JP2005029064A - Energy absorption member for aluminum alloy automobile frame and manufacturing method thereof - Google Patents

Energy absorption member for aluminum alloy automobile frame and manufacturing method thereof Download PDF

Info

Publication number
JP2005029064A
JP2005029064A JP2003272140A JP2003272140A JP2005029064A JP 2005029064 A JP2005029064 A JP 2005029064A JP 2003272140 A JP2003272140 A JP 2003272140A JP 2003272140 A JP2003272140 A JP 2003272140A JP 2005029064 A JP2005029064 A JP 2005029064A
Authority
JP
Japan
Prior art keywords
hollow
aluminum alloy
hollow shape
length direction
shape member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003272140A
Other languages
Japanese (ja)
Inventor
Wataru Nakazato
渉 中里
Yuichi Kuroda
裕一 黒田
Yoshiyuki Ikeda
義行 池田
Tsuguo Nakazawa
嗣夫 中沢
Masahiro Suzuki
正弘 鈴木
Koji Okada
功史 岡田
Hideo Mizukoshi
秀雄 水越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd, Fuji Heavy Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP2003272140A priority Critical patent/JP2005029064A/en
Publication of JP2005029064A publication Critical patent/JP2005029064A/en
Pending legal-status Critical Current

Links

Landscapes

  • Body Structure For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lightweight energy absorption member for an aluminum alloy automobile frame with high energy absorbing capacity capable of surely absorbing impact energy being stably sequentially subjected to buckling deformation from an end part when receiving an impact load, and a manufacturing method thereof. <P>SOLUTION: The energy absorption member is composed of a hollow shape material made of tempered, heat-treated aluminum alloy and provided with recessed/projected parts formed in a lateral direction of the shape material at least in part of the shape material in a longitudinal direction to be a starting point of bellow-shaped deformation of the shape material when compression stress is applied in the longitudinal direction of the shape material by bending a wall face of the hollow shape material outward or inward. Depth of the recessed/projected part is 7 to 25 mm, the maximum compressive load under a static compressive load in the longitudinal direction is 75 to 180 kN, the average compressive load is 60 to 150 kN, and a ratio of the average compressive load / the maximum compressive load is 0.87 or more. The recessed/projected part is formed by applying a compression amount of 7 to 15 mm in the longitudinal direction of the shape material. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、アルミニウム合金製自動車フレーム用エネルギー吸収部材、詳しくは、自動車が衝突した場合の衝突エネルギーを吸収して搭乗者の安全を確保するために、車体の上部構造などに取付けられるアルミニウム合金中空形材製の自動車フレーム用エネルギー吸収部材およびその製造方法に関する。   The present invention relates to an energy absorbing member for an automobile frame made of an aluminum alloy, and more particularly, to an aluminum alloy hollow member attached to a superstructure of a vehicle body in order to absorb the collision energy when the automobile collides to ensure the safety of a passenger. The present invention relates to an energy absorbing member for a vehicle frame made of a profile and a method for manufacturing the same.

従来、衝突時のエネルギーを吸収して搭乗者の保護を図るためのエネルギー吸収部材は、鋼の板材をプレス成形し、スポット溶接などにより箱形状に形成されている。この部材は、衝撃により縦方向の圧縮荷重を受けた場合、図11の圧縮荷重−部材変位線図に示すように、最大圧縮荷重に達すると急速に荷重が減少し、部材の端部から蛇腹状に変形し、塑性座屈が進行して衝撃エネルギーを吸収する。この場合、圧縮荷重−部材変位線図における平均圧縮荷重(以下、単に平均荷重という)が高いほど、より多くのエネルギーを吸収することが可能であり、一方、最大圧縮荷重(以下、単に最大荷重という)が高過ぎるとエネルギー吸収部材が蛇腹形状に変形する前にエネルギー吸収部材の後端部が変形してしまう。従って、平均荷重/最大荷重の比が高いほど優れたエネルギー吸収部材として評価されることとなる。   Conventionally, an energy absorbing member for protecting a passenger by absorbing energy at the time of a collision is formed into a box shape by press-molding a steel plate material and spot welding or the like. When this member receives a compressive load in the vertical direction due to an impact, as shown in the compressive load-member displacement diagram of FIG. 11, when the maximum compressive load is reached, the load decreases rapidly, and the bellows starts from the end of the member. The plastic buckling proceeds and absorbs impact energy. In this case, the higher the average compressive load (hereinafter simply referred to as the average load) in the compressive load-member displacement diagram, the more energy can be absorbed, while the maximum compressive load (hereinafter simply referred to as the maximum load). Is too high, the rear end of the energy absorbing member is deformed before the energy absorbing member is deformed into a bellows shape. Therefore, the higher the average load / maximum load ratio, the better the energy absorbing member.

このようなエネルギー吸収形態を実現するためには、鋼板箱形部材に衝突荷重が負荷された場合に、部材の荷重負荷端部から確実に蛇腹状の座屈変形を起こさせなけらばならない。そのために、鋼板箱形部材にビード部や穴部を設け、座屈を助長させる設計手法も研究されている(非特許文献1参照)。   In order to realize such an energy absorption mode, when a collision load is applied to the steel plate box-shaped member, a bellows-like buckling deformation must be surely caused from the load-load end portion of the member. For this purpose, a design technique for providing a bead portion or a hole portion in a steel plate box-shaped member to promote buckling has been studied (see Non-Patent Document 1).

近年、環境問題から自動車車体重量の軽減が提唱されており、車体構成部材である衝撃エネルギー吸収部材についても、従来の鋼板製の箱形部材に代わり、さらに軽量で且つエネルギー吸収の高い部材が要求され、この要求を満たすためにアルミニウム合金の使用が検討されており、アルミニウム合金中空形材を使用したエネルギー吸収部材について、形材の壁面を外面または内面に屈曲させて溝条を形成し、衝撃時の圧縮荷重により蛇腹変形させて、平均荷重/最大荷重の比を大きくすることが発明者らにより提案されている(例えば、特許文献1参照)。   In recent years, reduction of automobile body weight has been proposed due to environmental problems, and the impact energy absorbing member, which is a body component, also requires a lighter and higher energy absorbing member in place of the conventional steel plate box member. In order to satisfy this requirement, the use of aluminum alloys has been studied. For energy absorbing members using aluminum alloy hollow shape members, the wall surfaces of the shape members are bent to the outer surface or the inner surface to form grooves and impact. It has been proposed by the inventors to increase the ratio of the average load / maximum load by deforming the bellows with the compression load of time (see, for example, Patent Document 1).

上記の溝条は、予め形材の長さ方向に圧縮荷重を負荷することにより形成することもでき、そのために形材壁面の屈曲を拘束する治具を使用する方法(特許文献2参照)や規則的な蛇腹変形を誘発させるための溝条の形態についても提案がなされている(特許文献3参照)。
三菱重工技報、Vol.8 、No.1、第124 〜130 頁 特開平7−145842号公報(請求項、0006) 特開2000−238659号公報(請求項) 特開平8−216917号公報(請求項)
The above-mentioned groove can also be formed by applying a compressive load in the length direction of the shape in advance. For this purpose, a method using a jig for restraining the bending of the shape wall (see Patent Document 2) Proposals have also been made on the form of grooves for inducing regular bellows deformation (see Patent Document 3).
Mitsubishi Heavy Industries Technical Review, Vol.8, No.1, pp. 124-130 JP-A-7-145842 (claims, 0006) JP 2000-238659 A (Claims) JP-A-8-21617 (claim)

しかしながら、上記従来のエネルギー吸収部材は、屈曲変形により生じた溝条(凹凸)の深さが小さく、衝撃時の圧縮荷重により安定した蛇腹変形が期待できない場合がある。また、前記特許文献1には、平均荷重/最大荷重の比が0.5以上と規定されているが、その実施例にもみられるように、実質的には0.54〜0.85であり、衝撃時に蛇腹変形により塑性座屈を進行させ、衝撃エネルギーを確実に吸収するためには必ずしも十分なものではないことが経験されている。   However, the conventional energy absorbing member described above has a small depth of grooves (irregularities) generated by bending deformation, and stable bellows deformation may not be expected due to a compressive load at the time of impact. Moreover, although the ratio of average load / maximum load is prescribed | regulated as 0.5 or more by the said patent document 1, as seen also in the Example, it is 0.54-0.85 substantially. It has been experienced that it is not always sufficient to cause plastic buckling to proceed by bellows deformation at the time of impact and to absorb impact energy reliably.

本発明は、上記従来の難点を解消するために、発明者らによる特許文献1記載の発明をベースとして、衝撃時の圧縮荷重により確実に蛇腹変形を生起させるための凹凸部(溝条)の深さ、衝撃時に蛇腹変形により塑性座屈を進行させ、確実に衝撃エネンルギーを吸収するための平均荷重/最大荷重の比の限界について、さらに試験検討を加えた結果としてなされたものであり、その目的は、軽量でエネルギー吸収度が高く、衝撃荷重を受けた場合安定して端末部から順次に座屈変形して確実に衝撃エネルギーを吸収するアルミニウム合金製自動車フレーム用エネルギー吸収部材およびその製造方法を提供することにある。   In order to eliminate the above-mentioned conventional difficulties, the present invention is based on the invention described in Patent Document 1 by the inventors, and has an uneven portion (groove) for reliably causing bellows deformation by a compressive load at the time of impact. It was made as a result of further examination on the limit of the ratio of the average load / maximum load in order to advance the plastic buckling by the bellows deformation at the time of impact, and to absorb the impact energy reliably. An object is an energy absorbing member for an automobile frame made of an aluminum alloy that is light weight, has high energy absorption, and stably buckles and deforms sequentially from the end when receiving an impact load, and reliably absorbs impact energy, and a method for manufacturing the same. Is to provide.

上記の目的を達成するための本発明の請求項1によるアルミニウム合金製自動車フレーム用エネルギー吸収部材は、調質された熱処理型アルミニウム合金中空形材からなり、該中空形材の肉厚は1.8mm以上で、中空形材の中空部を含む全断面積が3000〜8000mm2 であり、中空形材の断面にはそれぞれ1000〜4000mm2 の断面積を有する中空部が1つまたは2つ以上設けられ、少なくとも形材の長さ方向の一部には、中空形材の長さ方向に圧縮応力を負荷したとき中空形材の蛇腹状変形の起点となり得る中空形材の壁面を外面または内面に屈曲させて形成される凹凸部が中空形材の横方向に形成されており、凹凸部の深さが7〜25mmであることを特徴とする。 In order to achieve the above object, an energy absorbing member for an aluminum alloy automobile frame according to claim 1 of the present invention comprises a tempered heat-treated aluminum alloy hollow member, and the thickness of the hollow member is 1. above 8 mm, provided the total sectional area including the hollow portion of the hollow profile is 3000~8000Mm 2, hollow portion each of the cross-section of the hollow profile has a cross-sectional area of 1000~4000Mm 2 is one or more And at least a part of the shape in the length direction of the shape, the wall of the hollow shape that can be a starting point for the bellows-like deformation of the hollow shape when the compressive stress is applied in the length direction of the hollow shape. The uneven part formed by bending is formed in the transverse direction of the hollow shape member, and the depth of the uneven part is 7 to 25 mm.

請求項2によるアルミニウム合金製自動車フレーム用エネルギー吸収部材は、請求項1において、長さ方向に静的圧縮荷重を加えたときの最大荷重が75〜180kN、平均荷重が60〜150kN、平均荷重/最大荷重の比が0.87以上であることを特徴とする。   The energy absorbing member for an automobile frame made of aluminum alloy according to claim 2 is the energy absorbing member for an automobile frame according to claim 1, wherein the maximum load is 75 to 180 kN, the average load is 60 to 150 kN, and the average load / The maximum load ratio is 0.87 or more.

請求項3によるアルミニウム合金製自動車フレーム用エネルギー吸収部材は、請求項1または2において、前記凹凸部において、前記中空形材の壁面からの深さが最大となる最大屈曲部が、中空形材の長さ方向における衝突側端部より40±15mmの位置に形成されていることを特徴とする。   The energy absorbing member for an aluminum frame made of an aluminum alloy according to claim 3 is the energy absorbing member for an automobile frame according to claim 1 or 2, wherein, in the concavo-convex portion, a maximum bent portion having a maximum depth from the wall surface of the hollow shape member is a hollow shape member. It is formed in the position of 40 +/- 15mm from the collision side edge part in a length direction.

本発明の請求項4によるアルミニウム合金製自動車フレーム用エネルギー吸収部材の製造方法は、前記中空形材の長さ方向に7〜15mmの圧縮量を与えることにより凹凸部を形成することを特徴とする。   According to a fourth aspect of the present invention, there is provided a method of manufacturing an energy absorbing member for an automobile frame made of aluminum alloy, wherein the concave and convex portions are formed by applying a compression amount of 7 to 15 mm in the length direction of the hollow shape member. .

請求項5によるアルミニウム合金製自動車フレーム用エネルギー吸収部材の製造方法は、請求項4において、前記中空形材の長さ方向の任意の位置において、中空形材の壁面を、ポンチにより内面側に屈曲させた後、中空形材の長さ方向に圧縮量を与えることにより、前記任意の位置に凹凸部を形成することを特徴とする。   According to a fifth aspect of the present invention, there is provided a method for manufacturing an energy absorbing member for an aluminum alloy automobile frame according to the fourth aspect, wherein a wall surface of the hollow shape member is bent to the inner surface side by a punch at an arbitrary position in the length direction of the hollow shape member. Then, the concave and convex portions are formed at the arbitrary positions by giving a compression amount in the length direction of the hollow shape member.

請求項6によるアルミニウム合金製自動車フレーム用エネルギー吸収部材の製造方法は、請求項5において、前記中空形材の長さ方向の任意の位置において、中空形材の壁面を、ポンチにより内面側に0.5〜5.0mm屈曲させた後、中空形材の長さ方向に圧縮量を与えることにより、前記任意の位置に凹凸部を形成することを特徴とする。   According to a sixth aspect of the present invention, there is provided a method for manufacturing an energy absorbing member for an automobile frame made of an aluminum alloy according to the fifth aspect, wherein the wall surface of the hollow shape member is moved to the inner surface side by a punch at an arbitrary position in the length direction of the hollow shape member. It is characterized by forming a concavo-convex portion at the above-mentioned arbitrary position by giving a compression amount in the length direction of the hollow shape member after being bent 0.5 mm to 5.0 mm.

請求項7によるアルミニウム合金製自動車フレーム用エネルギー吸収部材の製造方法は、請求項4〜6のいずれかにおいて、前記中空形材の長さ方向の上部および下部に壁面の屈曲を拘束する治具を配置して、中空形材の長さ方向に圧縮量を与えることにより、中空形材の長さ方向の壁面の屈曲を拘束していない任意の位置に凹凸部を形成することを特徴とする。   According to a seventh aspect of the present invention, there is provided a method for producing an energy absorbing member for an aluminum alloy automobile frame according to any one of the fourth to sixth aspects, wherein a jig for restraining the bending of the wall surface is provided at the upper and lower portions in the length direction of the hollow shape member. By arranging and giving a compression amount in the length direction of the hollow shape member, an uneven portion is formed at an arbitrary position where the bending of the wall surface in the length direction of the hollow shape material is not constrained.

本発明によれば、軽量でエネルギー吸収度が高く、衝撃荷重を受けた場合安定して端末部から順次に座屈変形して確実に衝撃エネルギーを吸収することを可能とするアミニウム合金製自動車フレーム用エネルギー吸収部材およびその製造方法が提供される。本発明によるアミニウム合金製自動車フレーム用エネルギー吸収部材は、自動車車体への溶接も簡単に行うことができ、自動車のフロントおよびリヤサイドメンバー、ステアリングシャフト、サイドドア・インパクトメンバーなどとして適用することができる。   According to the present invention, an aluminum frame made of an aminium alloy that is light in weight, has a high energy absorption rate, and can stably buckle and deform from the end portion in a stable manner when receiving an impact load, thereby securely absorbing the impact energy. An energy absorbing member and a method for manufacturing the same are provided. The energy absorbing member for an automobile frame made of aminium alloy according to the present invention can be easily welded to an automobile body, and can be applied as a front and rear side member, a steering shaft, a side door / impact member, etc. of an automobile.

本発明によるアルミニウム合金製自動車フレーム用エネルギー吸収部材は、調質された熱処理型アルミニウム合金中空形材からなり、該中空形材の肉厚は1.8mm以上で、中空形材の中空部を含む全断面積が3000〜8000mm2 であり、中空形材の断面にはそれぞれ1000〜4000mm2 の断面積を有する中空部が1つまたは2つ以上設けられたものを前提とし、少なくとも中空形材の長さ方向の一部には、中空形材の長さ方向に圧縮応力を負荷したとき中空形材の蛇腹状変形の起点となり得る中空形材の壁面を外面または内面に屈曲させて形成される凹凸部が形材の横方向に形成されたものであり、凹凸部の深さが7〜25mmであることを特徴とする。 The energy absorbing member for an automobile frame made of aluminum alloy according to the present invention is made of a tempered heat-treated aluminum alloy hollow member, and the hollow member has a wall thickness of 1.8 mm or more and includes a hollow part of the hollow member. the total cross section is 3000~8000Mm 2, a hollow portion having a cross-sectional area of each of the cross-section 1000~4000Mm 2 of the hollow profile is assumed that provided one or more, at least the hollow profile A part of the length direction is formed by bending the wall surface of the hollow shape member that can be a starting point of bellows-like deformation of the hollow shape member to the outer surface or the inner surface when compressive stress is applied in the length direction of the hollow shape member. The uneven portion is formed in the transverse direction of the shape member, and the depth of the uneven portion is 7 to 25 mm.

図1〜3に示すように、凹凸部2は、アルミニウム合金中空形材1の長さ方向の任意の個所に設けられ、中空形材1の壁面を外面または内面に屈曲させて形成したものであり、凹凸部の深さDは、図3に示すように定義される。   As shown in FIGS. 1-3, the uneven | corrugated | grooved part 2 is provided in the arbitrary places of the length direction of the aluminum alloy hollow shape material 1, and was formed by bending the wall surface of the hollow shape material 1 to an outer surface or an inner surface. Yes, the depth D of the uneven portion is defined as shown in FIG.

凹凸部2の深さDは7〜25mmが好ましく、この範囲の凹凸部深さを形成することにより、平均荷重/最大荷重の比を向上させることも可能となる。7mm未満では、最大荷重の低下量が小さくなって、平均荷重/最大荷重の比を0.87以上とすることができず、25mmを越えると、自動車フレーム用エネルギー部材として中空形材を取付ける場合に凹凸部が支障となり易い。凹凸部の深さのさらに好ましい範囲は10〜20mmである。   The depth D of the concavo-convex portion 2 is preferably 7 to 25 mm. By forming the concavo-convex portion depth within this range, the ratio of average load / maximum load can be improved. If it is less than 7 mm, the amount of decrease in the maximum load becomes small, and the ratio of average load / maximum load cannot be made 0.87 or more. If it exceeds 25 mm, a hollow shape member is attached as an energy member for an automobile frame. As a result, the uneven portion is likely to be a hindrance. A more preferable range of the depth of the uneven portion is 10 to 20 mm.

本発明の中空形材を構成する熱処理型アルミニウム合金としては、例えばAl−Zn−Mg系合金、Al−Mg−Si系合金が適用される。これらのアルミニウム合金は押出後の調質としてT5処理あるいはT6処理を施すのが好ましい。中空形材としては、肉厚が1.8mm以上、中空部を含む全断面積が3000〜8000mm2 で、1000〜4000mm2 の断面積を有する1つまたは2つ以上の中空部が設けられた丸管、角管などが好適に使用される。中空形材の肉厚が1.8mm未満では、押出そのものが困難であり、また肉厚が薄いことからエネルギー吸収特性が低下する。中空部の全断面積が3000mm2 未満では中空部の断面積にかかわらず形材の実質的な断面積が小さくなり、エネルギー吸収特性が低下する。中空部の断面積を4000mm2 を越えて大きくしても、形材の実質的な断面積が小さくなり、エネルギー吸収特性が低下する。 For example, an Al—Zn—Mg alloy or an Al—Mg—Si alloy is applied as the heat-treatable aluminum alloy constituting the hollow member of the present invention. These aluminum alloys are preferably subjected to T5 treatment or T6 treatment as tempering after extrusion. The hollow profile, wall thickness 1.8mm or more, the total cross-sectional area that includes a hollow portion in 3000~8000Mm 2, 1, two or more hollow portion having a cross-sectional area of 1000~4000Mm 2 is provided A round tube, a square tube, etc. are used suitably. If the thickness of the hollow shape material is less than 1.8 mm, extrusion itself is difficult, and the energy absorption characteristics deteriorate because the thickness is thin. When the total cross-sectional area of the hollow portion is less than 3000 mm 2 , the substantial cross-sectional area of the shape member becomes small regardless of the cross-sectional area of the hollow portion, and the energy absorption characteristics are deteriorated. Even if the cross-sectional area of the hollow portion is increased beyond 4000 mm 2 , the substantial cross-sectional area of the profile is reduced and the energy absorption characteristics are deteriorated.

一方、中空部を含む全断面積を8000mm2 を越えて大きくしても、形材の実質的な断面積増加に伴うエネルギー吸収特性の顕著な向上は期待できず、重量が増加することから自動車フレーム用エネルギー吸収部材として実用的でなくなる。同様に、中空部の断面積が1000mm2 未満では、形材の実質的な断面積増加に伴うエネルギー吸収特性の顕著な向上は期待できず、重量が増加することから自動車フレーム用エネルギー吸収部材として実用的でなくなる。 On the other hand, even if the total cross-sectional area including the hollow part is increased beyond 8000 mm 2 , a significant improvement in energy absorption characteristics due to a substantial increase in the cross-sectional area of the profile cannot be expected, and the weight increases. It becomes impractical as an energy absorbing member for a frame. Similarly, when the cross-sectional area of the hollow portion is less than 1000 mm 2 , a significant improvement in energy absorption characteristics accompanying a substantial increase in the cross-sectional area of the profile cannot be expected, and the weight increases. It becomes impractical.

本発明はまた、中空形材の長さ方向に圧縮応力を負荷したときの中空形材の蛇腹状変形の起点となり得る凹凸部が形成され、長さ方向に静的圧縮荷重を加えたときの最大荷重が75〜180kN、平均荷重が60〜150kN、平均荷重/最大荷重の比が0.87以上であることを特徴とするものであり、平均荷重/最大荷重の比を0.87以上とすることによって、衝撃時に蛇腹変形により塑性座屈が進行して、確実に衝撃エネルギーを吸収することができる。   The present invention also provides an uneven portion that can be a starting point for bellows-like deformation of a hollow shape when compressive stress is applied in the length direction of the hollow shape, and when a static compression load is applied in the length direction. The maximum load is 75 to 180 kN, the average load is 60 to 150 kN, the average load / maximum load ratio is 0.87 or more, and the average load / maximum load ratio is 0.87 or more. By doing so, plastic buckling progresses due to bellows deformation at the time of impact, and impact energy can be reliably absorbed.

本発明によるアルミニウム合金製自動車フレーム用エネルギー吸収部材の製造は、前記中空形材1の長さ方向に、図4〜5に示すように、加圧治具3により、7〜15mmの圧縮量を与えて凹凸部2を形成することにより行われる。圧縮量を与える前に、中空形材の壁面を、ポンチにより内面側に屈曲させておいてもよい。   In the production of the energy absorbing member for an aluminum alloy automobile frame according to the present invention, a compression amount of 7 to 15 mm is applied by the pressing jig 3 in the length direction of the hollow member 1 as shown in FIGS. This is done by forming the concave and convex portion 2. Before giving the amount of compression, the wall surface of the hollow profile may be bent to the inner surface side by a punch.

圧縮量が7mm未満では、屈曲により形成される凹凸部の深さDが小さくなって最大荷重の低下量が小さくなり、平均荷重/最大荷重の比を0.87以上とすることができない。圧縮量が15mmを越えると、屈曲により形成される凹凸部の深さが大きくなり、自動車フレーム用エネルギー吸収部材として中空形材を取付ける際に凹凸部が邪魔になるとともに、圧縮に要する時間が長くなり量産性が低下する。圧縮量のさらに好ましい範囲は10〜15mmである。   If the amount of compression is less than 7 mm, the depth D of the concavo-convex portion formed by bending becomes small, the amount of decrease in the maximum load becomes small, and the ratio of average load / maximum load cannot be 0.87 or more. When the compression amount exceeds 15 mm, the depth of the uneven portion formed by bending increases, and the uneven portion becomes an obstacle when mounting the hollow shape material as an energy absorbing member for an automobile frame, and the time required for compression is long. As a result, mass productivity decreases. A more preferable range of the compression amount is 10 to 15 mm.

前記凹凸部において、中空形材の壁面からの深さが最大となる最大屈曲部は、形材の長さ方向における衝突側端部より40±15mmの位置に形成されていることが望ましい。中空形材の長さ方向の衝突側端部から25mmの位置より近い位置に凹凸部を形成した場合には、中空形材の端部と他の部材を接合する際に不具合をもたらす。中空形材の長さ方向の衝突側端部から55mmの位置より遠い位置に凹凸部を形成した場合には、衝突側近傍より蛇腹変形することにより衝撃エネルギーを吸収するという理想の変形形態を得ることが困難となる。   In the concavo-convex portion, it is desirable that the maximum bent portion having the maximum depth from the wall surface of the hollow shape member is formed at a position of 40 ± 15 mm from the collision side end portion in the length direction of the shape member. In the case where the concavo-convex portion is formed at a position closer than the position of 25 mm from the collision-side end portion in the length direction of the hollow shape member, a problem occurs when the end portion of the hollow shape member and another member are joined. When the concave and convex portion is formed at a position far from the position of 55 mm from the collision side end in the length direction of the hollow shape member, an ideal deformation form in which impact energy is absorbed by deforming bellows from the vicinity of the collision side is obtained. It becomes difficult.

図6〜7に示すように、中空形材1の長さ方向の上部および下部に壁面の屈曲を拘束する治具4、4を配置して、中空形材1の長さ方向に、加圧治具3により圧縮量を与えることにより、形材の長さ方向の壁面の屈曲を拘束していない任意の位置に凹凸部2を形成することができる。   As shown in FIGS. 6 to 7, jigs 4 and 4 for restraining the bending of the wall surface are arranged at the upper and lower portions in the length direction of the hollow shape member 1, and pressure is applied in the length direction of the hollow shape member 1. By providing the compression amount with the jig 3, the uneven portion 2 can be formed at an arbitrary position where the bending of the wall surface in the length direction of the shape member is not constrained.

本発明によるアルミニウム合金製自動車フレーム用エネルギー吸収部材の製造においては、中空形材の長さ方向の任意の位置において、中空形材の壁面の一か所以上を、ポンチにより中空形材の壁面を内面側に押し込んで屈曲させた後、中空形材の長さ方向に圧縮量を与えることにより、前記任意の位置に凹凸部を形成することもできる。ポンチの形状、ポンチを押し込む際の中空形材の固定方法は、とくに限定されないが、ポンチを押し込みによる中空形材の屈曲深さは0.5〜5.0mmとするのが好ましい。屈曲深さが0.5mmより小さいと、中空形材の長さ方向に圧縮量を与えた場合、任意の位置に凹凸部を形成することができず、屈曲深さが5.0mmを越えると、ポンチの押し込み時に中空形材に割れが発生し易く、エネルギー吸収特性が悪化する。   In the production of an energy absorbing member for an automobile frame made of aluminum alloy according to the present invention, at any position in the longitudinal direction of the hollow shape member, at least one part of the wall surface of the hollow shape material, and the wall surface of the hollow shape material by a punch. After the inner surface is pushed and bent, the concave and convex portions can be formed at the arbitrary positions by giving a compression amount in the length direction of the hollow shape member. The shape of the punch and the method of fixing the hollow member when the punch is pushed in are not particularly limited, but the bending depth of the hollow member by pushing the punch is preferably 0.5 to 5.0 mm. When the bending depth is smaller than 0.5 mm, when the amount of compression is given in the length direction of the hollow shape member, it is not possible to form an uneven portion at an arbitrary position, and when the bending depth exceeds 5.0 mm. When the punch is pushed in, the hollow shape material is easily cracked and the energy absorption characteristics are deteriorated.

以下、本発明の実施例を比較例と対比して説明する。なお、これらの実施例は、本発明の一実施態様を示すものであり、本発明はこれらに限定されるものではない。   Examples of the present invention will be described below in comparison with comparative examples. In addition, these Examples show one embodiment of this invention, and this invention is not limited to these.

Si:0.45%(質量%、以下同じ)、Fe:0.20%、Mn:0.04%、Mg:0.65%を含み、残部Alおよび不純物からなるアルミニウム合金のビレットを、押出温度480℃で日の字形状(長方形の長辺方向の中央部に隔壁をそなえ、隔壁に対して対称な2つの中空部を有する中空断面形状)に押出加工した。中空部を含む全断面積は7100mm2 、2つの中空部の断面積はいずれも2850mm2 とした。得られた中空形材をT6調質し試験材とした。 An aluminum alloy billet containing Si: 0.45% (mass%, the same applies hereinafter), Fe: 0.20%, Mn: 0.04%, Mg: 0.65%, and the balance Al and impurities is extruded. Extrusion was performed at a temperature of 480 ° C. into a Japanese letter shape (a hollow cross-sectional shape having two hollow portions symmetrical to the partition wall with a partition wall at the center in the long side direction of the rectangle). The total cross-sectional area including the hollow part was 7100 mm 2 , and the cross-sectional areas of the two hollow parts were both 2850 mm 2 . The obtained hollow shape material was subjected to T6 tempering and used as a test material.

得られた試験材から、以下の方法により比較試験材および発明試験材を作製した。   From the obtained test material, a comparative test material and an inventive test material were produced by the following method.

比較試験材:試験材を長さ300mmに切断したもの。   Comparative test material: A test material cut to a length of 300 mm.

発明試験材1:試験材を長さ310mmに切断し、長さ方向に10mmの圧縮量を与えることにより深さ10mmの凹凸部を形成したもの。   Invention test material 1: A test material is cut into a length of 310 mm, and a 10 mm deep concave / convex portion is formed by applying a compression amount of 10 mm in the length direction.

発明試験材2:試験材を長さ307mmに切断し、長さ方向に7mmの圧縮量を与えることにより深さ7mmの凹凸部を形成したもの。   Invention test material 2: A test material was cut into a length of 307 mm, and a 7 mm deep uneven portion was formed by applying a compression amount of 7 mm in the length direction.

発明試験材3:試験材を長さ310mmに切断し、端部より40mmの位置で壁面を内面側にポンチを用いて深さ2mm屈曲させた後、長さ方向に10mmの圧縮量を与えることにより深さ10mmの凹凸部を形成したもの。   Invention test material 3: Cut the test material to a length of 310 mm, bend the wall surface to the inner surface side by a depth of 2 mm at a position 40 mm from the end, and then give a compression amount of 10 mm in the length direction Formed an uneven part with a depth of 10 mm.

発明試験材4:試験材を長さ310mmに切断し、図8〜9に示すように、上端部より20mmおよび下端部より240mmの範囲に、壁面の屈曲を拘束する治具4、4を配置し、長さ方向に10mmの圧縮量を与えることにより深さ10mmの凹凸部を形成したもの。   Invention test material 4: The test material is cut into a length of 310 mm, and as shown in FIGS. 8 to 9, jigs 4 and 4 for restraining the bending of the wall surface are arranged in a range of 20 mm from the upper end and 240 mm from the lower end. Then, an uneven portion having a depth of 10 mm is formed by giving a compression amount of 10 mm in the length direction.

比較試験材および発明試験材1〜4について、試験速度1mm/秒で静的軸圧縮試験を行った。インストロン型万能試験機の台座に各試験材を設置して、加圧盤により圧縮荷重を負荷し、加圧盤にかかる荷重−変位線図を記録した。なお、使用する試験機は、圧縮荷重を負荷することが可能であれば、どのような試験機を使用しても同様の結果が得られること、また試験機台座と加圧盤は、試験材への接触面が平行であれば、形状にかかわらず同様な結果が得られることが確認されている。   The comparative test material and the inventive test materials 1 to 4 were subjected to a static axial compression test at a test speed of 1 mm / sec. Each test material was placed on a base of an Instron universal testing machine, a compression load was applied by the pressure plate, and a load-displacement diagram applied to the pressure plate was recorded. As long as it is possible to apply a compressive load to the tester used, the same result can be obtained regardless of the tester used. If the contact surfaces are parallel, it has been confirmed that similar results can be obtained regardless of the shape.

試験結果を表1に示し、得られた荷重−変位線図を図10に示す。表1に示すように、凹凸部が形成されていない比較試験材と発明試験材1〜4の平均荷重はほぼ同等であった。また、図10にみられるように、発明試験材においては、軸圧縮試験の初期段階に発生するピーク荷重が極端に低くなり、最大荷重が大幅に低下している。従って、発明試験材の平均荷重/最大荷重の比は0.87以上と非常に大きくなり、優れたエネルギー吸収特性を有することが確認された。   The test results are shown in Table 1, and the obtained load-displacement diagram is shown in FIG. As shown in Table 1, the average load of the comparative test material in which the uneven portion was not formed and the inventive test materials 1 to 4 were substantially equal. Further, as seen in FIG. 10, in the inventive test material, the peak load generated in the initial stage of the axial compression test is extremely low, and the maximum load is greatly reduced. Therefore, the ratio of the average load / maximum load of the inventive test material was as very large as 0.87 or more, and it was confirmed that it had excellent energy absorption characteristics.

本発明に使用する中空形材の凹凸部の実施例を簡略化して示す図である。It is a figure which simplifies and shows the Example of the uneven | corrugated | grooved part of the hollow shape material used for this invention. 本発明に使用する中空形材の凹凸部の他の実施例を簡略化して示す図である。It is a figure which simplifies and shows other Examples of the uneven | corrugated | grooved part of the hollow shape material used for this invention. 図2の中空形材において形成される凹凸部の断面を示す図である。It is a figure which shows the cross section of the uneven | corrugated | grooved part formed in the hollow shape material of FIG. 中空形材の圧縮による凹凸部形成工程の実施例の圧縮前の図である。It is a figure before compression of the Example of the uneven | corrugated | grooved part formation process by compression of a hollow shape material. 中空形材の圧縮による凹凸部形成工程の実施例の圧縮後の図である。It is a figure after compression of the Example of the uneven | corrugated | grooved part formation process by compression of a hollow shape material. 中空形材の圧縮による凹凸部形成工程の他の実施例の圧縮前の図である。It is a figure before the compression of the other Example of the uneven | corrugated | grooved part formation process by compression of a hollow shape material. 中空形材の圧縮による凹凸部形成工程の他の実施例の圧縮後の図である。It is the figure after compression of the other Example of the uneven | corrugated | grooved part formation process by compression of a hollow shape material. 発明試験材4における凹凸部形成工程の圧縮前の図である。It is a figure before compression of the uneven | corrugated | grooved part formation process in the invention test material 4. FIG. 発明試験材4における凹凸部形成工程の圧縮後の図である。It is the figure after compression of the uneven | corrugated | grooved part formation process in the invention test material 4. FIG. 発明試験材1の静的軸圧縮試験における荷重−変位線図である。It is a load-displacement diagram in the static axial compression test of the invention test material 1. 従来のエネルギー吸収部材の静的軸圧縮試験における荷重−変位線図である。It is a load-displacement diagram in the static axial compression test of the conventional energy absorption member.

符号の説明Explanation of symbols

1 アルミニウム合金中空形材
2 凹凸部
3 加圧治具
4 拘束治具
D 凹凸部深さ
DESCRIPTION OF SYMBOLS 1 Aluminum alloy hollow shape 2 Uneven part 3 Pressurizing jig 4 Restraint jig D Uneven part depth

Claims (7)

調質された熱処理型アルミニウム合金中空形材からなり、該中空形材の肉厚は1.8mm以上で、中空形材の中空部を含む全断面積が3000〜8000mm2 であり、中空形材の断面にはそれぞれ1000〜4000mm2 の断面積を有する中空部が1つまたは2つ以上設けられ、少なくとも中空形材の長さ方向の一部には、中空形材の長さ方向に圧縮応力を負荷したとき中空形材の蛇腹状変形の起点となり得る中空形材の壁面を外面または内面に屈曲させて形成される凹凸部が中空形材の横方向に形成されており、凹凸部の深さが7〜25mmであることを特徴とするアルミニウム合金製自動車フレーム用エネルギー吸収部材。 It consists of a tempered heat-treatable aluminum alloy hollow profile, the thickness of the hollow profile is 1.8 mm or more, and the total cross-sectional area including the hollow part of the hollow profile is 3000 to 8000 mm 2. the hollow portion having a cross-sectional area of 1000~4000Mm 2 each are provided one or more in cross-section, a portion of the length direction of at least the hollow shape member is a compressive stress in the longitudinal direction of the hollow frame member The uneven portion formed by bending the wall surface of the hollow shape member to the outer surface or the inner surface, which can be the starting point of the bellows-like deformation of the hollow shape member, is formed in the lateral direction of the hollow shape member, and the depth of the uneven portion is An energy absorbing member for an automobile frame made of an aluminum alloy, wherein the length is 7 to 25 mm. 長さ方向に静的圧縮荷重を加えたときの最大圧縮荷重が75〜180kN、平均圧縮荷重が60〜150kN、平均圧縮荷重/最大圧縮荷重の比が0.87以上であることを特徴とする請求項1記載のアルミニウム合金製自動車フレーム用エネルギー吸収部材。 The maximum compression load when a static compression load is applied in the length direction is 75 to 180 kN, the average compression load is 60 to 150 kN, and the ratio of average compression load / maximum compression load is 0.87 or more. The energy absorbing member for an aluminum alloy automobile frame according to claim 1. 前記凹凸部において、前記中空形材の壁面からの深さが最大となる最大屈曲部が、中空形材の長さ方向における衝突側端部より40±15mmの位置に形成されていることを特徴とする請求項1または2記載のアルミニウム合金製自動車フレーム用エネルギー吸収部材。 In the concavo-convex portion, the maximum bent portion having the maximum depth from the wall surface of the hollow shape member is formed at a position of 40 ± 15 mm from the collision side end portion in the length direction of the hollow shape member. The energy absorbing member for an aluminum alloy automobile frame according to claim 1 or 2. 前記中空形材の長さ方向に7〜15mmの圧縮量を与えることにより凹凸部を形成することを特徴とする請求項1〜3のいずれかに記載のアルミニウム合金製自動車フレーム用エネルギー吸収部材の製造方法。 The uneven part is formed by giving a compression amount of 7 to 15 mm in the length direction of the hollow shape member, wherein the energy absorbing member for an aluminum alloy automobile frame according to any one of claims 1 to 3 is formed. Production method. 前記中空形材の長さ方向の任意の位置において、中空形材の壁面を、ポンチにより内面側に屈曲させた後、中空形材の長さ方向に圧縮量を与えることにより、前記任意の位置に凹凸部を形成することを特徴とする請求項4記載のアルミニウム合金製自動車フレーム用エネルギー吸収部材の製造方法。 At any position in the length direction of the hollow shape member, the wall surface of the hollow shape member is bent to the inner surface side by a punch, and then given a compression amount in the length direction of the hollow shape member, the arbitrary position The method for producing an energy absorbing member for an aluminum alloy automobile frame according to claim 4, wherein uneven portions are formed on the aluminum alloy. 前記中空形材の長さ方向の任意の位置において、中空形材の壁面を、ポンチにより内面側に0.5〜5.0mm屈曲させた後、中空形材の長さ方向に圧縮量を与えることにより、前記任意の位置に凹凸部を形成することを特徴とする請求項5記載のアルミニウム合金製自動車フレーム用エネルギー吸収部材の製造方法。 At an arbitrary position in the length direction of the hollow profile, the wall surface of the hollow profile is bent 0.5 to 5.0 mm toward the inner surface by a punch, and then a compression amount is given in the length direction of the hollow profile. The uneven | corrugated | grooved part is formed in the said arbitrary positions by this, The manufacturing method of the energy absorption member for aluminum alloy vehicle frames of Claim 5 characterized by the above-mentioned. 前記中空形材の長さ方向の上部および下部に壁面の屈曲を拘束する治具を配置して、中空形材の長さ方向に圧縮量を与えることにより、中空形材の長さ方向の壁面の屈曲を拘束していない任意の位置に凹凸部を形成することを特徴とする請求項4〜6のいずれかに記載のアルミニウム合金製自動車フレーム用エネルギー吸収部材の製造方法。 By placing jigs for restraining the bending of the wall surface at the upper and lower portions in the length direction of the hollow shape member, and applying a compression amount in the length direction of the hollow shape member, the wall surface in the length direction of the hollow shape member The method for manufacturing an energy absorbing member for an aluminum alloy automobile frame according to any one of claims 4 to 6, wherein the uneven portion is formed at an arbitrary position where the bending of the aluminum alloy is not restricted.
JP2003272140A 2003-07-09 2003-07-09 Energy absorption member for aluminum alloy automobile frame and manufacturing method thereof Pending JP2005029064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003272140A JP2005029064A (en) 2003-07-09 2003-07-09 Energy absorption member for aluminum alloy automobile frame and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003272140A JP2005029064A (en) 2003-07-09 2003-07-09 Energy absorption member for aluminum alloy automobile frame and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2005029064A true JP2005029064A (en) 2005-02-03

Family

ID=34209785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003272140A Pending JP2005029064A (en) 2003-07-09 2003-07-09 Energy absorption member for aluminum alloy automobile frame and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2005029064A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008213625A (en) * 2007-03-02 2008-09-18 Sumitomo Light Metal Ind Ltd Method for manufacturing energy absorbing member for automobile, and energy absorbing member for automobile manufactured by the manufacturing method
JP2008302791A (en) * 2007-06-07 2008-12-18 Mazda Motor Corp Energy absorption member
JP2009002367A (en) * 2007-06-19 2009-01-08 Mazda Motor Corp Energy absorbing member
JP2009063013A (en) * 2007-09-04 2009-03-26 Mazda Motor Corp Energy absorbing member
JP2022043750A (en) * 2020-09-04 2022-03-16 本田技研工業株式会社 Vehicle body structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008213625A (en) * 2007-03-02 2008-09-18 Sumitomo Light Metal Ind Ltd Method for manufacturing energy absorbing member for automobile, and energy absorbing member for automobile manufactured by the manufacturing method
JP2008302791A (en) * 2007-06-07 2008-12-18 Mazda Motor Corp Energy absorption member
JP2009002367A (en) * 2007-06-19 2009-01-08 Mazda Motor Corp Energy absorbing member
JP2009063013A (en) * 2007-09-04 2009-03-26 Mazda Motor Corp Energy absorbing member
JP2022043750A (en) * 2020-09-04 2022-03-16 本田技研工業株式会社 Vehicle body structure
US11834099B2 (en) 2020-09-04 2023-12-05 Honda Motor Co., Ltd. Vehicle body structure

Similar Documents

Publication Publication Date Title
EP1653114B1 (en) Impact-absorbing member
EP2565489A1 (en) Shock-absorbing member
EP2541093A1 (en) Impact absorbing member
US9586545B2 (en) Bumper for a motor vehicle
JP4930620B2 (en) Impact energy absorbing structure
JP2017001601A (en) Side frame for vehicle body
US10442468B2 (en) Metal pipe and structural member using metal pipe
EP2055405B1 (en) Method of metal sheet press forming
JP2010083381A (en) Bumper system and method for manufacturing the same
JPH09254808A (en) Aluminum alloy extruded square pipe for front side member excellent in axial compression characteristics
JP4395964B2 (en) Impact energy absorbing structure
JP2005029064A (en) Energy absorption member for aluminum alloy automobile frame and manufacturing method thereof
JPH07145842A (en) Energy absorbing member made of aluminum alloy for automobile
JP5354928B2 (en) Composite aluminum alloy extruded material for welded structures
JP6790697B2 (en) Structural members and vehicles
JPH07145843A (en) Energy absorbing member made of aluminum alloy for automobile
JP2008189311A (en) Load receiving article for vehicle
JP2007030647A (en) Axial compression energy absorbing member for automobile frame made of aluminum alloy
JP2003139179A (en) Collision energy absorption member
JP6634921B2 (en) Doors for vehicles
JPH07180010A (en) Energy absorbing member and its production
JP4706656B2 (en) Bumpy stay
JP7368710B2 (en) Steel parts for vehicles
EP3932750B1 (en) Structural member for vehicle
JP5455349B2 (en) Aluminum alloy extruded shape roll bending method and aluminum alloy extruded shape member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060704

A131 Notification of reasons for refusal

Effective date: 20090325

Free format text: JAPANESE INTERMEDIATE CODE: A131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090326

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090716