JP7406560B2 - マルチチャネル・クローズアップ結像装置 - Google Patents

マルチチャネル・クローズアップ結像装置 Download PDF

Info

Publication number
JP7406560B2
JP7406560B2 JP2021540519A JP2021540519A JP7406560B2 JP 7406560 B2 JP7406560 B2 JP 7406560B2 JP 2021540519 A JP2021540519 A JP 2021540519A JP 2021540519 A JP2021540519 A JP 2021540519A JP 7406560 B2 JP7406560 B2 JP 7406560B2
Authority
JP
Japan
Prior art keywords
optical system
slide
array
mirror
reflective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021540519A
Other languages
English (en)
Other versions
JP2022517612A (ja
Inventor
ヴィエイユ,ティボー
Original Assignee
デピクサス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デピクサス filed Critical デピクサス
Publication of JP2022517612A publication Critical patent/JP2022517612A/ja
Application granted granted Critical
Publication of JP7406560B2 publication Critical patent/JP7406560B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/24Optical objectives specially designed for the purposes specified below for reproducing or copying at short object distances
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0836Catadioptric systems using more than three curved mirrors
    • G02B17/084Catadioptric systems using more than three curved mirrors on-axis systems with at least one of the mirrors having a central aperture
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/002Arrays of reflective systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/02Catoptric systems, e.g. image erecting and reversing system
    • G02B17/06Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror
    • G02B17/0647Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using more than three curved mirrors
    • G02B17/0652Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using more than three curved mirrors on-axis systems with at least one of the mirrors having a central aperture
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0856Catadioptric systems comprising a refractive element with a reflective surface, the reflection taking place inside the element, e.g. Mangin mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0062Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0062Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between
    • G02B3/0068Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between arranged in a single integral body or plate, e.g. laminates or hybrid structures with other optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/10Mirrors with curved faces

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Description

本発明は、クローズアップ結像〔イメージング〕、すなわち、装置のサイズと比較して近距離に配置された物体を結像することをねらいとするマルチチャネル結像装置に関する。
大きな視野を有する、クローズアップ結像のための小型結像システムは、臨床検体の検査のような実験室操作におけるように、工業用視覚、品質検査、および文書撮像の分野でますます使用されるようになっている。
クローズアップ結像のための結像装置は、典型的には、約1平方センチメートル以上の表面に対応する視野を結像するために、たとえば10mm~40mmの間に含まれる古典的光学系と比較して大きな直径を有する対物レンズを備える。しかしながら、この装置は、洗練された高価なレンズを必要とする。
米国特許第4,982,222号は、列に配列された勾配屈折率光ファイバーのアレイを含むシステムを開示している。二次元画像を記録するためには、アレイによる物体の機械的な横断方向走査が必須である。このシステムの重大な欠点は、アレイを移動させるための安定した機械的構造の必要性である。さらに、勾配屈折率光ファイバーは、UV照明に対して透明ではなく、その有用性は、UV蛍光染料の観察やUVフォトリソグラフィーのような用途では制限される。
USRE28162は、物体を結像するためのレンズの第1の二次元アレイと、レンズの第2の二次元アレイとを含む結像システムを開示している。第1のアレイの各レンズが第2のアレイの各レンズと整列されて、光チャネルのアレイを形成する。そこで、レンズの第1のアレイによって生成された像は、レンズの第2のアレイによって再構成されることができる。「レンズモザイク」と呼ばれるレンズの各アレイは、プラスチック透明材料を成形することによって作られる。各光チャネルによって、物体の一部が結像できる。このようにして、異なるチャネルによって生成された個々の画像を加えることによって、大きな視野で形成された完全な画像が得られる。
V¨olkelら(V¨olkel, R., Herzig, H.P., Nussbaum, P., Daendliker, R., & Hugle, W.B., 1996, Microlens array imaging system for photolithography、Optical Engineering, 35(11), 3323-3331)は、やはり重畳されたレンズアレイを含むシステムを開示しているが、小型化されたレンズを有し、アレイはUS RE28162のレンズアレイに比べて、より小さなピッチをもつ。アレイの各レンズは、ガラス基板上のレジストを融解することによって作られる。たとえば20×20mm2の表面を有する、光学系に対して大きな視野に対応する物体は、このシステムを用いると、5μmの分解能で結像できる。しかしながら、USRE28162およびVolkelらに開示されているシステムは、アレイの近隣の光チャネル間の光学的クロストークがあり、画像の改変につながる。
図1を参照すると、従来技術の光学系は、1つの光チャネル20を含むことができる。光チャネル20は、光軸3および第1のレンズ21を有する。光学系の開口数NAは、光軸3に平行に配置されたシステムの壁と開口絞りDapの両方によって定義される。また、物体面πobjに位置する物体点P1を考慮すると、P1から来る入射光線は、その伝搬方向が開口数によって許容されるよりも大きな角度を光軸となすため、開口絞りDapによって像面πiのほうに伝搬することを妨げられる。やはり対物面πobjに位置する物体P2を考慮すると、P2から来る入射光線は、その伝搬方向がP1から来る時の入射光線の角度よりも大きな角度を光軸3となすため、もはや開口絞りによって阻止されず、光学系の壁面によって阻止される。このように、開口絞りDapは、帯域通過角度フィルタとして作用し、一方、開口絞りと壁との組み合わせが、真の低域通過角度フィルタを画定する。視野は、物体点P1によって発される光線について見られるように、視野絞りDFlによっても制限されることができる。
図2を参照すると、従来技術の別の光学装置は、いくつかの重畳されたレンズアレイを含むことができる。この光学装置は、異なる光チャネル20間のクロストークがある。レンズアレイ23は、一般に、透明材料で作られた基板を覆うレンズを含む。図1に示される光学系とは対照的に、図2に示される光学系は、近隣の光チャネル20間に吸収壁を有しない。物体面πobjに位置する物体P3を考えると、P3によって発される光線が、所定の角度よりも小さい光軸3との角度に従って光学系に向かって伝搬するとき、光線は、同じ光チャネル20内で光学装置を通じて伝搬する。たとえば、前記所定の角度より下では、P3からの光線は光チャネルch0またはch1を通じて伝搬し、P3の像P'3は像平面πi上に正しく形成される。前記所定の角度より上では、光線(a)によって示されるように、近隣の光チャネル20の間でクロストークが発生し、P3の像が正しく得られないため、物体の全体的な像の変化が生じる。
よって、従来技術の光学装置は、通例、光学装置の入口において高い角度周波数を有する光を事前フィルタリングする、すなわち放出しないために、コリメーションシステムを有する。この解決策にはいくつかの欠点がある。すなわち、開口数の大きいシステムにはならず、蛍光体(生物顕微鏡法においてよく用いられる)のような等方的な光を放射する物体を結像するために適応されない。
図3を参照すると、隣接する光チャネル20間のクロストークは、低域通過角度フィルタを部分的に再構成するために、種々のレンズアレイ内および/または上にいくつかの絞り22を追加することによって部分的に制限できる。この解決策は、低開口結像システムについてのみクロストークを除去するのに十分である。しかしながら、蛍光体のような等方的な光を放射する物体を結像するためには適応されない。所定の限界を超える角度周波数を有する光線は、実際、完全にはフィルタリングされない。さらに、絞りの追加は、光学性能の均一性の一般的な損失を意味し、特に、画像全体にわたる輝度の変動をもたらす。
少なくとも部分的には従来技術の上述の欠点に応答するよう、光学的クローズアップ結像のための装置が開発された。物体の少なくとも一部を光学的にクローズアップ結像するための装置は、光軸を有し、以下を含む:
・それぞれの第1反射光学系または反射屈折光学系は、厳密に0.2未満、好ましくは厳密に0.1未満の倍率を有する、
・第1反射光学系および/または第1反射屈折光学系の二次元の第1のアレイであって、該第1のアレイは、物体に対向するように意図された第1の側と、第1の側と反対の第2の側とを有する、第1のアレイ、
・第2反射光学系および/または第2反射屈折光学系の二次元の第2のアレイ、
・それぞれの第1反射光学系および/または第1反射屈折光学系は、光軸に平行な軸上で第2反射光学系および/または第2反射屈折光学系と整列されている、
前記第1のアレイは、以下を含む:
・物体に対向するように配置された透明材料の第1のスライド、
・第1のスライドを覆う薄膜二次鏡の第1の二次元アレイであって、各二次鏡は、第1のスライドに関して物体の反対側から来る光線を反射するように適応されている、第1の二次元アレイ、
・透明材料の第2のスライドであって、第1のスライドが物体と第2のスライドとの間に配置される、第2のスライド、
・第2のスライドを覆う薄膜一次鏡の第2の二次元アレイであって、各一次鏡は、第2のスライドに関して物体に対向する側から来る光線を反射するように適応され、各一次鏡は孔を有しており、前記孔は、二次鏡によって反射される光に一次鏡を通過させるように構成される、第2の二次元アレイ、
それぞれの第1の反射光学系および/または反射屈折光学系は、少なくとも、薄膜一次鏡の第2のアレイの一次鏡のうちの一つおよび薄膜二次鏡の第1のアレイの二次鏡の一つを含み、第2のアレイは以下を含む:
・第1のアレイに関して物体の反対側に配置された透明材料の第3のスライド、
・第3のスライドを覆う薄膜四次鏡の第3の二次元アレイであって、各三次鏡は、第3のスライドに関して第1のアレイの反対側から来る光線を反射するように適応されている、第3の二次元アレイ、
・透明材料の第4のスライドであって、第3のスライドが第1のアレイと第4のスライドとの間に配置される、第4のスライド、
・第4のスライドを覆う薄膜三次鏡の第4の二次元アレイであって、各四次鏡は、第4のスライドに関して第1のアレイに対向する側から来る光線を反射するように適応されている、第4の二次元アレイ、
各四次鏡は該四次鏡内に孔を有し、前記孔は、二次鏡によって反射された光に四次鏡を通過させるように適応されており、
各第2反射光学系および/または第2反射屈折光学系は、少なくとも、薄膜四次鏡の第3のアレイの四次鏡のうちの一つおよび薄膜三次鏡の第4のアレイの三次鏡の一つを含む。
本発明のさらなる任意の側面では:
・各第1反射光学系および/または第1反射屈折光学系は、所定の視野を有するように構成され、各第1反射光学系および/または第1反射屈折光学系は、直径Dch1を有する第1の光チャネルをなし、視野のサイズは、第1の光チャネルの直径Dch1より厳密に大きく、好ましくは、第1の光チャネルの直径Dch1よりも5倍大きく、複数の光チャネルが同じ物体点を結像するために適応され、
・第1反射光学系および/または第1反射屈折光学系の第1のアレイは、第2の反射光学系および/または第2の反射屈折光学系の第2のアレイと物体との間に配置され、
・各第1反射光学系および/または第1反射屈折光学系、ならびに該第1反射光学系および/または第1反射屈折光学系と整列した第2反射光学系および/または第2反射屈折光学系は、単位光学系を形成し、該単位光学系の第1反射光学系および/または第1反射屈折光学系、および、第2反射光学系および/または第2反射屈折光学系は、光軸に垂直な平面に関して対称であり、
・各一次鏡は、第2のスライドに関して物体の反対側の第2のスライドの表面を覆い、各二次鏡は、第1のスライドに関して物体の反対側の第1のスライドの表面を覆い、
・各一次鏡は、物体に対向する第2のスライドの表面を覆い、各二次鏡は、第1のスライドに関して物体の反対側の第1のスライドの表面を覆い、
・一次鏡は凹面、二次鏡は凸面であり、
・一次鏡および二次鏡は凹面であり、
・装置は、一次鏡と二次鏡との間に配置された屈折光学マイクロレンズを含み、
・屈折光学マイクロレンズが二次鏡の表面を覆い、
・装置は、第1のアレイの一次鏡の孔の中に配置された正の屈折光学マイクロレンズを含む。
本発明の別の側面は、等方的な光を発する物体を結像するための、好ましくは蛍光体を結像するための、本発明のある実施形態による前記装置の使用である。
本発明は、添付の図面を参照して、例として説明される。
従来技術の単一の光チャネルを図式的に示している。 各レンズアレイが透明基板を備える、従来技術の別のマルチチャネル・クローズアップ光学装置を図式的に示している。 絞りを含む従来技術のマルチチャネル・クローズアップ結像装置を図式的に示している。 反射光学的第1レンズのアレイを含む、本発明のある実施形態による光学装置を図式的に示している。 それぞれ2つの反射体のカセグレン配置を含む2つのレンズを備える、本発明のある実施形態による光学装置を図式的に示している。 それぞれ2つの反射体の別のカセグレン配置を含む2つのレンズを備える、本発明のある実施形態による光学装置を図式的に示している。 それぞれ反射体のグレゴリー配置を含む2つのレンズを備える、本発明のある実施形態による光学装置を図式的に示している。 それぞれ反射体と屈折光学レンズのニュートン配置を含む2つのレンズを備える、本発明のある実施形態による光学装置を図式的に示している。 それぞれ反射体の別のカセグレン配置を含む2つのレンズを備える、本発明のある実施形態による光学装置を図式的に示している。 2つのレンズを備え、一方のレンズが反射体の別のカセグレン配置を含む、本発明のある実施形態による光学装置を図式的に示している。 それぞれ反射体のグレゴリー配置を含む2つのレンズを備える、本発明のある実施形態による光学装置を図式的に示している。 2つのレンズを備え、一方のレンズが反射体の別のカセグレン組み合わせを含む、本発明のある実施形態による光学装置を図式的に示している。
用語「反射光学系(catoptric system)」は、本明細書では、物体の像を形成するように適応された、少なくとも2つの鏡を含む光学系を示すために使用される。
用語「反射屈折光学系(catadioptric system)」は、本明細書では、物体の像を形成するように適応された、屈折ベースの屈折光学(dioptric)レンズと組み合せた少なくとも2つの鏡を含む光学系を示すために使用され、前記反射光学系は、物体の像を形成するように適応されている。
用語「レンズ」は、本明細書では、屈折(屈折光学系を使用)もしくは反射(反射光学系を使用)またはその両方の手段によって、合焦するまたは光線を分散させるように適応された光学系を示すために使用される。
用語「凸」は、本明細書では、入射光線に対して突き出た曲がりを有する表面をもつ物体を指すために使用される。よって、「凸面鏡」という用語は、光線を発散させように適応された鏡を指し、一方、「凸屈折光学レンズ」という用語は、光線を集束させように適応された屈折光学レンズを指す。
用語「凹」は、本明細書では、入射光線に対してへこんだ曲がりを有する表面をもつ物体を指すために使用される。よって、「凹面鏡」という用語は、光線を集束させるように適応された鏡を指し、一方、「凹面屈折光学レンズ」という用語は、光線を発散させるように適応された屈折光学レンズを指す。
用語「正」レンズまたは「負」レンズは、本明細書では、それぞれ入射光線をそれぞれ集束させるまたは入射光線を発散させるように適応されたレンズを示すために使用される。
用語「マイクロレンズ」は、本明細書では、2mm未満、特に500μm未満、好ましくは300μm未満の直径を有するレンズを示すために使用される。
用語「透明」は、本明細書では、可視範囲の光線のエネルギーの50%未満を吸収し、好ましくは前記光線の波長を変化させない材料を示すために使用される。
本発明の好ましい諸側面の詳細な説明
図4を参照すると、本発明のある実施形態による光学装置1は、物体2の少なくとも一部を結像するように構成される。装置1は、好ましくは、クローズアップ結像、すなわち、光学装置1から近距離、特に2cmより近く、好ましくは1cmより近くに配置された物体の結像のために適応される。
装置1は、光軸3を有し、それに沿って光学装置の種々のコンポーネントが整列される。装置1は、少なくとも、第1マイクロレンズ5の二次元の第1のアレイ4を含む。二次元の第1のアレイ4は、好ましくは、光軸3に垂直な平面を形成し、第1マイクロレンズ5のそれぞれは、光軸3に平行な軸上に整列される。第1のアレイ4は、物体2に対向するように意図された第1の側と、第1の側と反対の第2の側とを有する。
第1マイクロレンズ5のそれぞれは、少なくとも第1の反射光学系8、好ましくは第1の反射屈折光学系を含む。第1の反射光学系は、好ましくは、少なくとも2つの反射コンポーネント、すなわち、一次鏡14および二次鏡12を含む。それぞれの鏡(一次鏡15または二次鏡12)は、光軸3と整列した光軸を有する。
それぞれの第1マイクロレンズ5は、物体2から第1マイクロレンズ5に来る第1の光チャネル24を形成する。第1の光チャネル24は、直径Dch1を有する。それぞれの第1マイクロレンズ5は、第1マイクロレンズ5の、物体2と反対の側から、物体2の反対方向に向けて、第2の光チャネル25を形成する。第2の光チャネル25は、直径Dch2を有する。第1の反射光学系は、直径Dch1より小さい、好ましくはDch1の0.3倍より小さい直径Dch2を有する第2の光チャネル25を形成することを可能にする。光チャネルの直径間のこれらの条件は、隣接する第1マイクロレンズ5の異なる隣接する光チャネル間でのクロストークを回避することを可能にする。さらに、第1の反射光学系は、純粋な屈折光学マイクロレンズ5と比較して、第1マイクロレンズ5の焦点距離を短くすることを可能にする。よって、純粋な屈折光学マイクロレンズによって形成される中間像よりも小さい中間像を第1マイクロレンズ5から形成することが可能である。最後に、第1の反射光学系を備える第1マイクロレンズ5は、物体2に対向する純粋な屈折光学レンズのアレイを備える光学装置1と比較して、光学装置1の視野を増大させることを可能にする。焦点距離の短縮および視野の増大は、単一の物体点を結像するように適応された第1の反射光学系および/または反射屈折光学系の数を増やし、次いで、クロストークから生じるゴースト像を回避しつつ像の分解能を増加させることを可能にする。第1の反射光学系および/または第1の反射屈折光学系は、好ましくは、厳密に0.2未満、好ましくは厳密に0.1未満の倍率を有し、その結果、結像ステムの全分解能を高めることができる。
本発明のある好ましい実施形態では、第1の反射光学系および/または第1の反射屈折光学系は、視野を有するように構成され、視野の寸法は、第1の光チャネルの直径Dch1より厳密に大きく、好ましくは、第1の光チャネルの直径Dch1よりも5倍大きい。すると、同じ物体点を結像するために複数の光チャネルが許容される。
本発明の別の側面は、等方的な光を発する物体2を結像するため、好ましくは蛍光体を結像するための、装置1の使用である。蛍光体は、たとえば、蛍光染料または蛍光団〔フルオロフォア〕でありうる。光学装置1は、従来技術の光学装置と比較して、より広い視野で物体2を結像することができるので、装置1の使用は、等方的な光を発する物体を結像するために特に適応している。好ましくは、装置1は、装置の物体平面内に配置された蛍光染料のセットを結像するために使用される。
光学装置1は、第2マイクロレンズ7の二次元アレイ6を含む。二次元の第2のアレイ6は、好ましくは、光軸3に垂直な平面を形成し、第二マイクロレンズ7のそれぞれは、光軸3に平行な軸上に整列される。それぞれの第2マイクロレンズ7は、光軸3に平行な軸上で第1マイクロレンズ5と整列され、第1マイクロレンズ5および第2マイクロレンズ7を含む単位光学系を形成する。それぞれの第2マイクロレンズ7は、少なくとも純粋な屈折光学マイクロレンズと反射光学マイクロレンズ、好ましくは反射屈折光学マイクロレンズとの間で選択できる。
図5を参照すると、第1のアレイ4は、物体2に対向するように配置された透明材料の第1のスライド11を含むことができる。第1のスライド11は、たとえば、ガラススライドまたはガラスウェーハであってもよい。
第1のアレイ4は、さらに、薄膜二次鏡12の第1の二次元アレイを含むことができ、各二次鏡12は、第1のスライド11を覆う。薄膜二次鏡12の二次元アレイは、好ましくは、光軸3に垂直な平面を形成する。
各二次鏡12は、少なくとも、第1のスライド11に関して物体2と反対側から来る光線を反射するように構成される。本発明の種々の実施形態の鏡は、たとえば、溶融レジスト技術、インプリント技術、および/または堆積プロセスを含む、標準的なマイクロレンズ製造および堆積プロセスによって製造できる。二次鏡12のアレイは、たとえば、薄い反射材料層、好ましくは薄い金属層のリフトオフ堆積(lift-off deposition)によって製造できる。鏡の製造に使用される金属は、アルミニウム、銀、金の間で選択できる。
第1のアレイ4は、透明材料の第2のスライド13をさらに含むことができ、第1のスライド11は、物体2と第2のスライド13との間に配置される。薄膜一次鏡14の第2の二次元アレイは、第2のスライド13を覆う。各一次鏡14は、第2のスライド13に関して物体2に対向する側から来る光線を反射するように構成される。各一次鏡14は孔15を備え、前記孔15は、二次鏡12によって反射された光に一次鏡14を通過させるように適応されている。孔15は、好ましくは、一次鏡14の中心に作成される。
第1のスライド11、二次鏡12の第1のアレイ、第2のスライド13、および二次鏡14の第2のアレイは、第1マイクロレンズ5の二次元の第1のアレイ4を作製することを可能にし、各第1マイクロレンズ5は反射光学系を含む。該反射光学系は、一次鏡14および二次鏡12を含む。図5を参照するに、各第1マイクロレンズ5は、この場合、カセグレン反射器として設計されることができる。
好ましくは、光学装置1は、第1のアレイ4に関して物体2と反対側に配置された透明材料の第3のスライド16をも含むことができる。第3のスライド16は、たとえば、ガラススライドまたはガラスウェーハであってもよい。
薄膜四次鏡17の第3の二次元アレイが、第3のスライド16を覆うことができる。薄膜四次鏡17の二次元アレイは、好ましくは、光軸3に垂直な平面を形成する。各四次鏡17は、少なくとも、第3のスライド16に関して物体2と反対側から来る光線を反射するように適応されている。
光学装置1は、透明材料の第4のスライド18をさらに備えることができ、第3のスライド16は、第1のアレイ4と第4のスライド18との間に配置される。薄膜三次鏡19の第4の二次元アレイが、第4のスライドを覆う。各三次鏡19は、第4のスライド18に関して物体2に対向する側から来る光線を反射するように適応されている。各三次鏡17は、孔15を備え、前記孔15は、二次鏡12によって反射された光に一次鏡14を通過させるように適応されている。
第3のスライド16、四次鏡17の第3のアレイ、第4のスライド18、および三次鏡17の第4のアレイは、第2マイクロレンズ7の二次元の第2のアレイ6を製造することを可能にし、各第2マイクロレンズ7は第2の反射光学系を含む。第2の反射光学系は、三次鏡19および四次鏡17を含む。図5を参照すると、その場合、各第2マイクロレンズ7はカセグレン反射器として設計できる。第2の反射光学系および/または反射屈折光学系の倍率は、好ましくは5より高く、好ましくは10より高い。純粋な屈折性の第2のレンズの代わりに第2の反射光学系および/または第2の反射屈折光学系を有することは、低倍率の第1の反射光学系および/または反射屈折光学系を有することを許容することによって、装置によって得られる像の分解能を増加させることを可能にする。分解能の増加は、クロストークから生じるゴースト像を回避することによって得られる。その結果、1つの物体点の結像に参加する複数の光チャネル、好ましくは4つより多い、特に9つより多い光チャネルを有することも可能になる。また、ゴースト像の形成を最小限にしながら、各光チャネルの個々の開口数の、セグメント分割された集合体によって構成される、装置のグローバルな開口数を増加させることができる。
本発明のある好ましい実施形態では、単位光学系の第1マイクロレンズ5および第2マイクロレンズ7は、光軸3に垂直な面10に関して対称的である。反射光学的な第1マイクロレンズ5と反射光学的な第2マイクロレンズ7との間の対称性のため、コマおよび歪曲のような光学装置1のコマ収差を除去することが可能である。鏡(一次鏡14および/または二次鏡12および/または三次鏡19および/または四次鏡17)は、球面または非球面を形成する反射面を有することができる。非球面をなす反射面を有する鏡は、球面収差を緩和し、好ましくは回避することを許容する。
各一次鏡14は、第2のスライド13に関して物体2と反対の第2のスライドの表面を覆うことができ、各二次鏡12は、第1のスライド11に関して物体2と反対の第1のスライドの表面を覆うことができる。
第1マイクロレンズ5は、カセグレン設計で取り付けることができる:第1のアレイ4の一次鏡14は凹であってもよく、第1のアレイ4の二次鏡12は凸であってもよい。
図6を参照すると、各一次鏡14は、物体2に対向する第2のスライド13の表面を覆うことができ、各二次鏡12は、第1のスライド11に関して物体2と反対の第1のスライド11の表面を覆うことができる。
図7を参照すると、一次鏡14と二次鏡12の両方が凹形であってもよい。その場合、各第1マイクロレンズ5は、グレゴリー設計で取り付けられた反射光学系を備える。グレゴリー設計は、装置1の中間像平面を、カセグレン設計と比較して、光軸3に沿って物体2から離れるほうにシフトさせることを許容する。
図8を参照すると、各第1マイクロレンズ5は、一次鏡14と二次鏡12との間に配置された屈折光学マイクロレンズ、好ましくは純粋な屈折光学マイクロレンズを含むことができる。各第1マイクロレンズ5は、ニュートン設計で取り付けることができる。一次鏡14は凹面であってもよく、二次鏡12は平坦であってもよい。二次鏡12は、第1のスライド11に関して物体2と反対の第1のスライド11の側を覆い、正の純粋な屈折光学マイクロレンズが各二次鏡12を覆う。
図9を参照すると、第1のマイクロレンズ5のそれぞれは、カセグレン反射屈折光学設計で取り付けることができる。一次鏡14は凹面であり、二次鏡12は凸面であることができる。二次鏡12は、第1のスライド11に関して物体2と反対の第1のスライド11の側を覆い、負の純粋な屈折光学マイクロレンズが各二次鏡12を覆う。この構成は、他のカセグレン構成と比較して、中間像平面10を光軸3に沿って物体2から離れるほうにシフトさせ、閉塞比(obturation ratio)を低減させることを許容する。
図10を参照すると、各第2マイクロレンズ7は、屈折光学マイクロレンズであることができ、好ましくは、透明材料の第3のスライド16と、第3のスライド16に関して物体2に対向する第3のスライド16の側を覆う正のマイクロレンズとを備える。たとえば、第1のマイクロレンズ5は、カセグレン設計で取り付けることができる。すなわち、第1のアレイ4の一次鏡14は凹であってもよく、第1のアレイ4の二次鏡12は凸であってもよい。第2マイクロレンズ7は、純粋な屈折光学的な正のマイクロレンズであってもよい。好ましくは、各第2マイクロレンズ7は、純粋屈折光学マイクロレンズのコリメータアセンブリであってもよい。
図11を参照すると、第1マイクロレンズ5は、グレゴリー設計で取り付けることができ、一次鏡は凹面であり、二次鏡も凹面であり、各二次鏡は、第1のスライド11に関して物体2の反対側にある正の純粋な屈折光学マイクロレンズで覆われている。この構成は、カセグレン構成と比較して、中間像平面10が光軸3に沿って物体平面2から離れるほうにシフトされ、閉塞比を低下させることを許容する。
図12を参照すると、各第2マイクロレンズ7は、第1のアレイ4の一次鏡14の孔15に配置された正の屈折光学マイクロレンズを含むことができる。第1マイクロレンズ5は、たとえば、カセグレン設計で取り付けることができ、第一鏡14は凹面であり、第二鏡12は凸面であり、第2マイクロレンズ7は、孔15に挿入された正の純粋な屈折光学マイクロレンズを含む。
本発明のどの実施形態においても、それぞれの単位光学系は、正のマイクロレンズおよびマイクロ負レンズの両方を含むことができ、その結果、ペッツヴァル(Petzval)効果を最小化または回避することができる。これにより、結像装置1は、物体2のフラットフィールド像を形成することができる。

Claims (16)

  1. 物体(2)の少なくとも一部を光学的にクローズアップ結像するための装置(1)であって、当該装置は光軸(3)を有し:
    ・第1反射光学系(8)または第1反射屈折光学系(8)の二次元の第1のアレイ(4)であって、該第1のアレイは、物体に対向するように意図された第1の側と、該第1の側と反対の第2の側とを有する、第1のアレイと;
    ・第2反射光学系または第2反射屈折光学系の二次元の第2のアレイ(6)とを有しており、
    それぞれの第1反射光学系または第1反射屈折光学系は、光軸に平行な軸上で第2反射光学系または第2反射屈折光学系と整列されており、
    前記第1のアレイは:
    ・物体に対向するように配置された透明材料の第1のスライド(11)と、
    ・前記第1のスライドを覆う薄膜二次鏡(12)の第1の二次元アレイであって、各二次鏡は、前記第1のスライドに関して物体の反対側から来る光線を反射するように適応されている、第1の二次元アレイと、
    ・透明材料の第2のスライド(13)であって、前記第1のスライドが物体と前記第2のスライドとの間に配置される、第2のスライドと、
    ・前記第2のスライドを覆う薄膜一次鏡(14)の第2の二次元アレイであって、各一次鏡は、前記第2のスライドに関して物体に対向する側から来る光線を反射するように適応され、各一次鏡は孔を有しており、前記孔は、二次鏡によって反射される光に一次鏡を通過させるように適応される、第2の二次元アレイと、
    それぞれの第1の反射光学系または反射屈折光学系は、少なくとも、薄膜一次鏡の前記第2のアレイの一次鏡のうちの一つおよび薄膜二次鏡の前記第1のアレイの二次鏡の一つを含み、
    前記第2のアレイは:
    ・前記第1のアレイに関して物体の反対側に配置された透明材料の第3のスライド(16)と、
    ・前記第3のスライドを覆う薄膜四次鏡(17)の第3の二次元アレイであって、各四次鏡(17)は、前記第3のスライドに関して前記第1のアレイの反対側から来る光線を反射するように適応されている、第3の二次元アレイと、
    ・透明材料の第4のスライド(18)であって、前記第3のスライドが前記第1のアレイと前記第4のスライドとの間に配置される、第4のスライドと、
    ・前記第4のスライドを覆う薄膜三次鏡(19)の第4の二次元アレイであって、各三次鏡は、前記第4のスライドに関して前記第1のアレイに対向する側から来る光線を反射するように適応されている、第4の二次元アレイとを有しており、
    各四次鏡は該四次鏡内に孔を有し、前記孔は、前記二次鏡によって反射された光に前記四次鏡を通過させるように適応されており、
    各第2反射光学系または第2反射屈折光学系は、少なくとも、薄膜四次鏡の前記第3のアレイの四次鏡のうちの一つおよび薄膜三次鏡の前記第4のアレイの三次鏡の一つを含む、
    装置。
  2. それぞれの第1反射光学系または反射屈折光学系は、厳密に0.2未満の倍率を有する、請求項1に記載の装置。
  3. 各第1反射光学系または第1反射屈折光学系は、所定の視野を有するように構成され、各第1反射光学系または第1反射屈折光学系は、直径Dch1を有する第1の光チャネルをなし、前記視野のサイズは、第1の光チャネルの直径Dch1より厳密に大きく、複数の光チャネルが同じ物体点を結像するために適応される、請求項1または2に記載の装置。
  4. 前記第1反射光学系または第1反射屈折光学系の前記第1のアレイは、第2の反射光学系または第2の反射屈折光学系の前記第2のアレイと前記物体との間に配置される、請求項1ないし3のうちいずれか一項に記載の装置。
  5. 各第1反射光学系または第1反射屈折光学系、ならびに該第1反射光学系または第1反射屈折光学系と整列した第2反射光学系または第2反射屈折光学系は、単位光学系(9)を形成し、該単位光学系の前記第1反射光学系または第1反射屈折光学系、および、前記第2反射光学系または第2反射屈折光学系は、前記光軸に垂直な平面に関して対称である、請求項1ないし4のうちいずれか一項に記載の装置。
  6. ・各一次鏡は、前記第2のスライドに関して物体の反対側の前記第2のスライドの表面を覆い、
    ・各二次鏡は、前記第1のスライドに関して物体の反対側の前記第1のスライドの表面を覆う、
    請求項1ないし5のうちいずれか一項に記載の装置。
  7. ・各一次鏡は、物体に対向する前記第2のスライドの表面を覆い、
    ・各二次鏡は、前記第1のスライドに関して物体の反対側の前記第1のスライドの表面を覆う、
    請求項1ないし5のうちいずれか一項に記載の装置。
  8. 前記一次鏡は凹であり、前記二次鏡は凸である、請求項1ないし7のうちいずれか一項に記載の装置。
  9. 前記一次鏡および前記二次鏡は凹である、請求項1ないし8のうちいずれか一項に記載の装置。
  10. 前記一次鏡と前記二次鏡との間に配置された屈折光学マイクロレンズを有する、請求項1ないし9のうちいずれか一項に記載の装置。
  11. 前記屈折光学マイクロレンズが前記二次鏡の表面を覆う、請求項10に記載の装置。
  12. 前記第1のアレイの前記一次鏡の前記孔の中に配置された正の屈折光学マイクロレンズを有する、請求項1ないし11のうちいずれか一項に記載の装置。
  13. 等方的な光を発する物体を結像するための、請求項1ないし12のうちいずれか一項に記載の装置の使用。
  14. それぞれの第1反射光学系または反射屈折光学系は、厳密に0.1未満の倍率を有する、請求項2に記載の装置。
  15. 前記視野のサイズは、第1の光チャネルの直径D ch1 よりも5倍大きい、請求項3に記載の装置。
  16. 蛍光体を結像するための、請求項13に記載の前記装置の使用。
JP2021540519A 2019-01-24 2020-01-24 マルチチャネル・クローズアップ結像装置 Active JP7406560B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP19305096.0A EP3686642A1 (en) 2019-01-24 2019-01-24 Multichannel close-up imaging device
EP19305096.0 2019-01-24
PCT/EP2020/051812 WO2020152351A1 (en) 2019-01-24 2020-01-24 Multichannel close-up imaging device

Publications (2)

Publication Number Publication Date
JP2022517612A JP2022517612A (ja) 2022-03-09
JP7406560B2 true JP7406560B2 (ja) 2023-12-27

Family

ID=65409022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021540519A Active JP7406560B2 (ja) 2019-01-24 2020-01-24 マルチチャネル・クローズアップ結像装置

Country Status (6)

Country Link
US (2) US11892612B2 (ja)
EP (2) EP3686642A1 (ja)
JP (1) JP7406560B2 (ja)
KR (1) KR20210118821A (ja)
CN (2) CN116974049A (ja)
WO (1) WO2020152351A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023187759A1 (en) 2022-04-01 2023-10-05 Depixus SAS Methods of screening compounds

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3527526A (en) * 1965-05-26 1970-09-08 Ernest W Silvertooth Catoptric image-forming system in which light is reflected twice from each surface
US3455623A (en) * 1966-03-04 1969-07-15 Te Co The Optical objective forming an intermediate image and having primary and subsidiary conjugate focal planes
US3814504A (en) * 1972-04-28 1974-06-04 Universal Technology Reflecting lens array
USRE28162E (en) 1972-06-09 1974-09-17 Optical apparatus includino a pair op mosaics of optical imaging elements
US4277129A (en) * 1978-02-24 1981-07-07 Taucher Kenneth F Multiple stage optical system for creating high-intensity solar light beam
US4272152A (en) * 1979-10-15 1981-06-09 The Perkin-Elmer Corporation Unit magnification relay systems
JPS5742014A (en) * 1980-08-28 1982-03-09 Akio Suzuki Mirror lens
US4812030A (en) * 1985-01-03 1989-03-14 The Boeing Company Catoptric zoom optical device
US4982222A (en) 1986-07-28 1991-01-01 Xerox Corporation Imaging system utilizing an oscillating gradient index lens array
JPH0776745B2 (ja) * 1989-11-03 1995-08-16 株式会社堀場製作所 顕微分光測定装置
US7347572B1 (en) * 2000-05-23 2008-03-25 Media Lario S.R.L. Telescope mirror for high bandwidth free space optical data transmission
CN1540300A (zh) * 2003-10-31 2004-10-27 中国科学院上海技术物理研究所 一种用于遥感仪器光谱定标的耦合四反射光学系统
US7638708B2 (en) * 2006-05-05 2009-12-29 Palo Alto Research Center Incorporated Laminated solar concentrating photovoltaic device
US9052494B2 (en) * 2007-10-02 2015-06-09 Kla-Tencor Technologies Corporation Optical imaging system with catoptric objective; broadband objective with mirror; and refractive lenses and broadband optical imaging system having two or more imaging paths
JP5774550B2 (ja) * 2012-06-27 2015-09-09 日立マクセル株式会社 ピンホールアレイ並びにそれを用いた表示装置
EP2875394A1 (en) * 2012-07-17 2015-05-27 Ecole Polytechnique Fédérale de Lausanne (EPFL) Reflective optical objective
CN103207452B (zh) * 2013-03-22 2015-09-30 中国科学院长春光学精密机械与物理研究所 双波段共光路共焦面成像系统
US9880391B2 (en) * 2013-10-01 2018-01-30 Heptagon Micro Optics Pte. Ltd. Lens array modules and wafer-level techniques for fabricating the same
JP6151632B2 (ja) * 2013-12-20 2017-06-21 富士フイルム株式会社 撮像モジュール及び撮像装置
CN105785392A (zh) * 2016-04-15 2016-07-20 中国科学院上海技术物理研究所 基于共轴三反无焦望远镜的四波束激光三维成像光学系统
CN105759410B (zh) * 2016-04-19 2018-08-28 中国科学院国家天文台南京天文光学技术研究所 折反式大口径大视场成像系统
JP6917000B2 (ja) * 2016-12-28 2021-08-11 株式会社タムロン 反射屈折光学系及び撮像装置

Also Published As

Publication number Publication date
CN113348400A (zh) 2021-09-03
CN113348400B (zh) 2023-08-18
EP3914949A1 (en) 2021-12-01
CN116974049A (zh) 2023-10-31
US20220091401A1 (en) 2022-03-24
JP2022517612A (ja) 2022-03-09
US11892612B2 (en) 2024-02-06
US20240134173A1 (en) 2024-04-25
KR20210118821A (ko) 2021-10-01
EP3686642A1 (en) 2020-07-29
WO2020152351A1 (en) 2020-07-30

Similar Documents

Publication Publication Date Title
CN111699429B (zh) 投影光学系统及图像显示装置
US7587109B1 (en) Hybrid fiber coupled artificial compound eye
US3658407A (en) Image transmitter formed of a plurality of graded index fibers in bundled configuration
US7106529B2 (en) Flat wide-angle lens system
US20240134173A1 (en) Multichannel Close-up Imaging Device
JP2010500769A5 (ja)
ES2926015T3 (es) Dispositivo de formación de imágenes de primer plano multicanal
TWI795592B (zh) 投影鏡頭及投影機
JP4066079B2 (ja) 対物レンズ及びそれを用いた光学装置
JP4591757B2 (ja) レンズ装置
US6822805B2 (en) Objective lens
US5953162A (en) Segmented GRIN anamorphic lens
CN210005782U (zh) 一种应用于多视野并行成像的新型物镜阵列
US6783246B2 (en) Ghost image prevention element for imaging optical system
TW202119078A (zh) 拍攝物鏡
JP7367026B2 (ja) 複数の光学チャネルを有する器械
RU2768520C1 (ru) Оптический узел, оптический инструмент и способ
JP2582918B2 (ja) 顕微鏡用対物レンズ
KR20050098238A (ko) 렌즈 시스템, 이를 이용한 대물렌즈 광학계 및 투사 광학계
CN116224547A (zh) 一种长焦距折反射摄影物镜
JPH09325025A (ja) 測距装置
JP2000105398A (ja) 一眼レフレックスファインダー

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231215

R150 Certificate of patent or registration of utility model

Ref document number: 7406560

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150