JP7404314B2 - Extruded tube with straight inner groove, inner spiral grooved tube and method for manufacturing heat exchanger - Google Patents

Extruded tube with straight inner groove, inner spiral grooved tube and method for manufacturing heat exchanger Download PDF

Info

Publication number
JP7404314B2
JP7404314B2 JP2021118096A JP2021118096A JP7404314B2 JP 7404314 B2 JP7404314 B2 JP 7404314B2 JP 2021118096 A JP2021118096 A JP 2021118096A JP 2021118096 A JP2021118096 A JP 2021118096A JP 7404314 B2 JP7404314 B2 JP 7404314B2
Authority
JP
Japan
Prior art keywords
mass
less
tube
internal
spiral grooved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021118096A
Other languages
Japanese (ja)
Other versions
JP2023013719A (en
Inventor
秀彰 福増
将之 中本
央 坊山
武 坂上
Original Assignee
Maアルミニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maアルミニウム株式会社 filed Critical Maアルミニウム株式会社
Priority to JP2021118096A priority Critical patent/JP7404314B2/en
Priority to PCT/JP2022/027936 priority patent/WO2023286870A1/en
Priority to CN202280039344.6A priority patent/CN117396621A/en
Publication of JP2023013719A publication Critical patent/JP2023013719A/en
Application granted granted Critical
Publication of JP7404314B2 publication Critical patent/JP7404314B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/02Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers
    • B21D53/06Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers of metal tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21HMAKING PARTICULAR METAL OBJECTS BY ROLLING, e.g. SCREWS, WHEELS, RINGS, BARRELS, BALLS
    • B21H3/00Making helical bodies or bodies having parts of helical shape
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/05Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Metal Extraction Processes (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Extrusion Of Metal (AREA)

Description

本発明は、内面直線溝付押出素管及び内面螺旋溝付管と熱交換器の製造方法に関する。 TECHNICAL FIELD The present invention relates to an extruded raw tube with an inner straight groove, a tube with an inner spiral groove, and a method for manufacturing a heat exchanger.

内面螺旋溝付管の製造方法として、以下の特許文献1、2に記載の製造方法が知られている。
これらの製造方法は、アルミニウム製内面螺旋溝付管の製造方法として好適であり、押出加工により製造されたアルミニウム製内面直線溝付管を素管として用い、この素管を引抜ダイスにて縮径すると同時に捻りを付与することにより、内面螺旋溝付管を製造することができる。これらの製造方法では、引抜ダイスによる縮径工程が含まれるため、素管である直線溝付管は、加工後に得られる製品である内面螺旋溝付管よりも外径を大きくする必要がある。
As a method for manufacturing an inner spiral grooved tube, the manufacturing methods described in Patent Documents 1 and 2 below are known.
These manufacturing methods are suitable for manufacturing aluminum internally spiral grooved tubes, and use an aluminum internally linear grooved tube manufactured by extrusion as the base tube, and the diameter of this base tube is reduced using a drawing die. By applying twist at the same time, an internally spiral grooved tube can be manufactured. Since these manufacturing methods include a diameter reduction step using a drawing die, the straight grooved tube that is the raw tube needs to have a larger outer diameter than the inner spiral grooved tube that is the product obtained after processing.

ところで、内面螺旋溝付管は伝熱管として使用されるため、内部を流れる冷媒に生じる圧力損失を低減させるために、管内径をできるだけ大きくすることが望まれる。管内径を大きくするために、同一外径であれば、底肉厚を薄くすることが望まれる。
ところで、管外径をD(mm)、底肉厚をt(mm)とした場合のD/tが大きい素管を押出加工により製造する場合、押出素管の外周面にアルミカスが付着し易くなる問題がある。
また、内面螺旋溝付管の底肉厚tを薄くした場合であっても内部を流れる冷媒により生じる圧力を保持する必要があるため、素管に用いるアルミニウム合金を高強度化する必要がある。
By the way, since the inner spiral grooved tube is used as a heat transfer tube, it is desirable to make the inner diameter of the tube as large as possible in order to reduce the pressure loss caused to the refrigerant flowing inside. In order to increase the inner diameter of the pipe, it is desirable to reduce the bottom wall thickness if the outer diameter is the same.
By the way, when manufacturing a raw tube with a large D/t, where the outer diameter of the tube is D (mm) and the bottom wall thickness is t (mm), by extrusion processing, aluminum scum tends to adhere to the outer peripheral surface of the extruded raw tube. There is a problem.
Furthermore, even when the bottom wall thickness t of the internally spiral grooved tube is reduced, it is necessary to maintain the pressure generated by the refrigerant flowing inside, so it is necessary to increase the strength of the aluminum alloy used for the base tube.

特許文献1、2に記載の製造方法によって内面螺旋溝付管を製造する場合、素管を押出加工により得るため、素管に用いるアルミニウム合金においては、押出加工の段階では柔らかく押出性に優れ、かつ最終製品である内面螺旋溝付管においては高強度であることが好ましい。このような特性を得る上で時効硬化型合金であるJISA6000系アルミニウム合金が適用可能と考えられる。 When manufacturing internally spiral grooved pipes using the manufacturing methods described in Patent Documents 1 and 2, the raw pipe is obtained by extrusion processing, so the aluminum alloy used for the raw pipe is soft and has excellent extrudability at the extrusion stage. In addition, it is preferable that the final product, an internally spiral grooved tube, has high strength. JISA6000 series aluminum alloys, which are age hardening alloys, are considered to be applicable in obtaining such characteristics.

JISA6000系アルミニウム合金を伝熱管に用いる技術として、特許文献3に記載の技術が知られており、特許文献3には、JISA6005CやJISA6063などの合金を伝熱管に用いることが推奨される、と記載されている。 A technique described in Patent Document 3 is known as a technique for using JISA6000 series aluminum alloy for heat exchanger tubes, and Patent Document 3 states that it is recommended to use alloys such as JISA6005C and JISA6063 for heat exchanger tubes. has been done.

特許第6169538号公報Patent No. 6169538 特許第6439222号公報Patent No. 6439222 特開2008-267788号公報JP2008-267788A

しかしながら、特許文献1、2に記載の製造方法で内面螺旋溝付管を製造する場合、前述のとおり、引抜ダイスによる縮径工程が含まれるため、素管である直線溝付管は、加工後に得られる製品である内面螺旋溝付管よりも外径を大きくする必要がある。
そのため、管外径をD(mm)、底肉厚をt(mm)とした場合のD/tが著しく大きい条件で素管を押出す必要がある。このため、JISA6005CやJISA6063などの成分範囲であっても、素管の押出加工においてアルミカスが生じ易くなり、アルミカスの発生を避けるために押出速度を低下させる必要性が生じる場合があった。
However, when manufacturing internally spiral grooved tubes using the manufacturing methods described in Patent Documents 1 and 2, as mentioned above, the diameter reduction process using a drawing die is included, so the straight grooved tube that is the raw tube is It is necessary to make the outer diameter larger than the inner spiral grooved tube that is the resulting product.
Therefore, it is necessary to extrude the raw tube under conditions where D/t, where the outer diameter of the tube is D (mm) and the bottom wall thickness is t (mm), is extremely large. For this reason, even within the component ranges such as JISA6005C and JISA6063, aluminum sludge is likely to be generated during extrusion processing of the raw pipe, and there have been cases where it is necessary to reduce the extrusion speed to avoid generation of aluminum sludge.

また、内面螺旋溝付管を転造加工(内面溝付加工)によって製造する場合には、押出素管の内面に溝は必要ないため、素管の押出加工は容易である。
しかしながら、特許文献1、2に記載の製造方法で内面螺旋溝付管を製造する場合、押出加工により素管を製造する工程において、押出素管の内面に溝を形成する必要がある。
押出素管の内面の溝と溝の間に形成される内部フィンは、幅W(mm)が狭く高さh(mm)が高いほど、伝熱面積が大きくなるため、伝熱管の熱交換性能を高めることができる。
したがって、高性能な伝熱管に供する内面螺旋溝付管を特許文献1、2に記載の方法で製造する場合、素管の押出工程の段階で、素管の内面に、幅が狭く高さが高い内部フィンを形成する必要がある。
Furthermore, when manufacturing an internally spirally grooved tube by rolling processing (internally grooved processing), there is no need for grooves on the inner surface of the extruded raw pipe, so extrusion of the raw pipe is easy.
However, when manufacturing an internally spiral grooved pipe using the manufacturing methods described in Patent Documents 1 and 2, it is necessary to form grooves on the inner surface of the extruded raw pipe in the process of manufacturing the raw pipe by extrusion.
The narrower the width W (mm) of the internal fins formed between the grooves on the inner surface of the extruded tube, the higher the height h (mm), the larger the heat transfer area, which improves the heat exchange performance of the heat transfer tube. can be increased.
Therefore, when manufacturing internally spiral grooved tubes for use as high-performance heat transfer tubes using the methods described in Patent Documents 1 and 2, during the extrusion process of the raw tube, the inner surface of the raw tube has a narrow width and a height. It is necessary to form high internal fins.

そのため、素管内面に形成する内部フィンの幅をW(mm)、高さをh(mm)とした場合のh/Wが一定以上となる条件において、JISA6005CやJISA6063の成分範囲であっても、素管の押出加工におけるアルミニウム合金の柔らかさが不足する問題がある。この場合、押出加工においてフィンへのアルミニウム合金の流入が不十分となり、押出後に得られる素管内面のフィン形状において、所望の寸法精度が得られない問題があった。 Therefore, under the condition that h/W is a certain value or more when the width of the internal fin formed on the inner surface of the raw pipe is W (mm) and the height is h (mm), even if the component range is JISA6005C or JISA6063. There is a problem that the aluminum alloy is insufficiently soft during extrusion processing of the raw pipe. In this case, there was a problem in that the aluminum alloy did not flow into the fins insufficiently during extrusion, and the desired dimensional accuracy could not be obtained in the fin shape on the inner surface of the raw tube obtained after extrusion.

本発明は、管外径をD(mm)、底肉厚をt(mm)とした場合のD/tが著しく大きい条件で素管を押出す場合であっても、押出加工中のアルミカスの発生を抑制でき、かつ、素管内面に形成する内部フィンの幅をW(mm)、高さをh(mm)とした場合のh/Wが一定以上となる条件においても、押出加工においてフィン部へのアルミニウム合金の流入が十分となり、押出後に得られる素管内面のフィン形状において、所望の寸法が得られる、内面直線溝付押出素管を提供することを目的とする。
本発明の目的は、底肉厚を薄くして伝熱性能を良好としても押出製造性に優れた内面直線溝付押出素管の提供を目的とする。
本発明の目的は、底肉厚を薄くして伝熱性能を良好としても製造性に優れた内面螺旋溝付管と熱交換器の製造方法の提供を目的とする。
The present invention allows the aluminum scum to be removed during extrusion even when extruding a raw tube under conditions where D/t is extremely large, where the tube outer diameter is D (mm) and the bottom wall thickness is t (mm). Even under conditions where the occurrence of internal fins can be suppressed and h/W, where the width of the internal fin formed on the inner surface of the raw tube is W (mm) and the height is h (mm), is above a certain level, the fins cannot be removed during extrusion. It is an object of the present invention to provide an extruded raw tube with an inner surface having linear grooves, in which the flow of aluminum alloy into the inner surface of the raw tube is sufficient, and desired dimensions can be obtained in the fin shape of the inner surface of the raw tube obtained after extrusion.
An object of the present invention is to provide an extruded base tube with internal straight grooves that has excellent extrusion manufacturability even when the bottom wall thickness is reduced and the heat transfer performance is good.
An object of the present invention is to provide an internally spiral grooved tube and a method for manufacturing a heat exchanger that have excellent manufacturability even when the bottom wall thickness is reduced and the heat transfer performance is good.

(1)本形態の内面直線溝付押出素管は、内面螺旋溝付管製造用の内面直線溝付押出素管であって、前記内面直線溝付押出素管の外径をD(mm)、底肉厚をt(mm)、前記内面直線溝付押出素管の内面に形成されている内部フィンの幅をW(mm)、高さをh(mm)とすると、h/Wが0.7以上、D/tが26以上であり、Si:0.35質量%以上0.55質量%以下、Cu:0.15質量%以下、Mg:0.45質量%以上0.65質量%以下、Mn:0.05質量%以下、MgSi:0.71質量% 以上1.03質量%以下、過剰Si:0.08質量%以上0.29質量%以下を含有し、残部不可避不純物とアルミニウムからなるアルミニウム合金から構成されたことを特徴とする。 (1) The extruded raw pipe with inner straight grooves of this embodiment is an extruded raw pipe with inner straight grooves for manufacturing inner spiral grooved pipes, and the outer diameter of the extruded raw pipe with inner straight grooves is D (mm). , when the bottom wall thickness is t (mm), the width of the internal fin formed on the inner surface of the extruded pipe with inner linear grooves is W (mm), and the height is h (mm), h/W is 0. .7 or more, D/t is 26 or more, Si: 0.35 mass% or more and 0.55 mass% or less, Cu: 0.15 mass% or less, Mg: 0.45 mass% or more and 0.65 mass% The following contains Mn: 0.05% by mass or less, Mg 2 Si: 0.71% by mass or more and 1.03% by mass or less, excess Si: 0.08% by mass or more and 0.29% by mass or less, and the remainder is unavoidable impurities. It is characterized by being constructed from an aluminum alloy consisting of aluminum and aluminum.

(2)本形態の内面直線溝付押出素管において、前記アルミニウム合金が、Si:0.40質量%以上0.55質量%以下、Cu:0.04質量%以下、Mg:0.45質量%以上0.60質量%以下、Mn:0.05質量%以下、MgSi:0.71質量%以上0.95質量%以下、過剰Si:0.08質量%以上0.25質量%以下を含有し、残部不可避不純物とアルミニウムからなることが好ましい。 (2) In the extruded raw pipe with inner straight grooves of this embodiment, the aluminum alloy includes Si: 0.40 mass% or more and 0.55 mass% or less, Cu: 0.04 mass% or less, and Mg: 0.45 mass%. % or more and 0.60 mass% or less, Mn: 0.05 mass% or less, Mg 2 Si: 0.71 mass% or more and 0.95 mass% or less, excess Si: 0.08 mass% or more and 0.25 mass% or less It is preferable that the aluminum alloy contains unavoidable impurities and the remainder consists of aluminum.

(3)本形態に係る内面螺旋溝付管の製造方法は、Si:0.35質量%以上0.55質量%以下、Cu:0.15質量%以下、Mg:0.45質量%以上0.65質量%以下、Mn:0.05質量%以下、Mg2Si:0.71質量%以上1.03質量%以下、過剰Si:0.08質量%以上0.29質量%以下を含有し、残部不可避不純物とアルミニウムからなる組成を有するアルミニウム合金からなる内面直線溝付押出素管であって、外径をD(mm)、底肉厚をt(mm)、内面に形成されている内部フィンの幅をW(mm)、高さをh(mm)とすると、h/Wが0.7以上、D/tが26以上である内面直線溝付押出素管に対し、捻り引抜加工を施す内面螺旋溝付管の製造方法であり、前記捻り引抜加工後に時効処理を施すことを特徴とする。 (3) The method for manufacturing the internal spiral grooved tube according to this embodiment includes Si: 0.35% by mass or more and 0.55% by mass or less, Cu: 0.15% by mass or less, Mg: 0.45% by mass or more and 0. .65 mass% or less, Mn: 0.05 mass% or less, Mg2Si: 0.71 mass% or more and 1.03 mass% or less, excess Si: 0.08 mass% or more and 0.29 mass% or less, and the remainder It is an extruded tube with an inner straight groove made of an aluminum alloy having a composition consisting of unavoidable impurities and aluminum, with an outer diameter of D (mm), a bottom wall thickness of t (mm), and an inner fin formed on the inner surface. When width is W (mm) and height is h (mm), the inner surface of an extruded pipe with internal straight grooves with h/W of 0.7 or more and D/t of 26 or more is twisted and drawn. This is a method for manufacturing a spirally grooved pipe, and is characterized in that an aging treatment is performed after the twist drawing process.

(4)本形態に係る内面螺旋溝付管の製造方法は、(3)に記載のアルミニウム合金として、Si:0.40質量%以上0.55質量%以下、Cu:0.04質量%以下、Mg:0.45質量%以上0.60質量%以下、Mn:0.05質量%以下、MgSi:0.71質量%以上0.95質量%以下、過剰Si:0.08質量%以上0.25質量%以下を含有し、残部不可避不純物とアルミニウムからなるアルミニウム合金を用いることを特徴とする。 (4) The method for manufacturing the inner spiral grooved tube according to the present embodiment includes the aluminum alloy described in (3) : Si: 0.40 mass% or more and 0.55 mass% or less, Cu: 0.04 mass% or less. , Mg: 0.45% by mass or more and 0.60% by mass or less, Mn: 0.05% by mass or less, Mg 2 Si: 0.71% by mass or more and 0.95% by mass or less, Excess Si: 0.08% by mass It is characterized by using an aluminum alloy containing 0.25% by mass or less, and the remainder consisting of unavoidable impurities and aluminum.

(5)本形態に係る熱交換器の製造方法は、Si:0.35質量%以上0.55質量%以下、Cu:0.15質量%以下、Mg:0.45質量%以上0.65質量%以下、Mn:0.05質量%以下、MgSi:0.71質量%以上1.03質量%以下、過剰Si:0.08質量%以上0.29質量%以下を含有し、残部不可避不純物とアルミニウムからなる組成を有するアルミニウム合金からなる内面直線溝付押出素管であって、外径をD(mm)、底肉厚をt(mm)、内面に形成されている内部フィンの幅をW(mm)、高さをh(mm)とすると、h/Wが0.7以上、D/tが26以上である内面直線溝付押出素管に対し、捻り引抜加工を施して内面螺旋溝付管を製造し、この内面螺旋溝付管を用いて熱交換器を製造するに際し、前記捻り引抜加工後であって、前記熱交換器を完成させる以前に前記内面螺旋溝付管に対し時効処理を施すことを特徴とする。 (5) The method for manufacturing the heat exchanger according to this embodiment includes Si: 0.35% by mass or more and 0.55% by mass or less, Cu: 0.15% by mass or less, Mg: 0.45% by mass or more and 0.65% by mass or less. % by mass or less, Mn: 0.05% by mass or less, Mg 2 Si: 0.71% by mass or more and 1.03% by mass or less, excess Si: 0.08% by mass or more and 0.29% by mass or less, and the remainder It is an extruded tube with an inner straight groove made of an aluminum alloy having a composition consisting of unavoidable impurities and aluminum, with an outer diameter of D (mm), a bottom wall thickness of t (mm), and an inner fin formed on the inner surface. If the width is W (mm) and the height is h (mm), an extruded pipe with internal straight grooves with h/W of 0.7 or more and D/t of 26 or more is twisted and drawn. When manufacturing an internal spiral grooved tube and manufacturing a heat exchanger using this internal spiral grooved tube, the internal spiral grooved tube is removed after the twist drawing process and before the heat exchanger is completed. It is characterized by subjecting it to aging treatment.

(6)本形態に係る熱交換器の製造方法において、前記アルミニウム合金として、Si:0.40質量%以上0.55質量%以下、Cu:0.04質量%以下、Mg:0.45質量%以上0.60質量%以下、Mn:0.05質量%以下、MgSi:0.71質量%以上0.95質量%以下、過剰Si:0.08質量%以上0.25質量%以下を含有し、残部不可避不純物とアルミニウムからなるアルミニウム合金を用いることが好ましい。 (6) In the method for manufacturing a heat exchanger according to the present embodiment, the aluminum alloy includes Si: 0.40 mass% or more and 0.55 mass% or less, Cu: 0.04 mass% or less, and Mg: 0.45 mass%. % or more and 0.60 mass% or less, Mn: 0.05 mass% or less, Mg 2 Si: 0.71 mass% or more and 0.95 mass% or less, excess Si: 0.08 mass% or more and 0.25 mass% or less It is preferable to use an aluminum alloy containing aluminum with the remainder being unavoidable impurities.

(7)本形態に係る熱交換器の製造方法において、(5)または(6)に記載の内面螺旋溝付管と外部フィンを組み立てて熱交換器組立体を形成後、前記内面螺旋溝付管と前記外部フィンを接合して熱交換器を製造するに際し、前記捻り引抜加工後であって前記外部フィンとの組み合わせ以前に前記内面螺旋溝付管に時効処理を施すか、前記内面螺旋溝付管と前記外部フィンを組み立てて接合後、時効処理を施すことを特徴とする。
(8)本形態に係る熱交換器の製造方法において、前記内面直線溝付押出素管の外面に亜鉛溶射層を形成することが好ましい。
(7) In the method for manufacturing a heat exchanger according to the present embodiment, after forming a heat exchanger assembly by assembling the inner spiral grooved tube and the outer fin according to (5) or (6) , the inner spiral groove When manufacturing a heat exchanger by joining a tube and the external fin, the internal spiral grooved tube may be subjected to aging treatment after the twist drawing process and before combination with the external fin, or the internal spiral grooved tube may be aged. The present invention is characterized in that after the attached tube and the external fin are assembled and joined, an aging treatment is performed.
(8) In the method for manufacturing a heat exchanger according to the present embodiment, it is preferable that a zinc sprayed layer is formed on the outer surface of the extruded raw tube with inner straight grooves.

本形態によれば、内面直線溝付素管の外径をD(mm)、底肉厚をt(mm)とした場合のD/tが著しく大きい条件で素管を押出す場合であっても、押出加工中のアルミカスの発生を抑制でき、かつ、素管内面に形成する内部フィンの幅をW、高さをhとした場合のh/Wが一定以上となる条件においても、押出加工においてフィン部へのアルミニウム合金の流入が十分となり、押出後に得られる押出素管内面の内部フィン形状において、所望の寸法精度が得られる内面直線溝付押出素管を提供できる。
According to this embodiment, when extruding the raw pipe under conditions where D/t is extremely large, where the outer diameter of the raw pipe with internal straight grooves is D (mm) and the bottom wall thickness is t (mm), The extrusion process can also suppress the generation of aluminum scum during the extrusion process, and the extrusion process can be carried out under conditions where h/W, where the width of the internal fins formed on the inner surface of the raw tube is W and the height is h, is above a certain level. In this case, the aluminum alloy flows into the fin portions sufficiently, and it is possible to provide an extruded blank tube with internal straight grooves in which desired dimensional accuracy can be obtained in the internal fin shape of the inner surface of the extruded blank tube obtained after extrusion.

内面に直線溝を備えた第1実施形態の内面直線溝付押出素管を示す図であり、図1(a)が正面図、図1(b)が縦断面図。It is a figure which shows the extruded raw pipe with an inner surface linear groove of 1st Embodiment which equipped the inner surface with a linear groove, FIG.1(a) is a front view and FIG.1(b) is a longitudinal cross-sectional view. 同内面直線溝付押出素管の部分拡大断面図。A partial enlarged cross-sectional view of the same extruded tube with straight grooves on the inner surface. 第1実施形態の内面螺旋溝付管の縦断面図。FIG. 1 is a vertical cross-sectional view of the inner spiral grooved tube of the first embodiment. 同内面螺旋溝付管を備えた熱交換器の一例を示す図であり、図4(a)が正面図、図4(b)が斜視図。It is a figure which shows an example of the heat exchanger provided with the same internal spiral grooved tube, FIG.4(a) is a front view and FIG.4(b) is a perspective view. 第1の製造工程を示すフロー図。FIG. 3 is a flow diagram showing the first manufacturing process. 第2の製造工程を示すフロー図。FIG. 7 is a flow diagram showing the second manufacturing process. 第3の製造工程を示すフロー図。FIG. 7 is a flow diagram showing the third manufacturing process. 第4の製造工程を示すフロー図。FIG. 7 is a flow diagram showing a fourth manufacturing process. 第5の製造工程を示すフロー図。FIG. 7 is a flow diagram showing a fifth manufacturing process. 第6の製造工程を示すフロー図。FIG. 7 is a flow diagram showing a sixth manufacturing process.

以下、本発明の実施形態について図面を参照しながら説明する。
なお、以下の説明で用いる図面は、便宜上特徴となる部分を拡大して強調表示している場合がある。また、同様の目的で、特徴とならない部分を省略して図示している場合がある。
Embodiments of the present invention will be described below with reference to the drawings.
Note that in the drawings used in the following explanation, characteristic parts may be enlarged and highlighted for convenience. Furthermore, for the same purpose, non-characteristic parts may be omitted from the illustrations.

図1(a)、(b)および図2は、本発明に係る第1実施形態の内面直線溝付押出素管を示すもので、この内面直線溝付押出素管1の内面には、管の長さ方向に沿う直線溝2が内周方向に所定の間隔をおいて複数形成され、管の内周方向に隣接する直線溝2、2間に内部フィン3が形成されている。 1(a), (b) and FIG. 2 show an extruded raw tube with inner straight grooves according to the first embodiment of the present invention. A plurality of linear grooves 2 are formed along the length of the tube at predetermined intervals in the inner circumferential direction, and internal fins 3 are formed between adjacent linear grooves 2 in the inner circumferential direction of the tube.

内面直線溝付押出素管1は、Si:0.35質量%以上0.55質量%以下、Cu:0.15質量%以下、Mg:0.45質量%以上0.65質量%以下、Mn:0.05質量%以下、MgSi:0.71質量%以上1.03質量%以下、過剰Si:0.08質量%以上0.29質量%以下を含有し、残部不可避不純物とアルミニウムからなる組成を有するアルミニウム合金から形成されている。
内面直線溝付押出素管1は、Si:0.40質量%以上0.55質量%以下、Cu:0.04質量%以下、Mg:0.45質量%以上0.60質量%以下、Mn:0.05質量%以下、MgSi:0.71質量%以上0.95質量%以下、過剰Si:0.08質量%以上0.25質量%以下を含有し、残部不可避不純物とアルミニウムからなる組成を有するアルミニウム合金から形成されていても良い。
また、内面直線溝付押出素管1は、前述の組成に加え、Feを0.14~0.20%、Tiを0.01~0.05%(質量%)の範囲で含有させた組成を有していても良い。
The extruded raw pipe 1 with internal straight grooves includes Si: 0.35% by mass or more and 0.55% by mass or less, Cu: 0.15% by mass or less, Mg: 0.45% by mass or more and 0.65% by mass or less, Mn. : 0.05% by mass or less, Mg 2 Si: 0.71% by mass or more and 1.03% by mass or less, excess Si: 0.08% by mass or more and 0.29% by mass or less, and the remainder is from inevitable impurities and aluminum. It is made of an aluminum alloy with the following composition.
The extruded raw tube 1 with internal straight grooves includes Si: 0.40% by mass or more and 0.55% by mass or less, Cu: 0.04% by mass or less, Mg: 0.45% by mass or more and 0.60% by mass or less, Mn. : 0.05% by mass or less, Mg 2 Si: 0.71% by mass or more and 0.95% by mass or less, excess Si: 0.08% by mass or more and 0.25% by mass or less, and the remainder is from inevitable impurities and aluminum. It may be formed from an aluminum alloy having the following composition.
In addition to the above-mentioned composition, the extruded raw pipe 1 with internal straight grooves has a composition containing Fe in the range of 0.14 to 0.20% and Ti in the range of 0.01 to 0.05% (mass%). It may have.

図1、図2に示す内面直線溝付押出素管1は、横断面の外形状が円形の管本体5からなる。なお、図2は内面直線溝付押出素管1の内部形状を見やすくするために内面直線溝付押出素管1の周壁を切り開いて平板状に展開した状態を表示している。
管本体5の外径(管本体5の外周面5aが描く円の直径)は、例えば、3mm以上15mm以下である。管本体5の内周面5bには、管本体5の長さ方向に沿って直線状に形成された内部フィン3が管本体5の内周方向に所定の間隔をあけて20~60個(20~60条)程度形成されている。また、管本体5の内周方向に隣接する直線状の内部フィン3、3の間には、所定幅、例えば一定幅の直線溝2が形成されている。
The extruded raw tube 1 with inner linear grooves shown in FIGS. 1 and 2 consists of a tube body 5 having a circular outer shape in cross section. Note that, in order to make it easier to see the internal shape of the extruded raw tube 1 with inner linear grooves, FIG. 2 shows a state in which the circumferential wall of the extruded raw tube 1 with inner linear grooves is cut open and developed into a flat plate shape.
The outer diameter of the tube body 5 (the diameter of the circle drawn by the outer peripheral surface 5a of the tube body 5) is, for example, 3 mm or more and 15 mm or less. On the inner circumferential surface 5b of the tube body 5, there are 20 to 60 internal fins 3 formed linearly along the length direction of the tube body 5 at predetermined intervals in the inner circumferential direction of the tube body 5. Approximately 20 to 60 articles) are formed. Furthermore, a linear groove 2 having a predetermined width, for example, a constant width, is formed between the linear internal fins 3, 3 adjacent to each other in the inner circumferential direction of the tube body 5.

図2に管本体5の内部を展開視して示すように、内部フィン3は、管本体5の内部側に位置する先端部(フィン頂部)3aと、外周側に位置する底部3bと、先端部3aと底部3bの間に位置する一対の側壁部3cとからなる横断面等脚台形状に形成されている。
内部フィン3の底部3bは、管本体5の内周部に位置し、内周面5b、換言すると直線溝2の底面と連続されている。側壁部3cは、図2に示す管本体5の横断面において、管本体5の概ね中心方向に向かうように直線的に延在されている。管本体5の横断面において、直線溝2の底面から管本体5の外周面5aまでの肉厚は底肉厚tと表記することができる。
As shown in FIG. 2 in a developed view of the inside of the tube body 5, the internal fin 3 includes a tip portion (fin top portion) 3a located on the inside side of the tube body 5, a bottom portion 3b located on the outer circumferential side, and a tip portion 3b located on the outer peripheral side. The cross section is formed into an isosceles trapezoidal shape and includes a pair of side wall portions 3c located between a portion 3a and a bottom portion 3b.
The bottom portion 3b of the internal fin 3 is located at the inner peripheral portion of the tube body 5, and is continuous with the inner peripheral surface 5b, in other words, the bottom surface of the linear groove 2. The side wall portion 3c extends linearly toward the center of the tube body 5 in the cross section of the tube body 5 shown in FIG. In the cross section of the tube body 5, the wall thickness from the bottom surface of the linear groove 2 to the outer peripheral surface 5a of the tube body 5 can be expressed as a bottom wall thickness t.

内面直線溝付押出素管1は、その外径をD(mm)、底肉厚をt(mm)、前記内面直線溝付押出素管の内面に形成されている内部フィン3の幅をW(mm)、高さをh(mm)とすると、h/Wが0.7以上、D/tが26以上であることが好ましい。D/tは30以上であることがより好ましい。
なお、内部フィン3の幅Wは、先端側と底部側において異なるため、内部フィン幅(W)は、先端幅(内部フィン頂幅:a)と底部幅(b)の平均をとり、W=(a+b)/2と定義する。
図2に示す内面直線溝付押出素管1において、内部フィン3を構成する側壁部3c、3cのなす角をフィン頂角(θ)と表記することができ、直線溝2の底部の幅を溝底部幅cと表記することができる。
The extruded raw pipe 1 with inner straight grooves has an outer diameter of D (mm), a bottom wall thickness of t (mm), and a width of the internal fins 3 formed on the inner surface of the extruded raw pipe with inner straight grooves. (mm) and the height is h (mm), preferably h/W is 0.7 or more and D/t is 26 or more. D/t is more preferably 30 or more.
Note that the width W of the internal fin 3 is different between the tip side and the bottom side, so the internal fin width (W) is the average of the tip width (internal fin top width: a) and the bottom width (b), and W = It is defined as (a+b)/2.
In the extruded raw tube 1 with internal straight grooves shown in FIG. It can be written as groove bottom width c.

なお、図2に示す構造において、内部フィン3の先端部3aの幅と底部3bの幅が等しいか、略等しい構成でも良い。この場合、管本体5の周方向に隣接する内部フィン3、3間に形成されている直線溝2の溝幅は、溝底部側と溝開口部側において等しいか、略等しい。
なお、本実施形態において内部フィン3の横断面形状は図2に示す形状に限らず、先端部3aの幅より底部3bの幅が若干小さい逆台形状であっても良く、先端部3aの幅と底部3bの幅が等しい長方形状であっても良い。
In the structure shown in FIG. 2, the width of the tip 3a of the internal fin 3 and the width of the bottom 3b may be equal or substantially equal. In this case, the groove widths of the straight grooves 2 formed between the internal fins 3, 3 adjacent to each other in the circumferential direction of the tube body 5 are equal or approximately equal on the groove bottom side and the groove opening side.
In addition, in this embodiment, the cross-sectional shape of the internal fin 3 is not limited to the shape shown in FIG. The bottom portion 3b may have a rectangular shape with the same width.

次に、内面直線溝付押出素管1を構成するアルミニウム合金に含まれている成分元素について説明する。なお、このアルミニウム合金は、後述する捻り引抜加工管である内面螺旋溝付管10を構成するアルミニウム合金でもある。
「Si:0.35質量%以上0.55質量%以下」
Si含有量は、内面直線溝付押出素管1の押出加工性と内面螺旋溝付管の耐圧強度に影響があり、Si含有量が0.35質量%未満の場合、内面螺旋溝付管の耐圧強度が不足し、Si含有量が0.55質量%を超える場合、素管の押出加工性が悪化する。このため、Si含有量は、0.35質量%以上0.55質量%以下が好ましい。Si含有量については、0.40質量%以上0.55質量%以下がより好ましい。
Next, the constituent elements contained in the aluminum alloy constituting the extruded tube 1 with internal straight grooves will be explained. Note that this aluminum alloy is also the aluminum alloy that constitutes the internal spiral grooved tube 10, which is a twisted drawing tube to be described later.
"Si: 0.35% by mass or more and 0.55% by mass or less"
The Si content affects the extrusion processability of the extruded raw tube 1 with internal straight grooves and the pressure resistance of the internal spiral grooved tube, and if the Si content is less than 0.35% by mass, the When the compressive strength is insufficient and the Si content exceeds 0.55% by mass, the extrusion processability of the raw pipe deteriorates. Therefore, the Si content is preferably 0.35% by mass or more and 0.55% by mass or less. The Si content is more preferably 0.40% by mass or more and 0.55% by mass or less.

「Cu:0.15質量%以下」
Cu含有量は、内面直線溝付押出素管1の押出加工性に影響があり、0.15質量%を超えるCu含有量である場合、素管の押出加工性が悪化する。Cu含有量については、0.04質量%以下がより好ましい。
「Mg:0.45質量%以上0.65質量%以下」
Mg含有量は、内面直線溝付押出素管1の耐圧強度と押出加工性に影響があり、Mg含有量が0.45質量%未満の場合、内面螺旋溝付管の耐圧強度が不足し、Mg含有量が0.65質量%を超える場合、素管の押出加工性が悪化する。このため、Mg含有量は、0.45質量%以上0.65質量%以下が好ましい。Mg含有量については、0.45質量%以上0.60質量%以下がより好ましい。
"Cu: 0.15% by mass or less"
The Cu content has an influence on the extrusion processability of the extruded raw pipe 1 with internal straight grooves, and when the Cu content exceeds 0.15% by mass, the extrusion processability of the raw pipe deteriorates. The Cu content is more preferably 0.04% by mass or less.
"Mg: 0.45 mass% or more and 0.65 mass% or less"
The Mg content affects the pressure strength and extrusion processability of the extruded raw pipe 1 with internal straight grooves, and if the Mg content is less than 0.45% by mass, the pressure strength of the internal spiral grooved pipe will be insufficient. When the Mg content exceeds 0.65% by mass, the extrusion processability of the raw tube deteriorates. Therefore, the Mg content is preferably 0.45% by mass or more and 0.65% by mass or less. The Mg content is more preferably 0.45% by mass or more and 0.60% by mass or less.

「Mn:0.05質量%以下」
Mn含有量は、内面直線溝付押出素管1の押出加工性に影響があり、Mn含有量が0.05質量%を超える場合、内面直線溝付押出素管1の押出加工性が悪化する。
「MgSi:0.71質量%以上1.03質量%以下」
MgSi含有量は、内面直線溝付押出素管1の耐圧強度と押出加工性に影響があり、MgSi含有量が0.71質量%未満の場合、内面螺旋溝付管の耐圧強度が不足し、MgSi含有量が1.03質量%を超える場合、内面直線溝付押出素管1の押出加工性が悪化する。このため、MgSi含有量は、0.71質量%以上1.03質量%以下が好ましい。MgSi含有量については、0.71質量%以上0.95質量%以下がより好ましい。
「Fe、Ti」
内面直線溝付押出素管1は、前述の成分元素に加え、Feを0.14~0.20%、Tiを0.01~0.05%(質量%)の範囲で含有しても良い。
"Mn: 0.05% by mass or less"
The Mn content has an effect on the extrusion processability of the extruded raw pipe 1 with internal linear grooves, and when the Mn content exceeds 0.05% by mass, the extrusion processability of the extruded raw pipe 1 with internal linear grooves deteriorates. .
"Mg 2 Si: 0.71 mass% or more and 1.03 mass% or less"
The Mg 2 Si content affects the pressure strength and extrusion processability of the extruded raw tube 1 with internal straight grooves, and if the Mg 2 Si content is less than 0.71% by mass, the pressure resistance strength of the internal spiral grooved tube will decrease. is insufficient and the Mg 2 Si content exceeds 1.03% by mass, the extrusion processability of the extruded raw tube 1 with inner linear grooves deteriorates. Therefore, the Mg 2 Si content is preferably 0.71% by mass or more and 1.03% by mass or less. The Mg 2 Si content is more preferably 0.71% by mass or more and 0.95% by mass or less.
"Fe, Ti"
In addition to the above-mentioned component elements, the extruded raw tube 1 with internal straight grooves may contain Fe in the range of 0.14 to 0.20% and Ti in the range of 0.01 to 0.05% (mass%). .

「過剰Si:0.08質量%以上0.29質量%以下」
過剰Si含有量は、内面直線溝付押出素管1の耐圧強度と表面状態の荒れに影響があり、過剰Si含有量が0.08質量%未満の場合、内面直線溝付押出素管1の耐圧強度が不足し、過剰Si含有量が0.29質量%を超える場合、内面直線溝付押出素管1の表面状態の荒れが顕著となり、外見を損ねる問題がある。このため、過剰Si含有量は、0.08質量%以上0.29質量%以下が好ましい。過剰Si含有量については、0.08質量%以上0.25質量%以下がより好ましい。
"Excess Si: 0.08% by mass or more and 0.29% by mass or less"
Excess Si content affects the pressure resistance and surface roughness of the extruded raw tube 1 with inner linear grooves, and if the excess Si content is less than 0.08% by mass, If the compressive strength is insufficient and the excess Si content exceeds 0.29% by mass, the surface condition of the extruded tube 1 with internal straight grooves becomes noticeably rough, causing a problem of spoiling the appearance. Therefore, the excess Si content is preferably 0.08% by mass or more and 0.29% by mass or less. The excess Si content is more preferably 0.08% by mass or more and 0.25% by mass or less.

前述のアルミニウム合金に含まれている過剰Si量(質量%)は以下に示す(1)式に従い求めることができる。
過剰Si量=Si-(Mg/1.73) …(1)式
(1)式中のSi、Mgはアルミニウム合金における各元素の含有量(質量%)である。ただし、(1)式の右辺が負の値となる場合、過剰Si量はゼロと見なす。
The amount of excess Si (mass %) contained in the above-mentioned aluminum alloy can be determined according to equation (1) shown below.
Excess Si amount=Si-(Mg/1.73)...Equation (1) In Equation (1), Si and Mg are the contents (mass %) of each element in the aluminum alloy. However, if the right side of equation (1) is a negative value, the excess Si amount is considered to be zero.

「MgSi量(質量%)の定義」
MgSi量は、(1)式の右辺に応じて、以下の(2)式および(3)式を用いて求めることができる。
(1)式の右辺がゼロまたは正の値となる場合
MgSi量=Mg+(Mg/1.73) …(2)式
(1)式の右辺が負の値となる場合
MgSi量=Si+1.73×Si …(3)式
(2)式および(3)式中のSi、Mgはアルミニウム合金における各元素の添加量(質量%)である。
"Definition of Mg 2 Si amount (mass%)"
The amount of Mg 2 Si can be determined using the following equations (2) and (3) depending on the right side of equation (1).
When the right side of equation (1) is zero or a positive value: Mg 2 Si amount = Mg + (Mg/1.73) ...(2) equation: When the right side of equation (1) is a negative value: Mg 2 Si amount =Si+1.73×Si...Equation (3) In Equations (2) and (3), Si and Mg are the amounts (% by mass) of each element added in the aluminum alloy.

図3は、図1、図2に示す構成の内面直線溝付押出素管1を捻り引抜加工することにより製造した捻り引抜管である内面螺旋溝付管10を示す。
図3に示す内面螺旋溝付管10は、横断面の外形状が円形の管本体11からなり、管本体11の外径(管本体11の外周面が描く円の直径)は、例えば、3mm以上15mm以下である。管本体11の内周面には、管本体11の長さ方向に沿って螺旋状に形成された内部フィン12が管本体11の内周方向に所定の間隔をあけて20~60個(20~60条)程度設けられている。また、管本体11の内周方向に隣接する螺旋状の内部フィン12、12の間には、所定幅、例えば一定幅の螺旋溝13が形成されている。
FIG. 3 shows an inner spiral grooved tube 10 which is a twisted drawn tube manufactured by twisting and drawing the extruded inner tube 1 with inner straight grooves having the configuration shown in FIGS. 1 and 2.
The inner spiral grooved tube 10 shown in FIG. 3 consists of a tube body 11 having a circular outer shape in cross section, and the outer diameter of the tube body 11 (the diameter of the circle drawn by the outer peripheral surface of the tube body 11) is, for example, 3 mm. 15 mm or less. On the inner circumferential surface of the tube body 11, there are 20 to 60 internal fins 12 formed spirally along the length direction of the tube body 11 at predetermined intervals in the inner circumferential direction of the tube body 11. Approximately 60 articles) have been established. Furthermore, a spiral groove 13 having a predetermined width, for example, a constant width, is formed between the spiral inner fins 12, 12 adjacent to each other in the inner circumferential direction of the tube body 11.

図3に示すように内面螺旋溝付管10において、螺旋状の内部フィン12と螺旋溝13は管本体11の長さ方向に一定の捻れ角θ1を有し延在されている。
個々の内部フィン12あるいは螺旋溝13の捻り角θ1は、図3に示すように内面螺旋溝付管10の縦断面を描いた場合、管の内側中心部に表示される螺旋溝13あるいは螺旋状の内部フィン12の直線状に描かれる部分の延長線と管本体11の中心軸線(あるいは中心軸線の平行線)とのなす角度を示す。なお、捻り角θ1は一定である必然性はなく、内面螺旋溝付管10の長さ方向に周期的に異なる捻り角を有する構成でも良い。
As shown in FIG. 3, in the inner spiral grooved tube 10, the spiral internal fins 12 and the spiral grooves 13 extend in the length direction of the tube body 11 at a constant twist angle θ1.
The torsion angle θ1 of each internal fin 12 or helical groove 13 is determined by the helical groove 13 or helical shape displayed at the center of the inner side of the tube when a vertical cross section of the inner spiral grooved tube 10 is drawn as shown in FIG. It shows the angle between the extension line of the linearly drawn portion of the internal fin 12 and the central axis of the tube body 11 (or a line parallel to the central axis). Note that the twist angle θ1 does not necessarily have to be constant, and may have a structure in which the twist angle varies periodically in the length direction of the inner spiral grooved tube 10.

内面螺旋溝付管10は、先に説明した特許文献1(特許第6169538号公報)あるいは特許文献2(特許第6439222号公報)に記載されている如く、内面直線溝付押出素管1に対し引抜加工と捻り加工を同時に施す捻り引抜加工を施すことで製造されている。
従って、内面螺旋溝付管10に形成されている内部フィン12と螺旋溝13の横断面形状は内面直線溝付押出素管1に形成されていた内部フィン3と直線溝2の横断面形状と類似の形状である。ただし、内部フィン12と螺旋溝13が管の長手方向に螺旋状に形成されている点が異なる。
The internal spiral grooved pipe 10 is different from the extruded base pipe 1 with internal linear grooves, as described in Patent Document 1 (Patent No. 6169538) or Patent Document 2 (Patent No. 6439222) described above. It is manufactured using a twist drawing process, which involves drawing and twisting at the same time.
Therefore, the cross-sectional shape of the internal fins 12 and the spiral grooves 13 formed in the internal spiral grooved tube 10 is the same as the cross-sectional shape of the internal fins 3 and the linear grooves 2 formed in the extruded inner tube 1 with linear grooves. They have similar shapes. However, the difference is that the internal fins 12 and the spiral groove 13 are spirally formed in the longitudinal direction of the tube.

特許文献1(特許第6169538号公報)の図1に記載されている内面螺旋溝付管の製造装置あるいは特許文献2(特許第6439222号公報)の図1に記載されている内面螺旋溝付管の製造装置を用い、本願明細書に添付の図1、図2に示す内面直線溝付押出素管1に捻り引抜加工を施すことで、図3に示す内面螺旋溝付管10を得ることができる。 The internal spiral grooved tube manufacturing apparatus shown in FIG. 1 of Patent Document 1 (Patent No. 6169538) or the internal spiral grooved tube shown in FIG. 1 of Patent Document 2 (Patent No. 6439222) By twisting and drawing the extruded raw tube 1 with straight inner grooves shown in FIGS. 1 and 2 attached to the present specification using a manufacturing apparatus, the inner spiral grooved tube 10 shown in FIG. 3 can be obtained. can.

内面螺旋溝付管10は、上述の組成を有するアルミニウム合金から形成されている。上述のアルミニウム合金からなる内面螺旋溝付管10は、時効処理することで耐圧強度が向上し、時効処理前は時効処理後よりも強度が低いので上述の特許文献1、2に記載されている内面螺旋溝付管の製造装置による捻り引抜加工に適用する場合に好適である。
時効処理は、150℃以上250℃以下の温度範囲で1時間以上24時間以内保持する条件を選択できる。より好ましくは、180℃以上220℃以下の温度範囲で、1時間以上8時間以内保持する条件を選択できる。時効処理など、製造条件の詳細は後述する。
The internal spiral grooved tube 10 is formed from an aluminum alloy having the composition described above. The internal spiral grooved tube 10 made of the above-mentioned aluminum alloy has improved pressure resistance by aging treatment, and the strength before the aging treatment is lower than after the aging treatment, so it is described in the above-mentioned Patent Documents 1 and 2. It is suitable for application to twist drawing processing using an internal spiral grooved tube manufacturing device.
The aging treatment can be carried out at a temperature range of 150° C. or higher and 250° C. or lower for 1 hour or more and 24 hours or less. More preferably, conditions can be selected in which the temperature is maintained in a temperature range of 180° C. to 220° C. for 1 hour to 8 hours. Details of manufacturing conditions such as aging treatment will be described later.

「熱交換器」
図4は、内面螺旋溝付管10を備えた熱交換器15の一例を示す概略図であり、冷媒を通過させるチューブとして内面螺旋溝付管10を蛇行させて設け、この内面螺旋溝付管10の周囲に複数のアルミニウム合金製の板状の外部フィン16を平行に配設した構造である。内面螺旋溝付管10は、図4に示すように平行に配設した外部フィン16に設けた複数の透孔を通過するように設けられている。
図4に示す熱交換器15において内面螺旋溝付管10は、外部フィン16を直線状に貫通する複数のU字状の主管10Aと、隣接する主管10Aの隣り合う端部開口どうしをU字形のエルボ管10Bで図4に示すように接続してなる。また、外部フィン16を貫通している内面螺旋溝付管10の一方の端部側に冷媒の入口部17が形成され、内面螺旋溝付管10の他方の端部側に冷媒の出口部18が形成されることで図4に示す熱交換器15が構成されている。
"Heat exchanger"
FIG. 4 is a schematic diagram showing an example of a heat exchanger 15 equipped with an internal spiral grooved tube 10, in which the internal spiral grooved tube 10 is provided in a meandering manner as a tube through which a refrigerant passes. It has a structure in which a plurality of plate-shaped external fins 16 made of aluminum alloy are arranged in parallel around the fin 10. The internal spiral grooved tube 10 is provided so as to pass through a plurality of through holes provided in external fins 16 arranged in parallel, as shown in FIG.
In the heat exchanger 15 shown in FIG. 4, the internal spiral grooved tube 10 includes a plurality of U-shaped main tubes 10A that linearly pass through the external fins 16, and adjacent end openings of the adjacent main tubes 10A are formed into a U-shape. The elbow pipes 10B are connected as shown in FIG. Furthermore, a refrigerant inlet 17 is formed at one end of the inner spiral grooved tube 10 penetrating the outer fin 16, and a refrigerant outlet 18 is formed at the other end of the inner spiral grooved tube 10. The heat exchanger 15 shown in FIG. 4 is constructed by forming the heat exchanger 15 shown in FIG.

内面螺旋溝付管10の内面に、複数の内部フィン12と螺旋溝13が形成されているので、図2に示す内面直線溝付押出素管1と同様に、フィン高さ(h’)、フィン頂幅(a’)、フィン底部幅(b’)、溝底部幅(c’)、フィン頂角(θ’)、底肉厚(t’)を策定できる。
内面螺旋溝付管10の底肉厚(t’)は、薄すぎると耐圧強度が不足となり、厚すぎると内部を流れる冷媒に生じる圧力損失が大きくなる。内面螺旋溝付管10の底肉厚(t’)は、0.15mm以上0.30mm以下が好ましい。
内面螺旋溝付管10のフィン頂角(θ’)は、小さすぎると、外部フィン16との接合のための拡管加工において、内部フィン12が倒れやすくなり、また隣り合うフィン頂部3aの間隔が狭くなり冷媒の螺旋溝内部への流れを阻害し伝熱性能が低下する場合がある。逆にフィン頂角θが大きすぎると、内部フィン12と内部フィン12の間に形成される螺旋溝13が狭くなって伝熱性能が低下し、また冷媒の流路となる管内部の断面積が小さくなり管内部を流れる冷媒に生じる圧力損失が大きくなる。内面螺旋溝付管10のフィン頂角(θ’)は、-5°以上30°以下が好ましく、-5°以上22°以下がより好ましく、-5°以上10°以下がさらに好ましい。
Since a plurality of internal fins 12 and a spiral groove 13 are formed on the inner surface of the internal spiral grooved tube 10, the fin height (h'), The fin top width (a'), fin bottom width (b'), groove bottom width (c'), fin apex angle (θ'), and bottom wall thickness (t') can be determined.
If the bottom wall thickness (t') of the internally spiral grooved tube 10 is too thin, the pressure resistance will be insufficient, and if it is too thick, the pressure loss generated in the refrigerant flowing inside will increase. The bottom wall thickness (t') of the inner spiral grooved tube 10 is preferably 0.15 mm or more and 0.30 mm or less.
If the fin apex angle (θ') of the internal spiral grooved tube 10 is too small, the internal fin 12 will tend to fall down during the tube expansion process for joining with the external fin 16, and the distance between adjacent fin apexes 3a will be too small. The groove may become narrow and obstruct the flow of refrigerant into the spiral groove, resulting in a decrease in heat transfer performance. On the other hand, if the fin apex angle θ is too large, the spiral groove 13 formed between the internal fins 12 becomes narrower, resulting in a decrease in heat transfer performance, and the cross-sectional area inside the tube, which serves as a refrigerant flow path, becomes narrower. becomes smaller, and the pressure loss that occurs in the refrigerant flowing inside the tube increases. The fin apex angle (θ') of the inner spiral grooved tube 10 is preferably -5° or more and 30° or less, more preferably -5° or more and 22° or less, and even more preferably -5° or more and 10° or less.

内面螺旋溝付管10のフィン頂幅(a’)は、小さすぎると押出時にフィン部へアルミが流入し難くなり、内部フィン12の形状が不安定となり、大きすぎると、内部フィン12と内部フィン12の間に形成される螺旋溝13が狭くなって伝熱性能が低下し、また冷媒の流路となる管内部の断面積が小さくなり、管内部を流れる冷媒に生じる圧力損失が大きくなる。内面螺旋溝付管10のフィン頂幅a’は、0.05mm以上0.20mm以下が好ましい。 If the fin top width (a') of the internal spiral grooved tube 10 is too small, it will be difficult for aluminum to flow into the fin portion during extrusion, making the shape of the internal fin 12 unstable; if it is too large, the internal fin 12 and the internal The spiral grooves 13 formed between the fins 12 become narrower, reducing heat transfer performance, and the cross-sectional area inside the tube, which serves as a flow path for the refrigerant, becomes smaller, increasing the pressure loss that occurs in the refrigerant flowing inside the tube. . The fin top width a' of the inner spiral grooved tube 10 is preferably 0.05 mm or more and 0.20 mm or less.

内面螺旋溝付管10の内部フィン12の高さ(h’)は、低すぎると管内面の表面積が小さくなって伝熱性能が低下し、高すぎると冷媒の流路となる管内部の断面積が小さくなり管内部を流れる冷媒に生じる圧力損失が大きくなる。内面螺旋溝付管10のフィン高さ(h’)は、0.15mm以上0.40mm以下が好ましく、0.20mm以上0.40mm以下がより好ましい。
内面螺旋溝付管10の溝底部幅(c’)は、小さすぎると螺旋溝13に保持できる冷媒の量が低下し、伝熱性能が低下し、大きすぎると管内面の表面積が小さくなって伝熱性能が低下する。内面螺旋溝付管10の溝底部幅(c’)は、0.10mm以上0.30mm以下が好ましく、0.25mm以上0.30mm以下がより好ましい。
If the height (h') of the internal fins 12 of the internally spiral grooved tube 10 is too low, the surface area of the tube's inner surface will become small and the heat transfer performance will deteriorate; if it is too high, the internal fins 12 that become the refrigerant flow path will be cut off. As the area becomes smaller, the pressure loss that occurs in the refrigerant flowing inside the tube increases. The fin height (h') of the inner spiral grooved tube 10 is preferably 0.15 mm or more and 0.40 mm or less, more preferably 0.20 mm or more and 0.40 mm or less.
If the groove bottom width (c') of the inner spiral grooved tube 10 is too small, the amount of refrigerant that can be held in the spiral groove 13 will decrease, resulting in a decrease in heat transfer performance, and if it is too large, the surface area of the inner surface of the tube will decrease. Heat transfer performance decreases. The groove bottom width (c') of the inner spiral grooved tube 10 is preferably 0.10 mm or more and 0.30 mm or less, more preferably 0.25 mm or more and 0.30 mm or less.

内面螺旋溝付管10の捻り角(θ’)は、小さすぎると冷媒の流れを乱す効果が低下し、伝熱性能が低下し、大きすぎると冷媒の流れに対する抵抗が大きくなり、管内部を流れる冷媒に生じる圧力損失が大きくなる。内面螺旋溝付管10の捻り角(θ’)は、10°以上45°以下が好ましく、10°以上24°以下がより好ましい。
内面螺旋溝付管10のフィン高さを(h’)、フィン幅を(W’)とした場合のh’/W’は、小さすぎると伝熱性能が低下し、大きすぎると外部フィンとの接合のための拡管加工において、内部フィンが倒れやすくなり、管内部を流れる冷媒に生じる圧力損失が大きくなる。内面螺旋溝付管10のフィン高さを(h’)、フィン幅を(W’)とした場合のh’/W’は、0.8以上2.5以下が好ましく、1.54以上2以下がより好ましい。
If the torsion angle (θ') of the inner spiral grooved tube 10 is too small, the effect of disturbing the flow of refrigerant will be reduced, and the heat transfer performance will be reduced; if it is too large, the resistance to the flow of refrigerant will be large, and the inside of the tube will be damaged. The pressure loss that occurs in the flowing refrigerant increases. The twist angle (θ') of the inner spiral grooved tube 10 is preferably 10° or more and 45° or less, more preferably 10° or more and 24° or less.
When h'/W' is the fin height of the inner spiral grooved tube 10 and the fin width is (W'), if it is too small, the heat transfer performance will deteriorate, and if it is too large, the external fins will When expanding pipes for joining, the internal fins tend to collapse, increasing the pressure loss caused by the refrigerant flowing inside the pipes. h'/W', where the fin height of the inner spiral grooved tube 10 is (h') and the fin width is (W'), is preferably 0.8 or more and 2.5 or less, and 1.54 or more and 2.5 or less. The following are more preferred.

「熱交換器の製造方法」
熱交換器15を製造するには、まず、内面螺旋溝付管をヘアピン加工して主管10Aを形成する。また、内面螺旋溝付管と同等材料からなるアルミニウム合金管を曲げ加工したエルボ管10Bを用意しておく。あるいは、内面螺旋溝付管を曲げ加工してエルボ管10Bを形成しても良い。
次に、並列させた複数の外部フィン16に形成した透孔を貫通するように主管10Aを設け、主管10Aの内部に拡管プラグを挿入して主管10Aを拡管し、外部フィン16と主管10Aとの機械的接合力を確保し、この後に主管10Aの端部同士をエルボ管10Bで接合することにより構成されている。
なお、熱交換器15を製造する場合、主管10Aと外部フィン16との接合に関し、拡管法を用いた機械的接合法に限らず、ろう付け法などの他の接合法による接合を採用しても良い。
“Heat exchanger manufacturing method”
To manufacture the heat exchanger 15, first, an inner spiral grooved tube is hairpin-processed to form the main tube 10A. In addition, an elbow tube 10B is prepared by bending an aluminum alloy tube made of the same material as the inner spiral grooved tube. Alternatively, the elbow tube 10B may be formed by bending an inner spiral grooved tube.
Next, the main pipe 10A is provided so as to pass through the through holes formed in the plurality of external fins 16 arranged in parallel, and a pipe expansion plug is inserted into the main pipe 10A to expand the main pipe 10A. The mechanical joining force is ensured, and then the ends of the main pipe 10A are joined together with the elbow pipe 10B.
In addition, when manufacturing the heat exchanger 15, the connection between the main pipe 10A and the external fins 16 is not limited to the mechanical joining method using the tube expansion method, but other joining methods such as brazing may be used. Also good.

本願実施形態の内面直線溝付押出素管1は、上述の如く特定量のSi、Cu、Mg、Mn、MgSi、過剰Siを有するため、以下に説明する特別な手順で製造し、捻り引抜加工を施し、捻り引抜加工を施した後、時効処理を施す必要がある。
以下に、内面直線溝付押出素管1と内面螺旋溝付管10を用いて熱交換器を製造する方法に関し、内面直線溝付押出素管1の製造から、時効処理を施す工程を含め、製造方法の全体について説明する。
The extruded raw tube 1 with internal straight grooves according to the embodiment of the present application has specific amounts of Si, Cu, Mg, Mn, Mg 2 Si, and excess Si as described above, so it is manufactured using the special procedure described below and twisted. After performing drawing processing and twist drawing processing, it is necessary to perform aging treatment.
Below, regarding the method of manufacturing a heat exchanger using the extruded raw tube 1 with internal straight grooves and the internal spiral grooved tube 10, from manufacturing the extruded raw tube 1 with internal straight grooves, including the process of aging treatment, The entire manufacturing method will be explained.

「熱交換器製造方法の詳細」
上述した所定の組成となるようにアルミニウム合金の溶湯から半連続鋳造法によりビレットを造塊する。得られたビレットに均質化処理を施す。
均質化処理温度は500℃以上590℃以下が望ましく、より好ましくは540℃以上590℃以下に設定する。均質化処理時間は2時間以上20時間以下が望ましい。
均質化処理後のビレットは、ファン等を用いて100℃以下まで強制冷却する。
"Details of heat exchanger manufacturing method"
A billet is formed from a molten aluminum alloy by a semi-continuous casting method so as to have the above-mentioned predetermined composition. The resulting billet is subjected to homogenization treatment.
The homogenization treatment temperature is desirably set to 500°C or higher and 590°C or lower, more preferably 540°C or higher and 590°C or lower. The homogenization treatment time is desirably 2 hours or more and 20 hours or less.
After the homogenization treatment, the billet is forcibly cooled down to 100° C. or lower using a fan or the like.

次いで、押出に先立って押出装置に収容するビレットを加熱するが、その加熱温度は460℃以上560℃以下が望ましい。より好ましくは480℃以上540℃以下にする。ビレットの加熱は大気炉または誘導加熱炉を使用できる。
所定の温度に加熱したビレットを用い、内面直線溝付押出素管1の熱間押出を実施する。
押出後の内面直線溝付押出素管1は室温まで冷却し、必要に応じて亜鉛溶射を施した上で、ドラムにコイル状に巻き取る。
コイル状にドラムに巻き取られた内面直線溝付押出素管1は、特許文献1(特許第6169538号公報)、あるいは、特許文献2(特許第6439222号公報)に記載の方法による内面螺旋溝付管の製造に供することができる。
Next, prior to extrusion, the billet accommodated in an extrusion device is heated, and the heating temperature is preferably 460° C. or higher and 560° C. or lower. More preferably, the temperature is 480°C or higher and 540°C or lower. The billet can be heated using an atmospheric furnace or an induction heating furnace.
Using a billet heated to a predetermined temperature, hot extrusion of an extruded raw pipe 1 with internal straight grooves is carried out.
After extrusion, the extruded raw pipe 1 with internal straight grooves is cooled to room temperature, subjected to zinc thermal spraying if necessary, and then wound into a coil on a drum.
The extruded raw pipe 1 with inner linear grooves wound around a drum in a coil shape is formed with inner spiral grooves by the method described in Patent Document 1 (Patent No. 6169538) or Patent Document 2 (Patent No. 6439222). It can be used for manufacturing attached pipes.

次に、内面螺旋溝付管10として必要な強度を得るための、溶体化処理および時効処理について説明する。
溶体化熱処理の温度は、480℃以上560℃以下が望ましく、より好ましくは510℃以上560℃以下とする。溶体化処理温度における保持時間は、1分以上8時間以下、より好ましくは1分以上1時間以下とする。
溶体化処理時間保持後は、必ず焼入れが必要である。焼入れは、冷却速度が1℃/s以上となるように、ファンによる強制空冷を、必要に応じてウォーターミストの吹き付けと組み合わせて行うか、もしくは冷却水をかけ流す、もしくは冷却水に浸漬する等によって行うことができる。
Next, solution treatment and aging treatment for obtaining the strength necessary for the inner spiral grooved tube 10 will be explained.
The temperature of the solution heat treatment is desirably 480°C or higher and 560°C or lower, more preferably 510°C or higher and 560°C or lower. The holding time at the solution treatment temperature is 1 minute or more and 8 hours or less, more preferably 1 minute or more and 1 hour or less.
Hardening is always required after the solution treatment time. Quenching is performed by forced air cooling using a fan in combination with water mist spraying as necessary, or by pouring cooling water over it, or by immersing it in cooling water, so that the cooling rate is 1°C/s or more. This can be done by

なお、押出時のビレット加熱と溶体化処理を兼ねて行ってもよい。その場合、ビレット加熱兼溶体化処理の温度は、480℃以上540℃以下とし、ビレット加熱兼溶体化処理温度における保持時間は、1分以上であれば、短いほど好ましい。生産性を考慮すると、このましくは1分以上10分以下、さらに好ましくは1分以上5分以下とする。
また、押出時のビレット加熱と溶体化処理を兼ねる場合は、押出直後のプレス出口において、ファンによる強制空冷等の方法で、冷却速度が1℃/s以上となるように、焼入れを行う。
時効処理は、150℃以上250℃以下の温度範囲で1時間以上24時間以内保持する条件とする。より好ましくは、180℃以上220℃以下の温度範囲で、1時間以上8時間以内保持する条件とする。
Note that heating of the billet during extrusion and solution treatment may also be performed. In that case, the temperature of the billet heating/solution treatment is 480° C. or higher and 540° C. or lower, and the holding time at the billet heating/solution treatment temperature is preferably 1 minute or more, the shorter the better. Considering productivity, the time is preferably 1 minute or more and 10 minutes or less, more preferably 1 minute or more and 5 minutes or less.
In addition, when heating the billet during extrusion and solution treatment simultaneously, quenching is performed at the press exit immediately after extrusion using a method such as forced air cooling using a fan so that the cooling rate is 1° C./s or more.
The aging treatment is performed at a temperature range of 150° C. or higher and 250° C. or lower for 1 hour or more and 24 hours or less. More preferably, the temperature range is 180° C. or higher and 220° C. or lower, and the temperature is maintained for 1 hour or more and 8 hours or less.

溶体化処理および時効処理は、時効処理が溶体化処理よりも下流側の工程となる条件を満たす範囲で、ビレット加熱~図4に示す構成の熱交換器が完成するまでの間の任意のタイミングで実施することができる。
以下に、溶体化処理および時効処理のタイミングが異なる第1~第4の製造工程について説明する。
Solution treatment and aging treatment can be carried out at any timing between billet heating and completion of the heat exchanger having the configuration shown in Figure 4, as long as the aging treatment is a downstream process than the solution treatment. It can be carried out in
First to fourth manufacturing steps in which the timing of solution treatment and aging treatment are different will be described below.

図5に、第1の製造工程を例示する。
図5に示す第1の製造工程では、ビレット鋳造、均質化処理後、押出時のビレット加熱と溶体化処理を兼ねて行い、押出直後のプレス出口においてファンによる強制空冷による焼入れを行い、捻り引抜加工後に時効処理を行う工程として実施できる。時効処理した内面螺旋溝付管は必要な長さに切断し、ヘアピン加工により図4に示したような主管とエルボ管に加工する。これらの主管とエルボ管と外部フィンを用い、必要枚数の外部フィンの透孔に主管を挿通して熱交換器の形状となるように組み立て、主管に拡管プラグを挿入して主管と外部フィンを機械的に接合し、隣接する主管の端部同士をエルボ管で接合することで熱交換器を形成することができる。
FIG. 5 illustrates the first manufacturing process.
In the first manufacturing process shown in Figure 5, after billet casting and homogenization treatment, billet heating and solution treatment are performed during extrusion, quenching is performed by forced air cooling using a fan at the press exit immediately after extrusion, and twisting and drawing are performed. This can be carried out as a step of aging treatment after processing. The aged internally spiral grooved tube is cut to the required length and processed into a main tube and an elbow tube as shown in FIG. 4 by hairpin processing. Using these main pipes, elbow pipes, and external fins, assemble the main pipes into the through holes of the required number of external fins to form a heat exchanger shape, insert the pipe expansion plug into the main pipe, and connect the main pipes and external fins. A heat exchanger can be formed by mechanically joining and joining the ends of adjacent main pipes with an elbow pipe.

第1の製造工程の場合、外部フィン組付け後の熱処理が不要であり、外部フィン表面に親水性や耐臭気性等に優れる機能性被膜を有する場合、加熱によりそれらの機能が劣化する恐れが無いという点で好ましい。一方、時効処理によって硬化した内面螺旋溝付管に対し、ヘアピン加工および拡管加工を行う必要があり、それらの加工における管割れや内部フィン倒れ等の問題を生じやすいという点に注意が必要となる。 In the case of the first manufacturing process, there is no need for heat treatment after assembling the external fin, and if the external fin surface has a functional coating with excellent hydrophilicity or odor resistance, there is a risk that those functions will deteriorate due to heating. It is preferable that there is no such thing. On the other hand, it is necessary to perform hairpin processing and tube expansion processing on inner spiral grooved pipes that have been hardened by aging treatment, and care must be taken that problems such as pipe cracking and internal fin collapse are likely to occur during these processes. .

図6に、第2の製造工程を例示する。
図6に示す第2の製造工程では、ビレット鋳造、均質化処理後、押出時のビレット加熱と溶体化処理を兼ねて行い、押出直後のプレス出口においてファンによる強制空冷による焼入れを行う。この後、捻り引抜加工を行い、捻り引抜加工後に切断・ヘアピン加工を行い、引き続いて内面螺旋溝付管を外部フィンの透孔に挿通後拡管する熱交換器組立工程の後に時効処理を実施できる。熱交換器組立工程の詳細は、上述の如く主管とエルボ管と外部フィンを用い、拡管による組立と同様である。
FIG. 6 illustrates the second manufacturing process.
In the second manufacturing process shown in FIG. 6, after billet casting and homogenization treatment, billet heating and solution treatment during extrusion are performed simultaneously, and quenching is performed by forced air cooling using a fan at the press exit immediately after extrusion. After this, aging treatment can be performed after the heat exchanger assembly process in which twist drawing is performed, cutting and hairpin processing are performed after twist drawing, and the internal spiral grooved tube is inserted into the through hole of the external fin and then expanded. . The details of the heat exchanger assembly process are the same as those for assembly by expanding the tubes, using the main pipe, elbow pipe, and external fins as described above.

第2の製造工程の場合、時効処理によって内面螺旋溝付管が硬化する前にヘアピン加工および拡管加工を行うため、それらの成形において管割れや内部フィン倒れ等の問題を比較的生じにくいという点で好ましい。
一方、この手順においては、外部フィン組付け後に時効処理を行う。このため、時効処理において外部フィンも同時に加熱され、外部フィン表面に親水性や耐臭気性等に優れる機能性被膜を有する場合、加熱によりそれらの機能が劣化する場合がある点に注意が必要となる。
In the case of the second manufacturing process, hairpin processing and tube expansion processing are performed before the internal spiral grooved tube hardens through aging treatment, so problems such as tube cracking and internal fin collapse are relatively unlikely to occur during these forming processes. It is preferable.
On the other hand, in this procedure, aging treatment is performed after the external fin is assembled. For this reason, the external fins are also heated at the same time during aging treatment, and if the external fins have functional coatings with excellent hydrophilicity or odor resistance on their surfaces, it is important to be aware that heating may deteriorate their functions. Become.

図7に、第3の製造工程を例示する。
図7に示す第3の製造工程では、ビレット鋳造、均質化処理後、押出時のビレット加熱を行い、押出直後において大気中で常温まで放冷することが好ましい。なお、押出出口においてファンによる強制空冷による焼入れを行っても良い。
この後、捻り引抜加工を行い、捻り引抜加工後に焼きなまし処理を行い、次いで切断・ヘアピン加工を行い、引き続いて内面螺旋溝付管を外部フィンの透孔に挿通後拡管する熱交換器組立工程の後に時効処理を行うことができる。熱交換器組立工程の詳細は、上述の如く主管とエルボ管と外部フィンを用い、拡管による組立と同様である。
FIG. 7 illustrates the third manufacturing process.
In the third manufacturing step shown in FIG. 7, it is preferable that after billet casting and homogenization treatment, the billet is heated during extrusion, and immediately after extrusion, it is allowed to cool to room temperature in the atmosphere. Note that quenching may be performed by forced air cooling using a fan at the extrusion outlet.
After this, the heat exchanger assembly process involves twist drawing, annealing after twist drawing, cutting and hairpin processing, and then inserting the internal spiral grooved tube into the through hole of the external fin and expanding the tube. Aging treatment can be performed later. The details of the heat exchanger assembly process are the same as those for assembly by expanding the tubes, using the main pipe, elbow pipe, and external fins as described above.

第3の製造工程では、内面直線溝付押出素管に対し捻り引抜加工を行った後、焼きなましを行って内面螺旋溝付管をO調質とする。その後、切断・ヘアピン加工を行い、引き続いて内面螺旋溝付管を外部フィンの透孔に挿通後、拡管する熱交換器組立工程を行い、その後に溶体化処理および時効処理を行う。
ここで、焼きなまし条件は内面螺旋溝付管がO調質となる範囲で任意の条件で行うことができるが、バッチ処理の場合、大気炉を用い、330~380℃で1~8時間保持する条件を選択することができる。この場合、焼きなましたO調質の状態でヘアピン加工・拡管加工を行うため、それらの成形において割れや内部フィン倒れ等の問題を生じにくいという点で好ましい。
In the third manufacturing process, the extruded tube with straight inner grooves is twisted and drawn, and then annealed to give the tube with inner spiral grooves an O temper. Thereafter, cutting and hairpin processing are performed, followed by a heat exchanger assembly process in which the internal spiral grooved tube is inserted into the through hole of the external fin and then expanded, followed by solution treatment and aging treatment.
Here, the annealing can be carried out under any conditions within the range that the internal spiral grooved tube becomes O tempered, but in the case of batch processing, an atmospheric furnace is used and the annealing is held at 330 to 380°C for 1 to 8 hours. Conditions can be selected. In this case, hairpin processing and tube expansion processing are performed in the annealed O-refined state, which is preferable in that problems such as cracking and internal fin collapse are less likely to occur during these forming operations.

また、溶体化処理と時効処理の間に長時間を要しないため、時効処理後の強度が安定しやすいという点も、この第3の製造工程の好ましい点として挙げることができる。
一方、第3の製造工程においては、外部フィン組付け後に溶体化処理および時効処理を行うため、溶体化処理および時効処理において外部フィンも同時に加熱され、外部フィン表面に親水性や耐臭気性等に優れる機能性被膜を有する場合、加熱によりそれらの機能が劣化する場合がある点に注意が必要となる。
Moreover, since a long time is not required between the solution treatment and the aging treatment, the strength after the aging treatment is likely to be stable, which can also be mentioned as a preferable point of this third manufacturing process.
On the other hand, in the third manufacturing process, since solution treatment and aging treatment are performed after the external fin is assembled, the external fin is also heated at the same time during the solution treatment and aging treatment, and the external fin surface has hydrophilic properties, odor resistance, etc. If the material has a functional coating with excellent properties, care must be taken that heating may deteriorate its functionality.

図8に、第4の製造工程を例示する。
図8に示す第4の製造工程では、ビレット鋳造、均質化処理後、押出時のビレット加熱を行い、押出直後において大気中で常温まで放冷することが好ましい。なお、押出出口においてファンによる強制空冷による焼入れを行っても良い。
この後、押出後の内面直線溝付押出素管の表面に亜鉛溶射を施した上で、捻り引抜加工を行う。その後、溶体化処理を兼ねた亜鉛拡散熱処理を行い、溶体化処理を兼ねた亜鉛拡散熱処理の後にファンによる強制空冷等の方法で焼入れを行う。
FIG. 8 illustrates the fourth manufacturing process.
In the fourth manufacturing step shown in FIG. 8, it is preferable that after billet casting and homogenization treatment, the billet is heated during extrusion, and immediately after extrusion, it is allowed to cool to room temperature in the atmosphere. Note that quenching may be performed by forced air cooling using a fan at the extrusion outlet.
Thereafter, the surface of the extruded raw pipe with straight inner grooves after extrusion is subjected to zinc spraying, and then twisted drawing processing is performed. Thereafter, a zinc diffusion heat treatment that also serves as a solution treatment is performed, and after the zinc diffusion heat treatment that also serves as a solution treatment, quenching is performed by a method such as forced air cooling using a fan.

この後、引き続き時効処理を行うことができる。ここで、溶体化処理を兼ねた亜鉛拡散熱処理は、480℃以上560℃以下で30分以上8時間以下、より好ましくは480℃以上520℃以下で30分以上8時間以下の条件で、内面螺旋溝付管の厚さ方向に必要な亜鉛拡散深さが得られるように選択することができる。
時効処理後、内面螺旋溝付管を外部フィンの透孔に挿通後拡管する熱交換器組立工程を行うことができる。熱交換器組立工程の詳細は、上述の如く主管とエルボ管と外部フィンを用い、拡管による組立と同様である。
After this, aging treatment can be continued. Here, the zinc diffusion heat treatment, which also serves as solution treatment, is performed at a temperature of 480°C or higher and 560°C or lower for 30 minutes or more and 8 hours, more preferably at a temperature of 480°C or higher and 520°C or lower for 30 minutes or more and 8 hours. It can be selected to provide the required zinc diffusion depth in the thickness direction of the grooved tube.
After the aging treatment, a heat exchanger assembly process can be performed in which the internal spiral grooved tube is inserted into the through hole of the external fin and then expanded. The details of the heat exchanger assembly process are the same as those for assembly by expanding the tubes, using the main pipe, elbow pipe, and external fins as described above.

この場合、内面螺旋溝付管の外表面に亜鉛溶射層が形成されるため、熱交換器に組付けた後に熱交換器として長期間使用する場合の耐食性に優れるという点で好ましい。更に、外部フィン組付け後の熱処理が不要である。また、外部フィン表面に親水性や耐臭気性等に優れる機能性被膜を有する場合、加熱によりそれらの機能が劣化する恐れが無いという点も第4の製造工程の好ましい点として挙げることができる。
一方、時効処理によって硬化した内面螺旋溝付管に対し、ヘアピン加工および拡管加工を行う必要があり、それらの加工における管割れや内部フィン倒れ等の問題を生じやすいという点に注意が必要である。
In this case, since a zinc sprayed layer is formed on the outer surface of the internally spiral grooved tube, it is preferable in that it has excellent corrosion resistance when used as a heat exchanger for a long period of time after being assembled into a heat exchanger. Furthermore, no heat treatment is required after assembling the external fins. In addition, when the external fin surface has a functional coating having excellent hydrophilicity and odor resistance, there is no risk of deterioration of those functions due to heating, which is also a preferable point of the fourth manufacturing process.
On the other hand, it is necessary to perform hairpin processing and tube expansion processing on inner spiral grooved tubes that have been hardened by aging treatment, and care must be taken that problems such as pipe cracking and internal fin collapse are likely to occur during these processes. .

図9に、第5の製造工程を例示する。
図9に示す第5の製造工程では、ビレット鋳造、均質化処理後、押出時のビレット加熱を行い、押出後に押出素管表面に亜鉛溶射を施した上で、捻り引抜加工を行う。
その後、溶体化処理を兼ねた亜鉛拡散熱処理を行い、溶体化処理を兼ねた亜鉛拡散熱処理の後にファンによる強制空冷等の方法で焼入れを行う。
その後、切断・ヘアピン加工を行い、引き続いて内面螺旋溝付管を外部フィンの透孔に挿通後拡管する熱交換器組立工程を行い、その後に時効処理を行うことができる。熱交換器組立工程の詳細は、上述の如く主管とエルボ管と外部フィンを用い、拡管による組立と同様である。
FIG. 9 illustrates the fifth manufacturing process.
In the fifth manufacturing process shown in FIG. 9, after billet casting and homogenization treatment, the billet is heated during extrusion, and after extrusion, zinc spraying is applied to the surface of the extruded raw tube, and then twist drawing is performed.
Thereafter, a zinc diffusion heat treatment that also serves as a solution treatment is performed, and after the zinc diffusion heat treatment that also serves as a solution treatment, quenching is performed by a method such as forced air cooling using a fan.
After that, cutting and hairpin processing are performed, followed by a heat exchanger assembly process in which the internal spiral grooved tube is inserted into the through hole of the external fin and then expanded, and then an aging treatment can be performed. The details of the heat exchanger assembly process are the same as those for assembly by expanding the tubes, using the main pipe, elbow pipe, and external fins as described above.

第5の製造工程の場合、内面螺旋溝付管の外表面に亜鉛溶射層が形成されるため、熱交換器に組付けた後に熱交換器として長期間使用する場合の耐食性に優れるという点で好ましい。また、時効処理によって内面螺旋溝付管が硬化する前にヘアピン加工および拡管加工を行うため、それらの成形において管割れや外部フィン倒れ等の問題を比較的生じにくいという点も好ましい点として挙げることができる。
一方、第5の製造工程においては、外部フィン組付け後に時効処理を行うため、時効処理においてフィンも同時に加熱され、外部フィン表面に親水性や耐臭気性等に優れる機能性被膜を有する場合、加熱によりそれらの機能が劣化する場合がある点に注意が必要である。
In the case of the fifth manufacturing process, a zinc sprayed layer is formed on the outer surface of the inner spiral grooved tube, so it has excellent corrosion resistance when used as a heat exchanger for a long time after being assembled into a heat exchanger. preferable. Another advantage is that hairpin processing and tube expansion are performed before the internal spiral grooved tube hardens through aging treatment, so problems such as tube cracking and external fin collapse are relatively unlikely to occur during these forming processes. Can be done.
On the other hand, in the fifth manufacturing process, since the aging treatment is performed after the external fin is assembled, the fin is also heated at the same time, and when the external fin surface has a functional coating with excellent hydrophilicity and odor resistance, etc. It should be noted that these functions may deteriorate due to heating.

図10に、第6の製造工程を例示する。
図10に示す第6の製造工程では、ビレット鋳造、均質化処理後、押出時のビレット加熱を行い、押出後に押出素管表面に亜鉛溶射を施す。この後、捻り引抜加工を行った後に亜鉛拡散熱処理を行い、その後切断・ヘアピン加工を行う。
引き続いて内面螺旋溝付管を外部フィンの透孔に挿通後拡管する熱交換器組立工程を行い、その後に溶体化処理および時効処理を行うことができる。熱交換器組立工程の詳細は、上述の如く主管とエルボ管と外部フィンを用い、拡管による組立と同様である。
FIG. 10 illustrates the sixth manufacturing process.
In the sixth manufacturing process shown in FIG. 10, after billet casting and homogenization treatment, the billet is heated during extrusion, and after extrusion, zinc spraying is applied to the surface of the extruded raw pipe. After this, after performing twist drawing processing, zinc diffusion heat treatment is performed, and then cutting and hairpin processing are performed.
Subsequently, a heat exchanger assembly step is performed in which the internal spiral grooved tube is inserted into the through hole of the external fin and then expanded, and then a solution treatment and an aging treatment can be performed. The details of the heat exchanger assembly process are the same as those for assembly by expanding the tubes, using the main pipe, elbow pipe, and external fins as described above.

第6の製造工程の場合、内面螺旋溝付管の外表面に亜鉛溶射層が形成されるため、熱交換器に組付けた後に熱交換器として長期間使用する場合の耐食性に優れるという点で好ましい。また、亜鉛拡散熱処理によって螺旋溝付管がO調質になるため、O調質の状態でヘアピン加工・拡管加工を行うことができ、それらの成形において管割れや外部フィン倒れ等の問題を生じにくいという点で好ましい。
更に、溶体化処理と時効処理の間に長時間を要しないため、時効処理後の強度が安定しやすいという点も、第6の製造工程の好ましい点として挙げることができる。
一方、第6の製造工程においては、外部フィン組付け後に溶体化処理および時効処理を行うため、溶体化処理および時効処理において外部フィンも同時に加熱され、外部フィン表面に親水性や耐臭気性等に優れる機能性被膜を有する場合、加熱によりそれらの機能が劣化する場合がある点に注意が必要である。
In the case of the sixth manufacturing process, a zinc sprayed layer is formed on the outer surface of the inner spiral grooved tube, so it has excellent corrosion resistance when used as a heat exchanger for a long period of time after being assembled into a heat exchanger. preferable. In addition, since the spiral grooved tube becomes O tempered by zinc diffusion heat treatment, hairpin processing and tube expansion processing can be performed in the O tempered state, which may cause problems such as tube cracking and external fin collapse during forming. This is preferable because it is difficult to use.
Furthermore, since a long time is not required between the solution treatment and the aging treatment, the strength after the aging treatment is likely to be stable, which can also be mentioned as a preferable point of the sixth manufacturing step.
On the other hand, in the sixth manufacturing process, since solution treatment and aging treatment are performed after the external fin is assembled, the external fin is also heated at the same time during the solution treatment and aging treatment, and the external fin surface has properties such as hydrophilicity and odor resistance. If the material has a functional coating with excellent properties, it should be noted that heating may deteriorate its functionality.

なお、溶体化処理および時効処理は、前述のとおり、第1~第6の製造工程に示した以外であっても、時効処理が溶体化処理よりも下流側の工程となる条件を満たす範囲で、ビレット加熱~熱交換器完成までの間の任意のタイミングで実施することができる。
溶体化処理および焼入れのタイミングよっては、内面直線溝付押出素管もしくは内面螺旋溝付管をドラムにコイル状に巻きつけた状態で熱処理を行う場合も選択できる。
この場合、コイル状に巻き付けた内面直線溝付押出素管もしくは内面螺旋溝付管において、昇温速度や冷却速度に分布が生じやすいことに留意する必要がある。特に、溶体化処理に引き続く焼入れの場合、コイル状の内部の冷却速度が外部よりも遅くなる点に留意が必要であるが、コイル状に巻いた内面直線溝付押出素管もしくは内面螺旋溝付管の全体において、冷却速度が1℃/s以上となるように冷却すればよい。
In addition, as mentioned above, solution treatment and aging treatment may be performed even if they are not shown in the first to sixth manufacturing steps, as long as the aging treatment is a downstream process than the solution treatment. , can be carried out at any timing between heating the billet and completing the heat exchanger.
Depending on the timing of the solution treatment and quenching, it is also possible to select the case where the heat treatment is performed while the extruded tube with straight inner grooves or the spiral grooved inner tube is wound around a drum in a coiled state.
In this case, it must be noted that in an extruded tube with a linear groove on the inner surface or a tube with a spiral groove on the inner surface, the heating rate and the cooling rate tend to vary. In particular, in the case of quenching following solution treatment, it is necessary to keep in mind that the cooling rate of the inside of the coil is slower than that of the outside. The entire tube may be cooled at a cooling rate of 1° C./s or more.

内面直線溝付押出素管1の場合、D/tが大きい場合、またアルミニウム合金に含まれる過剰Si量が多い場合、押出時に押出金型出口にアルミ堆積物を生成しやすくなる。
このため、押出中に金型からアルミ堆積物が剥離して押出製品外表面に付着する、いわゆる「アルミカス」が生じやすくなる。
以上説明の製造工程においては、上述の如くSi、Cu、Mg、Mn、MgSi、過剰Siを特定した組成のアルミニウム合金から内面直線溝付押出素管1を形成したので、h/Wが0.7以上、D/tが26以上である内面直線溝付押出素管1であっても、アルミカスを生じることなく押出ができ、外観不良とならない内面直線溝付押出素管1を製造できる。
また、捻り引抜加工後に時効処理を施して内面螺旋溝付管10を製造するので、捻り引抜加工時に管の破断や折損を引き起こすことなく内面螺旋溝付管10を製造できる。
In the case of the extruded raw tube 1 with internal straight grooves, if D/t is large or if the amount of excess Si contained in the aluminum alloy is large, aluminum deposits are likely to be formed at the exit of the extrusion die during extrusion.
For this reason, aluminum deposits are likely to peel off from the mold during extrusion and adhere to the outer surface of the extruded product, resulting in so-called "aluminum scum."
In the manufacturing process described above, since the extruded raw tube 1 with internal straight grooves was formed from an aluminum alloy with a specified composition of Si, Cu, Mg, Mn, Mg 2 Si, and excess Si as described above, h/W was Even if the extruded raw tube 1 with internal straight grooves has a D/t of 0.7 or more and D/t is 26 or more, it can be extruded without producing aluminum scum, and the extruded raw tube 1 with internal straight grooves that does not have poor appearance can be manufactured. .
Moreover, since the internal spiral grooved tube 10 is manufactured by performing aging treatment after the twist drawing process, the internal spiral grooved tube 10 can be manufactured without causing breakage or breakage of the tube during the twist drawing process.

更に、上述の如くSi、Cu、Mg、Mn、MgSi、過剰Siを特定した組成のアルミニウム合金から内面螺旋溝付管10を形成しているので、熱交換器を構成した場合、耐圧性能に優れ、冷媒による圧力を受けても冷媒漏れなどの心配のない熱交換器を提供できる。
内面螺旋溝付管10は上述の如くSi、Cu、Mg、Mn、MgSi、過剰Siを特定した組成のアルミニウム合金から構成されているので、表面状態に優れ、外観不良とならない熱交換器を提供できる。
Furthermore, since the inner spiral grooved tube 10 is formed from an aluminum alloy with a specified composition of Si, Cu, Mg, Mn, Mg 2 Si, and excess Si as described above, when a heat exchanger is constructed, pressure resistance performance is improved. It is possible to provide a heat exchanger that has excellent properties and is free from concerns about refrigerant leakage even when subjected to pressure from refrigerant.
As described above, the inner spiral grooved tube 10 is made of an aluminum alloy with a specified composition of Si, Cu, Mg, Mn, Mg 2 Si, and excess Si, so it is a heat exchanger with excellent surface condition and no appearance defects. can be provided.

表1に示す合金成分となるよう、直径およそ200mmの押出用ビレットを半連続鋳造により作製した。表1に示す合金成分以外の成分として、いずれの合金においてもFeを0.14~0.20%、Tiを0.01~0.05%(質量%)の範囲で含有させた。 An extrusion billet with a diameter of approximately 200 mm was produced by semi-continuous casting so as to have the alloy components shown in Table 1. As components other than the alloy components shown in Table 1, all alloys contained Fe in a range of 0.14 to 0.20% and Ti in a range of 0.01 to 0.05% (mass%).

Figure 0007404314000001
Figure 0007404314000001

作製した押出用ビレットに対し、560℃で6時間の均質化処理を実施し、その後、100℃以下までファン空冷した。
均質化処理後の押出用ビレットに対し、熱間押出に供するためのビレット加熱として、溶体化処理を兼ねて、誘導加熱炉により510℃に加熱した。
510℃に到達した押出用ビレットを熱間押出機に搬送し、熱間押出を行い、表2に示すフィンの条数(内部フィン数)、外径、底肉厚、フィン頂角、フィン頂幅、フィン高さ、D/t、h/Wを有する内面直線溝付押出素管を作製した。
The produced billet for extrusion was subjected to a homogenization treatment at 560°C for 6 hours, and then air-cooled with a fan to 100°C or lower.
The billet for extrusion after the homogenization treatment was heated to 510° C. in an induction heating furnace to heat the billet for hot extrusion and also as a solution treatment.
The extrusion billet that reached 510°C was transferred to a hot extruder, hot extruded, and the number of fins (number of internal fins), outer diameter, bottom wall thickness, fin apex angle, and fin top shown in Table 2 was obtained. An extruded raw tube with inner straight grooves having width, fin height, D/t, and h/W was produced.

Figure 0007404314000002
Figure 0007404314000002

押出用ビレットが510℃に到達してからの保持時間は約2分であった。ダイスから得られた表2に示す形状の内面直線溝付押出素管に対し押出直後に水冷を行い、冷却速度が1℃/s以上となる条件で、100℃以下まで冷却した。
得られた内面直線溝付押出素管に対し、特許第6439222号に記載の捻り引抜装置を用いる方法で2回の捻り引抜加工を付与し、表2に示す内部フィン形状(外径、底肉厚、フィン頂角、フィン頂幅、フィン高さ)の内面螺旋溝付管に加工した。なお、特許第6439222号に記載の捻り引抜装置は、捻り引抜加工を施す第1の引抜ダイスと第2の引抜ダイスを備えているので、実質的に内面直線溝付押出素管1を捻り引抜装置に1回通すことにより内面螺旋溝付管を作製している。
捻り引抜加工後、内面螺旋溝付管に対し195℃で2時間半の時効処理を施した。
表2に示す内面螺旋溝付管の形状について伝熱性能を比較したところ、φ5-0.20tおよびφ4-0.18tの内面螺旋溝付管の伝熱特性が特に優れていた。次いで、φ7-0.25tおよびφ5-0.25tの内面螺旋溝付管の伝熱性能が優れていたが、φ7‐0.30tの内面螺旋溝付管も一定の伝熱性能を満足した。
The holding time after the extrusion billet reached 510°C was about 2 minutes. Immediately after extrusion, the extruded blank tube with inner straight grooves having the shape shown in Table 2 obtained from the die was water-cooled to 100° C. or lower at a cooling rate of 1° C./s or higher.
The obtained extruded tube with straight inner grooves was twisted and drawn twice by a method using a twist-drawing device described in Patent No. 6439222, and the inner fin shape (outer diameter, bottom wall) was changed as shown in Table 2. It was processed into an internal spiral grooved tube with different thickness, fin apex angle, fin apex width, and fin height). Note that the twist drawing device described in Patent No. 6439222 is equipped with a first drawing die and a second drawing die that perform twist drawing processing, so that the twist drawing device substantially twists and draws the extruded raw pipe 1 with internal straight grooves. An internally spiral grooved tube is produced by passing it through the device once.
After the twist drawing process, the inner spiral grooved tube was subjected to aging treatment at 195°C for 2 and a half hours.
When the heat transfer performance was compared for the shapes of the inner spiral grooved tubes shown in Table 2, the heat transfer characteristics of the inner spiral grooved tubes of φ5-0.20t and φ4-0.18t were particularly excellent. Next, the φ7-0.25t and φ5-0.25t internal spiral grooved tubes had excellent heat transfer performance, but the φ7-0.30t internal spiral grooved tube also satisfied a certain level of heat transfer performance.

「外観(アルミカス)評価方法および評価基準」
(アルミカスの詳細説明)
内面直線溝付押出素管において、外径をD(mm)、底肉厚をt(mm)とすると、D/tが大きい場合、またアルミニウム合金に含まれる過剰Si量が多い場合、押出時に押出金型出口にアルミ堆積物を生成しやすくなる。このため、押出中に金型からアルミ堆積物が剥離して押出製品外表面に付着する、いわゆる「アルミカス」が生じやすくなる。
押出製品外表面に付着した「アルミカス」の個々のサイズは直径で凡そ0.1mm前後であるが、押出製品表面とアルミカス表面とでは光沢が異なるため、アルミカスが外観上目立つことによって、外観不良として問題になる場合がある。
"Appearance (aluminum cast) evaluation method and evaluation criteria"
(Detailed explanation of aluminum cassette)
In an extruded tube with a straight groove on the inside, if the outer diameter is D (mm) and the bottom wall thickness is t (mm), if D/t is large or if the amount of excess Si contained in the aluminum alloy is large, during extrusion Aluminum deposits tend to form at the exit of the extrusion mold. For this reason, aluminum deposits are likely to peel off from the mold during extrusion and adhere to the outer surface of the extruded product, resulting in so-called "aluminum scum."
The individual size of the "aluminum scum" attached to the outer surface of the extruded product is approximately 0.1 mm in diameter, but since the gloss of the extruded product surface and the aluminum scum surface are different, the aluminum scum stands out visually and is considered to be a defective appearance. This may become a problem.

また、アルミカスが生成された場合、押出工程に引き続く捻り引抜加工において、アルミカスが内面直線溝付押出素管の外表面から管断面の半径方向内側に向けて押し込まれることにより、捻り引抜加工において素管の縮径により生じる素管周方向の圧縮応力による素管の座屈を引き起こす場合がある。
さらに、捻り引抜加工における素管の座屈が生じない場合においても、得られた捻り引抜製品において、アルミカスが押し込まれた部位が応力集中の起点となり、耐圧強度の低下をもたらす場合がある。
以上のような事情から、アルミカスの発生は抑制する必要があり、アルミカスの発生を避けるために押出速度を低下させる必要性が生じる。
In addition, if aluminum scum is generated, the aluminum scum is pushed from the outer surface of the extruded raw tube with internal straight grooves toward the radial inside of the pipe cross section during the twist drawing process that follows the extrusion process, so that Compressive stress in the circumferential direction of the tube caused by the diameter reduction of the tube may cause buckling of the tube.
Furthermore, even if buckling of the raw pipe does not occur during twist drawing, in the obtained twist drawing product, the portion where the aluminum scum is pushed becomes the starting point of stress concentration, which may result in a decrease in pressure resistance.
Due to the above circumstances, it is necessary to suppress the generation of aluminum scum, and it is necessary to reduce the extrusion speed in order to avoid the generation of aluminum scum.

(アルミカス付着調査)
押出速度45m/minで熱間押出加工を行い、得られた押出素管の外表面へのアルミカスの付着状況を調査した。
アルミカスとは、押出金型出口近傍に付着したアルミの堆積物が金型から剥離し、押出製品外面に付着したものである。個々の付着物のサイズは直径で凡そ0.1mm前後と微細であるが、押出製品表面とは光沢が異なるため、目視で十分に検出可能である。
長さ1mの押出素管を採取し、外表面全体のアルミカス付着状況を目視で確認した。
アルミカス付着状態の評価基準は、押出素管1mあたりのアルミカス付着数が3個以上を×、1個以上3個未満を△、0個を〇と評価した。
(Investigation of aluminum scum adhesion)
Hot extrusion was performed at an extrusion speed of 45 m/min, and the state of adhesion of aluminum scum to the outer surface of the obtained extruded tube was investigated.
Aluminum scum is aluminum deposits attached near the exit of an extrusion die, peeled off from the die, and attached to the outer surface of the extruded product. Although the size of each deposit is minute, approximately 0.1 mm in diameter, it can be sufficiently detected visually because the gloss is different from the surface of the extruded product.
An extruded raw pipe with a length of 1 m was taken, and the state of adhesion of aluminum sludge on the entire outer surface was visually confirmed.
The evaluation criteria for the state of aluminum scum adhesion were as follows: 3 or more aluminum scum adhered per 1 m of extruded raw tube was evaluated as ×, 1 or more but less than 3 was evaluated as △, and 0 was evaluated as ○.

「押出性評価方法および評価基準」
押出速度45m/minで押出加工を行い、得られた押出素管内面に形成された内部フィンの形状を測定し、押出性を評価した。
内部フィンの形状測定方法について説明する。押出素管を、押出方向長さ20mm程度となるように、押出方向に垂直な断面において切断し、内部フィン形状測定用の押出素管小片を得た。前記小片の管内面側および外面側全体を、常温硬化エポキシ樹脂に包埋し、常温放置により硬化させた。硬化したエポキシ樹脂に包埋された小片の押出方向に垂直な断面をエポキシ樹脂ともに、エメリー研磨紙を用いて研磨した。研磨の仕上げは、エメリー研磨紙#1000により行った。
"Extrudability evaluation method and evaluation criteria"
Extrusion processing was performed at an extrusion speed of 45 m/min, and the shape of internal fins formed on the inner surface of the obtained extruded raw tube was measured to evaluate extrudability.
A method for measuring the shape of internal fins will be explained. The extruded raw tube was cut at a cross section perpendicular to the extrusion direction so that the length in the extrusion direction was about 20 mm, to obtain a small piece of the extruded raw tube for internal fin shape measurement. The entire tube inner and outer surfaces of the small piece were embedded in an epoxy resin that cures at room temperature, and was left to cure at room temperature. A cross section of the small piece embedded in the cured epoxy resin perpendicular to the extrusion direction was polished together with the epoxy resin using emery polishing paper. The polishing was finished using emery abrasive paper #1000.

仕上げ研磨後の押出素管の押出方向に垂直な断面をキーエンス社製のデジタルマイクロスコープにより撮像し、押出素管内面に形成された内部フィンの先端幅を測定した。アルミニウム合金が押出性に劣る場合、素管の押出加工におけるフィン部へのアルミの流入が不十分となり、内部フィンの幅が細くなる不具合が生じやすくなる。測定された内部フィン先端幅が、設計値に対して70%以下となっている場合を押出性×、70%を超えて85%以下となっている場合を押出性△、85%を超える場合を押出性〇として評価した。 After final polishing, a cross section of the extruded raw tube perpendicular to the extrusion direction was imaged using a digital microscope manufactured by Keyence Corporation, and the width of the tip of the internal fin formed on the inner surface of the extruded raw tube was measured. If the aluminum alloy has poor extrudability, the flow of aluminum into the fin portion during extrusion processing of the raw tube will be insufficient, and the problem of narrowing the width of the internal fin will likely occur. If the measured internal fin tip width is 70% or less of the design value, extrudability ×, if it exceeds 70% and 85% or less, extrudability △, if it exceeds 85% was evaluated as extrudability.

「捩じり加工性評価方法および評価基準」
得られた押出素管に対し、特許第6439222号に記載の捻り引抜装置を用いる方法で2回の引抜・捩じり加工を付与し、表2に示す形状の内面螺旋溝付管に加工した。
その際、2回目の引抜を行う第2の引抜ダイスの後段に備えられている第2のガイドキャプスタンに押出素管を巻き掛けた段階において、押出素管が加工負荷に耐えられず破断する場合があった。
第2のガイドキャプスタンに管材を巻き掛けることは、安定した捩じり引抜成形を行うための張力を負荷するために必要であるため、第2のガイドキャプスタンに押出素管を巻き掛けた段階において押出素管が破断する場合は、捻り加工性×として評価した。
これに対し、押出素管の破断を生じることなく第2のガイドキャプスタンに押出素管を巻き付けることが可能であった場合は、捩じり加工性〇として評価した。
"Torsion workability evaluation method and evaluation criteria"
The obtained extruded raw tube was drawn and twisted twice by a method using a twisting and drawing device described in Patent No. 6439222, and was processed into an inner spiral grooved tube having the shape shown in Table 2. .
At that time, at the stage when the extruded raw tube is wrapped around the second guide capstan provided at the rear stage of the second drawing die that performs the second drawing, the extruded raw tube cannot withstand the processing load and breaks. There was a case.
Wrapping the tube material around the second guide capstan is necessary to apply tension for stable torsional pultrusion, so we wrapped the extruded raw tube around the second guide capstan. If the extruded raw pipe broke at any stage, the twisting workability was evaluated as poor.
On the other hand, when it was possible to wrap the extruded raw tube around the second guide capstan without causing breakage of the extruded raw tube, the torsion workability was evaluated as 0.

「耐圧性能」
時効処理を施した後の内面螺旋溝付管を耐圧試験に供した。
内面螺旋溝付管の軸方向の長さがおよそ150mmとなるように内面螺旋溝付管を切断し、両端にソケットを取り付けた。一端のソケットを圧力計を介し水圧ポンプに接続した。水圧ポンプから内面螺旋溝付管内に水を送り、内面螺旋溝付管の逆側の末端までを管内部に水で満たした状態で、他方のソケットをプラグにより封止した。
その後、水圧ポンプを稼働させ、およそ0.5MPa/sの昇圧速度で内面螺旋溝付管内の水圧を増加させた。その際、内面螺旋溝付管が管内部の水圧に耐え切れず破裂した際の限界の水圧を、内面螺旋溝付管の「耐圧値」として測定した。耐圧値が15MPa以上の場合を〇、15MPa未満の場合を×として、内面螺旋溝付管の耐圧性能を評価した。
以上の評価結果をまとめて表3に記載する。
"Pressure resistance"
After the aging treatment, the inner spiral grooved tube was subjected to a pressure test.
The internal spiral grooved tube was cut so that the axial length of the internal spiral grooved tube was approximately 150 mm, and sockets were attached to both ends. The socket at one end was connected to a water pressure pump via a pressure gauge. Water was sent into the inner spiral grooved tube from a water pressure pump, and the other socket was sealed with a plug while the inside of the inner spiral grooved tube was filled with water up to the opposite end of the tube.
Thereafter, the water pressure pump was operated to increase the water pressure in the inner spiral grooved pipe at a pressure increase rate of approximately 0.5 MPa/s. At that time, the limit water pressure at which the inner spiral grooved tube could not withstand the water pressure inside the tube and burst was measured as the "pressure resistance value" of the inner spiral grooved tube. The pressure resistance performance of the inner spiral grooved pipe was evaluated by marking the pressure resistance value 15 MPa or more as ○ and the case less than 15 MPa as ×.
The above evaluation results are summarized in Table 3.

Figure 0007404314000003
Figure 0007404314000003

先の表1に示すように、実施例1~16のアルミニウム合金は、Si:0.35質量%以上0.55質量%以下、Cu:0.15質量%以下、Mg:0.45質量%以上0.65質量%以下、Mn:0.05質量%以下、MgSi:0.71質量%以上1.03質量%以下、過剰Si:0.08質量%以上0.29質量%以下を含有し、残部不可避不純物とアルミニウムからなるアルミニウム合金である。
実施例1~16に記載のアルミニウム合金を用い、表2に示す形状の内面直線溝付押出素管を押出成形し、特許第6439222号に記載の捻り引抜装置を用いる方法で2回の捻り引抜加工を付与することで表2に示す形状の内面螺旋溝付管を製造することができた。
実施例1~16に記載のアルミニウム合金を用いて内面直線溝付押出素管を作製し、この内面直線溝付押出素管を用いて内面螺旋溝付管を製造すると、押出性が良好であり、捻り加工性に優れ、底肉厚tを0.3mm以下とした場合の耐圧試験の評価が良好で表面状態も良好な内面螺旋溝付管を製造することができた。
As shown in Table 1 above, the aluminum alloys of Examples 1 to 16 contained Si: 0.35% by mass or more and 0.55% by mass or less, Cu: 0.15% by mass or less, and Mg: 0.45% by mass. 0.65 mass% or less, Mn: 0.05 mass% or less, Mg 2 Si: 0.71 mass% or more and 1.03 mass% or less, excess Si: 0.08 mass% or more and 0.29 mass% or less. It is an aluminum alloy consisting of aluminum and unavoidable impurities.
Using the aluminum alloys described in Examples 1 to 16, extruded blank pipes with internal straight grooves having the shapes shown in Table 2 were extruded, and twisted and drawn twice by a method using a twisting and drawing device described in Patent No. 6439222. By applying the processing, it was possible to manufacture an internally spiral grooved tube having the shape shown in Table 2.
When an extruded raw tube with an inner straight groove is produced using the aluminum alloy described in Examples 1 to 16, and an inner spiral grooved tube is manufactured using this extruded raw tube with an inner straight groove, the extrudability is good. It was possible to manufacture an inner spiral grooved tube with excellent twisting workability, good evaluation in pressure resistance tests when the bottom wall thickness t was 0.3 mm or less, and good surface condition.

表1に示すように比較例1は、SiとMgとMgSiの含有量を上述の範囲から外した試料(外径7mm)、比較例2、3はSiとMgSiの含有量を上述の範囲より低くした試料(外径7mm)であるが、いずれも表3に示すように耐圧性能が低下した。
比較例4、5は、SiとMgSiの含有量を上述の範囲より多くした試料(外径7mm)であるが、いずれも表面状態が悪化した。
比較例6、7は、CuとMgとMnとMgSiの含有量を上述の範囲より多くした試料(外径7mm)であるが、押出加工時に内部フィンの幅が細くなる不具合を生じ、捻り引抜加工する場合に破断した。
As shown in Table 1, Comparative Example 1 is a sample (outer diameter 7 mm) in which the content of Si, Mg, and Mg 2 Si is outside the above range, and Comparative Examples 2 and 3 are samples in which the content of Si, Mg, and Mg 2 Si is outside the above range. The pressure resistance of the samples (outer diameter 7 mm) was lower than the above range, but as shown in Table 3, the pressure resistance performance decreased.
Comparative Examples 4 and 5 were samples (outer diameter 7 mm) in which the content of Si and Mg 2 Si was greater than the above-mentioned range, but the surface condition of both samples deteriorated.
Comparative Examples 6 and 7 are samples (outer diameter 7 mm) in which the content of Cu, Mg, Mn, and Mg 2 Si is higher than the above range, but there is a problem that the width of the internal fin becomes thinner during extrusion processing. It broke during twist drawing.

比較例8は、SiとMgとMgSiの含有量を上述の範囲から外した試料(外径5mm)、比較例9はSiと過剰Siの含有量を上述の範囲より低くした試料(外径5mm)であるが、いずれも耐圧性能が低下した。
比較例10は、Siと過剰Siの含有量を上述の範囲より多くした試料(外径5mm)であるが、表面状態が悪化した。
比較例11は、SiとCuとMgとMnとMgSiの含有量を上述の範囲より多くした試料(外径5mm)であるが、押出加工時に内部フィンの幅が細くなる不具合を生じ、捻り引抜加工する場合に破断した。
Comparative Example 8 is a sample (outer diameter 5 mm) in which the content of Si, Mg, and Mg 2 Si is outside the above range, and Comparative Example 9 is a sample (outside diameter) in which the content of Si and excess Si is lower than the above range. (diameter: 5 mm), but the pressure resistance performance decreased in both cases.
Comparative Example 10 was a sample (outer diameter 5 mm) in which the content of Si and excess Si was greater than the above range, but the surface condition deteriorated.
Comparative Example 11 is a sample (outer diameter 5 mm) in which the content of Si, Cu, Mg, Mn, and Mg 2 Si is greater than the above range, but there is a problem that the width of the internal fin becomes narrow during extrusion processing. It broke during twist drawing.

比較例12は、SiとMgとMgSiと過剰Siの含有量を上述の範囲より少なくした試料(外径5mm)であるが、耐圧性能が低下した。
比較例13は、SiとMgとMgSiの含有量を上述の範囲より少なくした試料(外径4mm)、比較例14はSiと過剰Siの含有量を上述の範囲より少なくした試料(外径4mm)であるが、いずれも耐圧性能が低下した。
比較例15は、SiとCuとMgとMnとMgSiの含有量を上述の範囲より多くした試料(外径4mm)であるが、押出加工時に内部フィンの幅が細くなる不具合を生じ、捻り引抜加工する場合に破断した。
Comparative Example 12 was a sample (outer diameter 5 mm) in which the contents of Si, Mg, Mg 2 Si, and excess Si were lower than the above ranges, but the pressure resistance performance was lowered.
Comparative Example 13 is a sample (outer diameter 4 mm) in which the content of Si, Mg, and Mg 2 Si is lower than the above range, and Comparative Example 14 is a sample (outside diameter) in which the content of Si and excess Si is lower than the above range. (diameter: 4 mm), but the pressure resistance performance decreased in both cases.
Comparative Example 15 is a sample (outer diameter 4 mm) in which the content of Si, Cu, Mg, Mn, and Mg 2 Si is higher than the above range, but there is a problem that the width of the internal fin becomes narrow during extrusion processing. It broke during twist drawing.

実施例1、3は上述のSi含有量の範囲内の試料であるが、Si含有量を低く抑えた試料であり、底肉厚0.3mmの場合は耐圧性能を確保できるが、底肉厚を0.25mmとすると表3に示すように耐圧性が低下した。このことから、Si含有量について0.40質量%以上0.55質量%以下であることがより好ましいと分かる。 Examples 1 and 3 are samples within the above-mentioned Si content range, but they are samples with a low Si content, and when the bottom wall thickness is 0.3 mm, pressure resistance can be ensured, but the bottom wall thickness is When it was set to 0.25 mm, the pressure resistance decreased as shown in Table 3. From this, it can be seen that the Si content is more preferably 0.40% by mass or more and 0.55% by mass or less.

実施例9は上述のCu含有量範囲、Mg含有量範囲、MgSi含有量範囲であるが、押出性が若干低下した。また、実施例2、8では押出性は低下していない。
また、実施例11、12、15、16でも同様な傾向が見られる。更に、実施例2、8、9、11、12、15、16の比較から、Cu含有量0.04質量%以下、Mg含有量0.45質量%以上0.60質量%以下、MgSi含有量0.71質量%以上0.95質量%以下のアルミニウム合金であることがより好ましいと考えられる。
Example 9 had the above-mentioned Cu content range, Mg content range, and Mg 2 Si content range, but the extrudability was slightly decreased. Furthermore, in Examples 2 and 8, the extrudability did not decrease.
Further, a similar tendency is observed in Examples 11, 12, 15, and 16. Furthermore, from the comparison of Examples 2, 8, 9, 11, 12, 15, and 16, it was found that the Cu content was 0.04% by mass or less, the Mg content was 0.45% by mass or more and 0.60% by mass or less, Mg 2 Si It is considered that an aluminum alloy having a content of 0.71% by mass or more and 0.95% by mass or less is more preferable.

1…内面直線溝付押出素管、2…直線溝、3…内部フィン、5…管本体、5a…外周面、5b…内周面、10…内面螺旋溝付管、10A…主管、10B…エルボ管、11…管本体、12…内部フィン、13…螺旋溝、15…熱交換器、16…外部フィン。 DESCRIPTION OF SYMBOLS 1... Extruded raw pipe with inner straight groove, 2... Straight groove, 3... Internal fin, 5... Pipe body, 5a... Outer circumferential surface, 5b... Inner circumferential surface, 10... Inner spiral grooved tube, 10A... Main pipe, 10B... Elbow pipe, 11... Pipe body, 12... Internal fin, 13... Spiral groove, 15... Heat exchanger, 16... External fin.

Claims (8)

内面螺旋溝付管製造用の内面直線溝付押出素管であって、
前記内面直線溝付押出素管の外径をD(mm)、底肉厚をt(mm)、前記内面直線溝付押出素管の内面に形成されている内部フィンの幅をW(mm)、高さをh(mm)とすると、
h/Wが0.7以上、D/tが26以上であり、
Si:0.35質量%以上0.55質量%以下、
Cu:0.15質量%以下、
Mg:0.45質量%以上0.65質量%以下、
Mn:0.05質量%以下、
MgSi:0.71質量%以上1.03質量%以下、
過剰Si:0.08質量%以上0.29質量%以下
を含有し、残部不可避不純物とアルミニウムからなるアルミニウム合金から構成されたことを特徴とする内面直線溝付押出素管。
An extruded raw tube with an inner straight groove for manufacturing a tube with an inner spiral groove,
The outer diameter of the extruded raw pipe with inner straight grooves is D (mm), the bottom wall thickness is t (mm), and the width of the internal fin formed on the inner surface of the extruded raw pipe with inner straight grooves is W (mm). , the height is h (mm),
h/W is 0.7 or more, D/t is 26 or more,
Si: 0.35% by mass or more and 0.55% by mass or less,
Cu: 0.15% by mass or less,
Mg: 0.45% by mass or more and 0.65% by mass or less,
Mn: 0.05% by mass or less,
Mg 2 Si: 0.71% by mass or more and 1.03% by mass or less,
1. An extruded raw tube with straight inner grooves, characterized in that it is made of an aluminum alloy containing excess Si: 0.08% by mass or more and 0.29% by mass or less, the remainder consisting of unavoidable impurities and aluminum.
前記アルミニウム合金が、
Si:0.40質量%以上0.55質量%以下、
Cu:0.04質量%以下、
Mg:0.45質量%以上0.60質量%以下、
Mn:0.05質量%以下、
MgSi:0.71質量%以上0.95質量%以下、
過剰Si:0.08質量%以上0.25質量%以下
を含有し、残部不可避不純物とアルミニウムからなることを特徴とする請求項1に記載の内面直線溝付押出素管。
The aluminum alloy is
Si: 0.40% by mass or more and 0.55% by mass or less,
Cu: 0.04% by mass or less,
Mg: 0.45% by mass or more and 0.60% by mass or less,
Mn: 0.05% by mass or less,
Mg 2 Si: 0.71% by mass or more and 0.95% by mass or less,
2. The extruded raw tube with internal straight grooves according to claim 1 , characterized in that it contains excess Si: 0.08% by mass or more and 0.25% by mass or less, and the remainder consists of inevitable impurities and aluminum.
Si:0.35 質量%以上0.55質量%以下、
Cu:0.15 質量%以下、
Mg:0.45 質量%以上0.65質量%以下、
Mn:0.05 質量%以下、
MgSi:0.71質量%以上1.03質量%以下、
過剰Si:0.08質量%以上0.29質量%以下
を含有し、残部不可避不純物とアルミニウムからなる組成を有するアルミニウム合金からなる内面直線溝付押出素管であって、
外径をD(mm)、底肉厚をt(mm)、内面に形成されている内部フィンの幅をW(mm)、高さをh(mm)とすると、h/Wが0.7以上、D/tが26以上である内面直線溝付押出素管に対し、捻り引抜加工を施す内面螺旋溝付管の製造方法であり、
前記捻り引抜加工後に時効処理を施すことを特徴とする内面螺旋溝付管の製造方法。
Si: 0.35 mass% or more and 0.55 mass% or less,
Cu: 0.15% by mass or less,
Mg: 0.45 mass% or more and 0.65 mass% or less,
Mn: 0.05% by mass or less,
Mg 2 Si: 0.71% by mass or more and 1.03% by mass or less,
An extruded base pipe with internal straight grooves made of an aluminum alloy having a composition containing excess Si: 0.08% by mass or more and 0.29% by mass or less, and the remainder consisting of unavoidable impurities and aluminum,
If the outer diameter is D (mm), the bottom thickness is t (mm), the width of the internal fin formed on the inner surface is W (mm), and the height is h (mm), then h/W is 0.7 The above is a method for manufacturing an internal spiral grooved pipe in which twist drawing is performed on an extruded internal linear grooved pipe having a D/t of 26 or more,
A method for manufacturing an internally spiral grooved tube, characterized in that an aging treatment is performed after the twist drawing process.
前記アルミニウム合金として、
Si:0.40質量%以上0.55質量%以下、
Cu:0.04質量%以下、
Mg:0.45質量%以上0.60質量%以下、
Mn:0.05質量%以下、
MgSi:0.71質量%以上0.95質量%以下、
過剰Si:0.08質量%以上0.25質量%以下
を含有し、残部不可避不純物とアルミニウムからなるアルミニウム合金を用いることを特徴とする請求項に記載の内面螺旋溝付管の製造方法。
As the aluminum alloy,
Si: 0.40% by mass or more and 0.55% by mass or less,
Cu: 0.04% by mass or less,
Mg: 0.45% by mass or more and 0.60% by mass or less,
Mn: 0.05% by mass or less,
Mg 2 Si: 0.71% by mass or more and 0.95% by mass or less,
4. The method for manufacturing an internally spiral grooved tube according to claim 3 , characterized in that an aluminum alloy containing excess Si: 0.08% by mass or more and 0.25% by mass or less, the remainder consisting of unavoidable impurities and aluminum is used.
S i:0.35質量%以上0.55質量%以下、
C u:0.15質量%以下、
M g:0.45質量%以上0.65質量%以下、
M n:0.05質量%以下、
M gSi:0.71質量% 以上1.03質量%以下、
過剰Si:0.08質量% 以上0.29質量%以下
を含有し、残部不可避不純物とアルミニウムからなる組成を有するアルミニウム合金からなる内面直線溝付押出素管であって、
外径をD(mm)、底肉厚をt(mm)、内面に形成されている内部フィンの幅をW (mm)、高さをh(mm)とすると、h/Wが0.7以上、D/tが26以上である内面直線溝付押出素管に対し、捻り引抜加工を施して内面螺旋溝付管を製造し、この内面螺旋溝付管を用いて熱交換器を製造するに際し、
前記捻り引抜加工後であって、前記熱交換器を完成させる以前に前記内面螺旋溝付管に対し時効処理を施すことを特徴とする熱交換器の製造方法。
Si: 0.35% by mass or more and 0.55% by mass or less,
Cu: 0.15% by mass or less,
M g: 0.45% by mass or more and 0.65% by mass or less,
Mn: 0.05% by mass or less,
M g 2 Si: 0.71% by mass or more and 1.03% by mass or less,
An extruded base pipe with internal straight grooves made of an aluminum alloy having a composition of 0.08% by mass or more and 0.29% by mass or less of excess Si, and the remainder consisting of unavoidable impurities and aluminum,
If the outer diameter is D (mm), the bottom thickness is t (mm), the width of the internal fin formed on the inner surface is W (mm), and the height is h (mm), then h/W is 0.7 As described above, an internal spiral grooved tube is manufactured by performing twist drawing on an extruded internal linear grooved tube having a D/t of 26 or more, and a heat exchanger is manufactured using this internal spiral grooved tube. On this occasion,
A method for manufacturing a heat exchanger, comprising subjecting the inner spiral grooved tube to an aging treatment after the twist drawing process and before completing the heat exchanger.
前記アルミニウム合金として、
Si:0.40 質量%以上0.55質量%以下、
Cu:0.04 質量%以下、
Mg:0.45 質量%以上0.60質量%以下、
Mn:0.05 質量%以下、
MgSi:0.71質量%以上0.95質量%以下、
過剰Si:0.0 8 質量%以上0.25質量%以下
を含有し、残部不可避不純物とアルミニウムからなるアルミニウム合金を用いることを特徴とする請求項に記載の熱交換器の製造方法。
As the aluminum alloy,
Si: 0.40 mass% or more and 0.55 mass% or less,
Cu: 0.04% by mass or less,
Mg: 0.45 mass% or more and 0.60 mass% or less,
Mn: 0.05% by mass or less,
Mg 2 Si: 0.71% by mass or more and 0.95% by mass or less,
6. The method for manufacturing a heat exchanger according to claim 5 , wherein an aluminum alloy containing excess Si: 0.08% by mass or more and 0.25% by mass or less, the remainder consisting of unavoidable impurities and aluminum is used.
前記内面螺旋溝付管と外部フィンを組み立てて熱交換器組立体を形成後、前記内面螺旋溝付管と前記外部フィンを接合して熱交換器を製造するに際し、
前記捻り引抜加工後であって前記外部フィンとの組み合わせ以前に前記内面螺旋溝付管に時効処理を施すか、前記内面螺旋溝付管と前記外部フィンを組み立てて接合後、時効処理を施すことを特徴とする請求項または請求項に記載の熱交換器の製造方法。
After assembling the inner spiral grooved tube and the outer fin to form a heat exchanger assembly, when manufacturing the heat exchanger by joining the inner spiral grooved tube and the outer fin,
The internal spiral grooved tube may be subjected to an aging treatment after the twist drawing process and before being combined with the external fin, or the internal spiral grooved tube and the external fin may be assembled and joined and then subjected to an aging treatment. The method for manufacturing a heat exchanger according to claim 5 or 6 , characterized in that:
前記内面直線溝付押出素管の外面に亜鉛溶射層を形成することを特徴とする請求項~請求項のいずれか一項に記載の熱交換器の製造方法。 The method for manufacturing a heat exchanger according to any one of claims 5 to 7 , characterized in that a zinc sprayed layer is formed on the outer surface of the extruded raw pipe with internal straight grooves.
JP2021118096A 2021-07-16 2021-07-16 Extruded tube with straight inner groove, inner spiral grooved tube and method for manufacturing heat exchanger Active JP7404314B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021118096A JP7404314B2 (en) 2021-07-16 2021-07-16 Extruded tube with straight inner groove, inner spiral grooved tube and method for manufacturing heat exchanger
PCT/JP2022/027936 WO2023286870A1 (en) 2021-07-16 2022-07-15 Aluminum alloy for extruded element pipe provided with inner surface linear groove, extruded element pipe provided with inner surface linear groove, pipe provided with inner surface helical groove, and production method for heat exchanger
CN202280039344.6A CN117396621A (en) 2021-07-16 2022-07-15 Aluminum alloy for extruded raw pipe having straight grooves on inner surface and extruded raw pipe having straight grooves on inner surface, and method for manufacturing pipe and heat exchanger having spiral grooves on inner surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021118096A JP7404314B2 (en) 2021-07-16 2021-07-16 Extruded tube with straight inner groove, inner spiral grooved tube and method for manufacturing heat exchanger

Publications (2)

Publication Number Publication Date
JP2023013719A JP2023013719A (en) 2023-01-26
JP7404314B2 true JP7404314B2 (en) 2023-12-25

Family

ID=84920370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021118096A Active JP7404314B2 (en) 2021-07-16 2021-07-16 Extruded tube with straight inner groove, inner spiral grooved tube and method for manufacturing heat exchanger

Country Status (3)

Country Link
JP (1) JP7404314B2 (en)
CN (1) CN117396621A (en)
WO (1) WO2023286870A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000047413A (en) 1998-07-31 2000-02-18 Kyocera Corp Electrophotographic photoreceptor substrate and electrophotographic photoreceptor, and image forming device using this electrophotographic receptor
JP2002155333A (en) 2000-11-15 2002-05-31 Kobe Steel Ltd Al-Mg-Si BASED ALUMINUM ALLOY HOLLOW EXTRUSION MATERIAL HAVING EXCELLENT BULGING PROPERTY
JP2003294387A (en) 2002-04-02 2003-10-15 Kobe Steel Ltd Internally grooved pipe and its manufacturing method
JP2005139490A (en) 2003-11-05 2005-06-02 Aisin Keikinzoku Co Ltd Hollow impact absorbing member with excellent collapsibility into form of bellows in axial direction of extrusion
JP2002536551A5 (en) 1999-02-12 2006-02-09
JP2007030647A (en) 2005-07-26 2007-02-08 Fuji Heavy Ind Ltd Axial compression energy absorbing member for automobile frame made of aluminum alloy
JP2008267788A (en) 2007-03-28 2008-11-06 Furukawa Electric Co Ltd:The Heat transfer tube
JP2014032751A (en) 2012-08-01 2014-02-20 Uacj Corp Copper aluminum complex wire for motor winding
WO2017175762A1 (en) 2016-04-06 2017-10-12 株式会社Uacj Aluminum alloy material and production method therefor, and aluminum alloy cladding material using aluminum alloy material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0621310B2 (en) * 1990-06-26 1994-03-23 住友軽金属工業株式会社 Highly conductive Al-Mg-Si alloy tube manufacturing method
JPH05105980A (en) * 1991-10-14 1993-04-27 Furukawa Alum Co Ltd Aluminum alloy for heat exchanger tube material
JPH09101093A (en) * 1995-10-02 1997-04-15 Mitsubishi Shindoh Co Ltd Heat transfer pipe with inner surface groove
ES2196793T3 (en) 1999-02-12 2003-12-16 Norsk Hydro As ALUMINUM ALLOY CONTAINING MAGNESIUM AND SILICON.

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000047413A (en) 1998-07-31 2000-02-18 Kyocera Corp Electrophotographic photoreceptor substrate and electrophotographic photoreceptor, and image forming device using this electrophotographic receptor
JP2002536551A5 (en) 1999-02-12 2006-02-09
JP2002155333A (en) 2000-11-15 2002-05-31 Kobe Steel Ltd Al-Mg-Si BASED ALUMINUM ALLOY HOLLOW EXTRUSION MATERIAL HAVING EXCELLENT BULGING PROPERTY
JP2003294387A (en) 2002-04-02 2003-10-15 Kobe Steel Ltd Internally grooved pipe and its manufacturing method
JP2005139490A (en) 2003-11-05 2005-06-02 Aisin Keikinzoku Co Ltd Hollow impact absorbing member with excellent collapsibility into form of bellows in axial direction of extrusion
JP2007030647A (en) 2005-07-26 2007-02-08 Fuji Heavy Ind Ltd Axial compression energy absorbing member for automobile frame made of aluminum alloy
JP2008267788A (en) 2007-03-28 2008-11-06 Furukawa Electric Co Ltd:The Heat transfer tube
JP2014032751A (en) 2012-08-01 2014-02-20 Uacj Corp Copper aluminum complex wire for motor winding
WO2017175762A1 (en) 2016-04-06 2017-10-12 株式会社Uacj Aluminum alloy material and production method therefor, and aluminum alloy cladding material using aluminum alloy material

Also Published As

Publication number Publication date
WO2023286870A1 (en) 2023-01-19
CN117396621A (en) 2024-01-12
JP2023013719A (en) 2023-01-26

Similar Documents

Publication Publication Date Title
EP2283166B1 (en) Aluminum alloy heat exchanger extruded tubes
JP5534777B2 (en) Copper alloy seamless pipe
JP7404314B2 (en) Extruded tube with straight inner groove, inner spiral grooved tube and method for manufacturing heat exchanger
JP6388398B2 (en) Internal grooved tube for heat exchanger and its manufacturing method
JP2002348624A (en) Aluminum alloy pipe material for piping of automobile with excellent corrosion resistance and workability
EP3521463B1 (en) Highly corrosion-resistant copper pipe, method of manufacturing therefor and use thereof
JP2024086203A (en) Aluminum alloy for extruded raw pipe with inner straight groove, extruded raw pipe with inner straight groove, tube with inner spiral groove, and manufacturing method for heat exchanger
JP6244213B2 (en) Copper tube for heat exchanger
JP5404139B2 (en) Copper alloy tube for heat exchanger
US20180291491A1 (en) Highly corrosion-resistant copper tube
CN103415643B (en) Seamless tube, coil, level wound coil, method for manufacturing level wound coil, cross-fin-tube-type heat exchanger, and method for manufacturing cross-fin-tube-type heat exchanger
JP6114939B2 (en) Seamless pipe, level wound coil, cross fin tube type heat exchanger and method for manufacturing the same
JP5883383B2 (en) Internal grooved tube with excellent extrudability
WO2008044642A1 (en) Aluminum alloy forged product and method of producing the same
JP4318929B2 (en) Aluminum alloy extruded tube and heat exchanger for heat exchanger
EP1935998A1 (en) Aluminum alloy tube and aluminum alloy structural member for automobile using the same
JPH1046312A (en) Drawn tube excellent in corrosion resistance, and its manufacture
JP6101969B2 (en) Level-wound coil, method for manufacturing level-wound coil, cross-fin tube type heat exchanger, and method for manufacturing cross-fin tube type heat exchanger
JP5336802B2 (en) Seamless aluminum alloy tube manufacturing method
JP5208562B2 (en) Seamless pipe
JP6402043B2 (en) High strength copper alloy tube
WO2013157461A1 (en) Level wound coil, method for manufacturing level wound coil, cross fin tube type heat exchanger, and method for manufacturing cross fin tube type heat exchanger
JP2013224768A (en) Two-layer clad aluminum alloy tube with inner surface groove, heat exchanger, and method of manufacturing two-layer clad aluminum alloy tube with inner surface groove
JPH0751733A (en) Manufacture of mo or mo alloy seamless capillary tube
JPH05320799A (en) Aluminum alloy tube for bulge

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20220630

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231213

R150 Certificate of patent or registration of utility model

Ref document number: 7404314

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150