JP2009063013A - Energy absorbing member - Google Patents

Energy absorbing member Download PDF

Info

Publication number
JP2009063013A
JP2009063013A JP2007229077A JP2007229077A JP2009063013A JP 2009063013 A JP2009063013 A JP 2009063013A JP 2007229077 A JP2007229077 A JP 2007229077A JP 2007229077 A JP2007229077 A JP 2007229077A JP 2009063013 A JP2009063013 A JP 2009063013A
Authority
JP
Japan
Prior art keywords
absorbing member
deformation resistance
energy absorbing
high deformation
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007229077A
Other languages
Japanese (ja)
Other versions
JP5056281B2 (en
Inventor
Kenji Murase
健二 村▲瀬▼
Takeshi Sugihara
毅 杉原
Yasuaki Ishida
恭聡 石田
Kenichi Yamamoto
研一 山本
Katsuya Nishiguchi
勝也 西口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2007229077A priority Critical patent/JP5056281B2/en
Publication of JP2009063013A publication Critical patent/JP2009063013A/en
Application granted granted Critical
Publication of JP5056281B2 publication Critical patent/JP5056281B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an energy absorbing member 10 high in the weight efficiency of energy absorption. <P>SOLUTION: The energy absorbing member 10 comprises a cylindrical body 11 having a peripheral wall; and a plurality of line-shaped high deformation resisting portions 12 provided on the peripheral wall in a circumferential direction at even intervals, and having higher deformation resistance than those of other parts constituting the peripheral wall. Each line-shaped high deformation resisting portion 12 extends from one end to the other end in the body so as to meander in a wave shape in a cylinder axial direction. When a compressing load in the cylinder axial direction is inputted into the body 11, parts between the line-shaped high deformation resisting portions 12 are individually deformed into bellows shapes. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、圧縮荷重が入力されたときに塑性変形することで、そのエネルギを吸収するエネルギ吸収部材に関する。   The present invention relates to an energy absorbing member that absorbs energy by plastic deformation when a compressive load is input.

例えば特許文献1には、車両のフレームの一部分を構成し、衝突時の衝撃荷重を吸収するために用いられるエネルギ吸収部材が開示されている。このエネルギ吸収部材は、筒状の本体と、この本体の外周面における筒軸方向の中間位置に形成された凹凸部と、を備えている。このエネルギ吸収部材では、本体に対し筒軸方向の圧縮荷重が入力されたときには、前記凹凸部が起点となって本体が筒軸方向に比較的大きく折れ曲げ変形し、それによって、エネルギを吸収するようにしている。   For example, Patent Document 1 discloses an energy absorbing member that constitutes a part of a vehicle frame and is used to absorb an impact load at the time of a collision. The energy absorbing member includes a cylindrical main body and a concavo-convex portion formed at an intermediate position in the cylinder axis direction on the outer peripheral surface of the main body. In this energy absorbing member, when a compressive load in the cylinder axis direction is input to the main body, the main body is bent and deformed relatively large in the cylinder axis direction starting from the uneven portion, thereby absorbing energy. I am doing so.

また、特許文献2には、横断面矩形状の本体を備えたエネルギ吸収部材において、その本体における相対する2面においては、複数の横溝を筒軸方向の同じ位置に形成するのに対し、隣合う2面においては、複数の横溝を筒軸方向に1/2ピッチだけずらして形成したエネルギ吸収部材が開示されている。これによって特許文献2のエネルギ吸収部材では、本体に対し筒軸方向の圧縮荷重が入力されたときに、各横溝が起点となって蛇腹状に変形すると共に、その蛇腹変形が筒軸方向の広い範囲に亘って均等になるようにしている。
特開2005−29064号公報 特開2004−148955号公報
Further, in Patent Document 2, in an energy absorbing member having a main body having a rectangular cross section, a plurality of horizontal grooves are formed at the same position in the cylinder axis direction on two opposing surfaces of the main body, while adjacent to each other. On two mating surfaces, there is disclosed an energy absorbing member formed by shifting a plurality of lateral grooves by a 1/2 pitch in the cylinder axis direction. Thus, in the energy absorbing member of Patent Document 2, when a compressive load in the cylinder axis direction is input to the main body, each lateral groove starts as a bellows shape and the bellows deformation is wide in the cylinder axis direction. It is made uniform over the range.
JP 2005-29064 A JP 2004-148955 A

ところで、特許文献1に記載のエネルギ吸収部材は、本体の折れ曲げ変形が比較的大きいため、その変形する部分以外の部分、つまり本体の大部分がエネルギの吸収にほとんど関与しない。このため、部材重量に対するエネルギの吸収量(エネルギ吸収の重量効率)が比較的低いという問題がある。   By the way, since the energy absorption member of patent document 1 has the comparatively large bending deformation of a main body, parts other than the part to deform | transform, ie, most parts of a main body, are hardly involved in energy absorption. For this reason, there exists a problem that the amount of energy absorption (weight efficiency of energy absorption) with respect to a member weight is comparatively low.

こうした低い重量効率に起因して、エネルギ吸収部材を車両のフレームの一部分を構成するために用いた場合は、車両重量の増大に伴い例えば燃費の悪化を招くことにもなる。   Due to such low weight efficiency, when the energy absorbing member is used to constitute a part of the vehicle frame, for example, the fuel consumption is deteriorated as the vehicle weight increases.

これに対し例えば特許文献2に記載のエネルギ吸収部材は、変形する領域が広くなるようにすることで、エネルギ吸収の重量効率を特許文献1に記載のエネルギ吸収部材よりも改善している。しかしながら、エネルギ吸収の重量効率をさらに向上させたいという要求が存在する。   On the other hand, for example, the energy absorbing member described in Patent Document 2 is improved in the weight efficiency of energy absorption compared with the energy absorbing member described in Patent Document 1 by making the deformation region wide. However, there is a demand to further improve the weight efficiency of energy absorption.

本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、エネルギ吸収の重量効率の高いエネルギ吸収部材を提供することにある。   This invention is made | formed in view of this point, The place made into the objective is to provide the energy absorption member with high weight efficiency of energy absorption.

本発明の一側面によると、エネルギ吸収部材は、周壁を有する筒状の本体と、前記周壁に対しその周方向に所定の間隔を空けて設けられた、当該周壁を構成する他の部位よりも変形抵抗の高い複数の筋状高変形抵抗部と、を備え、前記各筋状高変形抵抗部は、前記本体における一端から他端に亘って筒軸方向に波形に蛇行しながら延びており、前記本体に対して前記筒軸方向の圧縮荷重が入力したときには、前記筋状高変形抵抗部の間の部分それぞれが個別に、蛇腹状に潰れ変形する。   According to one aspect of the present invention, the energy absorbing member is more than a cylindrical main body having a peripheral wall and other portions constituting the peripheral wall provided at a predetermined interval in the circumferential direction with respect to the peripheral wall. A plurality of streak-like high deformation resistance parts having a high deformation resistance, each of the streaky high-deformation resistance parts extending while meandering in a cylindrical axis direction from one end to the other end of the main body, When a compressive load in the cylinder axis direction is input to the main body, each of the portions between the streak-like high deformation resistance portions is individually crushed and deformed into a bellows shape.

この構成によると、筒軸方向の圧縮荷重が本体に対して入力されたときには、波形に延びる各筋状高変形抵抗部が圧縮されることで、その波形が筒軸方向に潰れるようになる。このときに、隣り合う筋状高変形抵抗部と筋状高変形抵抗部との間の部分において、波形の山同士が向かい合う箇所は、その2つの山が近づくようになるため、その山同士の相対方向に圧縮されるようになる。これによってその箇所には、径方向の外方に向かって凸状の変形しわが、山同士の相対方向に延びて発生する。これに対し、波形の谷同士が向かい合う箇所は、その2つの谷が離れるようになるため、その谷同士の相対方向に引っ張られるようになる。これによってその箇所には、径方向の内方に向かって凸状の変形しわが、谷同士の相対方向に延びて発生する。そうして、外向きに凸の変形しわと内向きに凸の変形しわとが筒軸方向に並ぶようになるから、隣り合う筋状高変形抵抗部と筋状高変形抵抗部との間の部分が蛇腹状に変形することになる。   According to this configuration, when a compressive load in the cylinder axis direction is input to the main body, each of the streaky high deformation resistance portions extending in the waveform is compressed, so that the waveform is crushed in the cylinder axis direction. At this time, in the portion between the streak-like high deformation resistance portion and the streak-like high deformation resistance portion, where the corrugated peaks face each other, the two peaks approach each other. It becomes compressed in the relative direction. As a result, convex deformation wrinkles in the radial direction extend in the relative direction between the peaks. On the other hand, the portions where the corrugated valleys face each other are separated from each other, so that they are pulled in the relative direction of the valleys. As a result, convex deformation wrinkles inward in the radial direction extend in the relative direction of the valleys. As a result, the outwardly projecting deformation wrinkles and the inwardly projecting deformation wrinkles are aligned in the cylinder axis direction, so that there is a gap between the adjacent streaky high deformation resistance portions and the streaky high deformation resistance portions. A part will deform | transform into a bellows shape.

前記構成のエネルギ吸収部材では、その本体が、一端から他端まで延びる筋状高変形抵抗部によって周方向に複数の領域に分割されているから、前記本体の筒軸方向の一端から他端に亘る蛇腹状の変形が、前記複数の領域のそれぞれで個別に生じることになる。その結果、筋状高変形抵抗部が起点となってエネルギ吸収部材の広い範囲に亘って複雑な変形が生じることで、エネルギ吸収の重量効率が向上する。   In the energy absorbing member having the above configuration, the main body is divided into a plurality of regions in the circumferential direction by the streaky high deformation resistance portion extending from one end to the other end. The accordion-like deformation that occurs is caused individually in each of the plurality of regions. As a result, a complicated deformation occurs over a wide range of the energy absorbing member starting from the streak-like high deformation resistance portion, thereby improving the weight efficiency of energy absorption.

前記筋状高変形抵抗部は、隣り合う筋状高変形抵抗部間で、その波形の位相が半ピッチだけ互いにずれている、としてもよい。   The streaky high deformation resistance portions may be configured such that the phase of the waveform is shifted from each other by a half pitch between adjacent streaky high deformation resistance portions.

こうすることで、前述した筋状高変形抵抗部と筋状高変形抵抗部との間の部分においては、山同士が向かい合う方向が筒軸に直交する方向になると共に、谷同士が向かい合う方向も筒軸に直交する方向になる。このため、圧縮荷重が入力したときに本体に生じる変形しわは、筒軸に対し直交する方向に延びるようになるから、本体がより安定して蛇腹状に潰れ変形することになる。その結果、エネルギ吸収の重量効率がさらに向上する。   In this way, in the portion between the streaky high deformation resistance portion and the streaky high deformation resistance portion described above, the direction in which the peaks face each other is the direction perpendicular to the cylinder axis, and the direction in which the valleys face each other The direction is perpendicular to the cylinder axis. For this reason, deformation wrinkles generated in the main body when a compressive load is input extend in a direction orthogonal to the cylinder axis, so that the main body is more stably crushed and deformed in a bellows shape. As a result, the weight efficiency of energy absorption is further improved.

前記本体は、その周壁が複数の平面部と当該平面部同士が接合する複数の稜線とを含んで構成された横断面多角形状であり、前記各稜線は、前記筒軸方向に波形に蛇行して形成され、それによって、前記筋状高変形抵抗部を構成している、としてもよい。   The main body has a polygonal cross section in which a peripheral wall includes a plurality of plane portions and a plurality of ridge lines where the plane portions are joined to each other, and each of the ridge lines meanders in a waveform in the cylinder axis direction. The streak-like high deformation resistance portion may be formed thereby.

こうすることで、本体に圧縮荷重が入力したときには、隣り合う筋状高変形抵抗部間である平面部のそれぞれにおいて個別に蛇腹状の変形が生じることになる。   By doing so, when a compressive load is input to the main body, a bellows-like deformation occurs individually in each of the plane portions between the adjacent streak-like high deformation resistance portions.

前記本体の荷重−変位特性が所定の特性になるように、前記各筋状高変形抵抗部の波形のピッチ及びその高さの少なくとも一方が、前記筒軸方向に変更されている、としてもよい。   At least one of the pitch and the height of the waveform of each of the streaky high deformation resistance portions may be changed in the cylindrical axis direction so that the load-displacement characteristic of the main body becomes a predetermined characteristic. .

例えば、前記本体において前記圧縮荷重の入力側の変形抵抗は、その逆側の変形抵抗よりも低く設定されている、としてもよい。   For example, the deformation resistance on the input side of the compression load in the main body may be set lower than the deformation resistance on the opposite side.

こうすることによって、圧縮荷重の入力時に、本体における圧縮荷重の入力側の部分が比較的容易に潰れ変形するようになるため、本体の荷重−変位特性において、初期荷重のピーク値(本体が塑性変形を開始するときの荷重の値)を低下させることが可能になる。   By doing this, when the compressive load is input, the compressive load input side portion of the main body is relatively easily crushed and deformed. Therefore, in the load-displacement characteristics of the main body, the initial load peak value (the main body is plastic). It is possible to reduce the load value when starting deformation.

前記各筋状高変形抵抗部の波形のピッチは、前記圧縮荷重の入力側からその逆側に向かって次第に大きくされている、としてもよい。   The pitch of the waveform of each of the streaky high deformation resistance portions may be gradually increased from the compression load input side toward the opposite side.

また、前記各筋状高変形抵抗部の波形の高さは、前記圧縮荷重の入力側からその逆側に向かって次第に小さくされている、としてもよい。   Moreover, the height of the waveform of each of the streaky high deformation resistance portions may be gradually reduced from the compression load input side toward the opposite side.

こうすることによって、本体において前記圧縮荷重の入力側の変形抵抗を、その逆側の変形抵抗よりも低く設定することが実現する。   By doing so, it is possible to set the deformation resistance on the input side of the compression load in the main body to be lower than the deformation resistance on the opposite side.

前記各筋状高変形抵抗部は、前記周壁の表面から凸又は凹となるように当該周壁を周方向に曲げ変形させることによって形成されている、としてもよい。周壁を、筒軸方向に沿ってそれに直交する方向に曲げ変形させることで、その部分の変形抵抗が相対的に高くなる。   Each of the streaky high deformation resistance portions may be formed by bending and deforming the peripheral wall in the circumferential direction so as to be convex or concave from the surface of the peripheral wall. By bending and deforming the peripheral wall in the direction perpendicular to the cylinder axis direction, the deformation resistance of that portion becomes relatively high.

前記各筋状高変形抵抗部は、前記周壁に対し局所的に焼き入れ処理を施すことによって形成されている、としてもよい。焼き入れ処理によって局所的に耐性を高めることで、その部分の変形抵抗が相対的に高くなる。   Each of the streaky high deformation resistance portions may be formed by locally quenching the peripheral wall. By increasing the resistance locally by the quenching process, the deformation resistance of the portion becomes relatively high.

前記本体は、その筒軸方向が車両前後方向と一致するように配置されてその車両のフロントフレームの一部を構成すると共に、前記車両に入力された衝突荷重を、前記筋状高変形抵抗部の間の部分それぞれが個別に蛇腹状に変形することによって吸収する、としてもよい。   The main body is arranged so that a cylinder axis direction thereof coincides with a vehicle front-rear direction and constitutes a part of a front frame of the vehicle, and a collision load input to the vehicle It is good also as absorbing by each deform | transforming into a bellows shape each part between.

前述したように、このエネルギ吸収部材はエネルギ吸収の重量効率が高いため、車両のフレーム部材として用いたときに、車両重量が軽減するという利点が得られる。   As described above, since this energy absorbing member has a high energy absorption weight efficiency, when used as a vehicle frame member, there is an advantage that the vehicle weight is reduced.

以上説明したように、本発明によると、複数の筋状高変形抵抗部を有する本体に対し筒軸方向の圧縮荷重が入力されたときに、隣り合う筋状高変形抵抗部間の部分がそれぞれ個別に、筒軸方向の一端から他端に亘って蛇腹状に変形することによって、エネルギ吸収部材の広い範囲に亘って複雑な変形が生じることになり、エネルギ吸収の重量効率を大幅に向上させることができる。   As described above, according to the present invention, when a compressive load in the cylinder axis direction is input to the main body having a plurality of streak-like high deformation resistance parts, the portions between the streaky high-deformation resistance parts adjacent to each other are respectively By individually deforming in a bellows shape from one end to the other end in the cylinder axis direction, complicated deformation occurs over a wide range of the energy absorbing member, and the weight efficiency of energy absorption is greatly improved. be able to.

以下、本発明の実施形態を図面に基づいて説明する。尚、以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. It should be noted that the following description of the preferred embodiment is merely illustrative in nature, and is not intended to limit the present invention, its application, or its use.

(実施形態1)
図2は、本発明の実施形態1に係るエネルギ吸収部材10を示しており、このエネルギ吸収部材10は、図1に示すように、例えば車両前部における車幅方向の両側位置で車両前後方向にそれぞれ延びるフロントサイドフレーム91の前端部分や、フロントサイドフレーム91の前端とバンパーレインフォースメントとの間に介設されるクラッシュカン92として用いられる。
(Embodiment 1)
FIG. 2 shows the energy absorbing member 10 according to the first embodiment of the present invention. As shown in FIG. 1, the energy absorbing member 10 is, for example, in the vehicle front-rear direction at the vehicle width direction on both sides in the vehicle front portion. Are used as a crush can 92 interposed between the front end portion of the front side frame 91 and the front end of the front side frame 91 and the bumper reinforcement.

前記エネルギ吸収部材10は、筒状の本体11を備えており、本体11の周壁には、他の部分よりも相対的に変形抵抗の高い筋状高変形抵抗部12が形成されている。この筋状高変形抵抗部12は、図3に示すように、本体11の周壁を、その表面から径方向の外方に凸となるように、曲げ変形することによって形成されていて、本体11の一端から他端に亘って、筒軸方向に波形に蛇行しながら延びている。このように筋状高変形抵抗部12は、筒軸方向に延びると共に、その筒軸に対して直交する方向に曲げ変形されているため、他の部位よりも高い変形抵抗を示すことになる。   The energy absorbing member 10 includes a cylindrical main body 11, and a streak-like high deformation resistance portion 12 having relatively higher deformation resistance than other portions is formed on the peripheral wall of the main body 11. As shown in FIG. 3, the streak-like high deformation resistance portion 12 is formed by bending and deforming the peripheral wall of the main body 11 so as to protrude outward in the radial direction from the surface thereof. Extends from one end to the other end while meandering in a corrugated shape in the cylinder axis direction. As described above, the streak-like high deformation resistance portion 12 extends in the cylinder axis direction and is bent and deformed in a direction orthogonal to the cylinder axis, and therefore exhibits a higher deformation resistance than other portions.

筋状高変形抵抗部12は、本体11の周壁に対し、その周方向に等間隔を空けて複数形成されている。ここで、複数の筋状高変形抵抗部12は、図4に示すように、その波形の位相が互いに同位相となるように形成されている。これによって、隣り合う筋状高変形抵抗部12同士の間の部分においては、波形の山と山とが向かい合う方向が、図4の一点鎖線で示すように筒軸に対して傾斜すると共に、波形の谷と谷とが向かい合う方向も同様に、図4の二点鎖線で示すように筒軸に対して傾斜することになる。   A plurality of streak-like high deformation resistance portions 12 are formed on the peripheral wall of the main body 11 at equal intervals in the circumferential direction. Here, as shown in FIG. 4, the plurality of streak-like high deformation resistance portions 12 are formed such that the phases of the waveforms are the same. As a result, in the portion between the adjacent streak-like high deformation resistance portions 12, the direction in which the ridges of the waveform face each other is inclined with respect to the cylinder axis as shown by the one-dot chain line in FIG. Similarly, the direction in which the valleys face each other is inclined with respect to the cylinder axis as shown by the two-dot chain line in FIG.

ここで、本体11における隣り合う筋状高変形抵抗部12の間隔(a)、各筋状高変形抵抗部12における波形のピッチ(b)及び高さ(c)、並びに各筋状高変形抵抗部12の深さ(d)は、それぞれエネルギ吸収部材10に要求される特性(その変形抵抗やエネルギ吸収量等)に応じて適宜設定すればよい。例えば筋状高変形抵抗部12の間隔(a)は、間隔が小さいほど本体11の変形抵抗は低下し、筋状高変形抵抗部12の波形のピッチ(b)は、ピッチが短いほど本体11の変形抵抗は低下し、筋状高変形抵抗部12の波形の高さ(c)は、高さが高いほど本体11の変形抵抗は低下し、筋状高変形抵抗部12の深さ(d)は、深さが深いほど本体11の変形抵抗は低下する。   Here, the interval (a) between the adjacent streaky high deformation resistance portions 12 in the main body 11, the pitch (b) and height (c) of the waveform in each streaky high deformation resistance portion 12, and each streaky high deformation resistance. What is necessary is just to set the depth (d) of the part 12 suitably according to the characteristics (The deformation resistance, energy absorption amount, etc.) requested | required of the energy absorption member 10, respectively. For example, as the interval (a) between the streak-like high deformation resistance portions 12 is smaller, the deformation resistance of the main body 11 is lower, and the waveform pitch (b) of the streak-like high deformation resistance portion 12 is shorter as the pitch is shorter. The deformation resistance of the main body 11 decreases as the height of the corrugated high deformation resistance portion 12 increases, and the depth (d) of the streaky high deformation resistance portion 12 decreases. ), The deformation resistance of the main body 11 decreases as the depth increases.

尚、本体11の材質は、例えば鋼やアルミニウム等の、車両のフレームを構成する部材として用いられる各種材料の中から適宜選択することができる。   The material of the main body 11 can be appropriately selected from various materials used as members constituting a vehicle frame, such as steel and aluminum.

前記構成のエネルギ吸収部材10は、種々の公知の成形方法を適宜採用することによって製造することが可能である。一例としては、図5に示すように、本体11となる円筒状の部材82に対し、マンドレル81を用いた曲げ加工を施して筋状高変形抵抗部12を形成することによりエネルギ吸収部材10を製造することができる。   The energy absorbing member 10 having the above-described configuration can be manufactured by appropriately adopting various known molding methods. As an example, as shown in FIG. 5, the energy absorbing member 10 is formed by bending a cylindrical member 82 serving as the main body 11 using a mandrel 81 to form a streak-like high deformation resistance portion 12. Can be manufactured.

ここで使用するマンドレル81は、その周囲に、本体11に形成される筋状高変形抵抗部12の数に対応する数の突起83が、前記筋状高変形抵抗部12の間隔に対応する間隔を空けて形成されている。そうしてこのマンドレル81を、その中心軸周りに所定の回転角で反転させながら、所定の挿入速度で前記円筒状の部材82に挿入する。こうすることで、マンドレル81の各突起83によって、円筒状の部材82の周壁が径方向の外方に押し出されるようになり、円筒状の部材82(つまり本体11)の一端から他端に亘って、筒軸方向に波形に蛇行しながら延びる筋状高変形抵抗部12が、周方向に所定の間隔を空けて複数形成されることになる。このとき、マンドレル81の反転角度によって各筋状高変形抵抗部12の波形の高さが設定されると共に、マンドレル81の反転周期(周波数)と挿入速度との関係によって各筋状高変形抵抗部12の波形のピッチが設定されるようになる。また、マンドレル81の突起83の高さによって各筋状高変形抵抗部12の深さが設定され、マンドレル81の突起83の数及びその配置によって、筋状高変形抵抗部12の間隔が設定される。   The mandrel 81 used here has a number of protrusions 83 corresponding to the number of the streaky high deformation resistance portions 12 formed on the main body 11 around the mandrel 81. It is formed with a gap. Then, the mandrel 81 is inserted into the cylindrical member 82 at a predetermined insertion speed while being inverted around the central axis at a predetermined rotation angle. By doing so, the peripheral wall of the cylindrical member 82 is pushed outward in the radial direction by the projections 83 of the mandrel 81, and extends from one end to the other end of the cylindrical member 82 (that is, the main body 11). Thus, a plurality of streak-like high deformation resistance portions 12 that extend while meandering in the waveform in the cylinder axis direction are formed at predetermined intervals in the circumferential direction. At this time, the height of the waveform of each streak high deformation resistance portion 12 is set according to the reversal angle of the mandrel 81, and each streak high deformation resistance portion depends on the reversal period (frequency) of the mandrel 81 and the insertion speed. Twelve waveform pitches are set. Further, the depth of each streaky high deformation resistance portion 12 is set by the height of the projection 83 of the mandrel 81, and the interval between the streaky high deformation resistance portions 12 is set by the number and arrangement of the projections 83 of the mandrel 81. The

また、図示は省略するが、板状の部材に対し例えばプレス加工や圧延加工を施すことによって、その表面から凸となった複数の筋を、板状部材の一端から他端に亘って所定の波形状となるように形成すると共に、その板状の部材を筒状に巻いてその端部同士を溶接等により接合することによっても、エネルギ吸収部材10を製造することが可能である。   Although not shown in the figure, the plate-like member is subjected to, for example, pressing or rolling, so that a plurality of streaks protruding from the surface thereof are spread over a predetermined range from one end to the other end of the plate-like member. The energy absorbing member 10 can also be manufactured by forming the plate-like member into a corrugated shape and winding the plate-like member into a cylindrical shape and joining the end portions thereof by welding or the like.

前記のエネルギ吸収部材10に対し圧縮荷重が入力されたときには、筒軸方向に波形に延びる筋状高変形抵抗部12が筒軸方向に潰れ変形するようになる。このときに、隣り合う筋状高変形抵抗部12の間の部分において、波形の山同士が向かい合う箇所(図4の一点鎖線参照)は、その2つの山が近づくようになるため、その山同士が相対する方向に圧縮されるようになる。これによってその箇所、つまり図4に一点鎖線で示す箇所は、径方向の外方に向かって凸状の変形しわが、山同士の相対方向に延びるように発生する。これに対し、波形の谷同士が向かい合う箇所(図4の二点鎖線参照)は、その2つの谷が離れるようになるため、その谷同士の相対方向に引っ張られるようになる。これによってその箇所、つまり図4に二点鎖線で示す箇所は、径方向の内方に向かって凸状の変形しわが、谷同士の相対方向に延びるように発生する。そうして、外向きに凸状の変形しわと、内向きに凸状の変形しわと、が筒軸方向に交互に並ぶようになるから、隣り合う筋状高変形抵抗部12の間の部分が蛇腹状に変形することになる。   When a compressive load is input to the energy absorbing member 10, the streaky high deformation resistance portion 12 extending in a waveform in the cylinder axis direction is crushed and deformed in the cylinder axis direction. At this time, in the portion between the adjacent streak-like high deformation resistance portions 12, the portions where the ridges of the waveform face each other (refer to the one-dot chain line in FIG. 4) are closer to each other. Will be compressed in the opposite direction. As a result, the portion, that is, the portion indicated by the alternate long and short dash line in FIG. 4, is generated such that the convex deformation wrinkles extend outward in the radial direction in the relative direction of the mountains. On the other hand, since the two valleys are separated from each other where the corrugated valleys face each other (see the two-dot chain line in FIG. 4), the valleys are pulled in the relative direction of the valleys. As a result, the portion, that is, the portion indicated by a two-dot chain line in FIG. 4 is generated such that the convex deformation wrinkles extend inward in the radial direction and extend in the relative direction of the valleys. Thus, the outwardly convex deformation wrinkles and the inwardly convex deformation wrinkles are alternately arranged in the cylinder axis direction, so the portion between the adjacent streaky high deformation resistance portions 12 Will be deformed into a bellows shape.

また、図6に示すように、各筋状高変形抵抗部12の波形のピークに相当する位置において、その筋状高変形抵抗部12を挟んだ両側の一方(図6の右側)は、径方向の外方に向かって凸の変形しわが生じ、他方(図6の左側)は、径方向の内方に向かって凸の変形しわが生じる。従って、筋状高変形抵抗部12と筋状高変形抵抗部12との間の部分は複数存在するが、それぞれの部分が個別に、蛇腹状に変形することになる(図7参照)。   Further, as shown in FIG. 6, at the position corresponding to the peak of the waveform of each streak high deformation resistance portion 12, one of the both sides sandwiching the streak high deformation resistance portion 12 (the right side in FIG. 6) has a diameter. Convex deformation wrinkles occur outward in the direction, and the other (left side in FIG. 6) has convex deformation wrinkles inward in the radial direction. Accordingly, there are a plurality of portions between the streaky high deformation resistance portion 12 and the streaky high deformation resistance portion 12, but each portion is individually deformed into a bellows shape (see FIG. 7).

その結果、このエネルギ吸収部材10は、圧縮荷重の入力時に、広い範囲に亘って複雑な変形が生じることになるため、エネルギ吸収の重量効率を従来に比べて向上させることができる。   As a result, the energy absorbing member 10 undergoes complex deformation over a wide range when a compressive load is input, so that the weight efficiency of energy absorption can be improved as compared with the conventional case.

尚、各筋状高変形抵抗部12は、前述したように、径方向の外方に向かって凸となるように周壁を曲げることによって形成するのではなく、例えば図8に示すように、径方向の内方に向かって凸となるように周壁を曲げることによって形成してもよい。この場合は、例えば図9に示すように、円筒状の部材82の外周面に当接することで、その周壁を径方向の内方に押し出す複数の突起85を備えたマンドレルを用い、このマンドレルをその中心軸周りに所定の回転角で反転させながら、所定の速度で、前記円筒状の部材82に対し相対移動させることによって、筋状高変形抵抗部を有するエネルギ吸収部材を製造することが可能になる。   Each streak-like high deformation resistance portion 12 is not formed by bending the peripheral wall so as to be convex outward in the radial direction, as described above. For example, as shown in FIG. You may form by bending a surrounding wall so that it may become convex toward the inward of a direction. In this case, for example, as shown in FIG. 9, a mandrel having a plurality of protrusions 85 that push the peripheral wall inward in the radial direction by contacting the outer peripheral surface of the cylindrical member 82 is used. It is possible to manufacture an energy absorbing member having a streak-like high deformation resistance portion by moving it relative to the cylindrical member 82 at a predetermined speed while inverting the central axis at a predetermined rotation angle. become.

さらに、各筋状高変形抵抗部12としては、例えば図10に示すように、他の部位よりも肉厚にすることで、その外表面から径方向の外方に突出する凸部によって構成してもよい。この構成でも、他の部位よりも肉厚であることで、筋状高変形抵抗部の変形抵抗は相対的に高くなる。また、図示は省略するが、こうした凸部を内表面から径方向の内方に突出するようにして、筋状高変形抵抗部を形成してもよい。   Furthermore, each streak-like high deformation resistance portion 12 is constituted by a convex portion protruding radially outward from its outer surface by making it thicker than other portions, for example, as shown in FIG. May be. Even in this configuration, the deformation resistance of the streak-like high deformation resistance portion is relatively high because it is thicker than other portions. Although not shown in the drawings, the streak-like high deformation resistance portion may be formed by projecting such a convex portion radially inward from the inner surface.

加えて、本体に対し局所的に焼き入れ処理を施し、その部分の耐性を他の部位よりも向上させることによって、筋状高変形抵抗部を構成してもよい。すなわち、図示は省略するが、例えば板状の部材に対して、レーザ焼き入れ等によって、その一端から他端に亘って所定の波形に焼き入れを施し、その後、その板状の部材を筒状に巻いて、その端部同士を互いに溶接等によって接合する。こうすることで、筋状高変形抵抗部を有する筒状のエネルギ吸収部材を製造することで可能である。   In addition, the streak-like high deformation resistance portion may be configured by locally quenching the main body and improving the resistance of the portion as compared with other portions. That is, although illustration is omitted, for example, a plate-like member is quenched into a predetermined waveform from one end to the other end by laser quenching or the like, and then the plate-like member is cylindrical. The ends are joined to each other by welding or the like. By doing so, it is possible to manufacture a cylindrical energy absorbing member having a streak-like high deformation resistance portion.

(実施形態2)
図11は、実施形態2に係るエネルギ吸収部材20を示している。このエネルギ吸収部材20は、その筋状高変形抵抗部12の配置が、実施形態1のエネルギ吸収部材10とは異なっている。
(Embodiment 2)
FIG. 11 shows an energy absorbing member 20 according to the second embodiment. The energy absorbing member 20 is different from the energy absorbing member 10 of the first embodiment in the arrangement of the streaky high deformation resistance portion 12.

つまり、図12に拡大して示すように、このエネルギ吸収部材20では、隣合う筋状高変形抵抗部12の波形の位相が、互いに1/2ピッチだけずれている。これによって、隣り合う筋状高変形抵抗部12の間において、波形の山と山とが向かい合う方向が、図12に一点鎖線で示すように筒軸に直交する水平方向になると共に、波形の谷と谷とが向かい合う方向が、図12に二点鎖線で示すように水平方向になる。   That is, as shown in an enlarged view in FIG. 12, in this energy absorbing member 20, the phase of the waveform of the adjacent streaky high deformation resistance portion 12 is shifted from each other by ½ pitch. As a result, the direction in which the ridges of the corrugations face each other between the adjacent streaky high deformation resistance portions 12 becomes a horizontal direction orthogonal to the cylinder axis as shown by a one-dot chain line in FIG. The direction in which the valleys face each other is the horizontal direction as shown by the two-dot chain line in FIG.

このエネルギ吸収部材20に対して筒軸方向の圧縮荷重が入力されたときには、前記エネルギ吸収部材10と同様に、隣り合う筋状高変形抵抗部12の間において、山同士が相対する箇所は径方向の外方に向かって凸の変形しわが生じ、谷同士が相対する箇所は径方向の内方に向かって凸の変形しわが生じる。このエネルギ吸収部材20では、外向きの凸の変形しわ及び内向きに凸の変形しわが共に水平方向に延びるようになるため、図13に示すように、本体21は、周方向に凹凸変形しつつ(図13の黒矢印参照)、筒軸方向に蛇腹状に安定して潰れ変形するようになる。その結果、エネルギ吸収の重量効率をより一層向上させることができるようになる。   When a compressive load in the cylinder axis direction is input to the energy absorbing member 20, as in the case of the energy absorbing member 10, the portion where the peaks are opposite to each other is between the adjacent streaky high deformation resistance portions 12. Convex deformation wrinkles are generated outward in the direction, and convex deformation wrinkles are generated inward in the radial direction at locations where the valleys face each other. In this energy absorbing member 20, both the outward convex deformation wrinkles and the inward convex deformation wrinkles extend in the horizontal direction, and as shown in FIG. 13, the main body 21 is unevenly deformed in the circumferential direction. However (see the black arrow in FIG. 13), it is stably crushed and deformed in a bellows shape in the cylinder axis direction. As a result, the weight efficiency of energy absorption can be further improved.

尚、図示は省略するが、この実施形態2においても各筋状高変形抵抗部は、前述したように径方向の内方に向かって凸となるように周壁を曲げることによって形成してもよいし、他の部位よりも厚肉の凸部によって形成してもよい。また、焼き入れ処理を施すことによって各筋状高変形抵抗部を形成してもよい。   In addition, although illustration is omitted, also in the second embodiment, each streak-like high deformation resistance portion may be formed by bending the peripheral wall so as to be convex inward in the radial direction as described above. However, you may form by a convex part thicker than another site | part. Moreover, you may form each streak high deformation resistance part by performing a hardening process.

(実施形態3)
図14は、実施形態3に係るエネルギ吸収部材30を示している。このエネルギ吸収部材30は、本体31の横断面形状が矩形状に形成されており、各筋状高変形抵抗部は、各稜線32によって形成されている。
(Embodiment 3)
FIG. 14 shows an energy absorbing member 30 according to the third embodiment. In the energy absorbing member 30, the cross section of the main body 31 is formed in a rectangular shape, and each streak-like high deformation resistance portion is formed by each ridge line 32.

つまり、このエネルギ吸収部材30の本体31は、4つの平面部33と、隣り合う平面部同士が接合する4つの稜線32と、を含む横断面矩形状の筒状であり、その各稜線32が、図15に拡大して示すように、筒軸方向に波形に蛇行して形成されている。こうしたエネルギ吸収部材30は、例えば矩形筒状の部材に対し、各稜線32を挟んだ左右両側のそれぞれの部分を、所定の治具を用いて、一方側から他方側に向かって水平方向に押圧すると共に、その押圧方向を筒軸方向に交互となるように変更することによって、稜線32が波形に曲げ変形させることができるため、製造可能である。   That is, the main body 31 of the energy absorbing member 30 has a cylindrical shape having a rectangular cross section including four plane portions 33 and four ridge lines 32 where adjacent plane portions are joined to each other. As shown in an enlarged view in FIG. 15, it is formed to meander in a waveform in the cylinder axis direction. Such an energy absorbing member 30 presses each of the left and right sides of each ridgeline 32 in a horizontal direction from one side to the other side using a predetermined jig against a rectangular cylindrical member, for example. In addition, since the ridgeline 32 can be bent and deformed into a waveform by changing the pressing direction so as to alternate in the cylinder axis direction, it can be manufactured.

このエネルギ吸収部材30に対して、筒軸方向の圧縮荷重が入力したときには、図示は省略するが、前記円筒状のエネルギ吸収部材10と同様に、隣り合う筋状高変形抵抗部同士の間、つまり稜線32と稜線32との間である平面部33のそれぞれにおいて個別に、蛇腹状の潰れ変形が生じる。その結果、エネルギ吸収部材30の重量効率を向上させることができる。   When a compressive load in the cylinder axis direction is input to the energy absorbing member 30, although not shown in the figure, like the cylindrical energy absorbing member 10, between the adjacent streaky high deformation resistance portions, That is, a bellows-like crushing deformation occurs individually in each of the plane portions 33 between the ridge lines 32. As a result, the weight efficiency of the energy absorbing member 30 can be improved.

尚、この構成においても、隣り合う稜線32の間で、波形の位相を同位相にしてもよいし、1/2ピッチだけずらしてもよい。   In this configuration as well, the waveform phase may be the same between adjacent ridge lines 32 or may be shifted by 1/2 pitch.

(実施形態4)
図16は、エネルギ吸収部材の荷重−変位特性の一例を示している。エネルギ吸収部材を、前述したように車両のフロントサイドフレーム91等に適用した場合に要求される特性としては、図16に実線で示すように、(1)初期荷重のピーク値(塑性変形を開始するときの荷重の値)が小さいこと、(2)荷重変動(本体が圧縮変形している最中の荷重の変動)が小さいこと、(3)ねらいの平均荷重になること、(4)潰れストロークが長いこと、の概ね4つの特性が挙げられる。この内、(1)(2)は主に、車両の乗員に大きな荷重変動が作用することを抑制するためであり、(3)(4)は主に、車両の緒元等に応じて設定されるエネルギ吸収部材の設計値に関係する。
(Embodiment 4)
FIG. 16 shows an example of load-displacement characteristics of the energy absorbing member. The characteristics required when the energy absorbing member is applied to the front side frame 91 of the vehicle as described above are as follows: (1) Peak value of initial load (starting plastic deformation) as shown by the solid line in FIG. (2) The load fluctuation (the fluctuation of the load during the compression deformation of the main body) is small, (3) The target average load, (4) Crushing There are approximately four characteristics of a long stroke. Among these, (1) and (2) are mainly for suppressing large load fluctuations from acting on the vehicle occupant, and (3) and (4) are mainly set according to the specifications of the vehicle. This is related to the design value of the energy absorbing member.

図17は、実施形態4に係るエネルギ吸収部材40を示している。この実施形態4に係るエネルギ吸収部材40は、図16に示す荷重−変位特性において初期荷重のピーク値を小さくすることを主目的としている。   FIG. 17 shows an energy absorbing member 40 according to the fourth embodiment. The energy absorbing member 40 according to the fourth embodiment is mainly intended to reduce the peak value of the initial load in the load-displacement characteristics shown in FIG.

つまり、このエネルギ吸収部材40の本体41において、圧縮荷重の入力側の部分(図17では上側の部分)は、各筋状高変形抵抗部(稜線42)の波形のピッチが比較的小さくされると共に、そのピッチが、本体41の上側から下側に向かって次第に大きくなるように設定されている。前述したように、筋状高変形抵抗部の波形のピッチは短いほど、本体41の変形抵抗は低下することから、この本体41は、圧縮荷重の入力側の部分が、その逆側の部分に比べて変形抵抗が低下することになる。従って、エネルギ吸収部材40に対して圧縮荷重が入力したときには、初期荷重のピーク値が低下するようになる。   That is, in the main body 41 of the energy absorbing member 40, the pitch of the waveform of each streaky high deformation resistance portion (ridge line 42) is relatively small in the compression load input side portion (upper portion in FIG. 17). At the same time, the pitch is set to gradually increase from the upper side to the lower side of the main body 41. As described above, since the deformation resistance of the main body 41 decreases as the waveform pitch of the streaky high deformation resistance portion is shorter, the main body 41 has a portion on the input side of the compressive load on the opposite side portion. In comparison, the deformation resistance is reduced. Therefore, when a compressive load is input to the energy absorbing member 40, the peak value of the initial load is lowered.

(変形例)
図18は、実施形態4のエネルギ吸収部材についての変形例を示している。このエネルギ吸収部材50は、各筋状高変形抵抗部(稜線52)の波形の高さが筒軸方向に変更されている。つまり、本体51において圧縮荷重の入力側の部分(図18では上側の部分)においては、波形の高さが比較的高く設定されると共に、その波形の高さが、本体51の上側から下側に向かって次第に低くなるように設定されている。筋状高変形抵抗部の波形の高さは高いほど、本体51の変形抵抗は低下することから、この本体51は、圧縮荷重の入力側の部分が、その逆側の部分に比べて変形抵抗が低下することになる。従って、エネルギ吸収部材50に対して圧縮荷重が入力したときには、初期荷重のピーク値が低下するようになる。
(Modification)
FIG. 18 shows a modification of the energy absorbing member of the fourth embodiment. In the energy absorbing member 50, the height of the waveform of each streaky high deformation resistance portion (ridge line 52) is changed in the cylinder axis direction. That is, in the portion of the main body 51 on the input side of the compressive load (the upper portion in FIG. 18), the height of the waveform is set to be relatively high, and the height of the waveform is changed from the upper side of the main body 51 to the lower side. It is set so as to become gradually lower toward. The higher the waveform height of the streak-like high deformation resistance portion, the lower the deformation resistance of the main body 51. Therefore, the main body 51 has a deformation resistance in the portion on the input side of the compressive load compared to the opposite side portion. Will drop. Accordingly, when a compressive load is input to the energy absorbing member 50, the peak value of the initial load is lowered.

尚、実施形態4及びその変形例において、エネルギ吸収部材の本体は、図2等に示すような円筒状にしても同様の作用効果を得ることができる。   In addition, in Embodiment 4 and its modification, even if the main body of an energy absorption member is cylindrical as shown in FIG. 2 etc., the same effect can be obtained.

以上説明したように、本発明は、エネルギ吸収部材の重量効率が向上するから、例えば車両のフレーム、特にフロントやリヤのフレームの一部を構成するためのエネルギ吸収部材として有用である。   As described above, since the weight efficiency of the energy absorbing member is improved, the present invention is useful as, for example, an energy absorbing member for constituting a part of a vehicle frame, particularly a front or rear frame.

エネルギ吸収部材が適用される車両のフロントフレームを示す一部破断の側面図である。It is a partially broken side view showing a front frame of a vehicle to which an energy absorbing member is applied. 実施形態1に係るエネルギ吸収部材を示す斜視図である。It is a perspective view which shows the energy absorption member which concerns on Embodiment 1. FIG. 前記エネルギ吸収部材における筋状高変形抵抗部の横断面図である。It is a cross-sectional view of the streaky high deformation resistance part in the energy absorbing member. 前記エネルギ吸収部材の周壁の拡大説明図である。It is expansion explanatory drawing of the surrounding wall of the said energy absorption member. 前記エネルギ吸収部材の製造方法の一例を示す説明図である。It is explanatory drawing which shows an example of the manufacturing method of the said energy absorption member. 前記エネルギ吸収部材の変形時における筋状高変形抵抗部の近傍の拡大斜視図である。It is an expansion perspective view of the vicinity of the streaky high deformation resistance part at the time of a deformation | transformation of the said energy absorption member. 前記エネルギ吸収部材が変形した状態を示す斜視図である。It is a perspective view which shows the state which the said energy absorption member deform | transformed. 実施形態1に変形例に係るエネルギ吸収部材における筋状高変形抵抗部の横断面図である。It is a cross-sectional view of the streaky high deformation resistance portion in the energy absorbing member according to the modified example of the first embodiment. 前記エネルギ吸収部材の製造方法の一例を示す説明図である。It is explanatory drawing which shows an example of the manufacturing method of the said energy absorption member. 実施形態1にさらに別の変形例に係るエネルギ吸収部材における筋状高変形抵抗部の横断面図である。It is a cross-sectional view of the streaky high deformation resistance portion in the energy absorbing member according to still another modification example of the first embodiment. 実施形態2に係るエネルギ吸収部材を示す斜視図である。It is a perspective view which shows the energy absorption member which concerns on Embodiment 2. FIG. 前記エネルギ吸収部材の周壁の拡大説明図である。It is expansion explanatory drawing of the surrounding wall of the said energy absorption member. 前記エネルギ吸収部材が変形した状態を示す斜視図である。It is a perspective view which shows the state which the said energy absorption member deform | transformed. 実施形態3に係るエネルギ吸収部材を示す斜視図である。It is a perspective view which shows the energy absorption member which concerns on Embodiment 3. FIG. 前記エネルギ吸収部材の稜線の部分の拡大斜視図である。It is an expansion perspective view of the part of the ridgeline of the energy absorption member. エネルギ吸収部材の荷重−変位特性の一例である。It is an example of the load-displacement characteristic of an energy absorption member. 実施形態4に係るエネルギ吸収部材を示す斜視図である。It is a perspective view which shows the energy absorption member which concerns on Embodiment 4. 実施形態4の変形例に係るエネルギ吸収部材を示す斜視図である。It is a perspective view which shows the energy absorption member which concerns on the modification of Embodiment 4.

符号の説明Explanation of symbols

10,20,30,40,50 エネルギ吸収部材
11,21,31,41,51 本体
12 筋状高変形抵抗部
32,42,52 稜線
33 平面部
91 フロントサイドフレーム(フロントフレーム)
92 クラッシュカン(フロントフレーム)
10, 20, 30, 40, 50 Energy absorbing members 11, 21, 31, 41, 51 Main body 12 Streaky high deformation resistance portions 32, 42, 52 Ridge line 33 Flat portion 91 Front side frame (front frame)
92 Crash Can (front frame)

Claims (10)

周壁を有する筒状の本体と、
前記周壁に対しその周方向に所定の間隔を空けて設けられた、当該周壁を構成する他の部位よりも変形抵抗の高い複数の筋状高変形抵抗部と、を備え、
前記各筋状高変形抵抗部は、前記本体における一端から他端に亘って筒軸方向に波形に蛇行しながら延びており、
前記本体に対して前記筒軸方向の圧縮荷重が入力したときには、前記筋状高変形抵抗部の間の部分それぞれが個別に、蛇腹状に潰れ変形するエネルギ吸収部材。
A cylindrical body having a peripheral wall;
A plurality of streak-like high deformation resistance portions provided with a predetermined interval in the circumferential direction with respect to the peripheral wall and having a higher deformation resistance than other parts constituting the peripheral wall,
Each of the streaky high deformation resistance portions extends while meandering in a waveform in the cylinder axis direction from one end to the other end of the main body,
An energy absorbing member in which each portion between the streak-like high deformation resistance portions is individually crushed and deformed into a bellows shape when a compressive load in the cylinder axis direction is input to the main body.
請求項1に記載のエネルギ吸収部材において、
前記筋状高変形抵抗部は、隣り合う筋状高変形抵抗部間で、その波形の位相が半ピッチだけ互いにずれているエネルギ吸収部材。
The energy absorbing member according to claim 1,
The streaky high deformation resistance portion is an energy absorbing member in which the waveform phase is shifted from each other by a half pitch between adjacent streaky high deformation resistance portions.
請求項1に記載のエネルギ吸収部材において、
前記本体は、その周壁が複数の平面部と当該平面部同士が接合する複数の稜線とを含んで構成された横断面多角形状であり、
前記各稜線は、前記筒軸方向に波形に蛇行して形成され、それによって、前記筋状高変形抵抗部を構成しているエネルギ吸収部材。
The energy absorbing member according to claim 1,
The main body has a polygonal cross section in which the peripheral wall includes a plurality of plane portions and a plurality of ridgelines where the plane portions are joined to each other,
Each said ridgeline is meandering in the waveform in the said cylinder axis direction, and is formed thereby, The energy absorption member which comprises the said streaky high deformation resistance part.
請求項1に記載のエネルギ吸収部材において、
前記本体の荷重−変位特性が所定の特性になるように、前記各筋状高変形抵抗部の波形のピッチ及びその高さの少なくとも一方が、前記筒軸方向に変更されているエネルギ吸収部材。
The energy absorbing member according to claim 1,
An energy absorbing member in which at least one of the pitch of the corrugated high deformation resistance portion and the height thereof is changed in the cylinder axis direction so that the load-displacement characteristic of the main body becomes a predetermined characteristic.
請求項4に記載のエネルギ吸収部材において、
前記本体において前記圧縮荷重の入力側の変形抵抗は、その逆側の変形抵抗よりも低く設定されているエネルギ吸収部材。
The energy absorbing member according to claim 4,
In the main body, the deformation resistance on the input side of the compressive load is set to be lower than the deformation resistance on the opposite side.
請求項5に記載のエネルギ吸収部材において、
前記各筋状高変形抵抗部の波形のピッチは、前記圧縮荷重の入力側からその逆側に向かって次第に大きくされているエネルギ吸収部材。
The energy absorbing member according to claim 5,
The energy absorbing member in which the pitch of the waveform of each of the streaky high deformation resistance portions is gradually increased from the compression load input side toward the opposite side.
請求項5に記載のエネルギ吸収部材において、
前記各筋状高変形抵抗部の波形の高さは、前記圧縮荷重の入力側からその逆側に向かって次第に小さくされているエネルギ吸収部材。
The energy absorbing member according to claim 5,
The height of the waveform of each said streaky high deformation resistance part is an energy-absorbing member that is gradually reduced from the compression load input side toward the opposite side.
請求項1に記載のエネルギ吸収部材において、
前記各筋状高変形抵抗部は、前記周壁の表面から凸又は凹となるように当該周壁を周方向に曲げ変形させることによって形成されているエネルギ吸収部材。
The energy absorbing member according to claim 1,
Each of the streaky high deformation resistance portions is an energy absorbing member formed by bending and deforming the peripheral wall in the circumferential direction so as to be convex or concave from the surface of the peripheral wall.
請求項1に記載のエネルギ吸収部材において、
前記各筋状高変形抵抗部は、前記周壁に対し局所的に焼き入れ処理を施すことによって形成されているエネルギ吸収部材。
The energy absorbing member according to claim 1,
Each of the streaky high deformation resistance portions is an energy absorbing member formed by locally quenching the peripheral wall.
請求項1に記載のエネルギ吸収部材において、
前記本体は、その筒軸方向が車両前後方向と一致するように配置されてその車両のフロントフレームの一部を構成すると共に、前記車両に入力された衝突荷重を、前記筋状高変形抵抗部の間の部分それぞれが個別に蛇腹状に変形することによって吸収するエネルギ吸収部材。
The energy absorbing member according to claim 1,
The main body is arranged so that a cylinder axis direction thereof coincides with a vehicle front-rear direction and constitutes a part of a front frame of the vehicle, and a collision load input to the vehicle An energy absorbing member that absorbs each of the portions between them by being individually deformed into a bellows shape.
JP2007229077A 2007-09-04 2007-09-04 Energy absorbing member Expired - Fee Related JP5056281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007229077A JP5056281B2 (en) 2007-09-04 2007-09-04 Energy absorbing member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007229077A JP5056281B2 (en) 2007-09-04 2007-09-04 Energy absorbing member

Publications (2)

Publication Number Publication Date
JP2009063013A true JP2009063013A (en) 2009-03-26
JP5056281B2 JP5056281B2 (en) 2012-10-24

Family

ID=40557775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007229077A Expired - Fee Related JP5056281B2 (en) 2007-09-04 2007-09-04 Energy absorbing member

Country Status (1)

Country Link
JP (1) JP5056281B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106347463A (en) * 2016-10-17 2017-01-25 东南大学 Bionic energy absorption box
CN112923002A (en) * 2021-02-23 2021-06-08 山东科技大学 Composite impact resistance device and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56131848A (en) * 1980-03-21 1981-10-15 Koryo Miura Energy absorbing element
JPS58201626A (en) * 1982-04-30 1983-11-24 Nissan Shatai Co Ltd Formed rim and method for forming the same
JPH09272386A (en) * 1996-04-04 1997-10-21 Maruenu Kk Bumper protection sheet for vehicle
JP2004148955A (en) * 2002-10-30 2004-05-27 Jfe Steel Kk Collision energy absorbing member for automobile
JP2005029064A (en) * 2003-07-09 2005-02-03 Fuji Heavy Ind Ltd Energy absorption member for aluminum alloy automobile frame and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56131848A (en) * 1980-03-21 1981-10-15 Koryo Miura Energy absorbing element
JPS58201626A (en) * 1982-04-30 1983-11-24 Nissan Shatai Co Ltd Formed rim and method for forming the same
JPH09272386A (en) * 1996-04-04 1997-10-21 Maruenu Kk Bumper protection sheet for vehicle
JP2004148955A (en) * 2002-10-30 2004-05-27 Jfe Steel Kk Collision energy absorbing member for automobile
JP2005029064A (en) * 2003-07-09 2005-02-03 Fuji Heavy Ind Ltd Energy absorption member for aluminum alloy automobile frame and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106347463A (en) * 2016-10-17 2017-01-25 东南大学 Bionic energy absorption box
CN112923002A (en) * 2021-02-23 2021-06-08 山东科技大学 Composite impact resistance device and application thereof

Also Published As

Publication number Publication date
JP5056281B2 (en) 2012-10-24

Similar Documents

Publication Publication Date Title
JP5261490B2 (en) Shock absorbing member
TWI583579B (en) Collision box and manufacturing method thereof
US9327664B2 (en) Energy absorbing member, method for producing same, and electromagnetic tube expansion method for rectangular cross-section member and polygon cross-section member
WO2013024883A1 (en) Shock absorbing member
JP5418724B2 (en) Metal hollow columnar member
JP5561691B2 (en) Shock absorbing member
JP6913029B2 (en) Energy absorbing member
JP2006123887A (en) Shock absorbing implement for vehicle and shock absorbing structure for vehicle
JP2006207724A (en) Impact absorbing member
JP6090464B2 (en) PRESS-MOLDED PRODUCT, PRESS-MOLDED PRODUCTION METHOD, AND PRESS-MOLDED PRODUCTION DEVICE
JP5056281B2 (en) Energy absorbing member
JP2009113675A (en) Vehicular energy absorbing member, vehicle front part structure, and vehicle rear part structure
JP5056191B2 (en) Energy absorbing member
JP2012111356A (en) Method for manufacturing energy absorbing structure, and energy absorbing structure
JP4998097B2 (en) Energy absorbing member
JP2013107091A (en) Electromagnetic forming method of polygonal cross-sectional member
KR101725303B1 (en) Shock absorbing member
JP5912593B2 (en) Manufacturing method of energy absorbing member
JPH08216917A (en) Structural member excellent in shock absorbing performance
JP4760782B2 (en) Energy absorbing member
JP5632147B2 (en) Crash box
JP2001088737A (en) Energy absorption structure for vehicle
JP5552994B2 (en) Side member structure
JP5837472B2 (en) Electromagnetic tube expansion method for rectangular cross-section members
JP2013087879A (en) Shock absorption member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111222

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5056281

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees