JP2007030647A - Axial compression energy absorbing member for automobile frame made of aluminum alloy - Google Patents

Axial compression energy absorbing member for automobile frame made of aluminum alloy Download PDF

Info

Publication number
JP2007030647A
JP2007030647A JP2005215268A JP2005215268A JP2007030647A JP 2007030647 A JP2007030647 A JP 2007030647A JP 2005215268 A JP2005215268 A JP 2005215268A JP 2005215268 A JP2005215268 A JP 2005215268A JP 2007030647 A JP2007030647 A JP 2007030647A
Authority
JP
Japan
Prior art keywords
hollow
cross
aluminum alloy
absorbing member
energy absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005215268A
Other languages
Japanese (ja)
Other versions
JP2007030647A5 (en
Inventor
Yoshiyuki Ikeda
義行 池田
Koji Okada
功史 岡田
Hideo Mizukoshi
秀雄 水越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd, Fuji Heavy Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP2005215268A priority Critical patent/JP2007030647A/en
Publication of JP2007030647A publication Critical patent/JP2007030647A/en
Publication of JP2007030647A5 publication Critical patent/JP2007030647A5/ja
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an axial compression energy absorbing member for an automobile member made of light aluminum alloy free to certainly absorb energy while stably buckling and deforming. <P>SOLUTION: This axial compression energy absorbing member is made of a refined heat treated type aluminum alloy hollow shape, a shape of an outer shell part of the hollow shape is cross-section square or rectangular, a total cross-section area including the hollow part is 3000 to 8000 mm<SP>2</SP>, more than two of the hollow parts respectively having the cross-section areas of 1000 to 4000 mm<SP>2</SP>and divided by a rib are provided on the cross-section of the hollow shape and a relation of 3.2 mm≥t≥1.5 mm, 3.5≥R/t≥1.5 is characteristically satisfied when it is defined that average thickness of each side on the hollow shape is t(mm) and a radius of a corner part of the connecting part of an outline part of the hollow shape and the rib is R(mm). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、アルミニウム合金製自動車フレーム用軸圧縮エネルギー吸収部材、詳しくは、自動車が衝突した場合の衝突エネルギーを吸収して搭乗者の安全を確保するために、車体の上部構造などに取付けられるアルミニウム合金中空形材製の自動車フレーム用軸圧縮エネルギー吸収部材に関する。   The present invention relates to an axial compression energy absorbing member for an automobile frame made of an aluminum alloy, and more particularly, aluminum attached to a superstructure of a vehicle body in order to absorb the collision energy when the automobile collides to ensure the safety of the passenger. The present invention relates to an axial compression energy absorbing member for an automobile frame made of a hollow alloy material.

従来、衝突時のエネルギーを吸収して搭乗者の保護を図るためのエネルギー吸収部材は、鋼の板材をプレス成形し、スポット溶接などにより箱形状に形成されている。この部材は、衝撃により軸方向の圧縮荷重を受けた場合、図10の圧縮荷重−部材変位線図に示すように、最大圧縮荷重に達すると急速に荷重が減少し、部材の端部から蛇腹状に変形し、塑性座屈が進行して衝撃エネルギーを吸収する。この場合、圧縮荷重−部材変位線図における平均圧縮荷重(以下、単に平均荷重という)が高いほど、より多くのエネルギーを吸収することが可能である。   Conventionally, an energy absorbing member for protecting a passenger by absorbing energy at the time of a collision is formed into a box shape by press-molding a steel plate material and spot welding or the like. When this member receives an axial compressive load due to an impact, as shown in the compressive load-member displacement diagram of FIG. 10, when the maximum compressive load is reached, the load decreases rapidly, and the bellows starts from the end of the member. The plastic buckling proceeds and absorbs impact energy. In this case, more energy can be absorbed as the average compressive load (hereinafter simply referred to as the average load) in the compressive load-member displacement diagram is higher.

近年、環境問題から自動車車体重量の軽減が提唱されており、車体構成部材である衝撃エネルギー吸収部材についても、従来の鋼板製の箱形部材に代わり、さらに軽量で且つエネルギー吸収の高い部材が要求され、この要求を満たすためにアルミニウム合金の使用が試みられている。断面形状設計の自由度が高いアルミニウム合金中空形材をエネルギー吸収部材として使用する場合、軽量で且つ平均荷重が高いほど単位質量当たりのエネルギー吸収量が大きくなる。   In recent years, reduction of automobile body weight has been proposed due to environmental problems, and the impact energy absorbing member, which is a body component, also requires a lighter and higher energy absorbing member in place of the conventional steel plate box member. Attempts have been made to use aluminum alloys to satisfy this requirement. When an aluminum alloy hollow shape member having a high degree of freedom in cross-sectional shape design is used as the energy absorbing member, the amount of energy absorbed per unit mass increases as the weight is lighter and the average load is higher.

一般的に、平均荷重を大きくして優れたエネルギー吸収効率を得るためには、平均荷重と中空形材の断面積の比、(平均荷重/中空形材断面積)が高い方が望ましく、中空形材の断面に2つ以上の中空部を設ける手法があり、例えば、長方形の外郭部に対して、中空部をリブで区画した日型断面形状の中空形材においては、図11に示すように、リブを境界として外郭部が交互に蛇腹変形することにより、良好なエネルギー吸収特性を得ている(非特許文献1参照)。   In general, in order to obtain an excellent energy absorption efficiency by increasing the average load, it is desirable that the ratio of the average load to the cross-sectional area of the hollow profile, (average load / hollow profile cross-sectional area) is high. There is a method of providing two or more hollow portions in the cross section of the shape member. For example, in a hollow shape member having a daily cross-sectional shape in which a hollow portion is partitioned by a rib with respect to a rectangular outer portion, as shown in FIG. In addition, good energy absorption characteristics are obtained by the outer bellows being alternately bellows deformed with the rib as a boundary (see Non-Patent Document 1).

アルミニウム合金押出角管においては、アルミニウム合金押出角管の角部の内側肉厚を辺部の肉厚より大きくして、(平均荷重/中空形材断面積)の増大、すなわち単位重量当たりの平均荷重を大きくして、エネルギー吸収特性を向上させることも提案されている(特許文献1参照)が、角管形状のものではエネルギー吸収量が小さく、十分なエネルギー吸収特性の向上を得るには限界がある。   In an aluminum alloy extruded square tube, the inner thickness of the corner of the aluminum alloy extruded square tube is made larger than the thickness of the side portion to increase (average load / hollow section cross-sectional area), that is, average per unit weight It has also been proposed to increase the load to improve the energy absorption characteristics (see Patent Document 1), but the rectangular tube shape has a small amount of energy absorption, and there is a limit to obtaining sufficient improvement in the energy absorption characteristics. There is.

また、Al−Mg−Si系合金からなる断面矩形状の中空押出材において、四辺の最大肉厚と最小肉厚の肉厚比を1〜1.4、幅厚比(平均肉厚/各辺の平均幅(=長さ))を0.1以下とすることにより、軸圧壊特性に優れたエネルギー吸収部材(特許文献2参照)も提案されており、軸方向の圧縮荷重を受けたとき、圧壊割れを生じることなく蛇腹変形可能な特定組成と特定組織を有するAl−Mg−Si系合金の押出材(特許文献3参照)も提案されているが、より軽量で且つより高いエネルギー吸収をそなえたメンバーに対する要請をこたえるためには、さらに改善の必要がある。
住友軽金属技報、第37巻、第3号、第4号(1996年)、190〜200頁 特開平9−254808号公報 特開平11−193433号公報 特開2002−285272号公報
Further, in a hollow extruded material having a rectangular cross section made of an Al-Mg-Si alloy, the thickness ratio of the maximum thickness to the minimum thickness of the four sides is 1 to 1.4, and the width-thickness ratio (average thickness / each side An energy absorbing member excellent in axial crushing characteristics (see Patent Document 2) has also been proposed by setting an average width (= length) of 0.1 or less when an axial compressive load is applied. An extruded material of Al-Mg-Si alloy (see Patent Document 3) having a specific composition and a specific structure capable of deforming bellows without causing crushing cracks has also been proposed, but it is lighter and has higher energy absorption. There is a need for further improvement in order to meet the demands of new members.
Sumitomo Light Metal Technical Report, Vol. 37, No. 3, No. 4 (1996), 190-200 pages JP-A-9-254808 Japanese Patent Laid-Open No. 11-193433 JP 2002-285272 A

発明者らは、アルミニウム合金押出形材からなるエネルギー吸収部材における上記従来の問題点を解決するために、先に、従来提案されているエネルギー吸収部材をベースとして、肉厚、各辺の長さや断面積等と吸収エネルギー、変形形態の関係について検討を加えた結果として、調質された熱処理型アルミニウム合金中空形材からなり、該中空形材は1つの中空部を有する断面正方形または長方形で、2mmを越える肉厚をそなえ、中空部を除く断面積は350mm2 以上のものであり、中空形材の断面における各辺の平均長さをa、コーナー部の半径をR、各辺の平均肉厚をtとしたとき、0<R/a≦0.2、t/a≦0.2、R/a<5×(t/a)−0.37の関係を満足することを特徴とするアルミニウム合金製自動車フレーム用エネルギー吸収部材を提案した(特願2003−357416号)。 In order to solve the above-mentioned conventional problems in the energy absorbing member made of an aluminum alloy extruded profile, the inventors have previously described the thickness, length of each side, As a result of examining the relationship between the cross-sectional area and the like, the absorbed energy, and the deformation form, it is composed of a tempered heat-treatable aluminum alloy hollow shape, and the hollow shape is a square or rectangle having a single hollow part, It has a wall thickness exceeding 2 mm, the cross-sectional area excluding the hollow part is 350 mm 2 or more, the average length of each side in the cross section of the hollow profile is a, the radius of the corner part is R, the average thickness of each side When the thickness is t, the following relationships are satisfied: 0 <R / a ≦ 0.2, t / a ≦ 0.2, R / a <5 × (t / a) −0.37 For aluminum alloy car frames An energy absorbing member was proposed (Japanese Patent Application No. 2003-357416).

本発明は、上記提案のエネルギー吸収部材をさらに改良したものであり、その目的は、軸方向の圧縮荷重を受けたとき、安定して座屈変形し、さらにエネルギー吸収量を大きくすることを可能とするアルミニウム合金製自動車フレーム用軸圧縮エネルギー吸収部材を提供することにある。 The present invention is a further improvement of the proposed energy absorbing member, and its purpose is to stably buckle and increase the amount of energy absorption when subjected to an axial compressive load. It is to provide an axial compression energy absorbing member for an automobile frame made of aluminum alloy.

上記の目的を達成するための本発明の請求項1によるアルミニウム合金製自動車フレーム用軸圧縮エネルギー吸収部材は、調質された熱処理型アルミニウム合金中空形材からなり、該中空形材の外殻部の形状は断面正方形または長方形で、中空部を含む全断面積は3000〜8000mm2のものであり、中空形材の断面には、それぞれ1000〜4000mm2の断面積を有しリブで区画された中空部が2つ以上設けられており、中空形材における各辺の平均肉厚をt(mm)、中空形材の外郭部とリブとの結合部のコーナー部の半径をR(mm)としたとき、3.2mm≧t≧1.5mm、3.5≧R/t≧1.5の関係を満足することを特徴とする。 In order to achieve the above object, an axial compression energy absorbing member for an aluminum alloy automobile frame according to claim 1 of the present invention comprises a tempered heat-treated aluminum alloy hollow shape member, and an outer shell portion of the hollow shape member. the shape in cross-section square or rectangular, the entire cross-sectional area including the hollow portion is of 3000~8000Mm 2, the cross section of the hollow profile is partitioned by the respective ribs have a cross-sectional area of 1000~4000Mm 2 Two or more hollow portions are provided, the average thickness of each side of the hollow shape member is t (mm), and the radius of the corner portion of the joint portion between the outer portion and the rib of the hollow shape member is R (mm). In this case, the relationship of 3.2 mm ≧ t ≧ 1.5 mm and 3.5 ≧ R / t ≧ 1.5 is satisfied.

請求項2によるアルミニウム合金製自動車フレーム用軸圧縮エネルギー吸収部材は、請求項1において、前記中空形材に対して軸方向の圧縮荷重を負荷したときの単位断面積当たりの平均荷重が110N/mm2 以上であることを特徴とする。 An axial compression energy absorbing member for an automobile frame made of aluminum alloy according to claim 2 has an average load per unit cross-sectional area of 110 N / mm when an axial compression load is applied to the hollow shape member according to claim 1. It is characterized by being 2 or more.

請求項3によるアルミニウム合金製自動車フレーム用軸圧縮エネルギー吸収部材は、請求項1または2において、前記リブで区画された中空部が断面正方形または長方形であることを特徴とする。   The axial compression energy absorbing member for an automobile frame made of aluminum alloy according to claim 3 is characterized in that, in claim 1 or 2, the hollow section defined by the rib is square or rectangular in cross section.

本発明によれば、軸方向の圧縮荷重が負荷された場合、安定して座屈変形しながら効率よくエネルギーを吸収することが可能な軽量のアルミニウム合金製自動車フレーム用軸圧縮エネルギー吸収部材が提供される。   ADVANTAGE OF THE INVENTION According to this invention, when the axial compressive load is loaded, the lightweight axial compression energy absorption member for automotive frames made from an aluminum alloy which can absorb energy efficiently, deforming stably is provided. Is done.

本発明によるアルミニウム合金製自動車フレーム用軸圧縮エネルギー吸収部材は、調質された熱処理型アルミニウム合金中空形材からなる。熱処理型アルミニウム合金としては、例えばAl−Zn−Mg系合金、Al−Mg−Si系合金が適用され、これらのアルミニウム合金は押出後の調質としてT5処理あるいはT6処理を施すのが好ましい。   The axial compression energy absorbing member for an automobile frame made of an aluminum alloy according to the present invention is made of a tempered heat-treatable aluminum alloy hollow shape member. As the heat-treatable aluminum alloy, for example, an Al—Zn—Mg alloy or an Al—Mg—Si alloy is applied, and these aluminum alloys are preferably subjected to T5 treatment or T6 treatment as tempering after extrusion.

図11に示すように、中空形材1は、リブ2で区画された2つ以上(図2では2つ)の中空部3、3を有する外殻の断面形状が正方形または長方形のもので、中空形材1の中空部を含む全断面積は3000〜8000mm2、中空部3、3の断面積はそれぞれ1000〜4000mm2であり、中空形材1の各辺の平均肉厚をt(mm)、外殻部4とリブ2との結合部5のコーナー部の半径をR(mm)としたとき、3.2mm≧t≧1.5mm、3.5≧R/t≧1.5の関係を満足するよう設計される。 As shown in FIG. 11, the hollow profile 1 has a square or rectangular cross-sectional shape of the outer shell having two or more (two in FIG. 2) hollow portions 3, 3 partitioned by ribs 2. The total cross-sectional area including the hollow part of the hollow profile 1 is 3000 to 8000 mm 2 , the cross-sectional areas of the hollow parts 3 and 3 are 1000 to 4000 mm 2 , respectively, and the average thickness of each side of the hollow profile 1 is t (mm ), Where R (mm) is the radius of the corner portion of the joint portion 5 between the outer shell portion 4 and the rib 2, 3.2 mm ≧ t ≧ 1.5 mm, 3.5 ≧ R / t ≧ 1.5 Designed to satisfy the relationship.

各辺の平均肉厚tが3.2mmより大きいと、部材全体の重量が必要以上に増加して軽量化の妨げとなり、蛇腹変形時に中空形材に発生する応力が大きくなって割れが生じ易くなる。平均肉厚が1.5mm未満では、軸方向への圧縮変形に対して各辺が弾性座屈して平均荷重が低くなり、その結果、一般的な自動車に必要とされるエネルギー吸収特性を得ることが難しくなる。より好ましい各辺の平均肉厚は3.2mm≧t≧2.4mmであり、さらに効果的にエネルギーを吸収することができる。   If the average thickness t of each side is larger than 3.2 mm, the weight of the entire member will increase more than necessary, which will hinder weight reduction, and the stress generated in the hollow shape material will increase when the bellows is deformed, and cracking will easily occur. Become. When the average thickness is less than 1.5 mm, each side elastically buckles against compressive deformation in the axial direction and the average load is reduced, and as a result, energy absorption characteristics required for general automobiles are obtained. Becomes difficult. A more preferable average thickness of each side is 3.2 mm ≧ t ≧ 2.4 mm, and energy can be absorbed more effectively.

外殻部4とリブ2との結合部5のコーナー部の半径Rと平均肉厚tの比は3.5≧R/t≧1.5の関係を有することが好ましく、結合部5の剛性が大きくなって、蛇腹変形時の平均荷重を高くすることが可能となり、図11に示すように、結合部5が複雑に折り畳まれながら蛇腹変形する。   The ratio of the radius R of the corner portion of the joint portion 5 between the outer shell portion 4 and the rib 2 and the average thickness t preferably has a relationship of 3.5 ≧ R / t ≧ 1.5. Becomes larger, and it becomes possible to increase the average load at the time of bellows deformation, and as shown in FIG.

R/tが3.5より大きいと、結合部5の剛性は高くなり過ぎて、リブ2を境界として外殻部4が交互に蛇腹変形することができず、安定したエネルギー吸収特性を得ることが難しくなり、R/tが1.5未満では、結合部5の剛性を高める効果が不十分となり、平均荷重の上昇量も少なくなる。   When R / t is larger than 3.5, the rigidity of the coupling portion 5 becomes too high, and the outer shell portion 4 cannot be alternately bellows deformed with the rib 2 as a boundary, thereby obtaining stable energy absorption characteristics. When R / t is less than 1.5, the effect of increasing the rigidity of the connecting portion 5 is insufficient, and the amount of increase in the average load is also reduced.

中空部3を含む全断面積が3000mm未満の場合、中空部3の断面積が4000mmを超える場合には、中空形材の実質的な断面積が小さくなって平均荷重が低くなり、その結果、一般的な自動車に必要とされるエネルギー吸収特性を得ることが難しくなる。一方、中空部3を含む全断面積が8000mmを超える場合、中空部3の断面積が1000mmを未満の場合には、部材全体の質量が必要以上に増加し、軽量化の効果が小さくなる。 When the total cross-sectional area including the hollow part 3 is less than 3000 mm 2 , when the cross-sectional area of the hollow part 3 exceeds 4000 mm 2 , the substantial cross-sectional area of the hollow shape member is reduced and the average load is reduced. As a result, it becomes difficult to obtain energy absorption characteristics required for general automobiles. On the other hand, if the total cross-sectional area that includes a hollow portion 3 exceeds 8000mm 2, if the cross-sectional area of the hollow portion 3 is less than the 1000 mm 2 increases more than necessary total mass member, the effect of weight reduction is small Become.

中空形材1の中空部3は断面正方形または長方形に形成するのが好ましく、安定して蛇腹変形し、確実にエネルギーを吸収することができる。また、中空部材を自動車フレーム用エネルギー吸収部材として適用する場合には、軸方向の圧縮荷重を受けたときの単位断面積当たりの平均荷重は110N/mm以上とすることが望ましい。 The hollow part 3 of the hollow shape member 1 is preferably formed in a square or rectangular cross section, and can stably deform bellows and reliably absorb energy. Further, when the hollow member is applied as an energy absorbing member for an automobile frame, the average load per unit cross-sectional area when receiving an axial compressive load is preferably 110 N / mm 2 or more.

以下、本発明の実施例を比較例と対比して説明する。なお、これらの実施例は、本発明の一実施態様を示すものであり、本発明はこれらに限定されるものではない。   Examples of the present invention will be described below in comparison with comparative examples. In addition, these Examples show one embodiment of this invention, and this invention is not limited to these.

表1に示す組成を有するアルミニウム合金のビレットを、図1〜8に示す形状、表2に示す寸法の日型断面形状の中空形材に押出加工し、押出加工後、T6調質して長さ300mmに切断して試験材とした。試験材は、図1のものが発明材1、図2のものが発明材2、図3のものが発明材3、図4のものが発明材4、図5のものが比較材1、図6のものが比較材2、図7のものが比較材3、図8のものが比較材4である。   An aluminum alloy billet having the composition shown in Table 1 is extruded into a hollow shape having a shape shown in FIGS. A test material was cut to a thickness of 300 mm. 1 is the invention material 1, FIG. 2 is the invention material 2, FIG. 3 is the invention material 3, FIG. 4 is the invention material 4, FIG. 5 is the comparison material 1, and FIG. 6 is a comparative material 2, FIG. 7 is a comparative material 3, and FIG. 8 is a comparative material 4.

得られた試験材について、試験速度1mm/秒で静的軸圧縮試験を行った。インストロン型万能試験機の台座に各試験材を設置して、加圧盤により圧縮荷重を負荷し、加圧盤にかかる荷重−変位線図を記録した。なお、使用する試験機は、圧縮荷重を負荷することが可能であれば、どのような試験機を使用しても同様の結果が得られること、また試験機台座と加圧盤は、試験材への接触面が平行であれば、形状にかかわらず同様な結果が得られることが確認されている。   The obtained test material was subjected to a static axial compression test at a test speed of 1 mm / second. Each test material was placed on a base of an Instron universal testing machine, a compression load was applied by the pressure plate, and a load-displacement diagram applied to the pressure plate was recorded. As long as it is possible to apply a compressive load to the tester used, the same result can be obtained regardless of the tester used. If the contact surfaces are parallel, it has been confirmed that similar results can be obtained regardless of the shape.

試験結果を表3および図9に示す。本発明に従う試験材の発明材1〜4はいずれも、表3および図9にみられるように、安定して蛇腹変形し、単位重量当たりの平均荷重も110N/mmを超える値を示しており、優れたエネルギー吸収特性を有することが確認された。なお、外殻部の断面が正方形または長方形またはこれらに近い形状であれば、外殻部のコーナーの半径Rの大きさにかかわらず、本発明の効果が得られること、また、押出加工後にT5調質した場合にも本発明の効果が得られることが確認された。 The test results are shown in Table 3 and FIG. As shown in Table 3 and FIG. 9, the inventive materials 1 to 4 of the test material according to the present invention stably deformed bellows, and the average load per unit weight also shows a value exceeding 110 N / mm 2. It was confirmed that it has excellent energy absorption characteristics. In addition, if the cross section of the outer shell portion is a square, a rectangle, or a shape close to these, the effect of the present invention can be obtained regardless of the radius R of the corner of the outer shell portion, and T5 after the extrusion process. It was confirmed that the effects of the present invention can be obtained even when tempering.

Figure 2007030647
Figure 2007030647

Figure 2007030647
Figure 2007030647

Figure 2007030647
Figure 2007030647

これに対して、試験材の比較材1は、軸圧縮変形中に蛇腹変形形態が乱れて横折れ変形したため、安定したエネルギー吸収特性を得ることができなかった。比較材2〜4は、安定した蛇腹変形が生じたものの、R/tが1.5未満であるため、外殻部4とリブ2との結合部5の剛性が十分でなく、平均荷重が低くなっており、エネルギー吸収特性が劣っている。   On the other hand, the comparative material 1 of the test material could not obtain stable energy absorption characteristics because the bellows deformation form was disturbed and deformed laterally during axial compression deformation. In Comparative materials 2 to 4, although stable bellows deformation occurred, since R / t was less than 1.5, the rigidity of the joint portion 5 between the outer shell portion 4 and the rib 2 was not sufficient, and the average load was It is low and the energy absorption property is inferior.

本発明によるエネルギー吸収部材の実施例を示す断面図である。It is sectional drawing which shows the Example of the energy absorption member by this invention. 本発明によるエネルギー吸収部材の実施例を示す断面図である。It is sectional drawing which shows the Example of the energy absorption member by this invention. 本発明によるエネルギー吸収部材の実施例を示す断面図である。It is sectional drawing which shows the Example of the energy absorption member by this invention. 本発明によるエネルギー吸収部材の実施例を示す断面図である。It is sectional drawing which shows the Example of the energy absorption member by this invention. 比較材を示す断面図である。It is sectional drawing which shows a comparative material. 比較材を示す断面図である。It is sectional drawing which shows a comparative material. 比較材を示す断面図である。It is sectional drawing which shows a comparative material. 比較材を示す断面図である。It is sectional drawing which shows a comparative material. 試験材の単位断面積当たりの平均荷重を示す図である。It is a figure which shows the average load per unit cross-sectional area of a test material. 中空状のエネルギー吸収部材が衝撃により縦方向の圧縮荷重を受けた場合における圧縮荷重−部材変位線図である。It is a compression load-member displacement diagram in case a hollow energy absorption member receives the compression load of the vertical direction by the impact. 本発明によるエネルギー吸収部材の概略断面と軸方向の圧縮荷重を受けた場合における変形形態を示す図である。It is a figure which shows the deformation | transformation form at the time of receiving the general | schematic cross section of the energy absorption member by this invention, and the axial compressive load.

符号の説明Explanation of symbols

1 中空部材
2 リブ
3 中空部
4 外殻部
5 結合部
R 外殻部とリブの結合部のコーナー部の半径
DESCRIPTION OF SYMBOLS 1 Hollow member 2 Rib 3 Hollow part 4 Outer shell part 5 Coupling part R The radius of the corner part of the coupling part of outer shell part and rib

Claims (3)

調質された熱処理型アルミニウム合金中空形材からなり、該中空形材の外殻部の形状は断面正方形または長方形で、中空部を含む全断面積は3000〜8000mm2のものであり、中空形材の断面には、それぞれ1000〜4000mm2の断面積を有しリブで区画された中空部が2つ以上設けられており、中空形材における各辺の平均肉厚をt(mm)、中空形材の外郭部とリブとの結合部のコーナー部の半径をR(mm)としたとき、3.2mm≧t≧1.5mm、3.5≧R/t≧1.5の関係を満足することを特徴とするアルミニウム合金製自動車フレーム用軸圧縮エネルギー吸収部材。 It consists of a tempered heat-treated aluminum alloy hollow shape, and the shape of the outer shell of the hollow shape is square or rectangular in cross section, and the total cross-sectional area including the hollow is 3000 to 8000 mm 2. the cross section of the wood, and hollow portions partitioned by the ribs have a cross-sectional area of 1000~4000Mm 2 each are provided two or more, the average thickness of each side of the hollow profile t (mm), the hollow Satisfying the relationship of 3.2 mm ≧ t ≧ 1.5 mm, 3.5 ≧ R / t ≧ 1.5, where R (mm) is the radius of the corner of the joint between the outer portion of the profile and the rib A shaft compression energy absorbing member for an automobile frame made of an aluminum alloy. 前記中空形材に対して軸方向の圧縮荷重を負荷したときの単位断面積当たりの平均荷重が110N/mm2 以上であることを特徴とする請求項1記載のアルミニウム合金製自動車フレーム用軸圧縮エネルギー吸収部材。 2. The axial compression for an aluminum alloy automobile frame according to claim 1, wherein an average load per unit cross-sectional area when an axial compression load is applied to the hollow shape member is 110 N / mm 2 or more. Energy absorbing member. 前記リブで区画された中空部が断面正方形または長方形であることを特徴とする請求項1または2記載のアルミニウム合金製自動車フレーム用軸圧縮エネルギー吸収部材。 3. The axial compression energy absorbing member for an aluminum alloy automobile frame according to claim 1, wherein the hollow section defined by the rib has a square or rectangular cross section.
JP2005215268A 2005-07-26 2005-07-26 Axial compression energy absorbing member for automobile frame made of aluminum alloy Pending JP2007030647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005215268A JP2007030647A (en) 2005-07-26 2005-07-26 Axial compression energy absorbing member for automobile frame made of aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005215268A JP2007030647A (en) 2005-07-26 2005-07-26 Axial compression energy absorbing member for automobile frame made of aluminum alloy

Publications (2)

Publication Number Publication Date
JP2007030647A true JP2007030647A (en) 2007-02-08
JP2007030647A5 JP2007030647A5 (en) 2010-06-17

Family

ID=37790435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005215268A Pending JP2007030647A (en) 2005-07-26 2005-07-26 Axial compression energy absorbing member for automobile frame made of aluminum alloy

Country Status (1)

Country Link
JP (1) JP2007030647A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012169310A1 (en) 2011-06-10 2012-12-13 住友軽金属工業株式会社 Shock absorber and bumper device
CN103282106A (en) * 2011-01-06 2013-09-04 日东电工株式会社 Membrane filtration device and operating method for membrane filtration device
JP7404314B2 (en) 2021-07-16 2023-12-25 Maアルミニウム株式会社 Extruded tube with straight inner groove, inner spiral grooved tube and method for manufacturing heat exchanger

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005001474A (en) * 2003-06-11 2005-01-06 Furukawa Sky Kk Shock absorbing member

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005001474A (en) * 2003-06-11 2005-01-06 Furukawa Sky Kk Shock absorbing member

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103282106A (en) * 2011-01-06 2013-09-04 日东电工株式会社 Membrane filtration device and operating method for membrane filtration device
WO2012169310A1 (en) 2011-06-10 2012-12-13 住友軽金属工業株式会社 Shock absorber and bumper device
US9193320B2 (en) 2011-06-10 2015-11-24 Uacj Corporation Impact absorbing member and bumper device
JP7404314B2 (en) 2021-07-16 2023-12-25 Maアルミニウム株式会社 Extruded tube with straight inner groove, inner spiral grooved tube and method for manufacturing heat exchanger

Similar Documents

Publication Publication Date Title
EP1653114B1 (en) Impact-absorbing member
JP4371059B2 (en) Shock absorbing member
JP3897542B2 (en) Energy absorbing member
JP4388340B2 (en) Strength members for automobiles
JPH09254808A (en) Aluminum alloy extruded square pipe for front side member excellent in axial compression characteristics
JP2010083381A (en) Bumper system and method for manufacturing the same
JP2007030647A (en) Axial compression energy absorbing member for automobile frame made of aluminum alloy
JP4604740B2 (en) Shock absorbing member
JPH07145842A (en) Energy absorbing member made of aluminum alloy for automobile
JP4308088B2 (en) Automotive panel structure with excellent impact energy absorption
JP5354928B2 (en) Composite aluminum alloy extruded material for welded structures
JP4039032B2 (en) Impact energy absorbing member
JP2013044407A (en) Shock absorbing member
JPH07145843A (en) Energy absorbing member made of aluminum alloy for automobile
JP5283405B2 (en) Automotive reinforcement
JP2008032227A (en) Method of absorbing impact
JP4773853B2 (en) Aluminum alloy extrusions for automotive door beams
JP2005029064A (en) Energy absorption member for aluminum alloy automobile frame and manufacturing method thereof
JP4759871B2 (en) Impact energy absorbing member
JP3272130B2 (en) Energy absorbing member and method of manufacturing the same
JP2005121144A (en) Energy absorbing member for automobile frame made of aluminum alloy
JP2007017003A (en) Crash box and impact absorbing method
JP2004106612A (en) Energy absorbing member for absorbing impact in axial direction
JP2006232198A (en) Shock absorbing member for vehicle
JP2004148955A (en) Collision energy absorbing member for automobile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Written amendment

Effective date: 20101115

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20110223

Free format text: JAPANESE INTERMEDIATE CODE: A02

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20131023

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20140318