JP7418366B2 - 電子線干渉計 - Google Patents

電子線干渉計 Download PDF

Info

Publication number
JP7418366B2
JP7418366B2 JP2021013885A JP2021013885A JP7418366B2 JP 7418366 B2 JP7418366 B2 JP 7418366B2 JP 2021013885 A JP2021013885 A JP 2021013885A JP 2021013885 A JP2021013885 A JP 2021013885A JP 7418366 B2 JP7418366 B2 JP 7418366B2
Authority
JP
Japan
Prior art keywords
electron beam
wave
interferometer
phase
waves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021013885A
Other languages
English (en)
Other versions
JP2022117274A (ja
Inventor
哲也 明石
由夫 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2021013885A priority Critical patent/JP7418366B2/ja
Publication of JP2022117274A publication Critical patent/JP2022117274A/ja
Application granted granted Critical
Publication of JP7418366B2 publication Critical patent/JP7418366B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

本発明は、電子線干渉計に関し、より具体的には電子線を用いた干渉技術に関する。
可視光線やレーザー光線または電子線を用いた干渉計は、光源から出射される一本の光線を二つの光線に分割して、当該二つの光線の間の位相差を測定する光学機器であり、従来から、試料の物理量計測や量子現象の観察に用いられている。
可視光線やレーザー光線を用いた干渉計において、一本の光線を二本に分ける手法としては、振幅分割形ビームスプリッターを用いるのが一般的である。例えば、振幅分割形干渉計のひとつであるマッハ・ツェンダー干渉計は、二つのビームスプリッターと二つのミラーで構成されている。
電子線を用いた干渉計では、直径1μm以下程度のフィラメント電極とその両側に配置された平行平板電極から構成される電子線バイプリズムを用いた波面分割形の電子線干渉計による電子線ホログラフィーが行われている。
この場合、はじめに、試料を透過した物体波と真空中を通過した参照波とを電子線バイプリズムを用いて重ね合わせることで、干渉縞(ホログラム)を得る。次に、得られたホログラムに位相再生演算を施すことで、試料によって生じた位相変調を位相像として可視化する。このように、電子線ホログラフィーでは、位相像を得るために2段階の工程を必要とする。また、電子線ホログラフィーでは、位相像を得るまでに演算処理が必須であることから、計算機の性能が向上したとしても、リアルタイムでの観察が難しいという問題がある。
さらに、電子線ホログラフィーでは、観察領域となる干渉領域の幅が、試料面に照射された電子波の試料面内方向の可干渉距離によって制限される。ここで、高い輝度の光源を用いることにより、或いは試料面に照射される電子波の照射電流密度を低くすることによって、上記の可干渉距離を大きくすることはできる。一方、光源の輝度には物理的な限界があることから、単位時間当たりの計測感度が制限される。そのため、電子線ホログラフィーでは、時間分解能や可干渉距離が制限されることになる。
電子線ホログラフィーのような波面分割形の電子線干渉計では上記のような課題があることから、電子線にて振幅分割形の干渉計測を行うために、電子線における振幅分割形ビームスプリッターとして、複数枚の単結晶薄膜を設置した電子線干渉計の結果が報告されている。かかる単結晶薄膜の材料は、金(Au)やシリコン(Si)などであり、単結晶薄膜の厚さは数十ナノメートル程度である。
非特許文献1および非特許文献2では、3枚の単結晶薄膜を組み合わせた結果の報告がなされている。また、非特許文献3では、2枚の単結晶薄膜とミラーとして作用するレンズを組み合わせたマッハ・ツェンダー形の振幅分割形電子線干渉計が提案されている。
次に、図1を参照して、従来技術の一例として、3枚の単結晶薄膜を組み合わせた電子線干渉計を説明する。
図1に示す電子線干渉計は、光線の進行方向における上流側(図1中の上段)から順に、電子線を出射する電子源1と、上段絞り104と、上段単結晶薄膜105と、中段単結晶薄膜106と、下段単結晶薄膜107と、下段絞り108と、を備える。これら各部は、図示しない筐体内に組付けられる。図1中の各々の矢印は、電子源1から出射(放出)された電子線(照射電子線2)が分岐して進行する様子および各々の電子線の光路を示すものである。
かかる電子線干渉計において、電子源1から放出された照射電子線2は、上段絞り104を通過して上段単結晶薄膜105を照射する。かかる照射電子線2は、上段単結晶薄膜105を通過する際に、透過波5と、複数の回折波6とに分けられて、分けられた各々の電子線は、中段単結晶薄膜106を照射する。
そして、透過波5と複数の回折波6は、中段単結晶薄膜106を通過することにより、それぞれの透過波と複数の回折波とに分けられて、下段単結晶薄膜107を照射する。下段単結晶薄膜107を通過した電子線は、それぞれの透過波と回折波において、透過波と回折波とに分けられる。下段単結晶薄膜107の下流側には下段絞り108が配置されており、3枚の単結晶薄膜(105、106、107)によって生成された複数の透過波と回折波のうち、同じ光路を進行している電子線が通過するように配置されている。このような振幅分割型の電子線干渉計では複数の回折波が同じ光路を通過するため、位相像を直接観察できる可能性を有しているが、実用化はされていない。
振幅分割型の電子線干渉計が実用化された場合、位相像の直接観察が可能となるため、電子線ホログラフィーのような再生演算処理が不要になる。さらに、振幅分割型の電子線干渉計によれば、電子線の可干渉領域と照射領域とを一致させることが可能になる。言い換えると、振幅分割型の電子線干渉計を用いることで、リアルタイムで広い領域における位相像の直接観察ができるようになる。
L. Marton, J. A. Simpson, J. A. Suddeth (1953) Electron interferometer. Phys. Rev. 90, 490-491. L. Marton, J. A. Simpson, J. A. Suddeth (1954) An electron interferometer, Rev. Sci. Instr. 25, 1099 T. Akashi, Y. Takahashi, K. Harada (2020) Development of a Mach-Zhender type electron interferometer. Microscopy doi: 10.1093/jmicro/dfaa040.
本発明者らは、振幅分割型電子線干渉計の実現に向け、電子顕微鏡をベースにビームスプリッターの最適な向きや大きさ、ミラーとして作用するレンズの強度条件探索など鋭意研究を進めたところ、実用化には以下の重要な課題があることを見出した。
具体的には、本発明者らは、振幅分割型電子線干渉計の設計ないし制作段階で、図1で説明した上段単結晶薄膜105に対応する上段(光路における最上流側)のビームスプリッターの材質や形状等を変えて種々の実験を行った。
しかしながら、いずれの場合も図1で説明したように、透過波と複数の回折波が生成されることとなり、ビームスプリッターによって透過波と1本の回折波だけ生成することが困難であることが分かった。そして、回折波が複数生成されることにより、進行方向における下流側で回折波同士さらには透過波と回折波の干渉等が発生しやすくなり、電子線の光路を決定することが困難となり、ひいては正確な位相差を測定ないし決定することができなくなることが判明した。
本発明は、上記課題を鑑みてなされたものであり、ビームスプリッターによって生成される複数の回折波から不要な回折波を遮蔽し必要な物体波と参照波を選択することによって、正確な位相差の測定および量子現象観察などが可能となるマッハ・ツェンダー形の振幅分割型の電子線干渉計を提供することを目的とする。
本発明に係る電子線干渉計は、
入射された電子線を、試料物体を透過させるための物体波と複数の参照波とに分けて出射する第1のビームスプリッターと、
前記第1のビームスプリッターから出射された複数の前記参照波の光路を、前記物体波の進路に近づくように導く第1のビームガイド部と、
前記電子線の進路における前記第1のビームスプリッターの下流に配置され、前記物体波と一つの前記参照波とを干渉させるように導く第2のビームガイド部と、
前記電子線の進路における前記第1のビームスプリッターと前記第2のビームガイド部との間に配置され、前記物体波と一つの前記参照波とを透過させ、残りの前記参照波を遮蔽する第1の遮蔽部と、
を備える。
本発明によれば、ビームスプリッターによって生成される複数の回折波から不要な回折波を遮蔽し必要な物体波と参照波を選択することによって、正確な位相差の測定および量子現象観察などが可能となるマッハ・ツェンダー形の振幅分割型の電子線干渉計を提供することができる。
従来技術の一例である3枚の単結晶薄膜を組み合わせた電子線干渉計を説明するための模式図である。 本発明の実施例1を説明するための振幅分割型電子線干渉計の模式図である。 本発明の振幅分割型電子線干渉計において、電子線選択絞りの形状を説明する図であり、電子線選択絞りの穴径の決定方法を示す模式図である。 本発明の振幅分割型電子線干渉計において、電子線選択絞りの形状を示す模式図である。 本発明の振幅分割型電子線干渉計において、電子線選択絞りの穴の形状の一具体例としての、四角穴の電子線選択絞りを示す図である。 本発明の振幅分割型電子線干渉計において、電子線選択絞りの穴の形状の一具体例としての、二つ穴の電子線選択絞りを示す図である。 本発明の振幅分割型電子線干渉計において、電子線選択絞りの穴の形状の一具体例としての、隣り合っていない電子線を選択する二つ穴の電子線選択絞りを示す図である。 本発明の振幅分割型電子線干渉計にて単結晶薄膜を微動させることによって位相シフト法を実行する振幅分割型電子線干渉計の構成図である。 本発明の振幅分割型電子線干渉計にて位相板を配置することによって位相シフト法を実行する振幅分割型電子線干渉計の構成図である。 本発明の振幅分割型電子線干渉計にて電子線バイプリズムを配置することによって縞走査法を実行する振幅分割型電子線干渉計の構成図である。
以下、添付図面を参照しながら、本発明を適用した振幅分割型電子線干渉計の実施形態および実施例について説明する。なお、添付図面は本発明の原理に則った具体的な実施例を示しているが、これは本願の理解のためのものであり、本発明を限定的に解釈するために用いられるものではない。
最初に、本発明者らが見出した技術的課題のより詳細な内容を説明する。本発明者らは、上述のように、振幅分割型電子線干渉計を作り上げる過程で、透過波と複数の回折波が生成されることにより、正確な位相差の測定等が困難になることが判明した。より具体的には、振幅分割型電子線干渉計で電子線を分割するために用いるビームスプリッターとしては、回折格子、あるいは回折格子として機能する単結晶薄膜が好適であり、特に、透過波の透過性等の観点からは、後者すなわち単結晶薄膜を使用することが望ましいと考えられる。
一方で、種々の実験を行うも、かかる単結晶薄膜に照射された電子線(図1の照射電子線2を参照)に、理想的な一次元回折を起こさせることが極めて困難であるとの認識を得るに至った。これは、単結晶薄膜が三次元構造体であることに起因するものと考えられる。
より詳しくは、入射する電子線に対して単結晶薄膜を傾斜させることにより、透過波の進行方向を許容値以内に収めつつ、複数の回折波についても或る程度一次元に近い回折状態を得ることはできた。しかしながら、この場合でも、複数の回折波について完全な一次元回折を得ることが困難であることに加え、電子線の高次の回折までは制御することができなかった。
総じて、電子源から放出された照射電子線で単結晶薄膜に電子線を照射すると、図1で説明したように、透過波と複数の回折波が生成されることとなり、加えて、ビームスプリッターとして回折格子などを用いた場合でも同様の課題が生じ得ることが判明した。
また、振幅分割型電子線干渉計では、当該装置の小型化等の観点からは、少なくとも電子線の進行方向に沿って二つ以上のビームスプリッター(望ましくは二つ以上の単結晶薄膜)を配置することが必要となる。そして、電子線の進行方向に沿って二つ以上の単結晶薄膜を配置した振幅分割型電子線干渉計では、電子線が単結晶薄膜を通過するたびに透過波と回折波が生成される。そのため、かかる振幅分割型電子線干渉計によれば、図1で説明した従来の電子線干渉計と同様に、同じ電子線光路を複数の電子線が通過することになり、このため電子線光路を決定することが困難となり、ひいては正確な位相差を測定ないし決定することができない。
上記のような技術的課題に鑑みて、本発明者らは、さらなる鋭意検討の末、以下のような基本的構成を備える振幅分割型の電子線干渉計を案出した。
すなわち、本実施形態に係る電子線干渉計は、入射された電子線を、試料物体を透過させるための物体波と複数の参照波とに分けて出射する第1のビームスプリッターと、第1のビームスプリッターから出射された複数の参照波の光路を、物体波の進路に近づくように導く第1のビームガイド部と、電子線の進路における第1のビームスプリッターの下流に配置され、物体波と一つの参照波とを干渉させるように導く第2のビームガイド部と、電子線の進路における第1のビームスプリッターと第2のビームガイド部との間に配置され、物体波と一つの参照波とを透過させ、残りの参照波を遮蔽する第1の遮蔽部と、を備える。
かかる構成の電子線干渉計によれば、生成される複数の回折波から不要な回折波を遮蔽し必要な物体波と参照波を選択することによって、最終的に一つの物体波と一つの参照波を選択することができるため、電子線の光路を選択的に設定できるようになる。そして、電子線の光路を選択的に設定することにより、物体波と参照波の正確な位相差が測定できることから、リアルタイムで広い領域における位相像を高感度で直接観察できる。さらに、上記構成を備える電子線干渉計によれば、量子実験への適用が可能となるため、量子現象の検証などを行うことができる。
以下、上述した基本的構成を備えたマッハ・ツェンダー形の振幅分割型の電子線干渉計の種々の実施例について、図2以下を参照して説明する。
図2は、二つのビームスプリッター(単結晶薄膜)、二つのビームガイド部(それぞれ光学レンズ)、対物絞り等を備え、上記の二つの単結晶薄膜の間に電子線選択絞り機構を設けた電子線干渉計および制御装置等の構成図である。なお、図1で説明した従来構成と同一または同等の部分については同一または類似の符号を付して、適宜その説明を省略する場合がある。
図2に示す第1実施例では、二つの単結晶薄膜として、各々、例えばシリコンなどの単結晶から薄膜に加工された単結晶薄膜を用いて振幅分割型電子線干渉計を製造することを前提とする。ここで、単結晶薄膜は、回折格子と同等の機能を有するが、上述のような課題を内包している。なお、二つの単結晶薄膜の代わりに、各々、集束イオンビーム加工装置等で製作された回折格子を用いて振幅分割型電子線干渉計を製造してもよく、この場合においても同様の作用効果が得られる。
この振幅分割型電子線干渉計は、電子線の進行方向または進路における上流側(図2中の上段)から順に、電子線を出射する電子源1と、上段単結晶薄膜3と、転写レンズ7と、試料保持膜9と、電子線選択絞り11と、下段単結晶薄膜15と、対物レンズ20と、対物絞り21と、撮像部26と、を備える。これら各部は、電子顕微鏡の筐体を模したまたは流用した筒状の筐体60内に配置されている。
上記のうち、上段単結晶薄膜3は、本発明の「第1のビームスプリッター」に対応する。また、転写レンズ7は本発明の「第1のビームガイド部」に対応し、電子線選択絞り11は、本発明の「第1のビームガイド部」に対応する。さらに、下段単結晶薄膜15、対物レンズ20、および対物絞り21は、本発明の「第2のビームガイド部」に対応し、このうち、下段単結晶薄膜15は本発明の「第2のビームスプリッター」に、対物絞り21は本発明の「第2の遮蔽部」に、各々対応する。
加えて、図2に示すように、振幅分割型電子線干渉計は、図2中の上段から順に、上段単結晶薄膜配置装置4と、試料配置装置10と、電子線選択絞り配置装置12と、下段単結晶薄膜配置装置16と、対物絞り配置装置22とが筐体60に組付けられ、それぞれ、筐体60に対して移動可能に設けられている。
上記のうち、上段単結晶薄膜配置装置4は、その一端側(基端部)が筐体60の側面(溝部)に組付けられ、上段単結晶薄膜配置装置4の他端側(先端部)は、上段単結晶薄膜3を筐体60内の平面略中央(電子源1の光軸上)の位置に保持する役割を担う。また、試料配置装置10は、その一端側(基端部)が筐体60の側面(溝部)に組付けられ、試料配置装置10の他端側(先端部)は、試料保持膜9を筐体60内の平面略中央の位置に保持する役割を担う。さらに、試料保持膜9は、検査ないし観測対象となる試料物体8を電子源1の光軸上の位置に保持する役割を担う。
ここで、試料物体8は、一般的には、電子顕微鏡で観察されている厚さ数十ナノメートルから数マイクロメートル程度の薄膜や液体や気体などである。なお、試料物体8は、かかる例に限定されるものではなく、検査ないし観測対象とされ得る他の種々の物体が含まれる。
また、電子線選択絞り配置装置12は、その一端側(基端部)が筐体60の側面(溝部)に組付けられ、電子線選択絞り配置装置12の他端側(先端部)は、下段単結晶薄膜15を筐体60内の平面略中央(電子源1の光軸上)の位置に保持する役割を担う。さらに、対物絞り配置装置22は、その一端側(基端部)が筐体60の側面(溝部)に組付けられ、対物絞り配置装置22の他端側(先端部)は、対物絞り21を筐体60内の適宜の位置に保持する役割を担う。
次に、本実施例における振幅分割型電子線干渉計の動作等を説明する。
本実施例の振幅分割型電子線干渉計では、電子源1から放出された照射電子線2は、図2に示すように、上段単結晶薄膜3を照射する。この例では、上段単結晶薄膜3は、上述した上段単結晶薄膜配置装置4によって筐体60内の略中央で固定的に配置されている。他の例として、上段単結晶薄膜3は、図示しない単結晶薄膜微動装置などに搭載されることにより、筐体60内の略中央で微動する構成としてもよい。この点、後述する下段単結晶薄膜15についても同様であり、これら単結晶薄膜3,15の配置方法や微動動作の有無については、目的や試料物体8の種類等に応じて選択できる。
かくして、電子源1から放出された照射電子線2は、上段単結晶薄膜3を通過し、この際に、上段単結晶薄膜3の回折格子としての機能により、電子線の照射方向となる線軸(便宜のため以下は「光軸」という)に沿って進む透過波5と、光軸から所定角度で回折する複数の回折波6とが生成される。そして、これら透過波5および複数の回折波6は、第1のビームガイド部としての転写レンズ7を通過する(透過される、以下、透過の場合も単に「通過」という。)ことにより、各々の回折波6が屈折する。図2に示す例では、転写レンズ7を通過した透過波5は光軸上に沿って進み、複数の回折波6は、転写レンズ7により屈折させられ、各々、光軸に向かう方向に進行することにより、後述する物体波13の進路に近づくように導かれる。
かくして、転写レンズ7を通過した透過波5は、試料保持膜9の上に配置された試料物体8を照射し、試料物体8によって電子線の位相が変化した物体波13として進行する。一方、転写レンズ7を通過した回折波6は、試料物体8を照射することなく、試料物体8の周囲の空間を通過し、位相が変化しない参照波14として進行する。
図2では、透過波5が試料物体8を照射する構成を例示しているが、この逆の構成、すなわち物体波として回折波6を用いて試料物体を照射し、参照波として透過波5を試料物体の無い空間を通過させてもよい。
また、この例では、試料物体8は、上述した試料保持膜9および試料配置装置10によって筐体60内の略中央で固定的に配置されている。他の例として、試料物体8は、図示しない試料微動装置などに搭載されることにより、筐体60内の略中央で微動する構成としてもよい。さらに、上述のように回折波6を用いて試料物体を照射する構成とする場合、複数の回折波6が通過する位置(光軸の周囲の位置)に、各々の試料物体を配置し、複数の試料物体を配置する構成としてもよい。総じて、試料物体8の配置方法や微動動作の有無については、目的や試料物体8の種類等に応じて選択できる。
上述のように、図2に示す実施例では、試料物体8の下流側に、電子線選択絞り配置装置12および電子線選択絞り11が配置されている。このうち、電子線選択絞り11は、物体波13と一つの参照波14のみが通過する位置に配置され、他の参照波14の通過を阻む(すなわち不必要な電子線を遮蔽する)役割を担う。
かかる電子線選択絞り11は、不必要な電子線を遮蔽するため、例えば0.5mm程度の厚さを有するモリブデンなどが用いられる。この例では、電子線選択絞り11は、上述した電子線選択絞り配置装置12によって筐体60内の上述した位置に固定的に配置されている。他の例として、電子線選択絞り11は、図示しない電子線選択絞り微動装置などに搭載されることにより、筐体60内で微動する構成としてもよい。すなわち、電子線選択絞り11の配置方法や微動動作の有無については、目的や試料物体8の種類等に応じて選択できる。
かくして、電子線選択絞り11を通過した2つの電子線すなわち、物体波13と一つの参照波14は、それぞれ、下段単結晶薄膜15を照射し、下段単結晶薄膜15を通過する際に、物体波の透過波17、物体波の回折波18、参照波の透過波23、物体波の回折波24などの複数の電子線に分岐され、複数の回折波を生成する。
そして、下段単結晶薄膜15を通過した物体波の透過波17、物体波の回折波18、参照波の透過波23、物体波の回折波24などの電子線は、それぞれが対物レンズ20を通過する。
図2に示す例では、対物レンズ20の下方(下流側)に対物絞り21が配置されており、この対物絞り21は、物体波の回折波24と参照波の透過波23のみを通過させ、他の電子線の通過を阻む(すなわち不必要な電子線を遮蔽する)役割を担う。
かかる対物絞り21は、不必要な電子線を遮蔽するため、例えば0.5mm程度の厚さを有するモリブデンなどが用いられる。なお、対物絞り21は、基本的には1つの物体波と1つの参照波が通過するような配置または構成であれば良いことから、通過させる電子線は図2に示す例に限定されるものではない。
対物絞り21を通過した一つの物体波(物体波の回折波24)と一つの参照波(参照波の透過波23)は、観察位置に配置された撮像部26に到達して干渉が発生し、かかる撮像部26を通じて撮像された画像により、干渉縞・位相像25を観察することができる。
一例では、撮像部26は、電子顕微鏡フィルムやCCDカメラなどの電子線検出器が用いられる。以下、撮像部26をカメラ26と称する場合がある。
なお、上述した筐体60内の電子光学部品は、適宜の時期に、図示しない真空ポンプによって吸引および廃棄することができる。かかる真空系の構成については、本願発明の干渉計とは直接の関係がないため、図示および説明を割愛する。
次に、上述した電子線選択絞り11の絞り穴(本発明の「開口」に対応し、以下、単に「穴」という場合がある)の穴径の決定方法について、図3Aを参照して説明する。ここでは、一般的に普及している丸形の絞り穴を転写レンズ7の焦点面に配置し、隣り合った物体波と参照波を選択するときにおいて説明する。
電子線選択絞り11の穴径34は、上段単結晶薄膜3の格子間隔27と転写レンズの焦点距離32から決定することができる。電子線選択絞り11の絞り位置における物体波と参照波の距離D(図3A中の符号33で示す両矢印を参照)は、転写レンズ7の焦点距離をf(同、符号32で示す両矢印参照)、上段単結晶薄膜3によるブラッグ回折角をθ(同、符号29で示す両矢印参照)とすると、下記式で与えられる。
Figure 0007418366000001
上式中、nは整数であり、λは電子線の波長であり、dは上段単結晶薄膜3の格子間隔である。図3A中、光軸から左側に回折角θで進行する参照波29をn=1、光軸から左側に回折角2θで進行する参照波30をn=2、光軸から右側に回折角θで進行する参照波31をn=-1と示す。この例では、電子線選択絞り11で選択する(通過させる)電子線は、物体波13とn=1の参照波29であり、このためn=2またはn=-1などの参照波(30、31)は遮蔽する必要がある。
そのため、使用する上段単結晶薄膜3の格子間隔に応じて、電子線選択絞り11の穴径34を変更する。上記に鑑みて、電子線選択絞り11の必要な穴径34(図3A中に両矢印で示す穴の直径2R)は、下記式で与えられる。
Figure 0007418366000002
上記式に示されるように、上段単結晶薄膜3の格子間隔dと転写レンズ7の焦点距離fを用いて、電子線選択絞り11の穴径34(=2R)を設定することができる。なお、電子線選択絞り11の穴径2Rは、厳密に調整する必要は無いことから、異なる穴径を複数有する絞り配置機構を用いてもよいし、穴径そのものを自動で調整する機器を用いてもよい。
図3Aに示す例は、図2で上述した構成の変形例であり、電子線選択絞り11を電子線選択絞り微動装置35に配置し、かかる電子線選択絞り微動装置35をプロセッサ等からなる電子線選択絞り微動制御装置36で制御することにより、電子線選択絞り11の穴径34(2R)や穴の位置を調整ないし制御できるようにした構成例である。
また、図3Bに示す例は、電子線選択絞り11の穴径34を調整するための他の一例として、異なる穴径(34、34A、34B)による複数の穴(開口)を有する電子線選択絞り11が電子線選択絞り微動制御装置35に搭載されており、電子線選択絞り微動制御装置36によって、使用する穴径を変更できるようにした構成例を示している。
さらに、電子線選択絞り11の穴の形状は、上述したような円形だけでなく、他の形状としてもよく、かかる具体例につき図4A~図4Cを参照して説明する。
図4Aは、電子線選択絞り11の穴の形状を四角形(矩形)とした場合の構成例であり、かかる四角形の穴で物体波13とn=1の参照波37を選択し(通過させ)、かつ、n=2の参照波30やn=-1の参照波31を遮蔽している様子を示す図である。
また、図4Bは、電子線選択(通過)用の二つの穴が形成された電子線選択絞り11の構成例であり、一方の穴で物体波13を選択し(通過させ)、かつ、他方の穴でn=1の参照波37を選択し(通過させ)、かつ、n=2の参照波30およびn=-1の参照波31を遮蔽している様子を示す図である。なお、図4Bでは、電子線選択絞り11に形成された穴が二つとも円形であるが、各々の穴の形状はこれに限定されるものではなく、楕円形、スリット状、あるいは種々の多角形など、任意の形状とされ得る。
また、二つの穴が配置された電子線選択絞り11を用いる場合、図4Aおよび図4Bに示すような構成例、すなわち物体波13と、物体波13の隣にある参照波37を選択する構成に限られるものではない。具体的には、例えば図4Cに示すように、電子線選択絞り11に設けられた一方の穴で物体波13を選択し(通過させ)、かつ、他方の穴でn=2の参照波30を選択し(通過させ)、かつ、n=1の参照波37およびn=-1の参照波31を遮蔽する構成としてもよい。あるいは、図示しない更に他の構成例として、電子線選択絞り11に設けられた一方の穴で物体波13を選択し(通過させ)、かつ、他方の穴でn=-1の参照波31を選択し(通過させ)、かつ、n=1の参照波37およびn=-2の参照波30を遮蔽する構成としてもよい。
なお、上述した第1実施例では、第1のビームガイド部および第2のビームガイド部として、各々レンズを用いる構成としたが、レンズに代えて電子線を反射するミラーを使用してもよい。
図5を参照して、本発明を適用した振幅分割型電子線干渉計の第2実施例として、単結晶薄膜微動制御装置を利用した位相シフト法の実施例を説明する。一般に、位相シフト法は、干渉縞を連続的に動かすことができることから、位相計測の感度が高い手法と考えられるため、図5に示す第2実施例で採用することとした。以下に説明する第2実施例~第4実施例に関しては、主として第1実施例と異なる部分を説明し、第1実施例と同じ部分については、同一の符号を付して適宜その説明を省略する。
図2と比較して分かるように、図5に示す第2実施例の振幅分割型電子線干渉計は、基本的な構成は第1実施例(図2)と同じであり、以下の点で相違する。
すなわち、第2実施例の振幅分割型電子線干渉計では、上段単結晶薄膜3および下段単結晶薄膜15を筐体60内でそれぞれ微振動させるための構成として、上段単結晶薄膜3には上段単結晶薄膜微動制御装置39が備えられ、下段単結晶薄膜15には下段単結晶薄膜微動制御装置41が備えられている。
また、この振幅分割型電子線干渉計では、干渉縞・位相像25を観察する上述したカメラ26には、カメラ制御装置42が接続されている。さらに、これら上段単結晶薄膜微動制御装置39、下段単結晶薄膜微動制御装置41、およびカメラ制御装置42は、システム制御装置43に接続され、システム制御装置43から出力される制御信号に基づいて動作するようになっている。
かかる第2実施例の振幅分割型電子線干渉計では、システム制御装置43の制御の下、上段単結晶薄膜3または下段単結晶薄膜15を微動させることにより、(静止状態の)試料物体8への電子線の照射の際に発生する干渉縞の位相が少しずつ移動する。このため、第2実施例によれば、カメラ26による少ない撮影枚数で短時間かつ高精度に、位相シフト法を用いた広範囲の計測や検査等が可能となる。位相シフト法を用いた振幅分割型電子線干渉計の動作の概要としては、電子源1からの電子線の照射の際に、システム制御装置43の制御によって、上段単結晶薄膜3または下段単結晶薄膜15を水平方向に少しずつ移動させると同時に、カメラ制御装置42の制御によりカメラ26を駆動して、発生した干渉縞・位相像25(図5を参照)を撮影する。かかる撮影で得られた複数枚の干渉縞・位相像25は、例えばHDDなどの補助記憶装置44に保存され、PCなどの解析システム装置45によって位相を計測することができる。
なお、図5に示す例では、上段単結晶薄膜3、下段単結晶薄膜15の両方に微動制御装置(39、41)を設け、各々の薄膜3,15を独立的に微振動させることができる構成としたが、かかる構成に限定されない。他の例として、上段単結晶薄膜3、下段単結晶薄膜15のいずれか一方に微動制御装置(39、41)を設け、いずれかの薄膜3,15を微振動させる構成としてもよい。あるいは他の例として、システム制御装置43により、各々の薄膜3,15を同時に同一方向に微振動させるように微動制御装置(39、41)を制御してもよい。
図6は、本発明を適用した振幅分割型電子線干渉計の第3実施例を説明する図である。この第3実施例では、振幅分割型電子線干渉計において、位相板を利用して位相シフト法を実現する。
第1実施例の図2と比較して分かるように、図6に示す第3実施例の振幅分割型電子線干渉計では、試料物体8が保持される試料保持膜9の下段(光線進行方向における下流側)かつ下段単結晶薄膜15の上段(同、上流側)に、位相板46が配置されている。
この位相板46は、透過する電子線(この例では透過波5の左隣に発生した回折波6に基く参照波14)の位相を変化させる(例えば位相を遅らせるように位相差を与える)板状の光学部品である。
望ましくは、位相板46を透過する電子線の位相を、任意ないし所望の状態に可変できる(すなわち位相板46の透過時に発生する位相差を制御できる)構成とするとよい。一具体例では、位相板46に図示しないリング状の微小電極を取り付けるとともに、かかる微小電極に不図示の電源装置を接続して、位相板46に電圧を印加する構成とする。ここで、位相板46およびその電源装置は、本発明の「位相操作部」に対応する。この場合、微小電極に印加する電圧を変えることにより、位相板46を透過する電子線の位相を変化させることで、透過時に与えられる位相差を制御することができる。なお、位相板46を透過する電子線の位相を可変できるようにする構成は上記例に限られるものではなく、他にも例えば位相板46をカーボン製の薄膜を用いて構成するなど、種々の構成を採用することができる。
位相板46は、図6に示すように、位相板配置装置47によって筐体60内に支持されている。位相板配置装置47は、その一端側(先端側)で上述した位相板46を保持する。また、位相板配置装置47の基端側は、筐体60の側面の溝に対して移動可能に組付けられるとともに、図示しないアクチュエータ等を備えた位相板制御装置48に接続されている。そして、電子線選択絞り11を通過する参照波14が位相板46を通過するように、位相板配置装置47に設置された位相板46の位置を、位相板制御装置48を用いて調整する。
また、この振幅分割型電子線干渉計は、図5で上述した第2実施例と同様に、干渉縞・位相像25を観察するカメラ26にカメラ制御装置42が接続されている。そして、第3実施例では、上述した位相板制御装置48およびカメラ制御装置42は、システム制御装置43によって集中的に制御される。
かかる第3実施例の振幅分割型電子線干渉計では、システム制御装置43の制御の下、位相板46を用いた位相シフト法が可能である。例えば、上述のように、位相板46に加えられる電圧を少しずつ変化させる場合、位相板46の下流側の参照波14の位相が少しずつ変化することから、カメラ26での撮影対象となる干渉縞・位相像25の位相も移動する。したがって、位相板46に印加する電圧を少しずつ変化させると同時にカメラ制御装置42によってカメラ26を稼働させて、干渉縞・位相像25の位相が変化してゆく様子を撮影することができる。こうして得られた複数枚の干渉縞・位相像25の画像は、補助記憶装置44に保存され、さらには、かかる複数枚の画像を解析システム装置45で解析することによって、位相を計測することができる。
図7は、本発明を適用した振幅分割型電子線干渉計の第4実施例を説明する図である。この第4実施例では、振幅分割型電子線干渉計による、電子線バイプリズムを利用した縞走査法を実現する。
一般に、縞走査法は、干渉縞を連続的に動かすことにより、位相計測の感度を高めることができる手法として知られている。本実施例において、電子線バイプリズム(図7中の符号49および破線で囲った領域を参照)は、電子線の進行方向と平行な平行平板(破線領域内の2つの矩形部分)の間に、電極フィラメント(同、略円形の部分)を備える。そして、電子線バイプリズムは、電極フィラメントに電圧を印加することで発生するフィラメント電極と平行平板の間の電場により電極フィラメントの左右を通過する電子線を、電極フィラメントに近づける方向もしくは遠ざける方向に偏向させる機能を有する。
図2および図6と比較して分かるように、図7に示す第4実施例の振幅分割型電子線干渉計の基本的構成は、第1実施例および第3実施例と同じである。
一方、第4実施例では、電子線選択絞り11を通過する物体波13と参照波14が、電子線バイプリズム49を通過するように、電子線バイプリズム49が、電子線選択絞り11の下流側かつ下段単結晶薄膜15の上流側の位置に配置されている。この点、電子線選択絞り11を通過する参照波14のみを位相板46に通過させる構成の第3実施例とは異なる。
本実施例において、電子線バイプリズム49の位置は、図7に模式的に示す電子線バイプリズム制御装置50を用いて調整することができる。
加えて、電子線バイプリズム49には不図示の電源装置(本発明の「進行方向制御部」に対応する)が接続されており、電子線バイプリズム49に電圧を可変的に印加できるようになっている。かかる構成を備えた第4実施例の振幅分割型電子線干渉計によれば、電子線バイプリズム49に印加する電圧や電子線バイプリズム49の位置を変化させることによって、物体波13と参照波14の進行方向を僅かに変化させる(すなわち物体派と一つの参照派の進行方向を制御する)ことができる。
また、干渉縞・位相像25を撮影ないし観察するカメラ26にはカメラ制御装置42が配置され、電子線バイプリズム制御装置50およびカメラ制御装置42はシステム制御装置43によって制御されている。
かくして、この第4実施例では、下段単結晶薄膜15の上流側に配置され、入射される物体波と一つの参照波の進行方向を操作して出射する進行方向操作部(電子線バイプリズム49およびその電源装置)を備える構成とすることにより、電子線バイプリズム49を用いた縞走査法を実現することができる。すなわち、電子線バイプリズム49に印加する電圧や電子線バイプリズム49の位置を少しずつ変化させると同時に、カメラ制御装置42によってカメラ26を稼働させることにより、干渉縞・位相像25の進行方向が変化する様子を撮影することができる。こうして得られた複数枚の干渉縞・位相像25の画像は、補助記憶装置44に保存され、さらには、かかる複数枚の画像を解析システム装置45で解析することによって、位相を計測することができる。
以上、詳細に説明したように、本発明を適用した各実施例の振幅分割型電子線干渉計によれば、生成される複数の回折波から不要な回折波を遮蔽し必要な物体波と参照波を選択することによって、最終的に一つの物体波と一つの参照波を選択することができるため、電子線の光路を選択的に設定できるようになる。そして、電子線の光路を選択的に設定することにより、物体波と参照波の正確な位相差が測定できることから、リアルタイムで広い領域における位相像を高感度で直接観察できる。さらに、上記構成を備える電子線干渉計によれば、量子実験への適用が可能となるため、量子現象の検証などを行うことができる。
したがって、本発明によれば、ビームスプリッターによって生成される複数の回折波から不要な回折波を遮蔽し必要な物体波と参照波を選択することによって、正確な位相差の測定および量子現象観察などが可能となるマッハ・ツェンダー形の振幅分割型の電子線干渉計を提供することができる。
なお、本発明は上記した実施例に限定されるものではなく、さまざまな変形例が含まれる。たとえば、上記した種々の実施例は本発明をわかりやすく説明するために詳細に説明したのであり、必ずしも説明したすべての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
1:電子源
2:照射電子線
3:上段単結晶薄膜(第1のビームスプリッター)
4:上段単結晶薄膜配置装置
5:透過波
6:回折波
7:転写レンズ(第1のビームガイド部)
8:試料物体
9:試料保持膜
10:試料配置装置
11:電子線選択絞り
12:電子線選択絞り配置装置
13:物体波
14:参照波
15:下段単結晶薄膜
16:下段単結晶薄膜配置装置
17:物体波の透過波
18:物体波の回折波
19:参照波の回折波
20:対物レンズ(第2のビームガイド部)
21:対物絞り
22:対物絞り配置装置
23:参照波の透過波
24:物体波の回折波
25:干渉縞・位相像
26:カメラ(撮像部)
27:上段単結晶薄膜の格子間隔(d)
28:回折角(θ)
29:回折角(2θ)
30:参照波(n=2)
31:参照波(n=-1)
32:転写レンズの焦点距離(f)
33:物体波と参照波との距離(D)
34:電子線選択絞りの穴径(2R)
35:電子線選択絞り微動装置
36:電子線選択絞り微動制御装置
37:参照波(n=1)
38:上段単結晶薄膜微動装置
39:上段単結晶薄膜微動制御装置
40:下段単結晶薄膜微動装置
41:下段単結晶薄膜微動制御装置
42:カメラ制御装置
43:システム制御装置
44:補助記憶装置
45:解析システム装置
46:位相板
47:位相板配置装置
48:位相板制御装置
49:電子線バイプリズム
50:電子線バイプリズム制御装置
60:筐体
61:光軸
04:上段絞り
105:上段単結晶薄膜
106:中段単結晶薄膜
107:下段単結晶薄膜
108:下段絞り

Claims (11)

  1. 入射された電子線を、試料物体を透過させるための物体波と複数の参照波とに分けて出射する第1のビームスプリッターと、
    前記第1のビームスプリッターから出射された複数の前記参照波の光路を、前記物体波の進路に近づくように導く第1のビームガイド部と、
    前記電子線の進路における前記第1のビームスプリッターの下流に配置され、前記物体波と一つの前記参照波とを干渉させるように導く第2のビームガイド部と、
    前記電子線の進路における前記第1のビームスプリッターと前記第2のビームガイド部との間に配置され、前記物体波と一つの前記参照波とを透過させ、残りの前記参照波を遮蔽する第1の遮蔽部と、
    前記電子線の進路における前記第1のビームスプリッターの下流で前記第1の遮蔽部の上流に配置され、前記試料物体を保持する試料保持部と、を備え
    前記第1のビームスプリッターは、回折格子としての機能を備え、
    前記第1の遮蔽部は、前記物体波と一つの前記参照波とを通過させる形状の開口を備え、前記開口の径は、前記回折格子の格子間隔に応じて設定される、
    電子線干渉計。
  2. 請求項1に記載の電子線干渉計において、
    前記第2のビームガイド部は、
    前記第1の遮蔽部を透過して入射された前記物体波および一つの前記参照波を、複数の物体波と複数の参照波とに分けて出射する第2のビームスプリッターと、
    前記第2のビームスプリッターから出射された前記複数の前記物体波と前記複数の前記参照波のうち、前記物体波と一つの前記参照波とを透過させ、残りの前記参照波を遮蔽する第2の遮蔽部と、
    を備える電子線干渉計。
  3. 請求項1に記載の電子線干渉計において、
    前記第1の遮蔽部は、前記物体波を通過させる第1の開口と、一つの前記参照波を通過させる第2の開口とを備える、
    電子線干渉計。
  4. 請求項1に記載の電子線干渉計において、
    前記物体波および一つの前記参照波を前記開口に通するように、前記第1の遮蔽部の位置を調整する位置調整部を備える、
    電子線干渉計。
  5. 請求項2に記載の電子線干渉計において、
    前記第2のビームスプリッターの上流側に配置され、入射される前記一つの前記参照波の位相を操作して出射する位相操作部を備え、
    前記第2の遮蔽部は、前記物体波と、前記位相操作部により位相が操作された前記一つの前記参照波と、を透過させる、
    電子線干渉計。
  6. 請求項5に記載の電子線干渉計において、
    前記位相操作部は、前記参照波を透過させる位相板を備える、
    電子線干渉計。
  7. 請求項6に記載の電子線干渉計において、
    さらに、前記位相操作部は、前記位相板に印加する電圧を変化させることにより前記参照波の前記位相を制御する位相制御部を備える、
    電子線干渉計。
  8. 請求項2に記載の電子線干渉計において、
    前記第2のビームスプリッターの上流側に配置され、入射される前記物体波と前記一つの前記参照波の進行方向を操作して出射する進行方向操作部を備え、
    前記第2の遮蔽部は、前記進行方向操作部により進行方向が操作された前記物体波および前記一つの前記参照波を透過させる、
    電子線干渉計。
  9. 請求項8に記載の電子線干渉計において、
    前記進行方向操作部は、前記物体波と前記一つの前記参照波を通過させる電子線バイプリズムを備える、
    電子線干渉計。
  10. 請求項9に記載の電子線干渉計において、
    さらに、前記進行方向操作部は、前記電子線バイプリズムの電極に印加する電圧を変化させることにより前記物体波と前記一つの前記参照波の前記進行方向を制御する進行方向制御部を備える、
    電子線干渉計。
  11. 請求項1に記載の電子線干渉計において、
    第1のビームガイド部および第2のビームガイド部は、各々レンズである、
    電子線干渉計。
JP2021013885A 2021-01-29 2021-01-29 電子線干渉計 Active JP7418366B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021013885A JP7418366B2 (ja) 2021-01-29 2021-01-29 電子線干渉計

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021013885A JP7418366B2 (ja) 2021-01-29 2021-01-29 電子線干渉計

Publications (2)

Publication Number Publication Date
JP2022117274A JP2022117274A (ja) 2022-08-10
JP7418366B2 true JP7418366B2 (ja) 2024-01-19

Family

ID=82749613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021013885A Active JP7418366B2 (ja) 2021-01-29 2021-01-29 電子線干渉計

Country Status (1)

Country Link
JP (1) JP7418366B2 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011249191A (ja) 2010-05-28 2011-12-08 Hitachi High-Technologies Corp 透過型干渉顕微鏡
US20190155218A1 (en) 2017-11-22 2019-05-23 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method of acquiring holograms by off-axis electron holography in precession mode
JP2019212477A (ja) 2018-06-05 2019-12-12 株式会社日立製作所 透過電子顕微鏡
JP2020136155A (ja) 2019-02-22 2020-08-31 株式会社日立製作所 干渉電子顕微鏡

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2651154B2 (ja) * 1987-09-04 1997-09-10 株式会社日立製作所 電子線ホログラフィ装置
US4992656A (en) * 1987-10-26 1991-02-12 Clauser John F Rotation, acceleration, and gravity sensors using quantum-mechanical matter-wave interferometry with neutral atoms and molecules
JP2776862B2 (ja) * 1989-01-13 1998-07-16 株式会社日立製作所 反射電子線ホログラフイー装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011249191A (ja) 2010-05-28 2011-12-08 Hitachi High-Technologies Corp 透過型干渉顕微鏡
US20190155218A1 (en) 2017-11-22 2019-05-23 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method of acquiring holograms by off-axis electron holography in precession mode
JP2019212477A (ja) 2018-06-05 2019-12-12 株式会社日立製作所 透過電子顕微鏡
JP2020136155A (ja) 2019-02-22 2020-08-31 株式会社日立製作所 干渉電子顕微鏡

Also Published As

Publication number Publication date
JP2022117274A (ja) 2022-08-10

Similar Documents

Publication Publication Date Title
US7538323B2 (en) Interferometer
AU2008252706B2 (en) Three dimensional imaging
US9202670B2 (en) Method of investigating the wavefront of a charged-particle beam
JP5405937B2 (ja) 透過型電子顕微鏡およびそれを用いた試料像の観察方法
JP6578278B2 (ja) 顕微鏡用の三次元ピント調整装置および方法
US7816648B2 (en) Electron interferometer or electron microscope
EP0378237B1 (en) Reflection electron holography apparatus
US20080258058A1 (en) Interferometer
EP2662880A2 (en) Electron beam device
JP2007522445A (ja) 多重モード・スペクトル画像解析の方法および装置
JP2015526739A (ja) 複数プローブの検出及び作動
JP5380366B2 (ja) 透過型干渉顕微鏡
JP6537153B2 (ja) 光学情報検知装置及び顕微鏡システム
JP7418366B2 (ja) 電子線干渉計
TWI475253B (zh) 微型顯微鏡及其光學元件的製作方法
JP6051596B2 (ja) 干渉電子顕微鏡
US11011344B2 (en) Interferometric electron microscope
WO2013114464A1 (ja) 電子線干渉装置および電子線干渉法
JP2010198985A (ja) 電子線干渉装置、および電子線干渉顕微方法
JP4778147B2 (ja) 収束光明暗視野顕微鏡装置および収束光明暗視野顕微鏡観察方法
Ďuriš et al. Single-shot super-resolution quantitative phase imaging allowed by coherence gate shaping
JP4842442B2 (ja) 収束光位相差顕微鏡装置および収束光位相差顕微鏡観察方法
JPH0721965A (ja) 電子ビーム装置における物体構造試験方法及び装置
KR20160115277A (ko) 펨토초 기반 4파 혼합 현미경
JP2006184308A (ja) 光学顕微鏡及び顕微鏡観察方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240109

R150 Certificate of patent or registration of utility model

Ref document number: 7418366

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150