JP4760782B2 - Energy absorbing member - Google Patents

Energy absorbing member Download PDF

Info

Publication number
JP4760782B2
JP4760782B2 JP2007161122A JP2007161122A JP4760782B2 JP 4760782 B2 JP4760782 B2 JP 4760782B2 JP 2007161122 A JP2007161122 A JP 2007161122A JP 2007161122 A JP2007161122 A JP 2007161122A JP 4760782 B2 JP4760782 B2 JP 4760782B2
Authority
JP
Japan
Prior art keywords
rigidity
energy absorbing
absorbing member
main body
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007161122A
Other languages
Japanese (ja)
Other versions
JP2009002367A (en
Inventor
健二 村▲瀬▼
毅 杉原
恭聡 石田
勝也 西口
通成 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2007161122A priority Critical patent/JP4760782B2/en
Publication of JP2009002367A publication Critical patent/JP2009002367A/en
Application granted granted Critical
Publication of JP4760782B2 publication Critical patent/JP4760782B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、圧縮荷重が入力されたときに塑性変形することで、そのエネルギを吸収するエネルギ吸収部材に関する。   The present invention relates to an energy absorbing member that absorbs energy by plastic deformation when a compressive load is input.

例えば特許文献1には、車両のフレームの一部分を構成し、衝突時の衝撃荷重を吸収するために用いられるエネルギ吸収部材が開示されている。このエネルギ吸収部材は、筒状の本体と、この本体の外周面における筒軸方向の中間位置に形成された凹凸部と、を備えている。このエネルギ吸収部材では、本体に対し筒軸方向の圧縮荷重が入力されたときには、前記凹凸部が起点となって本体が筒軸方向に比較的大きく折れ曲げ変形し、それによって、エネルギを吸収するようにしている。
特開2005−29064号公報
For example, Patent Document 1 discloses an energy absorbing member that constitutes a part of a vehicle frame and is used to absorb an impact load at the time of a collision. The energy absorbing member includes a cylindrical main body and a concavo-convex portion formed at an intermediate position in the cylinder axis direction on the outer peripheral surface of the main body. In this energy absorbing member, when a compressive load in the cylinder axis direction is input to the main body, the main body is bent and deformed relatively large in the cylinder axis direction starting from the uneven portion, thereby absorbing energy. I am doing so.
JP 2005-29064 A

しかしながら、従来のエネルギ吸収部材は、本体の折れ曲げ変形が比較的大きいため、その変形する部分以外の部分、つまり本体の大部分がエネルギの吸収にほとんど関与しない。このため、部材重量に対するエネルギの吸収量(エネルギ吸収の重量効率)が比較的低いという問題がある。   However, since the conventional energy absorbing member has a relatively large bending deformation of the main body, a portion other than the deformed portion, that is, a large part of the main body hardly participates in energy absorption. For this reason, there exists a problem that the amount of energy absorption (weight efficiency of energy absorption) with respect to a member weight is comparatively low.

こうした低い重量効率に起因して、エネルギ吸収部材を車両のフレームの一部分を構成するために用いた場合は、車両重量の増大に伴い例えば燃費の悪化を招くことにもなる。   Due to such low weight efficiency, when the energy absorbing member is used to constitute a part of the vehicle frame, for example, the fuel consumption is deteriorated as the vehicle weight increases.

本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、エネルギ吸収の重量効率の高いエネルギ吸収部材を提供することにある。   This invention is made | formed in view of this point, The place made into the objective is to provide the energy absorption member with high weight efficiency of energy absorption.

本発明の一側面によると、エネルギ吸収部材は、少なくとも2の相対的に剛性の高い高剛性部と、前記高剛性部以外の部位でかつ相対的に剛性の低い低剛性部と、からなる筒状の本体を備え、前記高剛性部は、前記本体の周壁において、筒軸の方向に対して傾いた斜め方向に相対して配置され、前記低剛性部は、前記斜め方向に相対する高剛性部の間に少なくとも配置されており、前記本体に対して前記筒軸方向の圧縮荷重が入力したときには、前記斜め方向に相対する高剛性部が筒軸方向に互いに接近するように移動することに伴い、前記高剛性部の間に位置する低剛性部がせん断変形する。   According to one aspect of the present invention, the energy absorbing member is a cylinder including at least two relatively rigid and highly rigid portions, and a portion other than the highly rigid portion and a relatively rigid and low rigid portion. The high-rigidity portion is disposed on the peripheral wall of the main body in an oblique direction inclined with respect to the direction of the cylinder axis, and the low-rigidity portion is a high-rigidity opposed to the oblique direction. When the compressive load in the cylinder axis direction is input to the main body, the high-rigidity parts opposed to the oblique direction move so as to approach each other in the cylinder axis direction. Accordingly, the low-rigidity portion located between the high-rigidity portions undergoes shear deformation.

この構成によると、筒軸方向の圧縮荷重が本体に対して入力されたときには、本体が筒軸方向に縮むように変形する。これにより、このエネルギ吸収部材では、斜め方向に相対する高剛性部が筒軸方向に互いに接近する方向に移動するが、この移動に伴い高剛性部の間に位置する低剛性部がせん断変形するようになる。このせん断変形では、筒軸に対し傾斜した方向に比較的長く延びる変形しわ(曲げによるしわ)が、高剛性部の相対方向に短い間隔で多数形成される。そのため、エネルギ吸収部材の広い範囲に亘って変形が生じることになると共に、変形が複雑であることでエネルギの吸収量も増大するため、エネルギ吸収の重量効率が大幅に向上する。   According to this configuration, when a compressive load in the cylinder axis direction is input to the main body, the main body deforms so as to contract in the cylinder axis direction. As a result, in this energy absorbing member, the high-rigidity portions opposed to each other in the oblique direction move in a direction approaching each other in the cylinder axis direction. It becomes like this. In this shear deformation, a large number of deformation wrinkles (wrinkles due to bending) extending in a direction inclined with respect to the cylinder axis are formed at short intervals in the relative direction of the high-rigidity portion. Therefore, deformation occurs over a wide range of the energy absorbing member, and since the amount of energy absorption increases due to the complicated deformation, the weight efficiency of energy absorption is greatly improved.

前記エネルギ吸収部材は、前記本体に対して前記筒軸方向の圧縮荷重が入力したときには、前記低剛性部がせん断変形すると共に、前記本体の全体が前記筒軸方向に蛇腹状に変形する、としてもよい。   The energy absorbing member is configured such that when the compressive load in the cylinder axis direction is input to the main body, the low-rigidity portion undergoes shear deformation and the entire main body deforms in a bellows shape in the cylinder axis direction. Also good.

つまり、本体に対して筒軸方向の圧縮荷重が入力することによって、斜め方向に相対していた高剛性部同士が周方向に略隣り合う位置まで移動して低剛性部のせん断変形がほとんど完了した後に、本体がさらに筒軸方向に蛇腹状に変形するようにしてもよい。こうすることによって、エネルギ吸収部材の変形がより一層複雑になってエネルギ吸収量が増大することに伴い、エネルギ吸収の重量効率がより一層向上する。   In other words, when a compressive load in the cylinder axis direction is input to the main body, the high-rigidity portions that are opposed to each other in the oblique direction move to positions that are substantially adjacent to each other in the circumferential direction, and shear deformation of the low-rigidity portions is almost completed. After that, the main body may be further deformed in a bellows shape in the cylinder axis direction. By doing so, the energy absorption weight efficiency is further improved as the deformation of the energy absorbing member becomes more complicated and the amount of energy absorption increases.

前記本体は、その周壁が稜線部と平面部とを周方向に交互に配置することで構成された横断面多角形状であってかつ、前記筒軸方向に隣り合う2つの領域において、前記稜線部の位置が周方向に互いにずれており、前記高剛性部は前記稜線部によって構成され、前記低剛性部は前記平面部によって構成されている、としてもよい。   The main body has a polygonal cross section formed by alternately arranging a ridge line portion and a flat surface portion in the circumferential direction on the peripheral wall, and the ridge line portion is adjacent to the cylinder axis direction in the two regions. The positions may be shifted from each other in the circumferential direction, the high-rigidity portion may be configured by the ridge line portion, and the low-rigidity portion may be configured by the planar portion.

また、前記高剛性部と低剛性部とは、肉厚が互いに異なる、としてもよい。さらに、前記高剛性部と低剛性部とは、材料が互いに異なる、としてもよい。   The high-rigidity part and the low-rigidity part may have different wall thicknesses. Further, the high-rigidity part and the low-rigidity part may be made of different materials.

前記高剛性部は、前記本体の側壁における所定の位置に、局所的に熱処理を施すことによって形成されている、としてもよい。   The high-rigidity portion may be formed by locally performing heat treatment at a predetermined position on the side wall of the main body.

前記横断面多角形状の本体は、両端開口の円筒部材に対し所定形状の成形型をその各開口から筒軸方向に挿入して前記円筒部材の周壁を曲げ変形させることによって成形される、としてもよい。   The body having a polygonal cross section may be formed by inserting a molding die having a predetermined shape into the cylindrical member having openings at both ends in the direction of the cylinder axis from each opening to bend and deform the peripheral wall of the cylindrical member. Good.

肉厚が互いに異なる高剛性部及び低剛性部からなる本体は、テーラードブランク工法、又は、ハイドロフォーム工法によって成形される、としてもよい。   The main body composed of a high-rigidity part and a low-rigidity part having different wall thicknesses may be formed by a tailored blank method or a hydroform method.

材料が互いに異なる高剛性部及び低剛性部からなる本体は、溶接工法、又は、摩擦撹拌接合工法によって成形される、としてもよい。   The main body composed of a high-rigidity part and a low-rigidity part having different materials may be molded by a welding method or a friction stir welding method.

前記高剛性部及び低剛性部からなる本体を複数備え、前記複数の本体は、互いに同軸に積み重ねられている、としてもよい。   A plurality of main bodies including the high-rigidity part and the low-rigidity part may be provided, and the plurality of main bodies may be stacked coaxially with each other.

こうすることで、吸収可能なエネルギ量がより一層増大し、エネルギ吸収の重量効率がさらに向上する。   By doing so, the amount of energy that can be absorbed is further increased, and the weight efficiency of energy absorption is further improved.

前記本体は、その筒軸方向が車両前後方向と一致するように配置されてその車両のフロントフレームの一部を構成すると共に、前記車両に入力された衝突荷重を、前記低剛性部がせん断変形することによって吸収する、としてもよい。   The main body is arranged so that the cylinder axis direction thereof coincides with the vehicle front-rear direction and constitutes a part of the front frame of the vehicle, and the low-rigidity part shear-deforms the collision load input to the vehicle. It is good also as absorbing by doing.

前述したように、このエネルギ吸収部材はエネルギ吸収の重量効率が高いため、車両のフレーム部材として用いたときに、車両重量が軽減するという利点が得られる。   As described above, since this energy absorbing member has a high energy absorption weight efficiency, when used as a vehicle frame member, there is an advantage that the vehicle weight is reduced.

以上説明したように、本発明によると、高剛性部及び低剛性部からなる本体に対して筒軸方向の圧縮荷重が入力されたときに、高剛性部の間に位置する低剛性部がせん断変形することによって、エネルギ吸収部材の広い範囲に亘って、複雑な変形が生じることになり、エネルギ吸収の重量効率を大幅に向上させることができる。   As described above, according to the present invention, when a compressive load in the cylinder axis direction is input to the main body composed of the high rigidity portion and the low rigidity portion, the low rigidity portion located between the high rigidity portions is sheared. By deforming, complicated deformation occurs over a wide range of the energy absorbing member, and the weight efficiency of energy absorption can be greatly improved.

以下、本発明の実施形態を図面に基づいて説明する。尚、以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. It should be noted that the following description of the preferred embodiment is merely illustrative in nature, and is not intended to limit the present invention, its application, or its use.

(実施形態1)
図2は、本発明の実施形態1に係るエネルギ吸収部材10を示しており、このエネルギ吸収部材10は、図1に示すように、例えば車両前部における車幅方向の両側位置で車両前後方向にそれぞれ延びるフロントサイドフレーム91の前端部分や、フロントサイドフレーム91の前端とバンパーレインフォースメントとの間に介設されるクラッシュカン92として用いられる。
(Embodiment 1)
FIG. 2 shows the energy absorbing member 10 according to the first embodiment of the present invention. As shown in FIG. 1, the energy absorbing member 10 is, for example, in the vehicle front-rear direction at the vehicle width direction both side positions at the front of the vehicle. Are used as a crush can 92 interposed between the front end portion of the front side frame 91 and the front end of the front side frame 91 and the bumper reinforcement.

前記エネルギ吸収部材10は、筒状の本体11を備えており、本体11の周壁は、相対的に剛性の高い高剛性部と、相対的に剛性の低い低剛性部と、から構成されている。具体的に本体11は、図2,3に示すように、それぞれ高剛性部に相当する3つの稜線部12と、それぞれ低剛性部に相当する3つの平面部13とが周方向に交互に配置された、横断面が三角形状であって、筒軸方向の一方の側の領域(例えば図2における左側の領域)と、他方の側の領域(図2における右側の領域)とにおいて、その稜線部12の位置が周方向に互いにずれて配置されて構成されている。本体11は、換言すれば、中空状の2つの三角柱を、その稜線を互いにずらした状態で、筒軸方向に突き合わすようにして構成されている。   The energy absorbing member 10 includes a cylindrical main body 11, and the peripheral wall of the main body 11 includes a relatively rigid high rigidity portion and a relatively low rigidity low rigidity portion. . Specifically, as shown in FIGS. 2 and 3, the main body 11 has three ridge line portions 12 each corresponding to a high-rigidity portion and three plane portions 13 each corresponding to a low-rigidity portion alternately arranged in the circumferential direction. The ridgeline in the region of one side in the cylinder axis direction (for example, the region on the left side in FIG. 2) and the region on the other side (the region on the right side in FIG. 2) having a triangular cross section The positions of the portions 12 are arranged so as to be shifted from each other in the circumferential direction. In other words, the main body 11 is configured to abut two hollow triangular prisms in the cylindrical axis direction with their ridge lines being shifted from each other.

ここで、前記本体11において、筒軸方向に相対する稜線部12と平面部13とは、滑らかに接合されており、これによって、本体11においては、稜線部12が筒軸の方向に対して傾いた斜め方向に相対して配置されると共に、その斜め方向に相対する稜線部12の間に、低剛性部に相当する、平面部の一部としての接合部14が配置されるようになっている。   Here, in the main body 11, the ridge line portion 12 and the flat surface portion 13 that are opposed to each other in the cylinder axis direction are smoothly joined, so that in the main body 11, the ridge line portion 12 is in the direction of the cylinder axis. In addition to being arranged relative to the inclined oblique direction, a joint portion 14 as a part of the flat surface portion corresponding to the low-rigidity portion is arranged between the ridge line portions 12 opposed to the oblique direction. ing.

本体11の材質は、例えば鋼やアルミニウム等の、車両のフレームを構成する部材として用いられる各種材料の中から適宜選択することができる。   The material of the main body 11 can be appropriately selected from various materials used as members constituting a vehicle frame, such as steel and aluminum.

前記構成のエネルギ吸収部材10は、種々の公知の成形方法を適宜採用することによって製造することが可能である。一例としては、図4に示すように、エネルギ吸収部材10の本体11となる円筒状の部材82を、所定形状の成形型81を用いて曲げ加工することによって、製造することが可能である。   The energy absorbing member 10 having the above-described configuration can be manufactured by appropriately adopting various known molding methods. As an example, as shown in FIG. 4, a cylindrical member 82 that becomes the main body 11 of the energy absorbing member 10 can be manufactured by bending using a molding die 81 having a predetermined shape.

つまり、所定の成形方向によって予め成形した両端開口の円筒状の部材82を用意する。また、基端側が三角柱形状で、先端側が三角錐形状となった成形型81を一対用意する。   That is, a cylindrical member 82 having both ends opened in advance in a predetermined molding direction is prepared. A pair of forming dies 81 having a triangular prism shape on the base end side and a triangular pyramid shape on the tip end side are prepared.

そうして、一対の成形型81を、その基端側の正三角形状を互いに60°だけずらした上で相対して配置すると共に、その各成形型81を、前記円筒状の部材82の各開口から筒軸方向の内方へと挿入させる。そうすることによって、成形型81により、筒軸方向の両端部においては、円筒状の部材82の周壁が断面三角形状となるように曲げ加工されると共に、筒軸方向の中央部においては、稜線部12と平面部13とが滑らかにつながるようになる。そうして、その各成形型81を部材82から抜くことによって、稜線部12が斜め方向に相対して配置されると共に、その斜め方向に相対する稜線部12の間に接合部14が配置された前記のエネルギ吸収部材10が成形されることになる。   Then, the pair of molding dies 81 are arranged relative to each other with their base end side equilateral triangles shifted from each other by 60 °, and each of the molding dies 81 is placed on each of the cylindrical members 82. Insert from the opening inward in the tube axis direction. By doing so, at the both ends in the cylinder axis direction, the molding die 81 is bent so that the peripheral wall of the cylindrical member 82 has a triangular cross section, and at the center in the cylinder axis direction, the ridge line The portion 12 and the flat portion 13 are smoothly connected. Then, by removing the respective molding dies 81 from the member 82, the ridge line portion 12 is disposed relative to the oblique direction, and the joint portion 14 is disposed between the ridge line portions 12 opposed to the oblique direction. Further, the energy absorbing member 10 is molded.

次に、前記のエネルギ吸収部材10に対し圧縮荷重が入力されたときに、当該エネルギ吸収部材10が変形する様子について、図5を参照しながら説明する。尚、以下の説明においてエネルギ吸収部材10の、図5における右側の領域を右側領域、左側の領域を左側領域と呼ぶ。   Next, how the energy absorbing member 10 is deformed when a compressive load is input to the energy absorbing member 10 will be described with reference to FIG. In the following description, the right region in FIG. 5 of the energy absorbing member 10 is referred to as a right region, and the left region is referred to as a left region.

図5における本体11の右端に対して、その右側方から筒軸方向の圧縮荷重(衝撃荷重)が入力したとする(同図の黒矢印参照)。その圧縮荷重は、本体11を筒軸方向に伝達する(P1参照)。   It is assumed that a compressive load (impact load) in the cylinder axis direction is input from the right side to the right end of the main body 11 in FIG. 5 (see the black arrow in FIG. 5). The compressive load transmits the main body 11 in the cylinder axis direction (see P1).

その圧縮荷重によって、本体11は筒軸方向に縮むように変形する。このときに右側領域の各稜線部12は、左側領域の平面部13に対して食い込むように相対移動し、それによって、斜め方向に相対する稜線部12同士の間に位置する接合部14は、せん断変形をするようになる(P2参照)。ここで、前記せん断変形によって、接合部14には筒軸に対して傾斜した方向に延びる変形しわが多数発生する。   Due to the compressive load, the main body 11 is deformed so as to contract in the cylinder axis direction. At this time, each ridge line portion 12 in the right region relatively moves so as to bite into the plane portion 13 in the left region, and thereby, the joint portion 14 positioned between the ridge line portions 12 opposed to each other in an oblique direction, Shear deformation occurs (see P2). Here, due to the shear deformation, a large number of deformation wrinkles extending in a direction inclined with respect to the cylinder axis are generated in the joint portion 14.

そうして、右側領域の各稜線部12が、左側領域の各稜線部12に対して周方向に隣り合う位置まで移動してせん断変形がほぼ完了したときには、図示は省略するが、エネルギ吸収部材10は、その横断面が略六角形状の筒状になる。その後は、その略六角形状の筒状の本体11が、筒軸方向の圧縮荷重によって蛇腹状に変形することになる(P3参照)。   Then, when each ridge line portion 12 in the right region moves to a position adjacent to the ridge line portion 12 in the left region in the circumferential direction and shear deformation is substantially completed, the energy absorbing member is omitted although illustration is omitted. 10 has a substantially hexagonal cylindrical cross section. Thereafter, the substantially hexagonal cylindrical main body 11 is deformed into a bellows shape by a compressive load in the cylinder axis direction (see P3).

このように、このエネルギ吸収部材10では、筒軸方向の圧縮荷重が入力したときに、接合部14がせん断変形をする。このせん断変形によって、図5に模式的に示すように、傾斜した方向に比較的長く延びる変形しわが、稜線部12が相対する方向に短い間隔で多数形成される。つまり、筒軸方向に比較的大きく折れ曲げ変形する従来構成と比べて、このエネルギ吸収部材10は、圧縮荷重の入力時に、広い範囲に亘って複雑な変形が生じることになる。   Thus, in this energy absorbing member 10, when the compressive load in the cylinder axis direction is input, the joint portion 14 undergoes shear deformation. Due to this shear deformation, as schematically shown in FIG. 5, a large number of deformation wrinkles extending relatively long in the inclined direction are formed at short intervals in the direction in which the ridge line portions 12 face each other. That is, as compared with the conventional configuration that is bent and deformed relatively large in the cylinder axis direction, the energy absorbing member 10 is complicatedly deformed over a wide range when a compression load is input.

その結果、このエネルギ吸収部材10は、エネルギ吸収の重量効率を従来に比べて向上させることができる。   As a result, the energy absorbing member 10 can improve the weight efficiency of energy absorption compared to the conventional case.

また、前記エネルギ吸収部材10は、前記のせん断変形に加えて、筒軸方向に蛇腹状に変形するため、エネルギ吸収量はさらに増大しており、その重量効率は従来に比べて大幅に向上することになる。   Further, since the energy absorbing member 10 is deformed in a bellows shape in the cylinder axis direction in addition to the shear deformation, the amount of energy absorption is further increased, and its weight efficiency is greatly improved as compared with the conventional case. It will be.

尚、この実施形態では、エネルギ吸収部材10の横断面を三角形状に設定したが、エネルギ吸収部材は、稜線部12と平面部13とが周方向に交互に配置されるような横断面多角形状であって、稜線部12の間に接合部14が形成されればよい。図示は省略するが、エネルギ吸収部材の横断面形状は、例えば四角形状や五角形状等、適宜設定することが可能である。   In this embodiment, the energy absorption member 10 has a triangular cross section, but the energy absorption member has a polygonal cross section in which the ridge line portions 12 and the flat surface portions 13 are alternately arranged in the circumferential direction. And what is necessary is just to form the junction part 14 between the ridgeline parts 12. FIG. Although illustration is omitted, the cross-sectional shape of the energy absorbing member can be appropriately set, for example, a quadrangular shape or a pentagonal shape.

(実施形態2)
図6は、実施形態2に係るエネルギ吸収部材20を示している。このエネルギ吸収部材20は、本体21が円筒状とされている。このエネルギ吸収部材20では、高剛性部22及び低剛性部23が、肉厚を相違させることによって形成されている。
(Embodiment 2)
FIG. 6 shows an energy absorbing member 20 according to the second embodiment. The energy absorbing member 20 has a main body 21 that is cylindrical. In the energy absorbing member 20, the high rigidity portion 22 and the low rigidity portion 23 are formed by making the thicknesses different.

つまり、前記本体21は、相対的に厚肉の部分によって構成される高剛性部22と、相対的に薄肉の部分によって構成される低剛性部23と、が所定の配置で配置されて形成されている。具体的には、前記筒状の本体21を図7に展開して模式的に示すように、筒軸方向の一方の領域においては、それぞれ筒軸方向の端部から中央部に向かって延びる舌状の、2つの高剛性部22aが等間隔を空けて配置されていると共に、筒軸方向の他方の領域においては、同じく舌状の2つの高剛性部22bが、前記一方の領域の高剛性部22aに対して、周方向に位置をずらして配置されている。   That is, the main body 21 is formed by arranging a high-rigidity portion 22 constituted by a relatively thick portion and a low-rigidity portion 23 constituted by a relatively thin portion in a predetermined arrangement. ing. Specifically, as shown schematically in FIG. 7 in which the cylindrical main body 21 is developed, a tongue extending from the end in the cylindrical axis direction toward the central portion in one area in the cylindrical axis direction. The two high-rigidity portions 22a are arranged at equal intervals, and in the other region in the cylindrical axis direction, the two tongue-like high-rigidity portions 22b are also provided with high rigidity in the one region. The position is shifted in the circumferential direction with respect to the portion 22a.

これによって、一方の領域の高剛性部22aと、他方の領域の高剛性部22bとは、筒軸の方向に対して傾斜した斜め方向に相対するようになり、その斜め方向に相対する高剛性部22a,22bの間に、低剛性部23が位置することになる。   As a result, the high-rigidity portion 22a in one region and the high-rigidity portion 22b in the other region are opposed to an oblique direction inclined with respect to the direction of the cylinder axis, and the high-rigidity opposed to the oblique direction. The low rigidity portion 23 is located between the portions 22a and 22b.

こうした肉厚の異なる部位を有する筒体であるエネルギ吸収部材20は、例えばハイドロフォーム工法によって一体的に成形することで製造してもよいし、例えば肉厚の異なる部材を溶接により接合して成形するテーラードブランク工法によって製造してもよい。   The energy absorbing member 20, which is a cylindrical body having parts with different thicknesses, may be manufactured by, for example, integrally forming by a hydroform method, or formed by joining members having different thicknesses by welding, for example. You may manufacture by the tailored blank construction method.

このエネルギ吸収部材20においても、図示は省略するが、筒軸方向の一端部に圧縮荷重が入力されたときには、高剛性部22の間の低剛性部23がせん断変形をすることになり、エネルギ吸収の重量効率を向上させることができる。   Also in this energy absorbing member 20, although illustration is omitted, when a compressive load is input to one end portion in the cylinder axis direction, the low-rigidity portion 23 between the high-rigidity portions 22 undergoes shear deformation, and the energy is absorbed. The weight efficiency of absorption can be improved.

尚、エネルギ吸収部材における高剛性部22の数は特に限定されるものではなく、適宜設定することが可能である。例えば図8に展開図を示すように、高剛性部22の数を、図7に示すエネルギ吸収部材よりも増やすことによって高剛性部22の間隔を小さくしてもよい。   In addition, the number of the high rigidity parts 22 in an energy absorption member is not specifically limited, It is possible to set suitably. For example, as shown in a development view in FIG. 8, the interval between the high-rigidity portions 22 may be reduced by increasing the number of high-rigidity portions 22 as compared with the energy absorbing member shown in FIG.

また、高剛性部22の形状も特に限定されるものではなく、適宜設定することが可能である。例えば図9に示すように、各高剛性部22を、筒軸方向の端部から中央部に向かって先細となる三角形状にし、それに伴い低剛性部23を帯状にしてもよい。この場合も、エネルギ吸収部材における高剛性部の数は、適宜設定することができる。例えば図9に示すように、筒軸方向の一方の領域及び他方の領域のそれぞれに3つずつ高剛性部22を設けるようにしてもよいし、例えば図10に示すように、筒軸方向の一方の領域及び他方の領域のそれぞれに1つずつ高剛性部22を設けるようにしてもよい。   Further, the shape of the high-rigidity portion 22 is not particularly limited, and can be set as appropriate. For example, as shown in FIG. 9, each high-rigidity portion 22 may have a triangular shape that tapers from an end portion in the cylinder axis direction toward the central portion, and the low-rigidity portion 23 may be shaped like a band accordingly. Also in this case, the number of high-rigidity portions in the energy absorbing member can be set as appropriate. For example, as shown in FIG. 9, three high-rigidity portions 22 may be provided in each of one region and the other region in the cylinder axis direction. For example, as shown in FIG. One high rigidity portion 22 may be provided in each of one region and the other region.

(実施形態3)
図11は、実施形態3に係るエネルギ吸収部材30を示している。このエネルギ吸収部材30は、実施形態2と同様に本体31が円筒状であるが、高剛性部32及び低剛性部33が互いに異なる材料によって構成されている。
(Embodiment 3)
FIG. 11 shows an energy absorbing member 30 according to the third embodiment. In the energy absorbing member 30, the main body 31 is cylindrical as in the second embodiment, but the high-rigidity portion 32 and the low-rigidity portion 33 are made of different materials.

つまり、前記高剛性部32は相対的に剛性の高い材料によって形成されているのに対し、前記低剛性部33は相対的に剛性の低い材料によって形成されている。例えば高剛性部32を鋼製とし、低剛性部33をアルミニウム製としてもよい。   That is, the high-rigidity portion 32 is formed of a material having relatively high rigidity, whereas the low-rigidity portion 33 is formed of a material having relatively low rigidity. For example, the high rigidity portion 32 may be made of steel, and the low rigidity portion 33 may be made of aluminum.

こうした異種材料から構成されるエネルギ吸収部材30は、例えば溶接や摩擦撹拌接合等の、異種材料を互いに接合する手法を適宜採用することによって製造することができる。   The energy absorbing member 30 composed of such dissimilar materials can be manufactured by appropriately adopting a technique for joining dissimilar materials to each other, such as welding or friction stir welding.

このエネルギ吸収部材30においても、図示は省略するが、筒軸方向の一端部に圧縮荷重が入力されたときには、高剛性部32の間に位置する低剛性部33がせん断変形をすることになり、エネルギ吸収の重量効率を向上させることができる。   Also in this energy absorbing member 30, although illustration is omitted, when a compressive load is input to one end portion in the cylinder axis direction, the low-rigidity portion 33 positioned between the high-rigidity portions 32 undergoes shear deformation. The weight efficiency of energy absorption can be improved.

尚、エネルギ吸収部材30における高剛性部の数や形状は特に限定されるものではない点は、前記実施形態2と同様である。   Note that the number and shape of the high-rigidity portions in the energy absorbing member 30 are not particularly limited as in the second embodiment.

(実施形態4)
図12は、実施形態4に係るエネルギ吸収部材40を示している。この実施形態4に係るエネルギ吸収部材40は、円筒状の部材(本体)41に対して局所的に焼き入れ処理を施すことによって、相対的に剛性の高い高剛性部42を作成している。
(Embodiment 4)
FIG. 12 shows an energy absorbing member 40 according to the fourth embodiment. In the energy absorbing member 40 according to the fourth embodiment, the cylindrical member (main body) 41 is locally subjected to a quenching process, thereby creating a highly rigid portion 42 having relatively high rigidity.

つまり、筒状の本体41の所定の位置、具体的には、図7〜10においてハッチングを付した高剛性部となる位置に、局所的に焼き入れ処理を施す。このことにより、剛性が部分的に向上するようになるため、他の部分(つまり低剛性部43)よりも相対的に剛性の高い高剛性部42を構成することができるようになる。   That is, a quenching process is locally performed at a predetermined position of the cylindrical main body 41, specifically, at a position that becomes a highly rigid portion hatched in FIGS. As a result, the rigidity is partially improved, so that the high-rigidity portion 42 having a relatively higher rigidity than other portions (that is, the low-rigidity portion 43) can be configured.

このエネルギ吸収部材40においても、図示は省略するが、筒軸方向の一端部に圧縮荷重が入力されたときには、高剛性部42の間に位置する低剛性部43がせん断変形をすることになり、それによってエネルギ吸収の重量効率を向上させることができる。   Also in this energy absorbing member 40, although not shown, when a compressive load is input to one end portion in the cylinder axis direction, the low rigidity portion 43 located between the high rigidity portions 42 undergoes shear deformation. Thereby, the weight efficiency of energy absorption can be improved.

(実施形態5)
図13は、実施形態5に係るエネルギ吸収部材を示している。このエネルギ吸収部材50は、図2に示すエネルギ吸収部材10(本体11)を複数(図例では3個)、互いに同軸となるように突き合わせることによって多段に構成されている。
(Embodiment 5)
FIG. 13 shows an energy absorbing member according to the fifth embodiment. The energy absorbing member 50 is configured in multiple stages by abutting a plurality (three in the example) of energy absorbing members 10 (main body 11) shown in FIG. 2 so as to be coaxial with each other.

この多段のエネルギ吸収部材50に対し、筒軸方向の圧縮荷重が入力したときには(P1参照)、図14に示すように、本体11の一つ一つがせん断変形した後に(P2参照)、本体11の一つ一つが蛇腹状に変形する(P3参照)。   When a compressive load in the cylinder axis direction is input to the multistage energy absorbing member 50 (see P1), as shown in FIG. 14, each of the main bodies 11 undergoes shear deformation (see P2), and then the main body 11 Each of these deforms into a bellows shape (see P3).

この多段のエネルギ吸収部材50は、重量効率をさらに向上させることができる。また、積み重ねる本体11の数を調整することにより、エネルギ吸収部材50の長さを調整することが可能になる。   The multistage energy absorbing member 50 can further improve the weight efficiency. Further, the length of the energy absorbing member 50 can be adjusted by adjusting the number of the main bodies 11 to be stacked.

尚、図6、図11、及び図12のそれぞれに示すエネルギ吸収部材20、30、40を、互いに同軸となるように複数積み重ねることで、多段のエネルギ吸収部材を構成してもよい。また、同じ構成のエネルギ吸収部材を積み重ねるのではなく、互いに異なる構成のエネルギ吸収部材を積み重ねることで、多段のエネルギ吸収部材を構成してもよい。   Note that a plurality of energy absorbing members may be configured by stacking a plurality of energy absorbing members 20, 30, and 40 shown in FIGS. 6, 11, and 12 so as to be coaxial with each other. Moreover, you may comprise a multistage energy absorption member not by stacking the energy absorption member of the same structure but by stacking the energy absorption member of a mutually different structure.

以上説明したように、本発明は、エネルギ吸収部材の重量効率が向上するから、例えば車両のフレーム、特にフロントやリヤのフレームの一部を構成するためのエネルギ吸収部材として有用である。   As described above, since the weight efficiency of the energy absorbing member is improved, the present invention is useful, for example, as an energy absorbing member for constituting a part of a vehicle frame, particularly a front or rear frame.

エネルギ吸収部材が適用される車両のフロントフレームを示す一部破断の側面図である。It is a partially broken side view showing a front frame of a vehicle to which an energy absorbing member is applied. 実施形態1に係るエネルギ吸収部材を示す斜視図である。It is a perspective view which shows the energy absorption member which concerns on Embodiment 1. FIG. 前記エネルギ吸収部材の左側面図である。It is a left view of the said energy absorption member. 前記エネルギ吸収部材の製造方法の一例を示す説明図である。It is explanatory drawing which shows an example of the manufacturing method of the said energy absorption member. 前記エネルギ吸収部材が変形する様子を示す説明図である。It is explanatory drawing which shows a mode that the said energy absorption member deform | transforms. 実施形態2に係るエネルギ吸収部材を示す斜視図である。It is a perspective view which shows the energy absorption member which concerns on Embodiment 2. FIG. 前記エネルギ吸収部材の展開説明図である。It is expansion | deployment explanatory drawing of the said energy absorption member. 実施形態2の変形例に係るエネルギ吸収部材の展開説明図である。It is an expansion explanatory view of the energy absorption member concerning the modification of Embodiment 2. 実施形態2の変形例に係るエネルギ吸収部材の展開説明図である。It is an expansion explanatory view of the energy absorption member concerning the modification of Embodiment 2. 実施形態2の変形例に係るエネルギ吸収部材の展開説明図である。It is an expansion explanatory view of the energy absorption member concerning the modification of Embodiment 2. 実施形態3に係るエネルギ吸収部材を示す斜視図である。It is a perspective view which shows the energy absorption member which concerns on Embodiment 3. FIG. 実施形態4に係るエネルギ吸収部材を示す斜視図である。It is a perspective view which shows the energy absorption member which concerns on Embodiment 4. 実施形態5に係るエネルギ吸収部材を示す斜視図である。It is a perspective view which shows the energy absorption member which concerns on Embodiment 5. FIG. 前記エネルギ吸収部材が変形する様子を示す斜視図である。It is a perspective view which shows a mode that the said energy absorption member deform | transforms.

符号の説明Explanation of symbols

10,20,30,40 エネルギ吸収部材
11,21,31,41 本体
12 稜線部
13 平面部
14 接合部(低剛性部)
22,32,42 高剛性部
23,33,43 低剛性部
81 成形型
91 フロントサイドフレーム(フロントフレーム)
92 クラッシュカン(フロントフレーム)
10, 20, 30, 40 Energy absorbing member 11, 21, 31, 41 Main body 12 Ridge line part 13 Flat part 14 Joint part (low rigidity part)
22, 32, 42 High rigidity portion 23, 33, 43 Low rigidity portion 81 Mold 91 Front side frame (front frame)
92 Crash Can (front frame)

Claims (11)

少なくとも2の相対的に剛性の高い高剛性部と、前記高剛性部以外の部位でかつ相対的に剛性の低い低剛性部と、からなる筒状の本体を備え、
前記高剛性部は、前記本体の周壁において、筒軸の方向に対して傾いた斜め方向に相対して配置され、
前記低剛性部は、前記斜め方向に相対する高剛性部の間に少なくとも配置されており、
前記本体に対して前記筒軸方向の圧縮荷重が入力したときには、前記斜め方向に相対する高剛性部が筒軸方向に互いに接近するように移動することに伴い、前記高剛性部の間に位置する低剛性部がせん断変形するエネルギ吸収部材。
A cylindrical main body comprising at least two relatively rigid and highly rigid portions, and a portion having a portion other than the highly rigid portion and a relatively low stiffness portion;
The high-rigidity portion is disposed on the peripheral wall of the main body in an oblique direction inclined with respect to the direction of the cylinder axis,
The low-rigidity part is disposed at least between the high-rigidity parts opposed to the oblique direction,
When a compressive load in the cylinder axis direction is input to the main body, the high rigidity parts opposed to the diagonal direction move so as to approach each other in the cylinder axis direction, so that the position is between the high rigidity parts. An energy absorbing member in which a low-rigidity portion that undergoes shear deformation.
請求項1に記載のエネルギ吸収部材において、
前記本体に対して前記筒軸方向の圧縮荷重が入力したときには、前記低剛性部がせん断変形すると共に、前記本体の全体が前記筒軸方向に蛇腹状に変形するエネルギ吸収部材。
The energy absorbing member according to claim 1,
An energy absorbing member in which when the compressive load in the cylinder axis direction is input to the main body, the low-rigidity portion undergoes shear deformation and the entire main body deforms in a bellows shape in the cylinder axis direction.
請求項1に記載のエネルギ吸収部材において、
前記本体は、その周壁が稜線部と平面部とを周方向に交互に配置することで構成された横断面多角形状であってかつ、前記筒軸方向に隣り合う2つの領域において、前記稜線部の位置が周方向に互いにずれており、
前記高剛性部は前記稜線部によって構成され、前記低剛性部は前記平面部によって構成されているエネルギ吸収部材。
The energy absorbing member according to claim 1,
The main body has a polygonal cross section formed by alternately arranging a ridge line portion and a flat surface portion in the circumferential direction on the peripheral wall, and the ridge line portion is adjacent to the cylinder axis direction in the two regions. Are shifted from each other in the circumferential direction,
The energy-absorbing member, wherein the high-rigidity part is constituted by the ridge line part, and the low-rigidity part is constituted by the flat part.
請求項1に記載のエネルギ吸収部材において、
前記高剛性部と低剛性部とは、肉厚が互いに異なるエネルギ吸収部材。
The energy absorbing member according to claim 1,
The high-rigidity part and the low-rigidity part are energy absorbing members having different thicknesses.
請求項1に記載のエネルギ吸収部材において、
前記高剛性部と低剛性部とは、材料が互いに異なるエネルギ吸収部材。
The energy absorbing member according to claim 1,
The high-rigidity part and the low-rigidity part are energy absorbing members made of different materials.
請求項1に記載のエネルギ吸収部材において、
前記高剛性部は、前記本体の側壁に対して局所的に熱処理を施すことにより形成されているエネルギ吸収部材。
The energy absorbing member according to claim 1,
The high-rigidity part is an energy absorbing member formed by locally performing heat treatment on the side wall of the main body.
請求項3に記載のエネルギ吸収部材において、
前記横断面多角形状の本体は、両端開口の円筒部材に対し所定形状の成形型をその各開口から筒軸方向に挿入して前記円筒部材の周壁を曲げ変形させることにより成形されるエネルギ吸収部材。
The energy absorbing member according to claim 3,
The body having a polygonal cross section is formed by inserting a mold having a predetermined shape into a cylindrical member having openings at both ends in the direction of the cylinder axis and bending and deforming the peripheral wall of the cylindrical member. .
請求項4に記載のエネルギ吸収部材において、
肉厚が互いに異なる高剛性部及び低剛性部からなる本体は、テーラードブランク工法、又は、ハイドロフォーム工法によって成形されるエネルギ吸収部材。
The energy absorbing member according to claim 4,
An energy absorbing member in which a main body composed of a high-rigidity portion and a low-rigidity portion having different wall thicknesses is formed by a tailored blank method or a hydroform method.
請求項5に記載のエネルギ吸収部材において、
材料が互いに異なる高剛性部及び低剛性部からなる本体は、溶接工法、又は、摩擦撹拌接合工法によって成形されるエネルギ吸収部材。
The energy absorbing member according to claim 5,
An energy absorbing member in which a main body composed of a high-rigidity portion and a low-rigidity portion made of different materials is formed by a welding method or a friction stir welding method.
請求項1に記載のエネルギ吸収部材において、
前記高剛性部及び低剛性部からなる本体を複数備え、
前記複数の本体は、互いに同軸に積み重ねられているエネルギ吸収部材。
The energy absorbing member according to claim 1,
A plurality of main bodies composed of the high rigidity portion and the low rigidity portion are provided,
The plurality of main bodies are energy absorption members that are coaxially stacked.
請求項1に記載のエネルギ吸収部材において、
前記本体は、その筒軸方向が車両前後方向と一致するように配置されてその車両のフロントフレームの一部を構成すると共に、前記車両に入力された衝突荷重を、前記低剛性部がせん断変形することによって吸収するエネルギ吸収部材。
The energy absorbing member according to claim 1,
The main body is arranged so that the cylinder axis direction thereof coincides with the vehicle front-rear direction and constitutes a part of the front frame of the vehicle, and the low-rigidity part shear-deforms the collision load input to the vehicle. An energy absorbing member that absorbs by doing.
JP2007161122A 2007-06-19 2007-06-19 Energy absorbing member Expired - Fee Related JP4760782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007161122A JP4760782B2 (en) 2007-06-19 2007-06-19 Energy absorbing member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007161122A JP4760782B2 (en) 2007-06-19 2007-06-19 Energy absorbing member

Publications (2)

Publication Number Publication Date
JP2009002367A JP2009002367A (en) 2009-01-08
JP4760782B2 true JP4760782B2 (en) 2011-08-31

Family

ID=40318979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007161122A Expired - Fee Related JP4760782B2 (en) 2007-06-19 2007-06-19 Energy absorbing member

Country Status (1)

Country Link
JP (1) JP4760782B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115610360B (en) * 2022-09-27 2023-09-12 广州大学 Energy-absorbing box with paper folding structure and negative poisson ratio property

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS619376U (en) * 1984-06-22 1986-01-20 いすゞ自動車株式会社 Vehicle buckling control components
JP4362953B2 (en) * 2000-07-03 2009-11-11 日本軽金属株式会社 Bumpy stay
JP2002155980A (en) * 2000-11-21 2002-05-31 Aisin Seiki Co Ltd Impact absorbing member and bumper
JP2005029064A (en) * 2003-07-09 2005-02-03 Fuji Heavy Ind Ltd Energy absorption member for aluminum alloy automobile frame and manufacturing method thereof

Also Published As

Publication number Publication date
JP2009002367A (en) 2009-01-08

Similar Documents

Publication Publication Date Title
TWI583579B (en) Collision box and manufacturing method thereof
WO2013024883A1 (en) Shock absorbing member
CN102596649B (en) Vehicle bumper beam and method for manufacturing same
JP4723942B2 (en) Vehicle shock absorber and vehicle shock absorption structure
JP5261490B2 (en) Shock absorbing member
JP2008261493A (en) Shock absorbing member and its manufacturing method
JP5078597B2 (en) Shock absorption structure
JP5549964B2 (en) Frame structure for vehicles with excellent collision resistance
JP2013540067A (en) Extensive vehicle crash can
JP6913029B2 (en) Energy absorbing member
KR100404533B1 (en) Impact absorbing structure of vehicle
WO2016093073A1 (en) Vehicle-body front structure
JP2006335241A (en) Bumper stay and bumper device
JP2012111356A (en) Method for manufacturing energy absorbing structure, and energy absorbing structure
JP5053762B2 (en) Bumper device for vehicle
EP2666675A1 (en) Vehicle body rear structure
JP4760782B2 (en) Energy absorbing member
JP5056191B2 (en) Energy absorbing member
KR20160043127A (en) Shock absorbing member
JP7173940B2 (en) structural member
JP5056281B2 (en) Energy absorbing member
JP3241702B2 (en) Energy absorbing structure for vehicles
US9296425B2 (en) Discontinuous multi-overlapped vehicle body member
WO2022025105A1 (en) Structural member of vehicle body
JP4297213B2 (en) Manufacturing method of tubular member with flange

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4760782

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees