軸方向の画素数Nが100、隣り合う撮像領域(撮像画像)間の距離Lgapが2mm、フレーム周期Δtが1ミリ秒であるとするとき、計測装置110が計測可能な最大移動距離ΔyMaxは20mm、移動距離の分解能δyは0.12mmとなり、計測装置110が計測可能な最大移動速度は毎分1200mとなる。
また、計測装置110におけるデータ更新速度について、x軸方向の画素数N及びy軸方向の画素数Nがともに100のセンサを用い、転送クロック時間tclkを200ナノ秒とすると、計測装置110において並列転送に要する時間は2ミリ秒となる。この結果、画像処理部240における並列演算に要する時間を別途考慮しても、計測装置110においてデータ更新に要する時間を、数ミリ秒(例えば4ミリ秒)以下に抑えることが可能となる。
なお、上述した本実施形態に係る計測装置110における計算結果との比較のために、単一の撮像部230を備えた従来構成の計測装置でも同様の計算を行うと(n=1で計算すると)、従来の計測装置が計測可能な最大移動速度ΔyMaxは、ΔyMax=Lobs/2の結果6mmとなり、計測可能な最大移動速度は毎分360mとなる。このような計算結果によれば、本実施形態に係る計測装置110は、従来構成の計測装置に比べて、計測可能な移動体の移動速度を3.3倍に高めることが可能となり、毎分360mを超える超高速エレベーター向けに有用な構成であることが確認できる。
以上に説明したように、本実施形態に係るエレベーターシステム10によれば、移動体(エレベーターかご120)が移動する際、移動体に搭載された計測装置110が、ガイドレール140を撮像した際の暗視野画像に対して、図9に示した移動量算出処理等を行うことにより、移動行路における移動体の移動に係る情報(かご移動関連情報)の計測を、画像転送処理と位置及び速度の算出演算処理とにかかる処理時間の増大を抑えつつ、計測可能な測定レンジを向上させて実現することができる。その結果、計測装置110は、超高速エレベーターのように移動体が高速で移動可能な場合であっても、移動体の移動距離及び/または移動速度を、高速かつ高精度に計測することができるため、エレベーターシステム10では、計測装置110が算出した移動体の移動に係る情報(かご移動関連情報)に基づいて、所定の制御部(エレベーター制御部130)が移動体の運行制御や安全装置の制御を行うことができる。
詳しくは、本実施形態に係るエレベーターシステム10がエレベーターかご120を安全に運行する移動体運行方法は、例えば以下の各工程によって実現することができる。すなわち、計測装置110が、エレベーターかご120の移動速度を計測してエレベーター制御部130に送信する第1工程と、エレベーター制御部130が、第1工程で計測装置110から受信したエレベーターかごの移動速度が運行可能な閾値速度を超えたか否かを判定する第2工程と、エレベーター制御部130が、第2工程でエレベーターかご120の移動速度が閾値速度を超えたと判断した場合に、非常止めを作動させる信号を安全装置に送信する第3工程と、安全装置が非常止めを作動させてエレベーターかご120を停止させる第4工程と、を備えることにより、エレベーターシステム10は、エレベーターかご120の移動速度が所定の閾値速度を超えた場合に、エレベーターかご120を非常停止させることができる。
(2)第2の実施形態
図17は、第2の実施形態に係る計測装置1700における結像部1720の配置構成例を示す図である。
第2の実施形態に係る計測装置1700(あるいは、図18で後述する計測装置1800)は、第1の実施形態に係る計測装置110における結像部220に代えて、エレベーターかご120のz軸方向の揺れに対して撮像部230における結像倍率を不変に保つことができる、ロバストな結像部1720(あるいは結像部1820)を備える点を特徴とする。なお、第1の実施形態に係る計測装置110がn個(n≧2)の結像部220を備えるのと同様に、第2の実施形態に係る計測装置1700はn個(n≧2)の結像部1720を備え、計測装置1800はn個(n≧2)の結像部1820を備える。そして、第2の実施形態に係る計測装置1700,1800のその他の構成については、第1の実施形態に係る計測装置110と同様であるため、詳細な説明は省略する。
図17では、ガイドレール140からの散乱光の光線が矢印付きの破線で示されている。図17に示すように、結像部1720は、ガイドレール140からの散乱光を撮像部230に結像する。具体的には、対物レンズ1721は、ガイドレール140に相対向して配置され、ガイドレール140で散乱した散乱光を集光する。絞り1722は、対物レンズ1721で集光された散乱光の光量を制限し、撮像部230の撮像面に向けて送出する。
図17に示すように、計測装置1700において、結像部1720は、被写体(検出対象)となるガイドレール140がエレベーターかご120に対して相対的にz軸方向にぶれたときの倍率の変化の影響をなくすために、少なくとも物体側(ガイドレール140側)をテレセントリックな光学配置とする。
すなわち、計測装置1700では、撮像部230の撮像面の中心、絞り1722の中心、及び対物レンズ1721の光軸が、同一直線上に位置するように配置され、かつ、絞り1722が対物レンズ1721の撮像部230側の焦点位置に配置される。なお、図17の配置構成の場合、各撮像部230に対応する撮像領域1730には、移動方向に間隔Lgapが生じる。
図18は、第2の実施形態に係る計測装置1800における結像部1820の配置構成例を示す図である。前述したように、計測装置1800は、第2の実施形態に係る計測装置1700の別例であり、結像部1720とは異なる構造の結像部1820を複数備える点で、計測装置1700とは異なる。
図18では、ガイドレール140からの散乱光の光線が矢印付きの破線で示されている。図18に示すように、結像部1820は、ガイドレール140からの散乱光を撮像部230に結像する。具体的には、結像部1820は、対物レンズ1821(第1のレンズ)と、絞り1822と、集光レンズ1823(第2のレンズ)とを備えて構成される。対物レンズ1821は、ガイドレール140に相対向して配置され、ガイドレール140で散乱した散乱光を集光する。絞り1822は、対物レンズ1821で集光された散乱光の光量を制限する。集光レンズ1823は、絞り1822と撮像部230との間に配置され、絞り1822で光量が制限された散乱光を集光し、集光した散乱光を撮像部230の撮像面に向けて送出する。
図18に示すように、計測装置1800において、結像部1820は、被写体(検出対象)となるガイドレール140がエレベーターかご120に対して相対的にz軸方向にぶれたときの倍率の変化の影響をなくすために、物体側(ガイドレール140側)をテレセントリックな光学配置とするとともに、撮像部230で生じる幾何収差を抑えるために、2枚以上のレンズによって撮像部230に結像する。またさらに、結像部1820は、像側(撮像部230側)もテレセントリックな光学配置にしてもよく、この場合は、撮像部230の取付時におけるz軸方向の寸法公差(z軸方向の取付公差)を広げる役割を果たす。
すなわち、計測装置1800では、撮像部230の撮像面の中心、集光レンズ1823の光軸、絞り1822の中心、及び対物レンズ1821の光軸が、同一直線上に位置するように配置され、かつ、絞り1822が、対物レンズ1821の撮像部230側の焦点位置に配置されるとともに、集光レンズ1823の対物レンズ1821側の焦点位置に配置される。なお、図18の配置構成の場合、各撮像部230に対応する撮像領域1830には、移動方向に間隔Lgapが生じる。
以上に説明したように、本実施形態に係る計測装置1700(または計測装置1800)は、エレベーターかご120のz軸方向の揺れに対してロバストな、テレセントリックな光学配置の結像部1720(または結像部1820)を備えることにより、ガイドレール140の画像が光軸方向(z軸方向)にぶれても、撮像部230の撮像面で結像する像の倍率を不変にすることができる。さらに、計測装置1700(または計測装置1800)は、撮像部230のz軸方向の取付位置のずれに対しても、撮像部230の撮像面で結像する像の倍率を不変にする構成とすることもできる。これらの結果として、計測装置1700(または計測装置1800)は、結像部1720(または結像部1820)及び撮像部230の取付時の寸法公差を大きく取ることができ、よりロバストな光学系を構成することができる。
また、計測装置1800のように、結像部1820に、対物レンズ1821及び集光レンズ1823を含む複数枚のレンズを用いることにより、撮像部230で生じる結像部1820の幾何収差の影響を小さくすることにも期待できる。
また、本実施形態では、結像部1720(または結像部1820)において、対物レンズ1721(または対物レンズ1821)を、両側が球面、あるいは片側が球面で他方の片側を平面とし、かつ、ガラスレンズとして構成してもよい。また、集光レンズ1823についても、光線が通過する面の形状を、両側が球面、あるいは片側が球面で他方の片側を平面とし、かつ、ガラスレンズとして構成してもよい。このような構成を採用することにより、本実施形態に係る計測装置1700(または計測装置1800)は、より安価で高い耐久性を有する結像部1720(または結像部1820)を構成することができる。
また、本実施形態に係る計測装置1700(または計測装置1800)は、結像部の配置構成以外は、第1の実施形態に係る計測装置110と同様に構成されることから、第1の実施形態と同様に、超高速エレベーターのように移動体が高速で移動可能な場合であっても、移動体の移動距離及び/または移動速度を、高速かつ高精度に計測することができる。その結果、本実施形態に係る計測装置1700(または計測装置1800)を配置したエレベーターシステムでは、計測装置が算出した移動体の移動に係る情報(かご移動関連情報)に基づいて、所定の制御部(エレベーター制御部130)が移動体の運行制御や安全装置の制御を行うことができる。
(3)第3の実施形態
図19は、第3の実施形態に係る計測装置1900における結像部1920の配置構成例を示す図である。
第3の実施形態に係る計測装置1900は、第2の実施形態と同様に、エレベーターかご120のz軸方向の揺れに対して撮像部230における結像倍率を不変に保つことができる、ロバストな結像部1920を備え、かつ、隣り合う撮像画像同士が接するようにn個(n≧2)の結像部1920を配置する点を特徴とする。そして、第3の実施形態に係る計測装置1900のその他の構成については、第1の実施形態に係る計測装置110と同様であるため、詳細な説明は省略する。
図19では、ガイドレール140からの散乱光の光線が矢印付きの破線で示されている。また、図19では、分かりやすさのため、計測装置1900が3つの結像部1920(1920-1~1920-3)を備える場合について、その配置構成例を示している。
図19では、ガイドレール140からの散乱光の光線が矢印付きの破線で示されている。図19に示すように、計測装置1900では、結像部1920とガイドレール140との間にビームスプリッタ1940を配置するため、ガイドレール140からの散乱光はビームスプリッタ1940によって分割される。結像部1920-1と結像部1920-3は、ガイドレール140の表面で散乱された散乱光のうち、ビームスプリッタ1940により分割された透過光を、撮像部230-1,230-3の撮像面にそれぞれ結像させる光学系として構成されている。一方、結像部1920-2は、ガイドレール140の表面で散乱された散乱光のうち、ビームスプリッタ1940により分割された反射光を、撮像部230-2の撮像面に結像させる光学系として構成されている。
図19に示すように、本実施形態における結像部1920は、第2の実施形態における結像部1720と同様に、被写体(検出対象)となるガイドレール140がエレベーターかご120に対して相対的にz軸方向にぶれたときの倍率の変化の影響をなくすために、少なくとも物体側(ガイドレール140側)をテレセントリックな光学配置とする。
ここで、テレセントリックな光学配置では、被写体(検出対象)となるガイドレール140の表面に対して、主光線(散乱光線L1901~L1903)が垂直になるという特徴がある。主光線以外の散乱光線は主光線を中心に広がり、結像部1920に入射するため、図19のように結像部1920の受光面は、撮像領域1930の移動行路方向の辺の長さLobsに比べて大きくなる。そのため、第2の実施形態で図17や図18に示した配置構成では、第1の実施形態で図15に示した配置構成のように隣り合う撮像領域が接する配置関係まで、結像部1720や結像部1820を空間的に近付けることができなかった。
上記問題に対して、第3の実施形態では、図19に示すようにビームスプリッタ1940を設けて散乱光を分割することにより、物体側(ガイドレール140側)にテレセントリックな構成と、隣り合う撮像領域1930(撮像画像と読み替えてもよい)が接する構成とを両立することが可能となる。
なお、ビームスプリッタ1940は、ハーフミラーのように透過率と反射率が1:1となるような光学素子を用いてもよい。
また、ビームスプリッタ1940は、偏光ビームスプリッタのように、偏光により反射と透過が入れ替わる光学素子を用いることも可能である。この場合には、光送信部210(図19には不図示)から出射される光の偏光を、対応する撮像部230の配置によって変えるとよい。例えば、ビームスプリッタ1940を透過する光の偏光を、例えばy軸方向になるように、ビームスプリッタ1940の方向を定める。そして、撮像部230-1,230-3により撮像する撮像領域1930-1,1930-3には、ビームスプリッタ1940によってy軸方向に偏光した光が入射するように、そして、撮像部230-2により撮像する撮像領域1930-2には、ビームスプリッタ1940によってx軸方向に偏光した光が入射するように、光送信部の偏光を定める。
以上に説明したように、本実施形態に係る計測装置1900は、エレベーターかご120のz軸方向の揺れに対してロバストな、テレセントリックな光学配置の結像部1920を備えることにより、第2の実施形態と同様に、ガイドレール140の画像が光軸方向(z軸方向)にぶれても、撮像部230の撮像面で結像する像の倍率を不変にすることができる。
また、本実施形態に係る計測装置1900は、結像部1920とガイドレール140との間にビームスプリッタ1940を配置することにより、結像部1920をテレセントリックな光学配置とした場合でも、隣り合う撮像領域1930(撮像画像)が接するように配置することができる。この結果、相互相関関数Cを計算する際に撮像画像間で共通する領域の面積を増やすことができるため、移動体の移動量Δyや移動速度の計測精度を高めることができる。
また、本実施形態に係る計測装置1900は、結像部及び撮像部の配置構成以外は、第1の実施形態に係る計測装置110と同様に構成されることから、第1の実施形態と同様に、超高速エレベーターのように移動体が高速で移動可能な場合であっても、移動体の移動距離及び/または移動速度を、高速かつ高精度に計測することができる。その結果、本実施形態に係る計測装置1900を配置したエレベーターシステムでは、計測装置が算出した移動体の移動に係る情報(かご移動関連情報)に基づいて、所定の制御部(エレベーター制御部130)が移動体の運行制御や安全装置の制御を行うことができる。
(4)第4の実施形態
上述した第1~第3の各実施形態では、計測装置をエレベーターシステムにおけるエレベーターかご120の位置または移動速度を計測する装置に適用した場合について述べたが、本発明は上記用途に限定されるものではなく、その他種々のシステム、装置、方法、及びプログラムに広く適用することができる。
例えば、第1の実施形態に係る計測装置110(他の実施形態に係る計測装置でもよい)は、エレベーターの運行だけではなく、エレベーターかご120よりも高速で走行する自動車や列車等の車両(移動体)において、車両の位置や速度を高精度に検出する用途に適用することが可能である。例えば、自動運転車においては、高速道路における位置監視または速度監視の目的、あるいは、駐車場、ガソリンスタンド、または充電スタンド等における高精度な位置決定の目的で、計測装置110を適用することが可能である。
図20は、計測装置110を車両に適用した車両移動距離・速度検出システム2000の構成例を示す図である。
図20に示す車両移動距離・速度検出システム2000において、計測装置110は、路面2020内(例えば、線路上)を走行する車両2010(例えば、自動車や列車)の側部または底部に配置される。計測装置110は、車両2010の移動距離及び/または速度(車両2010の移動に係る情報)を計測し、車両2010の運行制御を行うために有用な信号情報を、車両制御部(不図示)に出力する。車両制御部は、例えば車両2010を安全に動作及び停止させるための運行制御を実施する。
以上のように計測装置110を車両2010に適用することにより、車両移動距離・速度検出システム2000は、より高速に移動する車両上からも、移動距離及び/または移動速度を高精度かつ短時間で測定することができるため、車両2010を安全に動作及び停止させる制御に役立てることができる。
また、例えば、第1の実施形態に係る計測装置110(他の実施形態に係る計測装置でもよい)は、クレーンの運行制御にも適用することが可能である。
図21は、計測装置110をクレーンに適用したクレーン移動距離・速度検出システム2100の構成例を示す図である。
図21に示すクレーン移動距離・速度検出システム2100において、計測装置110は、レール2120に沿って1軸方向に運行するクレーン2110の側部または底部に配置される。図21の場合、レール2120が静止構造物に相当する。
計測装置110は、レール2120の壁面を撮像し、クレーン2110の移動量または速度(クレーン2110の移動に係る情報)を計測し、クレーン2110の運行制御を行うために有用な信号情報を、クレーン制御部(不図示)に出力する。そしてクレーン制御部は、計測装置110から入力された情報に基づいて、クレーン2110の動作を監視し、位置異常や速度異常を検出する。
以上のように計測装置110をクレーン2110に適用することにより、クレーン移動距離・速度検出システム2100は、クレーン2110の運行制御においてその安全性を高めることができる。
なお、以上に述べた各実施形態は、本発明を分かりやすく説明するためのものであり、本発明の範囲を限定するものではない。例えば、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また例えば、各実施形態の構成の一部について、他の構成の追加、削除、置換等をすることが可能である。
また、上記の各構成、機能、処理部、処理手段等は、それらの一部または全部を、例えば、集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。
また、図面において制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際にはほとんど全ての構成が相互に接続されていると考えてもよい。
10 エレベーターシステム
110,110A,1700,1800,1900 計測装置
120 エレベーターかご
130 エレベーター制御部
140 ガイドレール
210 光送信部
220,1720,1820,1920 結像部
230 撮像部
240 画像処理部
310 タイミング制御部
320 画像生成部
330 移動量算出部
340 通信部
411,412,511,512,1611,1612 散乱輝度分布
421,422,1621,1622 撮像画像
521,522 撮像領域(撮像画像)
610 相関表
710 ゲート信号
800 記憶素子
810 相関計算部
820 統合計算部
1010,1430,1530,1730,1830,1930 撮像領域
1210,1310 出射光線
1220,1320 散乱光線
1421,1521,1721,1821 対物レンズ
1422,1522,1722,1822 絞り
1823 集光レンズ
1940 ビームスプリッタ
2000 車両移動距離・速度検出システム
2010 車両
2020 路面
2100 クレーン移動距離・速度検出システム
2110 クレーン
2120 レール

Claims (14)

  1. 移動路を移動する移動体に設置されて、前記移動体の移動距離及び/または移動速度を計測する計測装置であって、
    所定周期のフレームごとに発生されるゲート信号に応答して、前記移動路において前記移動体の移動方向に平行な第1の方向に沿って配置された静止構造物を照射する光を送信する光送信系と、
    前記光による前記静止構造物からの散乱光を撮像面に結像する結像系と、
    前記ゲート信号に基づく露光時間に亘って、前記撮像面に結像された散乱光の光信号を取り込み、電気信号に変換して撮像する撮像系と、
    前記ゲート信号を生成し、前記撮像系で変換された前記電気信号に基づいて前記移動体の移動距離及び/または移動速度を算出し送信する画像処理部と、
    を備え、
    前記撮像系が撮像する前記散乱光は、前記静止構造物において前記第1の方向に直列に配置されるn個(nは2以上の整数)の撮像領域からの散乱光である
    ことを特徴とする計測装置。
  2. 前記n個の撮像領域は、前記静止構造物において前記第1の方向に直列に、略同一の大きさで等間隔に配置され、
    隣り合う前記撮像領域の中心の間隔が、前記撮像領域の前記第1の方向の辺の長さの2倍以下とされる
    ことを特徴とする請求項1に記載の計測装置。
  3. 前記結像系は、前記第1の方向に沿って直列に配置されたn個の結像部を有し、
    前記撮像系は、前記第1の方向に沿って直列に配置されたn個の撮像部を有し、
    それぞれの前記結像部は、前記撮像領域からの散乱光を前記撮像系の撮像面に結像し、
    それぞれの前記撮像部は、時間的に同期した前記ゲート信号を受信すると、前記結像部によって前記撮像面に結像された散乱光を、当該ゲート信号の周期ごとに略同時に取り込む
    ことを特徴とする請求項1または請求項2に記載の計測装置。
  4. 前記結像系と前記静止構造物との間に配置されるビームスプリッタをさらに備え、
    前記結像系は、前記撮像領域からの散乱光を前記撮像系の撮像面に結像するn個の結像部を有し、
    前記撮像系は、時間的に同期した前記ゲート信号を受信すると、前記結像部によって前記撮像面に結像された散乱光を、当該ゲート信号の周期ごとに略同時に取り込むn個の撮像部を有し、
    前記n個の撮像部は、前記ビームスプリッタを透過した前記散乱光を取り込む第1の撮像部と、前記ビームスプリッタを反射した前記散乱光を取り込む第2の撮像部と、に分けられ、
    隣り合う前記撮像領域の中心の間隔が、前記撮像領域の前記第1の方向の辺の長さ以下とされる
    ことを特徴とする請求項1または請求項2に記載の計測装置。
  5. 前記ビームスプリッタは偏光式ビームスプリッタであり、
    前記光送信系は、前記第1の撮像部の撮像領域を照射する第1の光送信部と、前記第2の撮像部の撮像領域を照射する第2の光送信部と、を有し、
    前記第1の光送信部が出射する光の偏光方向は、前記偏光式ビームスプリッタが透過する偏光方向と略一致し、
    前記第2の光送信部が出射する光の偏光方向は、前記偏光式ビームスプリッタが反射する偏光方向と略一致する
    ことを特徴とする請求項4に記載の計測装置。
  6. それぞれの前記結像部は、
    前記撮像領域からの散乱光を集光する第1のレンズと、
    前記第1のレンズを透過した散乱光の光量を制限する絞りと、
    を有し、
    前記第1のレンズ及び前記絞りが、前記静止構造物側にテレセントリックに配置される
    ことを特徴とする請求項3から請求項5の何れか1項に記載の計測装置。
  7. 前記結像部は、
    前記撮像領域からの散乱光を集光する第1のレンズと、
    前記第1のレンズを透過した散乱光の光量を制限する絞りと、
    前記絞りと前記撮像部との間に配置され、前記絞りによって光量が制限された散乱光を集光する第2のレンズと、
    を有し、
    前記第1のレンズ、前記絞り、及び前記第2のレンズが、前記静止構造物側及び前記撮像部側の双方にテレセントリックに配置される
    ことを特徴とする請求項6に記載の計測装置。
  8. 前記画像処理部は、
    第1フレームにおいて撮像されたn個の第1撮像画像と、前記第1フレームよりも後の第2フレームにおいて撮像されたn個の第2撮像画像のうち、撮像領域が相関関係を有する前記第1撮像画像と前記第2撮像画像との画像上のずれを算出し、
    前記算出したずれに、前記第1撮像画像の撮像領域の中心と前記第2撮像画像の撮像領域の中心との距離を加算する加算演算を行い、
    前記加算演算による算出値を、前記第1フレームから前記第2フレームまでのフレーム間における前記移動体の前記移動距離とする
    ことを特徴とする請求項1から請求項7の何れか1項に記載の計測装置。
  9. 前記撮像系において前記n個の撮像部が前記第1の方向に沿って直列に配置されているとき、
    前記画像処理部は、前記加算演算において、
    前記算出したずれに、前記第1撮像画像を撮像した前記撮像部の中心と前記第2撮像画像を撮像した前記撮像部の中心との距離を加算する
    ことを特徴とする請求項8に記載の計測装置。
  10. 前記画像処理部は、撮像領域が相関関係を有する前記第1撮像画像と前記第2撮像画像の全ての組み合わせについて、各組み合わせに対する前記ずれの算出及び前記加算演算を並列処理で実行する
    ことを特徴とする請求項8または請求項9に記載の計測装置。
  11. 前記画像処理部は、前記加算演算による算出値を前記第1フレームから前記第2フレームまでの経過時間で除算した値を、前記第1フレームから前記第2フレームまでのフレーム間における前記移動体の前記移動速度とする
    ことを特徴とする請求項8から請求項10の何れか1項に記載の計測装置。
  12. 前記画像処理部が前記加算演算を用いて算出する前記移動距離及び/または前記移動速度の分解能に対する計測可能な最大量の比は、前記撮像領域の個数nの増加により、前記第1の方向に沿って拡張される
    ことを特徴とする請求項8から請求項11の何れか1項に記載の計測装置。
  13. 昇降路内を移動するエレベーターかごと、
    前記昇降路内に前記エレベーターかごの移動方向に平行な第1の方向に沿って配置されたガイドレールと、
    前記エレベーターかごの動作を制御するエレベーター制御部と、
    前記エレベーターかごに配置されて前記エレベーターかごの移動距離及び/または移動速度を計測する計測装置と、
    を備え、
    前記計測装置は、
    所定周期のフレームごとに発生されるゲート信号に応答して、前記ガイドレールを照射する光を送信する光送信系と、
    前記光による前記ガイドレールからの散乱光を撮像面に結像する結像系と、
    前記ゲート信号に基づく露光時間に亘って、前記撮像面に結像された散乱光の光信号を取り込み、電気信号に変換して撮像する撮像系と、
    前記ゲート信号を生成し、前記撮像系で変換された前記電気信号に基づいて前記エレベーターかごの移動距離及び/または移動速度を算出し、前記エレベーター制御部に送信する画像処理部と、
    を有し、
    前記撮像系が撮像する前記散乱光は、前記ガイドレールにおいて前記第1の方向に直列に配置されるn個(nは2以上の整数)の撮像領域からの散乱光である
    ことを特徴とするエレベーターシステム。
  14. エレベーターかごの運行を制御するエレベーターシステムによるエレベーター運行方法であって、
    前記エレベーターシステムは、昇降路内を移動するエレベーターかごと、前記昇降路内に前記エレベーターかごの移動方向に平行な第1の方向に沿って配置されたガイドレールと、前記エレベーターかごの動作を制御するエレベーター制御部と、前記エレベーターかごに配置されて前記エレベーターかごの移動速度を計測する計測装置と、前記エレベーターかごを非常止めによって停止させる安全装置と、を有し、
    前記計測装置は、所定周期のフレームごとに発生されるゲート信号に応答して、前記ガイドレールを照射する光を送信する光送信系と、前記光による前記ガイドレールからの散乱光を撮像面に結像する結像系と、前記ゲート信号に基づく露光時間に亘って、前記撮像面に結像された散乱光の光信号を取り込み、電気信号に変換して撮像する撮像系と、前記ゲート信号を生成し、前記撮像系で変換された前記電気信号に基づいて前記エレベーターかごの移動速度を算出し、算出した移動速度を前記エレベーター制御部に送信する画像処理部と、を有し、
    前記計測装置において、前記撮像系が撮像する前記散乱光は、前記ガイドレールにおいて前記第1の方向に直列に配置されるn個(nは2以上の整数)の撮像領域からの散乱光であり、前記画像処理部は、前記フレーム間における前記エレベーターかごの前記移動速度を算出して前記エレベーター制御部に送信するものであり、
    前記計測装置が、前記エレベーターかごの移動速度を計測して前記エレベーター制御部に送信する第1工程と、
    前記エレベーター制御部が、前記第1工程で計測装置から受信したエレベーターかごの移動速度が運行可能な閾値速度を超えたか否かを判定する第2工程と、
    前記エレベーター制御部が、前記第2工程で前記エレベーターかごの移動速度が前記閾値速度を超えたと判断した場合に、非常止めを作動させる信号を前記安全装置に送信する第3工程と、
    前記信号を受信した前記安全装置が、前記非常止めを作動させて前記エレベーターかごを停止させる第4工程と、
    を備える
    ことを特徴とするエレベーター運行方法。
JP2021029657A 2021-02-26 2021-02-26 計測装置、エレベーターシステム、及びエレベーター運行方法 Active JP7418369B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021029657A JP7418369B2 (ja) 2021-02-26 2021-02-26 計測装置、エレベーターシステム、及びエレベーター運行方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021029657A JP7418369B2 (ja) 2021-02-26 2021-02-26 計測装置、エレベーターシステム、及びエレベーター運行方法

Publications (2)

Publication Number Publication Date
JP2022130965A JP2022130965A (ja) 2022-09-07
JP7418369B2 true JP7418369B2 (ja) 2024-01-19

Family

ID=83153159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021029657A Active JP7418369B2 (ja) 2021-02-26 2021-02-26 計測装置、エレベーターシステム、及びエレベーター運行方法

Country Status (1)

Country Link
JP (1) JP7418369B2 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002274765A (ja) 2001-02-20 2002-09-25 Inventio Ag エレベータ制御を行うための昇降路情報を発生させる方法
WO2006073015A1 (ja) 2005-01-04 2006-07-13 Mitsubishi Denki Kabushiki Kaisha エレベータのボルト検出装置及びエレベータ装置、並びに移動体の位置・速度検出装置
WO2021038984A1 (ja) 2019-08-30 2021-03-04 株式会社日立製作所 計測装置、エレベータシステムおよび計測方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002274765A (ja) 2001-02-20 2002-09-25 Inventio Ag エレベータ制御を行うための昇降路情報を発生させる方法
WO2006073015A1 (ja) 2005-01-04 2006-07-13 Mitsubishi Denki Kabushiki Kaisha エレベータのボルト検出装置及びエレベータ装置、並びに移動体の位置・速度検出装置
JP2011073885A (ja) 2005-01-04 2011-04-14 Mitsubishi Electric Corp 移動体の位置・速度検出装置
WO2021038984A1 (ja) 2019-08-30 2021-03-04 株式会社日立製作所 計測装置、エレベータシステムおよび計測方法

Also Published As

Publication number Publication date
JP2022130965A (ja) 2022-09-07

Similar Documents

Publication Publication Date Title
JP7120976B2 (ja) 計測装置、エレベータシステムおよび計測方法
CN112219122B (zh) 移动体的速度计测装置以及电梯
US20180231364A1 (en) Brake Component Monitoring
JP6206957B2 (ja) トロリ線測定装置及びトロリ線測定方法
CA2370883C (en) Method of generating hoistway information to serve an elevator control
TWI407075B (zh) 量測立體物件之系統
CN106896370B (zh) 结构光测距装置及方法
JP2013205045A (ja) 車輪形状計測装置
JP7453883B2 (ja) 計測装置及び計測システム
JP7418369B2 (ja) 計測装置、エレベーターシステム、及びエレベーター運行方法
JP5587756B2 (ja) 光学式距離計測装置、光学式距離計測装置の距離計測方法および距離計測用プログラム
JP2015145186A (ja) 移動体管理装置
JP6850369B2 (ja) 車両床下部品撮像システム、および、車両床下部品撮像システムの設置方法
JP4668754B2 (ja) 交通流計測装置
JP6373074B2 (ja) マスク検査装置及びマスク検査方法
JP7312129B2 (ja) 計測装置、エレベーターシステム、および計測方法
JP5073529B2 (ja) 表面形状測定装置,表面形状測定方法
JP2010055628A (ja) 交通流計測装置
CN210625573U (zh) 一种列车底面三维高精度测量系统
JPH1019523A (ja) 踏面制輪子の計測装置
JP2024072575A (ja) 計測装置及びエレベーターシステム
WO2022244175A1 (ja) 形状測定装置
JP7385535B2 (ja) 画像処理装置、画像処理システムおよび画像処理装置の制御方法
AU2015252088B2 (en) Brake component monitoring
JPH0777419A (ja) 車両の偏倚量測定装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230206

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240109

R150 Certificate of patent or registration of utility model

Ref document number: 7418369

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150