JP6790697B2 - Structural members and vehicles - Google Patents

Structural members and vehicles Download PDF

Info

Publication number
JP6790697B2
JP6790697B2 JP2016198423A JP2016198423A JP6790697B2 JP 6790697 B2 JP6790697 B2 JP 6790697B2 JP 2016198423 A JP2016198423 A JP 2016198423A JP 2016198423 A JP2016198423 A JP 2016198423A JP 6790697 B2 JP6790697 B2 JP 6790697B2
Authority
JP
Japan
Prior art keywords
side wall
top surface
structural member
strength
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016198423A
Other languages
Japanese (ja)
Other versions
JP2017071391A (en
Inventor
智史 広瀬
智史 広瀬
石森 裕一
裕一 石森
弘 福地
弘 福地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of JP2017071391A publication Critical patent/JP2017071391A/en
Application granted granted Critical
Publication of JP6790697B2 publication Critical patent/JP6790697B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、耐衝撃性を有する構造部材及びそれを用いた車両に関する。 The present invention relates to a structural member having impact resistance and a vehicle using the same.

車両の補強用部材として用いられる構造部材は、高強度及び軽量化が求められる。例えば、国際公開2005/058624号(特許文献1)には、耐衝撃用として、自動車の車体に両端支持の構造で装着される金属管が開示されている。この金属管は、全長又は部分的に曲がり部を有する。曲がり部の外周側が車体に加わる衝撃方向に略合致するよう配置される。この金属管は、真直管を用いた補強部材に比べ、車体補強用として優れた耐衝撃性を有する。 Structural members used as vehicle reinforcing members are required to have high strength and weight reduction. For example, International Publication No. 2005/058624 (Patent Document 1) discloses a metal tube for impact resistance, which is attached to the vehicle body of an automobile with a structure of supporting both ends. This metal tube has a full length or a partially bent part. The outer peripheral side of the bent portion is arranged so as to substantially match the impact direction applied to the vehicle body. This metal pipe has excellent impact resistance for vehicle body reinforcement as compared with a reinforcing member using a straight pipe.

国際公開2005/058624号International Publication 2005/08624

構造部材の軽量化のために薄肉化を行う場合、通常は、あわせて高強度化も行う。構造部材は、降伏強度を超える衝撃を受けると折れ曲がり、折れ曲がり部が突出する。構造部材を薄肉化すると、衝撃で折れたときの突出度合いが大きくなりやすい。これに対して、例えば、車両に構造部材を用いる場合は、衝突による衝撃で変形した構造部材が折れ曲がって突出する度合いは、より小さいことが好ましい。なぜなら、折れ曲がり部が大きく突出するということは、局所的にエネルギー吸収が発生していることであり、部材全体としてのエネルギー吸収能が小さいことを意味するからである。衝撃エネルギーを構造部材がより効率よく吸収することで、車両内の乗員に加わる衝撃エネルギーをより抑えることができる。 When thinning the structural members in order to reduce the weight, usually, the strength is also increased. The structural member bends when it receives an impact exceeding the yield strength, and the bent portion protrudes. When the structural member is thinned, the degree of protrusion when it is broken by an impact tends to increase. On the other hand, for example, when a structural member is used for a vehicle, the degree to which the structural member deformed by the impact of a collision bends and protrudes is preferably smaller. This is because the fact that the bent portion protrudes greatly means that energy absorption is locally generated, and that the energy absorption capacity of the member as a whole is small. Since the structural member absorbs the impact energy more efficiently, the impact energy applied to the occupants in the vehicle can be further suppressed.

そこで、本願は、衝撃エネルギーを効率よく吸収することができる構造部材及びそれを用いた車両を開示する。 Therefore, the present application discloses a structural member capable of efficiently absorbing impact energy and a vehicle using the structural member.

本発明の実施形態における構造部材は、四角形の断面を有する管状の構造部材である。前記構造部材は、前記断面の四角形の辺のうち一辺に相当する頂面部と、前記頂面部の両端から延び、互いに対向する一対の側壁と、前記頂面部に対向する底部であって、前記一対の側壁の前記頂面部側の一方端部とは反対側の他方端部の間に形成される底部と、を備える。前記一対の側壁の各々は、前記側壁の一方端部から所定距離の位置に至るまでの領域に、低強度領域を有する。前記所定距離は、前記側壁の高さの20〜40%である。前記低強度領域の降伏強度は、前記側壁の高さの2分の1の位置における降伏強度の60〜85%である。 The structural member in the embodiment of the present invention is a tubular structural member having a quadrangular cross section. The structural member is a top surface portion corresponding to one side of a quadrangular side of the cross section, a pair of side walls extending from both ends of the top surface portion and facing each other, and a bottom portion facing the top surface portion. The side wall is provided with a bottom portion formed between the other end portion on the opposite side to the one end portion on the top surface side. Each of the pair of side walls has a low-strength region in a region from one end of the side wall to a position at a predetermined distance. The predetermined distance is 20 to 40% of the height of the side wall. The yield strength of the low-strength region is 60 to 85% of the yield strength at a position of half the height of the side wall.

本願開示によれば、衝撃を受けたとき、効率良く衝撃エネルギーを吸収することができる構造部材を提供することができる。 According to the disclosure of the present application, it is possible to provide a structural member capable of efficiently absorbing impact energy when subjected to an impact.

図1Aは、本発明の実施形態の構造部材の断面図である。FIG. 1A is a cross-sectional view of a structural member according to an embodiment of the present invention. 図1Bは、図1Aに示す構造部材の平面図である。FIG. 1B is a plan view of the structural member shown in FIG. 1A. 図1Cは、図1Aに示す構造部材の側面図である。FIG. 1C is a side view of the structural member shown in FIG. 1A. 図2は、衝突試験の様子を模式的に示す図である。FIG. 2 is a diagram schematically showing a state of a collision test. 図3は、一様な強度分布を持つ構造部材に衝撃を加えたときの変形を示す図である。FIG. 3 is a diagram showing deformation when an impact is applied to a structural member having a uniform strength distribution. 図4は、低強度領域を有する構造部材に衝撃を加えたときの変形を示す図である。FIG. 4 is a diagram showing deformation when an impact is applied to a structural member having a low strength region. 図5は、一様な強度分布を持つ構造部材の変形挙動を説明するための図である。FIG. 5 is a diagram for explaining the deformation behavior of a structural member having a uniform strength distribution. 図6は、低強度領域を有する構造部材の変形挙動を説明するための図である。FIG. 6 is a diagram for explaining the deformation behavior of the structural member having the low strength region. 図7Aは、構造部材が、衝撃荷重を受けて変形する様子を示す図である。FIG. 7A is a diagram showing how the structural member is deformed by receiving an impact load. 図7Bは、構造部材が、衝撃荷重を受けて変形する様子を示す図である。FIG. 7B is a diagram showing how the structural member is deformed by receiving an impact load. 図7Cは、低強度領域を有する構造部材の変形挙動を説明するための図である。FIG. 7C is a diagram for explaining the deformation behavior of the structural member having the low strength region. 図8Aは、肩部にRを形成した場合の、H及びShの例を示す図である。FIG. 8A is a diagram showing an example of H and Sh when R is formed on the shoulder portion. 図8Bは、側壁の両端部に、凹部(溝)を形成した場合の、H及びShの例を示す図である。FIG. 8B is a diagram showing an example of H and Sh when recesses (grooves) are formed at both ends of the side wall. 図8Cは、頂面部が傾いている場合の側壁の高さ方向を説明するための図である。FIG. 8C is a diagram for explaining the height direction of the side wall when the top surface portion is tilted. 長手方向において湾曲した構造部材の例を示す側面図である。It is a side view which shows the example of the structural member curved in the longitudinal direction. 長手方向において湾曲した構造部材の例を示す側面図である。It is a side view which shows the example of the structural member curved in the longitudinal direction. 長手方向において湾曲した構造部材の例を示す側面図である。It is a side view which shows the example of the structural member curved in the longitudinal direction. 長手方向において湾曲した構造部材の例を示す側面図である。It is a side view which shows the example of the structural member curved in the longitudinal direction. 図10は、車両に配置される構造部材の一例を示す図である。FIG. 10 is a diagram showing an example of structural members arranged in a vehicle. 図11は、本実施形態における構造部材によって構成されたBピラーを示す図である。FIG. 11 is a diagram showing a B-pillar composed of structural members in the present embodiment. 図12は、スペースフレーム構造の車体を有する車両の一例を示す図である。FIG. 12 is a diagram showing an example of a vehicle having a vehicle body having a space frame structure. 図13は、シミュレーションにおける解析モデルの構成を模式的に示す図である。FIG. 13 is a diagram schematically showing the configuration of the analysis model in the simulation. 図14は、シミュレーションに用いた構造部材の各寸法を示すである。FIG. 14 shows each dimension of the structural member used in the simulation. 図15は、低強度領域と他の領域の強度比を変えて衝撃を与えた場合の、曲げ変形による変形量を示すグラフである。FIG. 15 is a graph showing the amount of deformation due to bending deformation when an impact is applied by changing the strength ratio between the low strength region and the other region. 図16Aは、解析に用いた構造部材の断面形状を示す図である。FIG. 16A is a diagram showing a cross-sectional shape of the structural member used in the analysis. 図16Bは、解析に用いた構造部材の側面形状を示す図である。FIG. 16B is a diagram showing the side shape of the structural member used in the analysis. 図17は、解析結果を示すグラフである。FIG. 17 is a graph showing the analysis results. 図18は、変形挙動の解析結果を示す図である。FIG. 18 is a diagram showing an analysis result of deformation behavior.

本発明の実施形態における第1の構成の構造部材は、四角形の断面を有する管状の構造部材である。前記構造部材は、前記断面の四角形の辺のうち一辺に相当する頂面部と、前記頂面部の両端から延び、互いに対向する一対の側壁と、前記頂面部に対向する底部であって、前記一対の側壁の前記頂面部側の一方端部とは反対側の他方端部の間に形成される底部と、を備える。前記一対の側壁の各々は、前記頂面部に垂直な方向における前記側壁の中央を含む高強度領域と、前記側壁の中央の降伏強度の60〜85%の降伏強度の低強度領域とを含み、前記低強度領域は、前記頂面部に垂直な方向において、前記側壁の前記一方端部から前記他方端部へ向かって前記側壁の高さの20〜40%の距離の位置に至るまで、かつ、前記側壁の長手方向において、前記側壁の高さ以上の距離に渡って形成される。 The structural member of the first configuration in the embodiment of the present invention is a tubular structural member having a quadrangular cross section. The structural member is a top surface portion corresponding to one side of a quadrangular side of the cross section, a pair of side walls extending from both ends of the top surface portion and facing each other, and a bottom portion facing the top surface portion. The side wall is provided with a bottom portion formed between the other end portion on the opposite side to the one end portion on the top surface side. Each of the pair of side walls includes a high-strength region including the center of the side wall in a direction perpendicular to the top surface portion and a low-strength region having a yield strength of 60 to 85% of the yield strength of the center of the side wall. The low-strength region extends from one end of the side wall to the other end at a distance of 20-40% of the height of the side wall in a direction perpendicular to the top surface. It is formed over a distance equal to or greater than the height of the side wall in the longitudinal direction of the side wall.

すなわち、前記一対の側壁の各々における前記低強度領域は、前記側壁の一方端部から所定距離(前記側壁の高さの20〜40%の距離)の位置に至るまでの領域に形成される。すなわち、前記低強度領域は、前記側壁の一方端部から、前記強強度領域と前記低強度領域との境界にわたって形成される。前記側壁の一方端部から、前記境界のうち前記側壁の高さ方向の境界との距離は、側壁の高さの20〜40%である。 That is, the low-strength region in each of the pair of side walls is formed in a region from one end of the side wall to a position at a predetermined distance (a distance of 20 to 40% of the height of the side wall). That is, the low-strength region is formed from one end of the side wall over the boundary between the high-strength region and the low-strength region. The distance from one end of the side wall to the boundary of the boundary in the height direction of the side wall is 20 to 40% of the height of the side wall.

また、前記一対の側壁各々における前記低強度領域の前記各側壁の長手方向における幅は、各側壁の高さ方向の幅(すなわち側壁の高さ)以上である。 Further, the width of the low-strength region in each of the pair of side walls in the longitudinal direction of each side wall is equal to or larger than the width in the height direction of each side wall (that is, the height of the side wall).

なお、第1の構成において、前記各側壁の高さ方向は、前記頂面部に垂直な方向である。また、前記側壁の高さは、前記頂面部に垂直な方向における前記側壁の一方端部から他方端部までの距離である。なお、後述の第2及び第4の構成においても、側壁の高さ方向は、前記頂面部に垂直な方向である。 In the first configuration, the height direction of each side wall is a direction perpendicular to the top surface portion. The height of the side wall is the distance from one end to the other end of the side wall in a direction perpendicular to the top surface. Also in the second and fourth configurations described later, the height direction of the side wall is the direction perpendicular to the top surface portion.

各側壁の長手方向は、構造部材の長手方向であり、頂面部の長手方向でもある。構造部材は、長手方向(長軸)を持つ細長い部材である。各側壁の長手方向は、各側壁と頂面部との間に形成される稜線(第1の稜線)の延在方向と同じとする。側壁の長手方向は、側壁の高さ方向と概ね垂直になる。 The longitudinal direction of each side wall is the longitudinal direction of the structural member and also the longitudinal direction of the top surface portion. The structural member is an elongated member having a longitudinal direction (major axis). The longitudinal direction of each side wall is the same as the extending direction of the ridge line (first ridge line) formed between each side wall and the top surface portion. The longitudinal direction of the side wall is substantially perpendicular to the height direction of the side wall.

前記一対の側壁各々における前記低強度領域の降伏強度は、前記頂面部に垂直な方向における側壁の中央の降伏強度の60〜85%である。ここで、頂面部に垂直な方向における側壁の中央は、前記側壁の高さの2分の1の位置である。 The yield strength of the low-strength region in each of the pair of side walls is 60 to 85% of the yield strength of the center of the side wall in the direction perpendicular to the top surface portion. Here, the center of the side wall in the direction perpendicular to the top surface is at a position of half the height of the side wall.

前記高強度領域は、前記側壁の高さ方向において、前記低強度領域と前記高強度領域との境界から前記側壁の他方端部(前記底部側の端部)にわたって設けられる。 The high-strength region is provided in the height direction of the side wall from the boundary between the low-strength region and the high-strength region to the other end of the side wall (the end on the bottom side).

上記第1の構成は、下記の第2の構成に言い換えることができる。第2の構成における構造部材は、四角形の断面を有する管状の構造部材である。前記構造部材は、前記断面の四角形の辺のうち一辺に相当する頂面部と、前記頂面部の両端部にある2つの第1の稜線と、前記頂面部に対向する底部と、前記底部の両端部にある2つの第2の稜線と、前記2つの第1の稜線と前記2つの第2の稜線の間に、それぞれ位置する2つの側壁とを備える。前記2つの側壁の各々は、前記第1の稜線から前記第2の稜線に向かって、前記頂面部に垂直な方向における前記第1の稜線と前記第2の稜線の距離の20〜40%まで、かつ前記第1の稜線の延在方向に、前記頂面部に垂直な方向における前記第1稜線と前記第2の稜線との距離以上の長さの領域に設けられ、前記頂面部に垂直な方向における前記側壁の中央の降伏強度の60〜85%の降伏強度を有する、低強度領域を備える。なお、前記第1の稜線と前記第2の稜線の中央は、前記頂面部に垂直な方向における側壁の中央と同じである。 The first configuration can be rephrased as the second configuration below. The structural member in the second configuration is a tubular structural member having a quadrangular cross section. The structural member includes a top surface portion corresponding to one side of a quadrangular side of the cross section, two first ridge lines at both ends of the top surface portion, a bottom portion facing the top surface portion, and both ends of the bottom portion. It is provided with two second ridges in the portion and two side walls located between the two first ridges and the two second ridges. Each of the two side walls is up to 20-40% of the distance between the first ridge and the second ridge in the direction perpendicular to the top surface from the first ridge to the second ridge. In addition, the first ridge line is provided in a region having a length equal to or longer than the distance between the first ridge line and the second ridge line in the direction perpendicular to the top surface portion in the extending direction of the first ridge line, and is perpendicular to the top surface portion. It comprises a low-strength region having a yield strength of 60-85% of the yield strength at the center of the side wall in the direction. The center of the first ridge line and the second ridge line is the same as the center of the side wall in the direction perpendicular to the top surface portion.

前記2つの側壁の各々は、前記低強度領域と、前記低強度領域より降伏強度の高い高強度領域を備える。前記高強度領域は、前記各側壁の前記頂面部に垂直な方向において、前記第2の稜線から前記低強度領域と前記高強度領域の境界に至るまでの領域に設けられる。前記頂面部に垂直な方向における側壁の中央の側壁は、高強度領域に含まれる。 Each of the two side walls includes the low-strength region and a high-strength region having a higher yield strength than the low-strength region. The high-strength region is provided in a region perpendicular to the top surface of each side wall from the second ridgeline to the boundary between the low-strength region and the high-strength region. The central side wall of the side wall in the direction perpendicular to the top surface is included in the high strength region.

上記第1、及び第2の構成において、構造部材において互いに対向する2つの側壁は、側壁の高さ方向の中央を含む高強度領域と、高強度領域より低い降伏強度を持つ低強度領域とを備える。低強度領域は、各側壁の頂面部側の一方端部(第1の稜線)から、各側壁の高さの20〜40%の距離の位置に至るまで、かつ、低強度領域の各側壁の長手方向(すなわち第1の稜線の延在方向)において、各側壁の高さ(すなわち第1の稜線から第2の稜線までの頂面部に垂直な方向における距離)以上の距離にわたって形成される。発明者らは、このような低強度領域によって、頂面部に衝撃が加わった場合の構造部材の衝撃エネルギーの吸収効率を高められることを見出した。具体的には、頂面部に対して垂直方向に衝撃が加わった場合、各側壁の頂面部側20〜40%の領域に形成された低強度領域において、衝撃による応力を衝撃方向に垂直な方向(側壁の長手方向)に分散させるとともに、各側壁の高さ方向中央を含む高強度領域の剛性を生かして、構造部材の変形を抑えることができることが見出された。さらに、各側壁の低強度領域の降伏強度を、各側壁の高さ方向の中央の位置における降伏強度の60〜85%とすることで、構造部材の衝撃エネルギー吸収効率を、要求されるレベルに高められることが見出された。すなわち、上記第1及び第2の構成の構造部材では、衝撃を受けたとき、効率良く衝撃エネルギーを吸収することができる。 In the first and second configurations, the two side walls facing each other in the structural member have a high strength region including the center in the height direction of the side wall and a low strength region having a yield strength lower than the high strength region. Be prepared. The low-strength region extends from one end (first ridgeline) on the top surface side of each side wall to a position 20 to 40% of the height of each side wall, and the low-strength region of each side wall of the low-strength region. It is formed over a distance equal to or greater than the height of each side wall (that is, the distance in the direction perpendicular to the top surface from the first ridge line to the second ridge line) in the longitudinal direction (that is, the extending direction of the first ridge line). The inventors have found that such a low-strength region can increase the absorption efficiency of impact energy of a structural member when an impact is applied to the top surface portion. Specifically, when an impact is applied in the direction perpendicular to the top surface portion, the stress due to the impact is applied in the direction perpendicular to the impact direction in the low strength region formed in the region of 20 to 40% on the top surface portion side of each side wall. It was found that the deformation of the structural member can be suppressed by dispersing in the (longitudinal direction of the side wall) and utilizing the rigidity of the high strength region including the center of each side wall in the height direction. Further, by setting the yield strength of the low-strength region of each side wall to 60 to 85% of the yield strength at the central position in the height direction of each side wall, the impact energy absorption efficiency of the structural member can be set to the required level. It was found to be enhanced. That is, the structural members having the first and second configurations can efficiently absorb the impact energy when they receive an impact.

上記第1又は第2の構成において、前記一対の側壁のうち一方の側壁の降伏強度分布と、他方の側壁の降伏強度分布とは、互いに鏡像関係にある構成とすることが望ましい。なぜなら、四角管において互いに対向する一対の側壁の強度分布を鏡像関係に形成することで、頂面部から衝撃を受けたときの衝撃エネルギー吸収効率をより高めることができるからである。 In the first or second configuration, it is desirable that the yield strength distribution of one side wall of the pair of side walls and the yield strength distribution of the other side wall have a mirror image relationship with each other. This is because the impact energy absorption efficiency when an impact is received from the top surface portion can be further enhanced by forming the intensity distribution of the pair of side walls facing each other in a mirror image relationship in the square tube.

上記第1〜第3の構成において、前記頂面部に垂直な方向における前記側壁の中央の位置における引張強度は、980MPa以上とすることが望ましい。なぜなら、このような高強度の構造部材において、衝撃エネルギーの吸収効率向上の効果が好適に得られるからである。 In the first to third configurations, it is desirable that the tensile strength at the center position of the side wall in the direction perpendicular to the top surface portion is 980 MPa or more. This is because, in such a high-strength structural member, the effect of improving the absorption efficiency of impact energy can be preferably obtained.

上記第1〜第4の構成において、前記構造部材は、長手方向において前記頂面部側へ凸となるように湾曲している構成としてもよい。この構成では、湾曲していない場合に比べて、頂面部へ衝撃荷重が入力された際に、構造部材が折れ曲がりにくくなる。 In the first to fourth configurations, the structural member may be curved so as to be convex toward the top surface in the longitudinal direction. In this configuration, the structural member is less likely to bend when an impact load is applied to the top surface portion, as compared with the case where the structural member is not curved.

上記第1〜第5の構成において、前記低強度領域は、前記側壁の長手方向中央に配置されることが望ましい。その理由は次の通りである。側壁の長手方向中央は、長手方向両端部から離れている。これら両端部の付近は、他の部材に連結される支持されることが多い。両端部が支持された状態で中央に荷重が作用した場合、曲げモーメントが大きくなる。低強度領域を、側壁の長手方向中央に配置することにより、衝撃による変形が大きくなりやすい位置に低強度領域が配置される。その結果、衝撃エネルギーの吸収効率をより高めることができる。側壁の長手方向は、側壁と頂面部の間の第1の稜線の延在方向とする。 In the first to fifth configurations, it is desirable that the low-strength region is arranged at the center of the side wall in the longitudinal direction. The reason is as follows. The longitudinal center of the side wall is separated from both longitudinal ends. The vicinity of these both ends is often supported by being connected to other members. When a load is applied to the center while both ends are supported, the bending moment becomes large. By arranging the low-strength region in the center of the side wall in the longitudinal direction, the low-strength region is arranged at a position where deformation due to impact is likely to increase. As a result, the absorption efficiency of impact energy can be further increased. The longitudinal direction of the side wall is the extending direction of the first ridgeline between the side wall and the top surface.

上記第1〜第6の構成において、前記頂面部又は前記底部は、前記側壁の長手方向において互いに離れた位置において他の部材と連結される少なくとも2つの連結部を含んでも良い。前記低強度領域は、前記側壁の長手方向において前記少なくとも2つの連結部の間の中央に配置されることが望ましい。その理由は次の通りである。2つの連結部の中央は、他の部材に支持される位置から離れている。2つの連結部の中央に荷重が作用した場合、曲げモーメントが大きくなる。そのため、少なくとも2つの連結部で支持された構造部材において、少なくとも2つの連結部の中央に低強度領域を設けることで、衝撃による変形が大きくなりやすい位置に低強度領域が配置される。その結果、衝撃エネルギーの吸収効率をより高めることができる。 In the first to sixth configurations, the top surface portion or the bottom portion may include at least two connecting portions that are connected to other members at positions separated from each other in the longitudinal direction of the side wall. It is desirable that the low strength region be centrally located between the at least two connecting portions in the longitudinal direction of the side wall. The reason is as follows. The center of the two connecting portions is separated from the position supported by the other member. When a load acts on the center of the two connecting portions, the bending moment increases. Therefore, in the structural member supported by at least two connecting portions, by providing the low strength region in the center of at least two connecting portions, the low strength region is arranged at a position where deformation due to impact is likely to be large. As a result, the absorption efficiency of impact energy can be further increased.

上記第1〜第7の構成のいずれかの構造部材を備える車両も、本発明の実施形態に含まれる。このような車両において、前記構造部材は、前記頂面部が前記車両の外側に、前記底部が前記車両の内側になるよう配置されることが望ましい。これにより、車両の外側から、構造部材の頂面部に対して衝撃が加わった場合に、構造部材によって効率よく衝撃を吸収することができる。 A vehicle including any of the structural members having the first to seventh configurations is also included in the embodiment of the present invention. In such a vehicle, it is desirable that the structural member is arranged so that the top surface portion is on the outside of the vehicle and the bottom portion is on the inside of the vehicle. As a result, when an impact is applied to the top surface of the structural member from the outside of the vehicle, the structural member can efficiently absorb the impact.

[実施形態]
図1Aは、本発明の実施形態の構造部材の断面図であり、図1Bは、図1Aに示す構造部材の平面図、図1Cは、図1Aに示す構造部材の側面図である。
[Embodiment]
1A is a cross-sectional view of the structural member according to the embodiment of the present invention, FIG. 1B is a plan view of the structural member shown in FIG. 1A, and FIG. 1C is a side view of the structural member shown in FIG. 1A.

図1A〜図1Cに示す構造部材10は、四角形の断面を有する。構造部材10は、長手方向を軸方向とする管状に形成される。構造部材10は、断面の四角形の各辺に相当する4つの壁を有する。 The structural member 10 shown in FIGS. 1A to 1C has a quadrangular cross section. The structural member 10 is formed in a tubular shape whose axial direction is the longitudinal direction. The structural member 10 has four walls corresponding to each side of a quadrangle in cross section.

図1Aに示すように、構造部材10は、上記4つの壁として、頂面部1a、一対の側壁1b及び底部1cを有する。頂面部1aは、断面の四角形の4辺のうち一辺に相当する。一対の側壁1bは、頂面部1aの両端から延び、互いに対向する。底部1cは、頂面部1aに対向し、一対の側壁1bの頂面部1a側の一方端部とは反対側の他方端部の間に形成される。すなわち、一対の側壁1bのうち一方の側壁1bの他方端部と、他方の側壁1bの他方端部との間に、底部1cが形成される。 As shown in FIG. 1A, the structural member 10 has a top surface portion 1a, a pair of side walls 1b, and a bottom portion 1c as the four walls. The top surface portion 1a corresponds to one of the four sides of the quadrangle in the cross section. The pair of side walls 1b extend from both ends of the top surface portion 1a and face each other. The bottom portion 1c faces the top surface portion 1a and is formed between the other end portions on the side opposite to one end portion on the top surface portion 1a side of the pair of side walls 1b. That is, the bottom portion 1c is formed between the other end portion of one side wall 1b of the pair of side wall 1b and the other end portion of the other side wall 1b.

図1に示す構成では、頂面部1a、一対の側壁1b、底部1cの4つの壁いずれにおいても、両端部が、隣接する壁の端部と連続している。すなわち、これら4つ壁は、連続した1つの部材で構成される。例えば、構造部材10の4つの壁は、1枚の板材を変形して形成された溶接管とすることができる。この場合、1枚の板材を折り曲げて形成された四角管が構造部材10となる。構造部材10は、この四角管の外周から外側へ突出する部材(例えば、フランジ等)を有しない。 In the configuration shown in FIG. 1, both ends of each of the four walls of the top surface portion 1a, the pair of side walls 1b, and the bottom portion 1c are continuous with the ends of the adjacent walls. That is, these four walls are composed of one continuous member. For example, the four walls of the structural member 10 can be welded pipes formed by deforming one plate material. In this case, the structural member 10 is a square tube formed by bending one plate material. The structural member 10 does not have a member (for example, a flange or the like) that protrudes outward from the outer circumference of the square pipe.

図1Bに示すように、頂面部1aと一対の側壁1bとの境界部分(肩部)1abは、長手方向に延びる稜を形成する(以下、第1の稜線1abと称する。)。第1の稜線1abは、構造部材10の屈曲している部分(屈曲部)である。頂面部1aの長手方向に垂直な方向(x方向)における両端が一対の第1の稜線1abとなる。一対の第1の稜線1abから一対の側壁1bがそれぞれ延びる。一対の側壁1bは、同じ方向(z方向)へ延びる。すなわち、構造部材10において、頂面部1aと一対の側壁1bで形成される稜(第1の稜線1ab)の延びる方向すなわち管の軸方向(y方向)における寸法は、一対の側壁1bが互いに対向する方向(x方向)における寸法より長くなっている。構造部材10の長手方向は、頂面部1aと側壁1bとの間に形成される第1の稜線1abの延在方向と同じになっている。 As shown in FIG. 1B, the boundary portion (shoulder portion) 1ab between the top surface portion 1a and the pair of side wall portions 1b forms a ridge extending in the longitudinal direction (hereinafter, referred to as a first ridge line 1ab). The first ridge line 1ab is a bent portion (bent portion) of the structural member 10. Both ends of the top surface portion 1a in the direction perpendicular to the longitudinal direction (x direction) form a pair of first ridge lines 1ab. A pair of side walls 1b extend from the pair of first ridge lines 1ab. The pair of side walls 1b extend in the same direction (z direction). That is, in the structural member 10, the dimensions in the extending direction of the ridge (first ridge line 1ab) formed by the top surface portion 1a and the pair of side walls 1b, that is, in the axial direction (y direction) of the pipe are such that the pair of side walls 1b face each other. It is longer than the dimension in the direction (x direction). The longitudinal direction of the structural member 10 is the same as the extending direction of the first ridge line 1ab formed between the top surface portion 1a and the side wall 1b.

図1A及び図1Cに示すように、底部1cと一対の側壁1bの各々との境界部分1bcは、長手方向に延びる稜(以下、第2の稜線1bcと称する。)を形成する。第2の稜線1bcは、構造部材10の屈曲している部分(屈曲部)である。一対の側壁1bの各々において、各側壁1bの両端部のうち頂面部1a側の一方端とは反対側の他方端に第2の稜線1bcが形成される。すなわち、一対の側壁1bの各他方端における一対の第2の稜線1bcの間に、底部1cが形成される。 As shown in FIGS. 1A and 1C, the boundary portion 1bc between the bottom portion 1c and each of the pair of side walls 1b forms a ridge extending in the longitudinal direction (hereinafter, referred to as a second ridge line 1bc). The second ridge line 1bc is a bent portion (bent portion) of the structural member 10. In each of the pair of side walls 1b, a second ridge line 1bc is formed at the other end of both ends of each side wall 1b, which is opposite to one end on the top surface portion 1a side. That is, the bottom 1c is formed between the pair of second ridges 1bc at each other end of the pair of side walls 1b.

図1A及び図1Cに示すように、一対の側壁1bの各々は、側壁1bの一方端部から距離Shの位置に至るまでの領域に、低強度領域1sを有する。低強度領域1sは、周辺よりも強度が低い領域である。一対の側壁1bにおいて、低強度領域1s以外の部分は、低強度領域1sより強度が高い高強度領域となる。各側壁1bの高さ方向(頂面部1aに垂直な方向)において、低強度領域1sは、頂面部1a側の一方端部(第1の稜線1ab)から、第1の稜線1abから距離Shの位置に至るまでの部分に形成される。すなわち、第1の稜線1abから距離Shの位置に低強度領域1sと高強度領域の境界1skがある。この境界1skと、第1の稜線abとの側壁1bの高さ方向における距離が距離Shである。低強度領域1sと高強度領域の境界1skから第2の稜線1bc(底部1c)に至るまでの部分は、高強度領域となる。 As shown in FIGS. 1A and 1C, each of the pair of side walls 1b has a low-strength region 1s in a region from one end of the side wall 1b to a position at a distance Sh. The low-strength region 1s is a region having a lower strength than the periphery. In the pair of side walls 1b, the portion other than the low-strength region 1s is a high-strength region having a higher strength than the low-strength region 1s. In the height direction of each side wall 1b (direction perpendicular to the top surface portion 1a), the low-strength region 1s is located at a distance Sh from one end portion (first ridge line 1ab) on the top surface portion 1a side to the first ridge line 1ab. It is formed in the part up to the position. That is, there is a boundary 1sk between the low-intensity region 1s and the high-intensity region at a position at a distance Sh from the first ridge line 1ab. The distance between the boundary 1sk and the first ridge line ab in the height direction of the side wall 1b is the distance Sh. The portion from the boundary 1sk between the low-strength region 1s and the high-strength region to the second ridge line 1bc (bottom 1c) is the high-strength region.

また、図1Cに示すように、低強度領域1sは、側壁1bの長手方向(第1の稜線1abの延在方向(y方向))において、側壁1bの高さH以上の距離に渡って形成される。すなわち、低強度領域1sの側壁1bの長手方向の長さSnは、側壁1bの高さH以上である。ここで、側壁1bの高さは、頂面部1aに垂直な方向(z方向)における第1の稜線1ab(側壁1bの一方端部)から第2の稜線1bc(側壁1bの他方端部)までの距離とする。このように、低強度領域1sは、第1の稜線1abから側壁1bの高さ方向に距離Shの位置まで、かつ、側壁1bの長手方向において、側壁1bの高さH以上の距離にわたって設けられる。 Further, as shown in FIG. 1C, the low-strength region 1s is formed over a distance equal to or greater than the height H of the side wall 1b in the longitudinal direction of the side wall 1b (extending direction (y direction) of the first ridge line 1ab). Will be done. That is, the length Sn in the longitudinal direction of the side wall 1b of the low-strength region 1s is equal to or greater than the height H of the side wall 1b. Here, the height of the side wall 1b is from the first ridge line 1ab (one end portion of the side wall 1b) to the second ridge line 1bc (the other end portion of the side wall 1b) in the direction perpendicular to the top surface portion 1a (z direction). The distance is. As described above, the low-strength region 1s is provided from the first ridge line 1ab to the position of the distance Sh in the height direction of the side wall 1b, and in the longitudinal direction of the side wall 1b over a distance equal to or greater than the height H of the side wall 1b. ..

このように、構造部材10において、側壁1bの頂面部1a側の一部に低強度領域1sを設けることで、構造部材10に衝撃が加わった場合の、曲げ方向の変形の度合いをより小さくすることができる。これは、発明者らが構造部材の衝撃による変形の様子を注意深く観察した結果得られた、下記の知見に基づくものである。発明者らは、断面四角形の管状に構成される構造部材に圧子を衝突させる衝突試験(シミュレーション)を行い、構造部材の変形挙動を観察した。図2は、衝突試験の様子を模式的に示す図である。衝突試験では、構造部材10aを2つの台12に掛け渡して配置する。2つの台12の中間の位置において、構造部材10aに対して圧子11を衝突させる。 In this way, in the structural member 10, by providing the low-strength region 1s on a part of the side wall 1b on the top surface portion 1a side, the degree of deformation in the bending direction when an impact is applied to the structural member 10 is further reduced. be able to. This is based on the following findings obtained as a result of the inventors carefully observing the state of deformation of the structural member due to impact. The inventors conducted a collision test (simulation) in which an indenter collided with a structural member having a tubular structure having a quadrangular cross section, and observed the deformation behavior of the structural member. FIG. 2 is a diagram schematically showing a state of a collision test. In the collision test, the structural member 10a is placed over the two bases 12. The indenter 11 is made to collide with the structural member 10a at a position intermediate between the two bases 12.

図3は、一様な強度分布を持つ構造部材10bに衝撃を加えたときの変形を示す図である。図4は、図1A〜図1Cと同様の低強度領域を有する構造部材10cに図3と同様の衝撃を加えたときの変形を示す図である。図3に示すように、強度分布が一様な構造部材10bの場合、折れ曲がる箇所が、鋭く突出するように折れ曲がる。この変形モードを折れと称する。これに対して、側壁に低強度部を有する構造部材10cの場合、図4に示すように、衝撃を受けた頂面部とその両端部から延びる側壁の一部が衝撃によりつぶれる。この変形モードを断面潰れと称する。図3の場合に比べて、図4の場合の方が、同じ衝撃荷重を受けた際に変形して衝撃吸収に貢献する部材の領域が広く、その結果、構造部材の変形部分の曲げ方向への突出度合いが小さい。 FIG. 3 is a diagram showing deformation when an impact is applied to the structural member 10b having a uniform strength distribution. FIG. 4 is a diagram showing deformation when the same impact as in FIG. 3 is applied to the structural member 10c having the same low strength region as in FIGS. 1A to 1C. As shown in FIG. 3, in the case of the structural member 10b having a uniform strength distribution, the bent portion is bent so as to protrude sharply. This deformation mode is called folding. On the other hand, in the case of the structural member 10c having a low-strength portion on the side wall, as shown in FIG. 4, the impacted top surface portion and a part of the side wall extending from both ends thereof are crushed by the impact. This deformation mode is called cross-section collapse. Compared with the case of FIG. 3, in the case of FIG. 4, the area of the member that deforms when the same impact load is applied and contributes to the impact absorption is wider, and as a result, in the bending direction of the deformed portion of the structural member. The degree of protrusion is small.

図5は、一様な強度分布を持つ構造部材10bの変形挙動を説明するための図である。図6は、図1A〜図1Cに示すような低強度領域を有する構造部材10cの変形挙動を説明するための図である。図5及び図6は、構造部材の側面、すなわち側壁側から見た構成を示す。 FIG. 5 is a diagram for explaining the deformation behavior of the structural member 10b having a uniform strength distribution. FIG. 6 is a diagram for explaining the deformation behavior of the structural member 10c having a low strength region as shown in FIGS. 1A to 1C. 5 and 6 show a configuration seen from the side surface of the structural member, that is, the side wall side.

図5に示すように、一様な強度分布を持つ構造部材10bでは、衝撃により、曲げ変形起点Pで発生した変形は、頂面部及び側壁が側面視でくさび状になるように、側壁の高さ方向に進行する。その結果、曲げ方向(側壁の高さ方向)に鋭く突出するように折れ曲がる。場合によっては、側壁にひびが入ることもある。 As shown in FIG. 5, in the structural member 10b having a uniform strength distribution, the deformation generated at the bending deformation starting point P due to the impact is the height of the side wall so that the top surface and the side wall are wedge-shaped in the side view. Proceed in the direction. As a result, it bends so as to project sharply in the bending direction (the height direction of the side wall). In some cases, the side walls may be cracked.

図6に示すように、側壁の頂面部側に低強度領域1sc(図6ではドットで示される領域)を有する構造部材10cでは、曲げ変形起点Pから内側へ進行する変形は、低強度領域1scの境界に達すると、低強度領域1scよりも強度が強い領域へ向かわずに、比較的強度の低い横方向(構造部材10cの長手方向)に進行しやすくなる。そのため、変形は長手方向に広がり、曲げ方向(側壁の高さ方向)への変形度合いが小さくなる。 As shown in FIG. 6, in the structural member 10c having the low-strength region 1sc (the region indicated by the dots in FIG. 6) on the top surface side of the side wall, the deformation progressing inward from the bending deformation starting point P is the low-strength region 1sc. When the boundary is reached, it tends to proceed in the lateral direction (longitudinal direction of the structural member 10c) where the strength is relatively low, without going to the region where the strength is stronger than the low strength region 1sc. Therefore, the deformation spreads in the longitudinal direction, and the degree of deformation in the bending direction (height direction of the side wall) becomes small.

また、断面四角形の管状に構成される構造部材が、頂面部に垂直な方向に曲げ変形する場合、側壁の高さ方向の中央付近が折れやすい。すなわち、側壁の高さの2分の1の位置付近が折れ変形の起点となりやすい。図7A及び図7Bは、頂面部1daとその両端から延びる側壁1dbと、頂面部1daに対向し、側壁1dbと連続する底部1dcを有する構造部材10dが、衝撃荷重を受けて変形する様子を示す図である。頂面部1daに衝撃荷重が入力されると、構造部材10dの肩部(頂面部1daと側壁1dbの境界の折れ曲がり部)の角度が変形し、側壁1dbの高さ方向の中央域が折れ曲がり、その結果、構造部材10dが潰れる。この側壁1dbの折れ曲がりが容易に発生するのを避けるため、図1A〜図1Cに示す構造部材10では側壁1bの高さ方向の中央域の強度を高強度化している。 Further, when the structural member formed of a tubular structure having a quadrangular cross section is bent and deformed in the direction perpendicular to the top surface portion, the vicinity of the center in the height direction of the side wall is likely to break. That is, the vicinity of the position of half the height of the side wall is likely to be the starting point of bending deformation. 7A and 7B show a state in which a structural member 10d having a top surface portion 1da, a side wall 1db extending from both ends thereof, and a bottom portion 1dc facing the top surface portion 1da and continuous with the side wall 1db is deformed by an impact load. It is a figure. When an impact load is input to the top surface portion 1da, the angle of the shoulder portion of the structural member 10d (the bent portion at the boundary between the top surface portion 1da and the side wall 1db) is deformed, and the central region of the side wall 1db in the height direction is bent. As a result, the structural member 10d is crushed. In order to prevent the side wall 1db from being easily bent, the structural member 10 shown in FIGS. 1A to 1C has a high strength in the central region of the side wall 1b in the height direction.

すなわち、構造部材10では、側壁1bの高さの中央(2分の1)の位置1midの強度をある程度強くして、側壁1bの高さ方向中央の位置1midよりも頂面部1a側に、中央の位置1midより強度の低い低強度領域1sを設ける。低強度領域1sの範囲及び、高さ方向中央の位置1midに対する低強度領域1sの強度比を適切に設定することにより、中央の位置1midでの側壁1bの折れが容易に発生しないようにし、さらに、中央の位置1midより頂面部1a側での側壁1bの長手方向のつぶれの度合を大きくすることができる。その結果、図6に示すように、曲げ方向への変形度合が小さくなるような変形挙動とすることができる。 That is, in the structural member 10, the strength of the position 1mid at the center (1/2) of the height of the side wall 1b is strengthened to some extent, and the center is closer to the top surface portion 1a than the position 1mid at the center in the height direction of the side wall 1b. A low-strength region 1s having a strength lower than that of the position 1mid is provided. By appropriately setting the range of the low-strength region 1s and the strength ratio of the low-strength region 1s to the central position 1mid in the height direction, it is possible to prevent the side wall 1b from being easily broken at the central position 1mid, and further. , The degree of crushing of the side wall 1b on the top surface portion 1a side from the central position 1mid in the longitudinal direction can be increased. As a result, as shown in FIG. 6, the deformation behavior can be such that the degree of deformation in the bending direction is reduced.

なお、図7A及び図7Bに示す変形挙動は、圧子を構造部材の頂面部に衝突させた場合に限られない。例えば、構造部材を長手方向に圧縮する軸力により曲げ変形する場合や、3点曲げ試験のように、頂面部に圧子を押し付けて長手方向に垂直な方向の力を静的に加えたときの曲げ変形も、同様の変形挙動となり得る。 The deformation behavior shown in FIGS. 7A and 7B is not limited to the case where the indenter collides with the top surface of the structural member. For example, when the structural member is bent and deformed by an axial force that compresses it in the longitudinal direction, or when an indenter is pressed against the top surface and a force in the direction perpendicular to the longitudinal direction is statically applied as in a three-point bending test. Bending deformation can have the same deformation behavior.

また、図6のように、曲げ方向への変形度合が小さくするには、低強度領域1sの長手方向(第1の稜線2の延在方向)の幅も重要であることが発明者らによって見出されている。図7Cは、低強度領域1scの長手方向の長さSnを、側壁1bの高さHの2分の1(H/2)より短くした場合の変形挙動を説明するための図である。図7Cに示すように、低強度領域の長手方向の幅が狭い場合、曲げ変形起点Pから内側へ進行する変形が、長手方向における低強度領域1scと高強度領域の境界に達するのが早くなる。その結果、長手方向のつぶれが制限され、高さ方向の変形が進行しやすくなる。 Further, as shown in FIG. 6, the inventors have found that the width of the low-strength region 1s in the longitudinal direction (the extending direction of the first ridge line 2) is also important in order to reduce the degree of deformation in the bending direction. Has been found. FIG. 7C is a diagram for explaining the deformation behavior when the length Sn in the longitudinal direction of the low-strength region 1sc is made shorter than half (H / 2) of the height H of the side wall 1b. As shown in FIG. 7C, when the width of the low-strength region in the longitudinal direction is narrow, the deformation progressing inward from the bending deformation starting point P quickly reaches the boundary between the low-strength region 1sc and the high-strength region in the longitudinal direction. .. As a result, the collapse in the longitudinal direction is restricted, and the deformation in the height direction is likely to proceed.

発明者らは、様々な条件で構造部材の曲げ試験及び解析を行った結果、構造部材が曲げ変形する際、長手方向の変形の範囲は、側壁の高さと同程度になることを見出した。さらに、発明者らは、低強度領域1scの長手方向の幅を、側壁の高さ以上にすることで、衝撃による変形を長手方向に分散させ、曲げ方向への変形度合を小さくできることを見出した。 As a result of bending tests and analysis of the structural member under various conditions, the inventors have found that when the structural member is bent and deformed, the range of deformation in the longitudinal direction is about the same as the height of the side wall. Furthermore, the inventors have found that by making the width of the low-strength region 1sc in the longitudinal direction equal to or greater than the height of the side wall, the deformation due to impact can be dispersed in the longitudinal direction and the degree of deformation in the bending direction can be reduced. ..

発明者らは、上記の知見に基づき、以下のように構造部材10を構成することに想到した。図1A及び図1Cに示す一対の側壁1bの各々は、側壁1bの一方端部から距離Shの位置に至るまでの領域に、低強度領域1sを有する。側壁1bの低強度領域1sの距離Shは、側壁1bの高さHの20〜40%とすることができる。低強度領域1sの降伏強度は、側壁1bの高さHの2分の1の位置1mid(すなわち、高さ方向中央の位置1mid)における降伏強度の60〜85%とすることができる。 Based on the above findings, the inventors have come up with the idea of constructing the structural member 10 as follows. Each of the pair of side walls 1b shown in FIGS. 1A and 1C has a low-strength region 1s in a region from one end of the side wall 1b to a position at a distance Sh. The distance Sh of the low-strength region 1s of the side wall 1b can be 20 to 40% of the height H of the side wall 1b. The yield strength of the low-strength region 1s can be 60 to 85% of the yield strength at the position 1mid (that is, the position 1mid at the center in the height direction) which is half the height H of the side wall 1b.

すなわち、構造部材10の断面において、側壁1bのうち頂面部1a側端部から側壁1bの高さHの20〜40%の長さまでの間、側壁1bの高さHの50%(すなわち側壁1bの高さ方向中央)の位置の箇所より降伏強度が60〜85%の低強度領域が連続している。言い換えれば、低強度領域1sは、第1の稜線1abから第2の稜線1bcに向かって、頂面部1aに垂直な方向における第1の稜線1abと第2の稜線1bcの間の距離の20〜40%の位置まで設けられる。低強度領域1sの降伏強度は、第1の稜線1abと第2の稜線1bcの中央における側壁1bの降伏強度の60〜85%である。 That is, in the cross section of the structural member 10, 50% of the height H of the side wall 1b (that is, the side wall 1b) from the end of the side wall 1b on the top surface 1a side to a length of 20 to 40% of the height H of the side wall 1b. A low-strength region with a yield strength of 60 to 85% is continuous from the position (center in the height direction). In other words, the low-intensity region 1s is 20 to 20 to the distance between the first ridge 1ab and the second ridge 1bc in the direction perpendicular to the top surface 1a from the first ridge 1ab to the second ridge 1bc. It is provided up to the 40% position. The yield strength of the low-strength region 1s is 60 to 85% of the yield strength of the side wall 1b at the center of the first ridge line 1ab and the second ridge line 1bc.

これにより、例えば、頂面部1aに衝撃が加わった場合の変形挙動が、図4に示すような断面つぶれになりやすくなる。その結果、頂面部1aに垂直な方向への曲げ変形の度合を小さくすることができる。このように、構造部材10は、衝撃を受けたとき、小さい変形でより大きい衝撃エネルギーを吸収することができる。すなわち、構造部材10は、衝撃エネルギーを効率よく吸収することができる。 As a result, for example, the deformation behavior when an impact is applied to the top surface portion 1a tends to cause the cross-sectional collapse as shown in FIG. As a result, the degree of bending deformation in the direction perpendicular to the top surface portion 1a can be reduced. In this way, when the structural member 10 receives an impact, it can absorb a larger impact energy with a small deformation. That is, the structural member 10 can efficiently absorb the impact energy.

また、図1A〜図1Cに示す構成では、構造部材10の対向する一対の側面1bの両方に上記の低強度領域1sが設けられる。そのため、頂面部1aに衝撃が加わった場合、一対の側面1bのうち一方の側面1bだけが折れ曲がる可能性が低くなる。 Further, in the configurations shown in FIGS. 1A to 1C, the low strength region 1s is provided on both of the pair of side surfaces 1b of the structural member 10 facing each other. Therefore, when an impact is applied to the top surface portion 1a, the possibility that only one side surface 1b of the pair of side surface 1b is bent is reduced.

なお、低強度領域1sの距離Shは、側壁1bの高さHの35%以下であるとより好ましく、30%以下だとなお好ましい。また、距離Shは、側壁1bの高さHの25%以上であるとより好ましい。側壁1bにおける低強度領域1sの強度と、高さ方向中央の位置1midの強度との比(強度比)は、83%以下であると好ましく、80%以下であるとより好ましい。また、この強度比は、70%以上であるとより好ましい。 The distance Sh of the low-strength region 1s is more preferably 35% or less of the height H of the side wall 1b, and even more preferably 30% or less. Further, the distance Sh is more preferably 25% or more of the height H of the side wall 1b. The ratio (strength ratio) of the strength of the low-strength region 1s on the side wall 1b to the strength of the position 1mid at the center in the height direction is preferably 83% or less, and more preferably 80% or less. Further, this strength ratio is more preferably 70% or more.

一対の側壁1bのうち一方の側壁の強度分布と、他方の側壁の強度分布とは、互いに鏡像関係にある構成とすることが望ましい。これにより、一対の側壁1bのうちどちらか片方が先に潰れてしまう可能性がより低くなる。 It is desirable that the intensity distribution of one side wall of the pair of side walls 1b and the intensity distribution of the other side wall have a mirror image relationship with each other. This makes it less likely that one of the pair of side walls 1b will collapse first.

例えば、図1に示す例では、一対の側壁1bのうち一方の側壁1bの低強度領域1sの距離Shと、対向する他方の側壁1bの低強度領域1sの距離Shは同じである。また、一対の側壁1bは、互いに同じ高さであり、頂面部1aとの角度も同じである。そのため、図1に示す長手方向に垂直な断面において、頂面部1aの垂直二等分線Aを軸として、構造部材10の強度分布は、左右対称となっている。これにより、衝撃による応力の偏りが少なくなる。 For example, in the example shown in FIG. 1, the distance Sh of the low-strength region 1s of one side wall 1b of the pair of side walls 1b and the distance Sh of the low-strength region 1s of the other side wall 1b facing each other are the same. Further, the pair of side walls 1b have the same height as each other, and the angle with the top surface portion 1a is also the same. Therefore, in the cross section perpendicular to the longitudinal direction shown in FIG. 1, the strength distribution of the structural member 10 is symmetrical with respect to the vertical bisector A of the top surface portion 1a. As a result, the bias of stress due to impact is reduced.

また、低強度領域1sは、側壁1bの長手方向において、側壁1bの高さH以上の距離に渡って形成されることが好ましい。すなわち、低強度領域1sは、第1の稜線1abの延在方向に、頂面部1aに垂直な方向における第1稜線1abと第2の稜線1bcの間の距離以上の長さの領域に設けられる。これにより、長手方向への変形を進行させやすくして、曲げ方向への変位をより抑えることができる。低強度領域1sの第1の稜線1abの延在方向の寸法は、側壁1bの高さの1.5倍(3H/2)以上とすることが好ましく、側壁1bの高さの2倍(2H)以上とすることがさらに好ましい。 Further, the low-strength region 1s is preferably formed over a distance equal to or greater than the height H of the side wall 1b in the longitudinal direction of the side wall 1b. That is, the low-strength region 1s is provided in a region having a length equal to or longer than the distance between the first ridge line 1ab and the second ridge line 1bc in the extending direction of the first ridge line 1ab and in the direction perpendicular to the top surface portion 1a. .. As a result, it is possible to facilitate the deformation in the longitudinal direction and further suppress the displacement in the bending direction. The dimension of the first ridge line 1ab in the low-strength region 1s in the extending direction is preferably 1.5 times (3H / 2) or more the height of the side wall 1b, and twice the height of the side wall 1b (2H). ) It is more preferable to make the above.

側壁1bの高さ方向中央の位置1midにおける引張強度は、例えば、980MPa以上(降伏強度500MPa以上)とすることが望ましい。これにより、側壁1bの高さ方向中央の位置1midの強度を確保し、この位置1midで側壁1bが折れにくくすることができる。なお、構造部材10の低強度領域1s以外の領域は、この高さ方向中央の位置1midと同様の強度にすることができる。 It is desirable that the tensile strength at the position 1mid at the center of the side wall 1b in the height direction is, for example, 980 MPa or more (yield strength 500 MPa or more). As a result, the strength of the side wall 1b at the center position 1mid in the height direction can be secured, and the side wall 1b can be made difficult to break at this position 1mid. The region other than the low-strength region 1s of the structural member 10 can have the same strength as the position 1mid at the center in the height direction.

第1の稜線1abと第2の稜線1bcの間において、低強度領域1sの端部から第2の稜線1bc(フランジ1c)までの領域は、高強度領域である。高強度領域の降伏強度は、低強度領域1sの降伏強度より高い。なお、高強度領域における強度分布は、均一でなくてもよい。 Between the first ridge line 1ab and the second ridge line 1bc, the region from the end of the low-strength region 1s to the second ridge line 1bc (flange 1c) is a high-strength region. The yield strength in the high-strength region is higher than the yield strength in the low-strength region 1s. The intensity distribution in the high intensity region does not have to be uniform.

頂面部1aの少なくとも一部に低強度領域を設けてもよいし、頂面部1aに低強度領域を設けなくてもよい。構造部材10の折れ曲がり変形では、側壁1bの強度の影響が支配的であることが発明者らによって見いだされた。頂面部1aの強度は、側壁1bの強度に比べて、折れ曲がり変形に与える影響が少ない。 A low-strength region may be provided in at least a part of the top surface portion 1a, or a low-strength region may not be provided in the top surface portion 1a. It has been found by the inventors that the influence of the strength of the side wall 1b is dominant in the bending deformation of the structural member 10. The strength of the top surface portion 1a has less influence on bending deformation than the strength of the side wall 1b.

図1Aに示すように、構造部材10は、頂面部1a、頂面部1aの両端から折れ曲がって縦に延びる一対の側壁1b、及び、一対の側壁1bの頂面部1a側の一方端部とは反対側の他方端部から内側に折れ曲がって、当該一対の側壁1bの他方端部の間をつなぐ底部1cを備える。図1Aに示す例では、側壁1bは頂面部1a及び底部1cに対して垂直となっている。すなわち、構造部材10の長手方向に垂直な面の断面は、長方形となっている。 As shown in FIG. 1A, the structural member 10 is opposite to the top surface portion 1a, a pair of side walls 1b that are bent from both ends of the top surface portion 1a and extend vertically, and one end of the pair of side walls 1b on the top surface portion 1a side. A bottom portion 1c that bends inward from the other end on the side and connects between the other ends of the pair of side walls 1b is provided. In the example shown in FIG. 1A, the side wall 1b is perpendicular to the top surface portion 1a and the bottom portion 1c. That is, the cross section of the surface of the structural member 10 perpendicular to the longitudinal direction is rectangular.

構造部材10の構成は、図1Aに示す例に限られない。例えば、側壁1bと底部1cとの角度は、90度(直角)でなくてもよい。同様に、側壁1bと頂面部1aとの角度も90度(直角)に限られない。例えば、構造部材10の長手方向に垂直な断面は、台形であってもよい。この場合、断面形状は、左右対称の台形として、一対の側壁1bの強度分布を互いに鏡像関係とすることができる。なお、断面形状を左右対称でない台形としてもよい。例えば、一対の側壁1bは、長さが互いに異なっていてもよい。その結果、頂面部1aと底部1cは、平行でなくてもよい。 The configuration of the structural member 10 is not limited to the example shown in FIG. 1A. For example, the angle between the side wall 1b and the bottom 1c does not have to be 90 degrees (right angle). Similarly, the angle between the side wall 1b and the top surface portion 1a is not limited to 90 degrees (right angle). For example, the cross section of the structural member 10 perpendicular to the longitudinal direction may be trapezoidal. In this case, the cross-sectional shape is a symmetrical trapezoid, and the strength distributions of the pair of side walls 1b can be mirror images of each other. The cross-sectional shape may be a trapezoid that is not symmetrical. For example, the pair of side walls 1b may have different lengths. As a result, the top surface portion 1a and the bottom portion 1c do not have to be parallel.

また、側壁1bと頂面部1aの境界となる角(肩部)の断面形状には、R(丸みすなわち湾曲部)を形成してもよい。同様に、側壁1bと底部1cの境界の角(肩部)の断面形状に、R(丸みすなわち湾曲部)を形成してもよい。また、頂面部1a、側壁1b及び底部1cのすくなくとも1つの表面は、平面でなく曲面とすることができる。すなわち、頂面部1a、側壁1b及び底部1cの少なくとも1つは、湾曲していてもよい。なお、側壁1bと頂面部1aの角におけるRの曲率半径が大きすぎると、側壁1bが高さ方向の荷重を支える機能が低下する。そのため、側壁1bと頂面部1aの角のR(湾曲)の内側の曲率半径は、例えば、15mm以下とする。或いは、側壁1bと頂面部1aの角のR(湾曲)の内側の曲率半径を、例えば、側壁1bの高さHの3分の1以下、(R≦H/3)とする。 Further, R (rounded or curved portion) may be formed in the cross-sectional shape of the corner (shoulder portion) that is the boundary between the side wall 1b and the top surface portion 1a. Similarly, R (rounded or curved portion) may be formed in the cross-sectional shape of the corner (shoulder portion) of the boundary between the side wall 1b and the bottom portion 1c. Further, at least one surface of the top surface portion 1a, the side wall portion 1b, and the bottom portion 1c can be a curved surface instead of a flat surface. That is, at least one of the top surface portion 1a, the side wall 1b, and the bottom portion 1c may be curved. If the radius of curvature of R at the angle between the side wall 1b and the top surface portion 1a is too large, the function of the side wall 1b to support the load in the height direction deteriorates. Therefore, the radius of curvature inside the R (curvature) of the corner between the side wall 1b and the top surface portion 1a is set to, for example, 15 mm or less. Alternatively, the radius of curvature inside the R (curvature) at the angle between the side wall 1b and the top surface portion 1a is set to, for example, one-third or less of the height H of the side wall 1b (R ≦ H / 3).

一対の側壁1bの少なくとも一方に、凹部(溝)、凸部(稜)、段差又は孔が設けられてもよい。頂面部1a又は底部1cに、凹部(溝)、凸部(稜)、段差又は孔が設けられてもよい。但し、これらの頂面部1a、側壁1b又は底部1cに設けられる凹部(溝)、凸部(稜)、段差又は孔は、構造部材10の変形挙動に重大な影響を与えない程度の大きさとする必要がある。例えば、頂面部1aに凸部を形成してもよい。 At least one of the pair of side walls 1b may be provided with a recess (groove), a protrusion (ridge), a step or a hole. The top surface portion 1a or the bottom portion 1c may be provided with a concave portion (groove), a convex portion (ridge), a step or a hole. However, the concave portions (grooves), convex portions (ridges), steps or holes provided on the top surface portion 1a, the side wall 1b or the bottom portion 1c shall be of a size that does not significantly affect the deformation behavior of the structural member 10. There is a need. For example, a convex portion may be formed on the top surface portion 1a.

側壁1bと頂面部1aの境界の角又は側壁1bと底部1cの境界の角にR(丸みすなわち湾曲部)を形成した場合、長手方向に垂直な断面において、Rが形成された部分のうち、側壁1bの高さ方向中央の位置1midから遠い方のR止まり(湾曲部の端)部分を側壁1bの端部として、上記側壁1bの高さH及び低強度領域の距離Shを決定する。 When R (rounded or curved portion) is formed at the corner of the boundary between the side wall 1b and the top surface portion 1a or the corner of the boundary between the side wall 1b and the bottom portion 1c, among the portions where R is formed in the cross section perpendicular to the longitudinal direction. The height H of the side wall 1b and the distance Sh of the low-strength region are determined by setting the R stop (end of the curved portion) farther from the position 1mid at the center in the height direction of the side wall 1b as the end of the side wall 1b.

すなわち、側壁1bと頂面部1aの間の湾曲した部分(湾曲部)の頂面部1a側の端(R止まり)を側壁1bの一方端部として、側壁1bの高さH及び低強度領域1sの高さ方向の距離Shを決定する。また、側壁1bとフランジ1cの間の湾曲した部分(湾曲部)のフランジ1c側の端(R止まり)を側壁1bの他方端部として、側壁1bの高さH及び低強度領域1sの高さ方向の距離Shを決定する。 That is, the height H of the side wall 1b and the low-strength region 1s are set with the end (R stop) on the top surface 1a side of the curved portion (curved portion) between the side wall 1b and the top surface 1a as one end of the side wall 1b. The distance Sh in the height direction is determined. Further, the height H of the side wall 1b and the height of the low strength region 1s are set with the end (R stop) on the flange 1c side of the curved portion (curved portion) between the side wall 1b and the flange 1c as the other end of the side wall 1b. Determine the distance Sh in the direction.

同様にして、第1の稜線1ab及び第2の稜線1bcを基準に、側壁1bの高さH及び低強度領域1sの高さ方向の距離Shを決定する。この場合、具体的には、第1の稜線1abは、側壁1bと頂面部1aとの間のR(湾曲部)の頂面部1a側の端(R止まり)、すなわち、R(湾曲部)の側壁1bの高さ方向中央の位置1midから遠い方のR止まり(湾曲部の端)とする。第2の稜線1bcは、側壁1bとフランジ1cとの間のR(湾曲部)のフランジ1c側の端(R止まり)、すなわち、R(湾曲部)の側壁1bの高さ方向中央の位置1midから遠い方のR止まり(湾曲部の端)とする。 Similarly, the height H of the side wall 1b and the distance Sh in the height direction of the low-strength region 1s are determined with reference to the first ridge line 1ab and the second ridge line 1bc. In this case, specifically, the first ridge line 1ab is the end (R stop) of the R (curved portion) between the side wall 1b and the top surface portion 1a on the top surface portion 1a side, that is, the R (curved portion). The R stop (the end of the curved portion) farther from the position 1mid at the center of the side wall 1b in the height direction. The second ridge line 1bc is the end (R stop) of the R (curved portion) between the side wall 1b and the flange 1c on the flange 1c side, that is, the position 1mid at the center of the side wall 1b of the R (curved portion) in the height direction. Let it be the R stop (the end of the curved part) farther from.

ここで、側壁1bの高さは、側壁1bの一方端部から他方端部までの高さ方向における寸法である。言い換えれば、側壁1bの高さは、側壁1bの第1の稜線1abから第2の稜線1bcまでの頂面部1aに垂直な方向における寸法である。低強度領域1sの距離Shは、側壁1bの一方端部から側壁1bの低強度領域1sの境界までの高さ方向における寸法である。すなわち、低強度領域1sの距離Shは、第1の稜線1abから側壁1bの低強度領域1sと高強度領域との境界までの頂面部1aに垂直な方向における寸法である。側壁1bの高さの2分の1の位置1midは、側壁1bの高さ方向における中央の位置である。すなわち、側壁1bの高さの2分の1の位置1midは、頂面部1aに垂直な方向における第1の稜線1abと第2の稜線1bcの中央の側壁1bの位置である。 Here, the height of the side wall 1b is a dimension in the height direction from one end to the other end of the side wall 1b. In other words, the height of the side wall 1b is a dimension in the direction perpendicular to the top surface portion 1a from the first ridge line 1ab to the second ridge line 1bc of the side wall 1b. The distance Sh of the low-strength region 1s is a dimension in the height direction from one end of the side wall 1b to the boundary of the low-strength region 1s of the side wall 1b. That is, the distance Sh of the low-strength region 1s is a dimension in the direction perpendicular to the top surface portion 1a from the first ridge line 1ab to the boundary between the low-strength region 1s and the high-strength region of the side wall 1b. The position 1mid, which is half the height of the side wall 1b, is the central position in the height direction of the side wall 1b. That is, the position 1mid, which is half the height of the side wall 1b, is the position of the central side wall 1b of the first ridge line 1ab and the second ridge line 1bc in the direction perpendicular to the top surface portion 1a.

側壁1bの高さ方向は、頂面部1aに垂直な方向とする。頂面部1aに垂直な方向とは、具体的には、頂面部1aの表面の平面に垂直な方向とする。頂面部1aが、長手方向に垂直な断面において、凹部、凸部、段差又は湾曲部を含む場合、2つの第1の稜線1abを結ぶ仮想平面に垂直な方向を、頂面部に垂直な方向とする。 The height direction of the side wall 1b is perpendicular to the top surface portion 1a. Specifically, the direction perpendicular to the top surface portion 1a is the direction perpendicular to the plane of the surface of the top surface portion 1a. When the top surface portion 1a includes a concave portion, a convex portion, a step or a curved portion in a cross section perpendicular to the longitudinal direction, the direction perpendicular to the virtual plane connecting the two first ridge lines 1ab is defined as the direction perpendicular to the top surface portion. To do.

図8Aは、肩部にRを形成した場合の、側壁1bの高さH及び低強度領域1sの距離Shの例を示す図である。図8Aに示す例では、側壁1bの高さHは、構造部材10の断面における側壁1bの一方端部から他方端部までの、z方向(底部1cに垂直な方向)における寸法(高さ)とし、低強度領域1sの距離Shは、側壁1bの低強度領域1sのz方向における寸法(高さ)とする。 FIG. 8A is a diagram showing an example of the height H of the side wall 1b and the distance Sh of the low strength region 1s when R is formed on the shoulder portion. In the example shown in FIG. 8A, the height H of the side wall 1b is the dimension (height) in the z direction (direction perpendicular to the bottom 1c) from one end to the other end of the side wall 1b in the cross section of the structural member 10. The distance Sh of the low-strength region 1s is the dimension (height) of the low-strength region 1s of the side wall 1b in the z direction.

側壁1bに凹部、凸部、段差又は孔(以下、凹部等と称する)がある場合も、長手方向に垂直な断面において、凹部等が形成された部分のうち、側壁1bの中央の位置1midから遠い方のR止まり(湾曲部の端)を側壁1bの端部として、側壁1bの高さH及び低強度領域の距離Shを決定する。図8Bは、側壁1bの両端部に、凹部(溝)を形成した場合の、側壁1bの高さH及び低強度領域の距離Shの例を示す図である。この場合、長手方向に垂直な断面において、凹部等が形成された部分のうち、側壁1bの中央の位置1midから最も遠い部分(凹部の端)を側壁1bの端部とする。図8Bに示す例では、側壁1bの一方端部から他方端部までのz方向の寸法すなわち、側壁1bの最も低い位置から最も高い位置までの高さをHとし、側壁1bの低強度領域1sの最も低いから最も高い位置までの高さをShとする。 Even if the side wall 1b has a concave portion, a convex portion, a step or a hole (hereinafter referred to as a concave portion or the like), the portion where the concave portion or the like is formed in the cross section perpendicular to the longitudinal direction is from the central position 1mid of the side wall 1b. The height H of the side wall 1b and the distance Sh of the low-strength region are determined by using the far R stop (the end of the curved portion) as the end of the side wall 1b. FIG. 8B is a diagram showing an example of the height H of the side wall 1b and the distance Sh of the low strength region when recesses (grooves) are formed at both ends of the side wall 1b. In this case, in the cross section perpendicular to the longitudinal direction, the portion farthest from the center position 1mid of the side wall 1b (the end of the recess) is defined as the end of the side wall 1b. In the example shown in FIG. 8B, the dimension in the z direction from one end to the other end of the side wall 1b, that is, the height from the lowest position to the highest position of the side wall 1b is H, and the low strength region 1s of the side wall 1b. Let Sh be the height from the lowest position to the highest position.

図8Cは、頂面部1aが傾いている場合の側壁1bの高さ方向を説明するための図である。図8Cに示す構造部材10において、頂面部1aと、底部1cは、平行でない。また、一方の側壁1brと他方の側壁1bhのz方向の長さは異なる。側壁1br、1bhの高さ方向は、頂面部1aに垂直な方向とする。各側壁1br、1bhの高さHL、HR及び、各低強度領域1sr、1shの一方端部(第1の稜線1bcr、1bch)から境界1skr、2skhまでの距離ShR、ShLは、側壁1br、1bhの高さ方向を基準として決められる。そのため、側壁1br、1bhの表面における一方端部(第1の稜線1abr、1anh)から他方端部(第2の稜線1bcr、1bch)までの距離と、高さHR、HLとは異なっている。 FIG. 8C is a diagram for explaining the height direction of the side wall 1b when the top surface portion 1a is tilted. In the structural member 10 shown in FIG. 8C, the top surface portion 1a and the bottom portion 1c are not parallel to each other. Further, the lengths of one side wall 1br and the other side wall 1bh in the z direction are different. The height direction of the side walls 1br and 1bh is the direction perpendicular to the top surface portion 1a. The heights HL and HR of each side wall 1br and 1bh and the distances ShR and ShL from one end of each low-intensity region 1sr and 1sh (first ridge line 1bcr, 1bch) to the boundary 1skr and 2sk are the side wall 1br and 1bh. It is decided based on the height direction of. Therefore, the distance from one end (first ridge 1abr, 1anh) to the other end (second ridge 1bcr, 1bch) on the surface of the side wall 1br and 1b is different from the heights HR and HL.

上記実施形態において、第1の稜線及び第2の稜線の少なくとも一方は、曲線であってもよい。例えば、第1の稜線及び第2の稜線の少なくとも一方は、側壁の高さ方向に湾曲してもよいし、側壁に垂直な方向に湾曲してもよい。また、側壁の高さ(第1の稜線と第2の稜線の距離)が、長手方向(第1の稜線の延在方向)において変化していてもよい。側壁の高さが長手方向の位置によって異なる場合、低強度領域の高さ方向の距離Sh及び長手方向の距離Snの基準となる側壁の高さは、低強度領域が形成される部分における側壁の高さの平均値とする。 In the above embodiment, at least one of the first ridge line and the second ridge line may be a curved line. For example, at least one of the first ridge and the second ridge may be curved in the height direction of the side wall or in the direction perpendicular to the side wall. Further, the height of the side wall (distance between the first ridge line and the second ridge line) may change in the longitudinal direction (extending direction of the first ridge line). When the height of the side wall differs depending on the position in the longitudinal direction, the height of the side wall that is the reference for the height distance Sh and the longitudinal distance Sn of the low-strength region is the height of the side wall in the portion where the low-strength region is formed. The average height.

図1Bに示す例では、構造部材10は、長手方向に直線状に延びて形成される。これに対して、構造部材10は、長手方向において湾曲していてもよい。例えば、側面(x方向)から見て、頂面部1a側(z+方向)に凸となるよう湾曲した形状にすることができる。また、上(z方向)から見て構造部材10を湾曲させてもよい。また、頂面部1aの幅(長手方向に垂直な方向(x方向)の長さ)は、一様でなくてもよい。側壁1bの高さ(z方向の長さ)も一様でなくてもよい。 In the example shown in FIG. 1B, the structural member 10 is formed so as to extend linearly in the longitudinal direction. On the other hand, the structural member 10 may be curved in the longitudinal direction. For example, the shape can be curved so as to be convex toward the top surface portion 1a side (z + direction) when viewed from the side surface (x direction). Further, the structural member 10 may be curved when viewed from above (z direction). Further, the width of the top surface portion 1a (the length in the direction perpendicular to the longitudinal direction (x direction)) does not have to be uniform. The height (length in the z direction) of the side wall 1b does not have to be uniform.

図9A〜図9Dは、長手方向において湾曲した構造部材10の例を示す側面図である。図9A〜図9Dに示す例では、構造部材10は、側面(x方向)から見て、頂面部1a側(z+方向)に凸となるよう湾曲している。すなわち、構造部材10は、長手方向において頂面部1aへ凸となるように湾曲している。図9Aでは、構造部材10の長手方向全体にわたって一定の曲率で湾曲している。図9B及び図9Cでは、構造部材10の長手方向の位置に応じて曲率が変化している。図9Dでは、構造部材10は、長手方向の一部において湾曲している。 9A-9D are side views showing an example of the structural member 10 curved in the longitudinal direction. In the examples shown in FIGS. 9A to 9D, the structural member 10 is curved so as to be convex toward the top surface portion 1a side (z + direction) when viewed from the side surface (x direction). That is, the structural member 10 is curved so as to be convex toward the top surface portion 1a in the longitudinal direction. In FIG. 9A, the structural member 10 is curved with a constant curvature over the entire longitudinal direction. In FIGS. 9B and 9C, the curvature changes according to the position of the structural member 10 in the longitudinal direction. In FIG. 9D, the structural member 10 is curved in a part in the longitudinal direction.

底部1cから頂面部1aへ向かって凸となるように、構造部材10を湾曲させることで、頂面部1aへ衝撃荷重が入力された際に、湾曲していない場合(長手方向に直線状の構成)に比べて、構造部材10が折れ曲がりにくくなる。 By bending the structural member 10 so as to be convex from the bottom portion 1c toward the top surface portion 1a, when an impact load is input to the top surface portion 1a, it is not curved (a linear configuration in the longitudinal direction). ), The structural member 10 is less likely to bend.

[車両への適用例]
上記の構造部材10を備える車両も、本発明の実施形態に含まれる。車両において、構造部材10は、頂面部1aが車両の外側に、底部1cが車両の内側になるよう配置することができる。すなわち、衝撃入力面が車両の外側になるように構造部材10が取り付けられる。これにより、車両の外側から衝撃を受けた場合に、構造部材10が車両の内側へ突出する度合が小さくなる。そのため、車両内の装置又人に構造部材10が接触する可能性がより低くなる。例えば、構造部材が、衝突時に客室内に向かって折れることが避けられる。これにより、安全性がより向上する。
[Example of application to vehicles]
A vehicle provided with the above structural member 10 is also included in the embodiment of the present invention. In the vehicle, the structural member 10 can be arranged so that the top surface portion 1a is on the outside of the vehicle and the bottom portion 1c is on the inside of the vehicle. That is, the structural member 10 is attached so that the impact input surface is on the outside of the vehicle. As a result, when an impact is received from the outside of the vehicle, the degree to which the structural member 10 protrudes inside the vehicle is reduced. Therefore, the possibility that the structural member 10 comes into contact with the device or person in the vehicle is reduced. For example, it is possible to prevent the structural member from breaking toward the inside of the cabin in the event of a collision. This further improves safety.

構造部材10は、上記のように、頂面部1a側へ向かって凸となるように湾曲していてもよい。この場合、頂面部1aを外側に配置し、構造部材10の両端部を支持する構成とすることができる。これにより、車両の外側から衝撃を受けた場合に、構造部材10を折れにくくすることができる。 As described above, the structural member 10 may be curved so as to be convex toward the top surface portion 1a side. In this case, the top surface portion 1a can be arranged on the outside to support both ends of the structural member 10. As a result, the structural member 10 can be made difficult to break when an impact is received from the outside of the vehicle.

また、構造部材10は、長手方向に離間した2箇所で支持された状態で用いることもある。この場合、構造部材10は、他の部材に連結される部分である連結部を2つ有する。すなわち、構造部材10は、連結部において他の部材に支持される。連結部は、支持部と称することもある。連結部は、側壁1b、頂面部1a及び底部1cの少なくとも1つに設けられる。 Further, the structural member 10 may be used in a state of being supported at two positions separated in the longitudinal direction. In this case, the structural member 10 has two connecting portions which are portions connected to other members. That is, the structural member 10 is supported by another member at the connecting portion. The connecting portion may also be referred to as a supporting portion. The connecting portion is provided on at least one of the side wall 1b, the top surface portion 1a, and the bottom portion 1c.

連結部では、構造部材10は、他の部材に対して固定される。構造部材10の連結部は、例えば、締結部材又は溶接により他の部材と接合される。なお、連結部は、3つ以上であってもよい。 At the connecting portion, the structural member 10 is fixed to other members. The connecting portion of the structural member 10 is joined to another member by, for example, a fastening member or welding. The number of connecting portions may be three or more.

また、連結部は、構造部材10の内部空間に挿入された状態で、構造部材10を支持する構成であってもよい。例えば、構造部材10の場合、底部1cに貫通孔をあけ、貫通孔から他の部材を挿入して、他の部材の端部を頂面部1aの内側の面に接合してもよい。このように、構造部材10の頂面部1aの部材内側に連結部を設けてもよい。或いは、頂面部1aに貫通孔をあけ、貫通孔から他の部材を挿入して、他の部材の端部を底部1cの内側の面に接合してもよい。このように、構造部材10の底部1cの部材内側に連結部を設けてもよい。 Further, the connecting portion may be configured to support the structural member 10 in a state of being inserted into the internal space of the structural member 10. For example, in the case of the structural member 10, a through hole may be formed in the bottom portion 1c, another member may be inserted through the through hole, and the end portion of the other member may be joined to the inner surface of the top surface portion 1a. In this way, the connecting portion may be provided inside the member of the top surface portion 1a of the structural member 10. Alternatively, a through hole may be formed in the top surface portion 1a, another member may be inserted through the through hole, and the end portion of the other member may be joined to the inner surface of the bottom portion 1c. In this way, the connecting portion may be provided inside the member of the bottom portion 1c of the structural member 10.

低強度領域1sは、2つの連結部の間に設けることが好ましい。すなわち、2つの連結部の間の側壁1bに低強度領域1sの少なくとも一部が形成されることが好ましい。これにより、連結部により支持されていない構造部材の部分に衝撃が加わった場合の曲げ変形を少なくすることができる。また、低強度領域1sは、2つの連結部の中央に設けられることが望ましい。すなわち、2つの連結部の中央における側壁1bに、低強度領域1sが形成されることが好ましい。これにより、強い衝撃がかかる可能性の高い位置の衝撃エネルギー吸収効率を高めることができる。その結果、衝撃による構造部材の曲げ変形の度合を小さくすることができる。 The low-strength region 1s is preferably provided between the two connecting portions. That is, it is preferable that at least a part of the low-strength region 1s is formed on the side wall 1b between the two connecting portions. As a result, it is possible to reduce bending deformation when an impact is applied to a portion of the structural member that is not supported by the connecting portion. Further, it is desirable that the low strength region 1s is provided at the center of the two connecting portions. That is, it is preferable that the low-strength region 1s is formed on the side wall 1b at the center of the two connecting portions. As a result, it is possible to increase the impact energy absorption efficiency at a position where a strong impact is likely to be applied. As a result, the degree of bending deformation of the structural member due to impact can be reduced.

また、構造部材10の長手方向中央に低強度領域1sを配置することが望ましい。なぜなら、構造部材10は、長手方向中央から離れた両端部付近で他の部材と連結されるからである。これにより、連結部が有る場合とない場合のいずれの場合においても、構造部材10において、衝撃によるモーメントが最も大きくなり折れ易い箇所(構造部材の長手方向中央或いは連結部間の中間箇所)の折れ変形を効果的に抑えることができる。 Further, it is desirable to arrange the low strength region 1s at the center of the structural member 10 in the longitudinal direction. This is because the structural member 10 is connected to other members in the vicinity of both ends away from the center in the longitudinal direction. As a result, regardless of whether there is a connecting portion or not, in the structural member 10, the moment due to the impact is the largest and the portion that is easily broken (the center in the longitudinal direction of the structural member or the intermediate portion between the connecting portions) is broken. Deformation can be effectively suppressed.

このように、構造部材10は、高強度の車両用構造部材に用いることができる。車両用構造部材には、例えば、Aピラー、Bピラー、サイドシル、ルーフレール、フロアメンバー、フロントサイドメンバーといった車体を構成する部材、及び、ドアインパクトビームやバンパーといった車体に取り付けられ、外部からの衝撃から車両内の装置や乗員を守る部材が含まれる。車両用構造部材は、車両の衝突時の衝撃エネルギーを吸収する。 As described above, the structural member 10 can be used for a high-strength vehicle structural member. The structural members for vehicles include, for example, A-pillars, B-pillars, side sills, roof rails, floor members, front side members, and other members that make up the vehicle body, and door impact beams, bumpers, and other vehicle bodies that are attached to the vehicle body from external impacts. Includes equipment inside the vehicle and members that protect the occupants. The vehicle structural member absorbs the impact energy at the time of a vehicle collision.

図10は、車両に配置される構造部材の一例を示す図である。図10に示す例では、Aピラー15、Bピラー16、サイドシル17、ルーフレール18、バンパー19、フロントサイドメンバー20、ドアインパクトビーム21、フロアメンバー22、及び、リアサイドメンバー23が車両用構造部材として用いられる。これらの車両用構造部材の少なくとも1つに、上記の構造部材10のように低強度領域1sを設けることができる。 FIG. 10 is a diagram showing an example of structural members arranged in a vehicle. In the example shown in FIG. 10, the A pillar 15, the B pillar 16, the side sill 17, the roof rail 18, the bumper 19, the front side member 20, the door impact beam 21, the floor member 22, and the rear side member 23 are used as structural members for the vehicle. Be done. At least one of these vehicle structural members can be provided with a low-strength region 1s as in the structural member 10 described above.

図11は、本実施形態における構造部材によって構成されたバンパー19を示す図である。図11に示す例では、パンパ−19は、頂面部19a、一対の側壁19b、底部19cを有する。頂面部19aの長手方向に垂直な方向における両端から一対の側壁19bが互いに対向して延びる。一対の側壁19bの頂面部19a側の一方端とは反対側の他方端の間に底部19cが形成される。頂面部19a、一対の側壁19b及び底部19cは、連続した1枚の板材で構成される。車両の外側に頂面部19aが配置される。底部19cは、車両の内側に配置される。側壁19bの頂面部19a側の一部には低強度領域19sが設けられる。低強度領域19sは、頂面部19aと側壁19bの境界から、側壁19bの一方端部から他方端部までの間の長さの20〜40%の距離の位置までの領域に設けられる。低強度域19sの降伏強度は、その他の領域の降伏強度(側壁19bの高さ方向中央位置の降伏強度)の60〜85%である。 FIG. 11 is a diagram showing a bumper 19 composed of structural members in the present embodiment. In the example shown in FIG. 11, the pumper-19 has a top surface 19a, a pair of side walls 19b, and a bottom 19c. A pair of side walls 19b extend from both ends in a direction perpendicular to the longitudinal direction of the top surface 19a so as to face each other. A bottom portion 19c is formed between one end of the pair of side walls 19b on the top surface portion 19a side and the other end on the opposite side. The top surface portion 19a, the pair of side walls 19b, and the bottom portion 19c are composed of one continuous plate material. The top surface portion 19a is arranged on the outside of the vehicle. The bottom 19c is located inside the vehicle. A low-strength region 19s is provided on a part of the side wall 19b on the top surface portion 19a side. The low-strength region 19s is provided in a region from the boundary between the top surface portion 19a and the side wall 19b to a position at a distance of 20 to 40% of the length between one end of the side wall 19b and the other end. The yield strength in the low-strength region 19s is 60 to 85% of the yield strength in the other regions (yield strength at the center position in the height direction of the side wall 19b).

構造部材10は、モノコック構造の車両のみならず、フレーム構造の車体に適用することもできる。図12は、特開2011−37313に開示されたスペースフレーム構造の車体を有する車両である。スペースフレーム構造の車体は、複数のパイプ31と、パイプ31を連結するジョイント32を備える。パイプ31は、車体の表面を覆うボディ30の内部に配置される。複数のパイプ31は、上下方向に延びるパイプ、前後方向に延びるパイプ、及び、左右方向に延びるパイプを含む。複数のパイプ31の少なくとも一部を、上記の鋼管1で形成することができる。このように、スペースフレーム構造の車体を構成するパイプ(管材)に上記の鋼管1を適用すると、パイプが、乗員やエンジンのある車体内側に深く折れ曲がることが無いため、効果的である。 The structural member 10 can be applied not only to a vehicle having a monocoque structure but also to a vehicle body having a frame structure. FIG. 12 is a vehicle having a vehicle body having a space frame structure disclosed in Japanese Patent Application Laid-Open No. 2011-37313. The vehicle body having a space frame structure includes a plurality of pipes 31 and joints 32 for connecting the pipes 31. The pipe 31 is arranged inside the body 30 that covers the surface of the vehicle body. The plurality of pipes 31 include a pipe extending in the vertical direction, a pipe extending in the front-rear direction, and a pipe extending in the left-right direction. At least a part of the plurality of pipes 31 can be formed of the steel pipe 1 described above. As described above, applying the steel pipe 1 to the pipe (pipe material) constituting the vehicle body having the space frame structure is effective because the pipe does not bend deeply inside the vehicle body where the occupant or the engine is located.

衝撃エネルギーを吸収する車両用構造部材は、軸圧縮変形する物と折れ曲がり変形する物の2種類に大別される。折れ曲がり変形する物は、折れや断面潰れ変形により衝撃エネルギーを吸収する。Bピラー、サイドシル等の部材は高強度材を用いることで衝撃エネルギー吸収効率を高めることが求められる。そのため、本実施形態の構造部材10に、側壁1bの高さ方向中央の位置1midの引張強度(低強度領域以外の領域の引張強度)が980MPa以上(降伏強度500Mpa以上)の超高強度鋼を適用すると、上記の効果が顕著に現れる。また、構造部材10の側壁1bの中央の位置1midの強度(低強度領域1s以外の領域の強度)を、引張強度で1GPa以上とすることで、より効果を奏することができる。 Structural members for vehicles that absorb impact energy are roughly classified into two types: those that are deformed by axial compression and those that are bent and deformed. An object that bends and deforms absorbs impact energy due to bending or cross-section collapse deformation. It is required to improve the impact energy absorption efficiency by using a high-strength material for members such as B-pillars and side sills. Therefore, the structural member 10 of the present embodiment is provided with an ultra-high strength steel having a tensile strength (tensile strength in a region other than the low strength region) of 980 MPa or more (yield strength of 500 MPa or more) at a position 1 mid in the center of the side wall 1b in the height direction. When applied, the above effects are noticeable. Further, by setting the strength of the central position 1mid of the side wall 1b of the structural member 10 (strength of a region other than the low strength region 1s) to 1 GPa or more in terms of tensile strength, more effect can be obtained.

なお、構造部材10は、図10に示す自動車のような4輪車両に限られず、例えば、二輪車両の構造部材として用いることができる。また、構造部材10の用途は、車両用に限られない。例えば、耐衝撃性容器、建築物、船舶、又は、航空機等の構造部材として、構造部材10を用いることができる。 The structural member 10 is not limited to a four-wheeled vehicle such as the automobile shown in FIG. 10, and can be used, for example, as a structural member of a two-wheeled vehicle. Further, the use of the structural member 10 is not limited to the vehicle. For example, the structural member 10 can be used as a structural member of an impact-resistant container, a building, a ship, an aircraft, or the like.

[製造工程]
構造部材10は、全体を同一素材で形成することができる。構造部材10は、例えば、鋼板で形成することができる。1枚の鋼板を折り曲げて、鋼板の一方の端部と、対向する他方の端部とを溶接等により接合することで、四角形の断面を有する管状の構造部材(四角管)を形成することができる。四角管を湾曲させる場合は、例えば、プレス曲げ、引張り曲げ、圧縮曲げ、ロール曲げ、押し通し曲げ、又は偏心プラグ曲げ等の曲げ加工方法を用いることができる。
[Manufacturing process]
The structural member 10 can be entirely made of the same material. The structural member 10 can be formed of, for example, a steel plate. A tubular structural member (square tube) having a quadrangular cross section can be formed by bending one steel plate and joining one end of the steel plate and the other end facing each other by welding or the like. it can. When bending a square tube, for example, a bending method such as press bending, tensile bending, compression bending, roll bending, push-through bending, or eccentric plug bending can be used.

構造部材10の製造工程には、素材に低強度領域を形成する工程が含まれる。低強度領域を形成する方法は、特に限定されないが、例えば、レーザー又は高周波加熱等の方法で、材料を局所的に加熱、焼き入れを行うことで、硬化領域を含む構造部材10を作り出すことができる。この場合、焼き入れを行わない領域が、相対的に強度が低い低強度領域となる。また、焼き入れを行って四角管の全体を強化した後に、部分的に焼鈍処理を行って低強度領域を形成することもできる。 The manufacturing process of the structural member 10 includes a step of forming a low-strength region in the material. The method for forming the low-strength region is not particularly limited, but for example, the structural member 10 including the cured region can be produced by locally heating and quenching the material by a method such as laser or high-frequency heating. it can. In this case, the region where quenching is not performed is a low-strength region having relatively low strength. Further, after quenching to strengthen the entire square tube, partial annealing treatment can be performed to form a low-strength region.

或いは、管状部材を、軸方向に移動させながら、加熱、曲げモーメント付与、及び冷却を順次施すことで、長手方向において湾曲した構造部材10を作製することができる。この方法では、管状部材の外周に、誘導加熱コイルを配置して、管状部材を局部的に塑性変形可能温度に加熱する。この加熱部を管状方向に移動させながら、誘導加熱コイルより下流の管状部材に設けられた可動ローラダイス等の可動把持手段を動かすことにより、曲げモーメントを付与する。このようにして湾曲させた部分を、誘導加熱コイルと可動把持手段との間の冷却装置により冷却する。この工程において、例えば、加熱及び冷却の条件を管状部材の外周方向において異ならせることで、管状部材に低強度領域を形成することができる。 Alternatively, the structural member 10 curved in the longitudinal direction can be produced by sequentially applying heating, bending moment, and cooling while moving the tubular member in the axial direction. In this method, an induction heating coil is arranged on the outer periphery of the tubular member to locally heat the tubular member to a plastically deformable temperature. A bending moment is applied by moving a movable gripping means such as a movable roller die provided on a tubular member downstream of the induction heating coil while moving the heating portion in the tubular direction. The portion curved in this way is cooled by a cooling device between the induction heating coil and the movable gripping means. In this step, for example, by making the heating and cooling conditions different in the outer peripheral direction of the tubular member, a low-strength region can be formed in the tubular member.

なお、構造部材10の製造方法は、上記例に限られない。テーラードブランク、その他公知の方法を用いて、低強度領域を有する構造部材10を形成することができる。 The method for manufacturing the structural member 10 is not limited to the above example. A tailored blank or other known method can be used to form the structural member 10 having a low strength region.

本実施例では、四角形の断面を有する管状の構造部材に圧子を衝突させた場合の構造部材の変形をシミュレーションで解析した。図13は、シミュレーションにおける解析モデルの構成を模式的に示す図である。本シミュレーションでは、構造部材30を2つの台120に架け渡した状態で、構造部材30の長手方向の中央部に、圧子110を、衝突させた場合の変形挙動を解析した。圧子110の曲率半径は150mmとし、圧子の初速度は、4m/秒とした。 In this embodiment, the deformation of the structural member when the indenter is made to collide with the tubular structural member having a quadrangular cross section is analyzed by simulation. FIG. 13 is a diagram schematically showing the configuration of the analysis model in the simulation. In this simulation, the deformation behavior when the indenter 110 collides with the central portion in the longitudinal direction of the structural member 30 in a state where the structural member 30 is bridged between the two bases 120 is analyzed. The radius of curvature of the indenter 110 was 150 mm, and the initial velocity of the indenter was 4 m / sec.

図14は、シミュレーションに用いた構造部材30の長手方向に垂直な断面における各寸法を示すである。構造部材30は、頂面部3a、一対の側壁3b及び底部3cを有する。一対の側壁3bは、頂面部3aの両端から延び、互いに対向する。底部3cは、頂面部3aに対応し、一対の側壁3bの頂面部3a側の一方端部とは反対側の他方端部の間に形成される。一対の側壁3bの各々は、側壁3bの一方端部から距離Shの位置に至るまでの領域に、低強度領域3sを有する。 FIG. 14 shows each dimension in the cross section perpendicular to the longitudinal direction of the structural member 30 used in the simulation. The structural member 30 has a top surface portion 3a, a pair of side wall portions 3b, and a bottom portion 3c. The pair of side walls 3b extend from both ends of the top surface portion 3a and face each other. The bottom portion 3c corresponds to the top surface portion 3a and is formed between the other end portion of the pair of side walls 3b on the side opposite to the top surface portion 3a side. Each of the pair of side walls 3b has a low-strength region 3s in a region from one end of the side wall 3b to a position at a distance Sh.

図14において、側壁の高さH=50mm、頂面部(底部)の幅W1=50mm、板厚t=1.4mmとした。低強度領域3sの距離Shを変化させて、衝突シミュレーションを行った。また、低強度領域3sと、その他の領域の強度を変化させて、衝突シミュレーションを行った。なお、低強度領域3sの長手方向の長さSL(図13参照)は、H/2とした。 In FIG. 14, the height of the side wall is H = 50 mm, the width of the top surface (bottom) is W1 = 50 mm, and the plate thickness is t = 1.4 mm. A collision simulation was performed by changing the distance Sh in the low-intensity region 3s. Further, the collision simulation was performed by changing the intensities of the low intensity region 3s and the other regions. The length SL (see FIG. 13) in the longitudinal direction of the low-strength region 3s was set to H / 2.

図15は、Sh=(2/5)Hとして、低強度領域3sと他の領域の強度比を変えて衝撃荷重を入力した場合の、曲げ変形による変形量を示すグラフである。図15において、縦軸は、頂面部3aに垂直な方向(z方向)の構造部材の侵入量(突出量)を示す。横軸は、低強度領域3sの強度の他の高強度領域(=側壁3bの中央の位置3mid)の強度に対する比(強度比=低強度領域の強度/高強度領域の強度)を示す。図15のグラフでは、ひし形のプロットは、高強度領域の降伏強度を120kgfとした場合の結果を示し、四角のプロットは、高強度領域の降伏強度を145kgfとした場合の結果を示す。 FIG. 15 is a graph showing the amount of deformation due to bending deformation when an impact load is input by changing the strength ratio between the low strength region 3s and the other regions, where Sh = (2/5) H. In FIG. 15, the vertical axis indicates the amount of penetration (protrusion amount) of the structural member in the direction (z direction) perpendicular to the top surface portion 3a. The horizontal axis indicates the ratio (strength ratio = strength of the low-strength region / strength of the high-strength region) to the strength of the other high-strength region (= the center position 3mid of the side wall 3b) of the strength of the low-strength region 3s. In the graph of FIG. 15, the diamond plot shows the result when the yield intensity in the high intensity region is 120 kgf, and the square plot shows the result when the yield intensity in the high intensity region is 145 kgf.

強度比が、0.60〜0.85の区間では、強度比の増加に伴って侵入量は減少している(矢印Y1)。この区間では、変形モードは、図4に示す断面潰れとなっている。この区間では、低強度領域の強度が低い(強度比が0.60以下)場合、断面潰れの変形になるものの、侵入量が大きく、強度比が0.85を越える場合の侵入量と略同じとなった。強度比が0.85を超えると、侵入量は、急激に増加した(矢印Y2)。さらに、強度比0.85以上で強度比を増やすと、侵入量は、強度比の増加に応じて大きくなった(矢印Y3)。これは、強度比0.85を境に、変形モードが、図4に示す断面つぶれから、図3に示す折れに変化したためと考えられる。このように、低強度領域の強度が高すぎる(強度比が高い)と折れ曲がって変形し、侵入量が大きくなった。図15の結果から、衝撃による曲げ変形の侵入量を少なくする観点から、強度比は60〜85%が好ましく、強度比は70〜85%がより好ましいことが確認された。 In the section where the intensity ratio is 0.60 to 0.85, the amount of intrusion decreases as the intensity ratio increases (arrow Y1). In this section, the deformation mode is the cross-section collapse shown in FIG. In this section, when the strength of the low-strength region is low (strength ratio is 0.60 or less), the cross-section is deformed, but the intrusion amount is large and the intrusion amount is almost the same as when the strength ratio exceeds 0.85. It became. When the intensity ratio exceeded 0.85, the amount of intrusion increased sharply (arrow Y2). Further, when the intensity ratio was increased at an intensity ratio of 0.85 or more, the amount of penetration increased as the intensity ratio increased (arrow Y3). It is considered that this is because the deformation mode changed from the cross-sectional crush shown in FIG. 4 to the crease shown in FIG. 3 at the strength ratio of 0.85. As described above, when the strength of the low-strength region is too high (the strength ratio is high), it bends and deforms, and the amount of penetration becomes large. From the results of FIG. 15, it was confirmed that the strength ratio is preferably 60 to 85% and the strength ratio is more preferably 70 to 85% from the viewpoint of reducing the amount of bending deformation due to impact.

下記表1は、上記強度比を0.83(低強度領域の降伏強度を、YP100MPa、その他の領域の降伏強度を、YP120MPa)とし、低強度領域の高さShを変化させた場合の変形挙動を示す。表1において、上矢印は、直上の欄と同じ値を表す。変形挙動欄の丸(○)は、図4に示す断面潰れを示し、ばつ(×)は、図3に示す折れを示す。 Table 1 below shows the deformation behavior when the strength ratio is 0.83 (yield strength in the low strength region is YP100 MPa, yield strength in other regions is YP120 MPa), and the height Sh in the low strength region is changed. Is shown. In Table 1, the up arrow represents the same value as the column directly above. Circles (◯) in the deformation behavior column indicate cross-sectional collapse shown in FIG. 4, and cross sections (x) indicate breaks shown in FIG.

上記表1に示す結果では、低強度領域を設けない場合(Sh=0)、Sh=H/2(ShがHの50%)、及び、Sh=H/10(ShがHの10%)の場合に、変形挙動は、折れ(図3参照)となった。Sh=2H/5(ShがHの40%)、Sh=H/3(ShがHの約33%)、及び、Sh=H/5(ShがHの20%)の場合は、変形挙動は、断面つぶれ(図4)となった。この結果から、低強度領域3sの側壁3bの頂面部3a側の一方端部からの距離Shを、側壁3bの高さHの20〜40%とすることで、変形挙動を断面つぶれとして、侵入量を小さくできることが確認された。 In the results shown in Table 1 above, when the low intensity region is not provided (Sh = 0), Sh = H / 2 (Sh is 50% of H), and Sh = H / 10 (Sh is 10% of H). In the case of, the deformation behavior was broken (see FIG. 3). Deformation behavior when Sh = 2H / 5 (Sh is 40% of H), Sh = H / 3 (Sh is about 33% of H), and Sh = H / 5 (Sh is 20% of H). Was a crushed cross section (Fig. 4). From this result, by setting the distance Sh from one end of the side wall 3b of the low-strength region 3s on the top surface 3a side to 20 to 40% of the height H of the side wall 3b, the deformation behavior is regarded as a cross-sectional collapse and intrusion. It was confirmed that the amount could be reduced.

さらに、図13に示す解析モデルにおいて、構造部材の強度分布をさらに変えて、圧子110を、衝突させた場合の変形挙動を解析した。具体的には、低強度領域3sの長手方向(y方向)の寸法を変えて解析を行った。図16Aは、解析に用いた構造部材30の断面形状を示す図である。図16Bは、解析に用いた構造部材30の側面形状を示す図である。図16Aに示すように、構造部材30の断面形状は台形とした。図16Aにおいて、側壁の高さH=50mm、頂面部の幅W1=70mm、底部の幅W2=90mm、板厚t=1.4mm、第1の稜線のRの内側の曲率半径R=5mmとした。図16Bに示すように、低強度領域3sの高さ方向(z方向)の寸法を、H/5とした。低強度領域3sの長手方向(y方向)の寸法を、0、2H/3、4Hと変えて解析を行った。すなわち、下記case1〜case3の条件でシミュレーションを行った。なお、低強度領域3sの降伏応力は、1100MPaとした。低強度領域以外の領域すなわち高強度領域の降伏応力は、1400MPaとした。
case1:SL=0、Sh=0(低強度領域なし)
case2:SL=H/3、Sh=H/5
case3:SL=2H、Sh=H/5
Further, in the analysis model shown in FIG. 13, the deformation behavior when the indenter 110 was made to collide was analyzed by further changing the strength distribution of the structural member. Specifically, the analysis was performed by changing the dimensions of the low-strength region 3s in the longitudinal direction (y direction). FIG. 16A is a diagram showing a cross-sectional shape of the structural member 30 used in the analysis. FIG. 16B is a diagram showing the side shape of the structural member 30 used in the analysis. As shown in FIG. 16A, the cross-sectional shape of the structural member 30 is trapezoidal. In FIG. 16A, the height of the side wall is H = 50 mm, the width of the top surface is W1 = 70 mm, the width of the bottom is W2 = 90 mm, the plate thickness is t = 1.4 mm, and the radius of curvature R = 5 mm inside the R of the first ridgeline. did. As shown in FIG. 16B, the height direction (z direction) of the low strength region 3s was set to H / 5. The analysis was performed by changing the dimensions of the low-strength region 3s in the longitudinal direction (y direction) to 0, 2H / 3, and 4H. That is, the simulation was performed under the conditions of case1 to case3 below. The yield stress in the low strength region 3s was set to 1100 MPa. The yield stress in the region other than the low strength region, that is, the high strength region was set to 1400 MPa.
case1: SL = 0, Sh = 0 (no low intensity region)
case2: SL = H / 3, Sh = H / 5
case3: SL = 2H, Sh = H / 5

図17は、case1〜case3の解析結果を示すグラフである。図17は、case1〜case3の荷重−ストローク線(F−S線)のグラフである。図17の解析結果について説明する。case1〜case3何れの条件でも、ストローク0mmから20mmまではストロークに対する荷重の値はほぼ同じである。しかし、Case2では、ストローク20mmの辺りから、他の条件より荷重が低くなる。Case2では、ストローク25mm辺りで荷重がピークになり、その後、ストロークが大きくなるに従い荷重が低下する。これは、Case2では、ストローク25mm辺りで、構造部材が、折れてしまったからである。Case1とCase3では、Case3の方が荷重のピークのストロークが大きい。これはCase1よりCase3の方が高いストロークで折れたからである。Case3では他の条件に比べ、荷重のピークが高く、荷重のピークが現れるストロークが大きいのは、構造部材が、断面潰れしながら荷重に耐えた後折れるからである。構造部材の衝撃エネルギー吸収性能を意味する荷重のストロークでの積分は、Case3が最も高い。この事から、低強度領域3sの長手方向の幅を、側壁の高さ4Hとした方が、2H/3とするよりも、衝撃エネルギー吸収効率が高く、折れが抑制されることがわかった。 FIG. 17 is a graph showing the analysis results of case1 to case3. FIG. 17 is a graph of load-stroke lines (FS lines) of cases 1 to case 3. The analysis result of FIG. 17 will be described. Under any of the conditions of case1 to case3, the value of the load with respect to the stroke is almost the same from 0 mm to 20 mm of the stroke. However, in Case 2, the load becomes lower than other conditions from around the stroke of 20 mm. In Case 2, the load peaks around the stroke of 25 mm, and then the load decreases as the stroke increases. This is because, in Case 2, the structural member broke around the stroke of 25 mm. In Case 1 and Case 3, Case 3 has a larger load peak stroke. This is because Case 3 broke with a higher stroke than Case 1. In Case 3, the load peak is higher and the stroke at which the load peak appears is larger than in other conditions because the structural member breaks after bearing the load while the cross section is crushed. Case 3 has the highest integration in the stroke of the load, which means the impact energy absorption performance of the structural member. From this, it was found that when the width of the low-strength region 3s in the longitudinal direction was set to the height of the side wall of 4H, the impact energy absorption efficiency was higher and the bending was suppressed than when the height of the side wall was set to 2H / 3.

図18は、case2及びcase3の変形挙動の解析結果を示す。図18に示す解析結果においては、SL=2Hとしたcase3の場合に、SL=H/3としたcase2の場合に比べて、変形が長手方向に広がり、折れが抑制されている。すなわち、case3とcase2の変形モードは、異なる。case3の変形モードは、断面潰れである。case2の変形モードは、折れである。 FIG. 18 shows the analysis results of the deformation behavior of case 2 and case 3. In the analysis result shown in FIG. 18, in the case of case3 in which SL = 2H, the deformation spreads in the longitudinal direction and the bending is suppressed as compared with the case of case2 in which SL = H / 3. That is, the deformation modes of case3 and case2 are different. The deformation mode of case 3 is cross-section collapse. The deformation mode of case2 is folding.

以上、本発明の一実施形態を説明したが、上述した実施形態は本発明を実施するための例示に過ぎない。よって、本発明は上述した実施形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施形態を適宜変形して実施することが可能である。 Although one embodiment of the present invention has been described above, the above-described embodiment is merely an example for carrying out the present invention. Therefore, the present invention is not limited to the above-described embodiment, and the above-described embodiment can be appropriately modified and implemented within a range that does not deviate from the gist thereof.

1a:頂面部
1b:側壁
1c:底部
1s:低強度領域
10:構造部材
1a: Top surface 1b: Side wall 1c: Bottom 1s: Low strength region 10: Structural member

Claims (10)

四角形の断面を有し、前記四角形の外周から外側へ突出するフランジを有しない管状の構造部材であって、
前記断面の四角形の辺のうち一辺に相当する頂面部と、
前記頂面部の両端から連続して延び、互いに対向する一対の側壁と、
前記頂面部に対向する底部であって、前記一対の側壁の前記頂面部と連続する一方端部とは反対側の他方端部の間に、前記他方端部と連続して形成される底部と、を備え、
前記一対の側壁の各々は、板厚が均一であり、前記頂面部に垂直な方向における前記側壁の中央を含む高強度領域と、前記側壁の中央の降伏強度の60〜85%の降伏強度の低強度領域とを含み、前記低強度領域は、前記頂面部に垂直な方向において、前記側壁の前記頂面部と連続する前記一方端部から前記他方端部へ向かって前記側壁の高さの20〜35%の距離の位置に至るまで、かつ、前記側壁の長手方向において、前記側壁の高さ以上の距離に渡って形成され、前記高強度領域は、前記低強度領域より降伏強度が高く、前記他方端から前記低強度領域と前記高強度領域の境界に至るまでの領域に、前記側壁の長手方向において、前記側壁の高さ以上の距離に渡って設けられる、構造部材。
Have a square cross-section, a structural member having no tubular flange projecting outwardly from the outer periphery of the rectangle,
The top surface corresponding to one side of the quadrangular side of the cross section and
A pair of side walls extending continuously from both ends of the top surface and facing each other,
A bottom portion facing the top surface portion, which is formed continuously with the other end portion between the other end portions on the opposite side of the one end portion continuous with the top surface portion of the pair of side walls. With,
Each of the pair of side walls has a uniform plate thickness and has a high strength region including the center of the side wall in a direction perpendicular to the top surface portion and a yield strength of 60 to 85% of the yield strength of the center of the side wall. The low-strength region includes a low-strength region, and the low-strength region includes 20 of the height of the side wall from the one end portion continuous with the top surface portion of the side wall toward the other end in a direction perpendicular to the top surface portion. It is formed up to a position at a distance of ~ 35% and in the longitudinal direction of the side wall over a distance equal to or greater than the height of the side wall, and the high-strength region has a higher yield strength than the low-strength region. wherein in a region from the other end to the boundary of the high intensity region and the low intensity regions in the longitudinal direction of the side wall, Ru provided over a distance of more than the height of the side wall, structural member.
四角形の断面を有し、前記四角形の外周から外側へ突出するフランジを有しない管状の構造部材であって、
前記断面の四角形の辺のうち一辺に相当する頂面部と、
前記頂面部の両端部にある2つの第1の稜線と、
前記頂面部に対向する底部と、
前記底部の両端部にある2つの第2の稜線と、
前記2つの第1の稜線と前記2つの第2の稜線の間に、それぞれ位置する、前記頂面部及び底部と連続する2つの側壁とを備え、
前記2つの側壁の各々は、板厚が均一であり、
連続する前記頂面部と前記側壁の間の前記第1の稜線から前記第2の稜線に向かって、前記頂面部に垂直な方向における前記第1の稜線と前記第2の稜線の距離の20〜35%まで、かつ前記第1の稜線の延在方向に、前記頂面部に垂直な方向における前記第1稜線と前記第2の稜線との距離以上の長さの領域に設けられ、前記頂面部に垂直な方向における前記側壁の中央の降伏強度の60〜85%の降伏強度を有する、低強度領域と、前記低強度領域より降伏強度の高い高強度領域であって、前記第2の稜線から前記低強度領域と前記高強度領域の境界に至るまでの領域であって、前記第1の稜線の延在方向に、前記頂面部に垂直な方向における前記第1稜線と前記第2の稜線との距離以上の長さの領域に設けられる高強度領域とを備える、構造部材。
Have a square cross-section, a structural member having no tubular flange projecting outwardly from the outer periphery of the rectangle,
The top surface corresponding to one side of the quadrangular side of the cross section and
Two first ridges at both ends of the top surface and
The bottom facing the top surface and
Two second ridges at both ends of the bottom,
It is provided with two side walls continuous with the top surface and the bottom , respectively, located between the two first ridges and the two second ridges.
Each of the two side walls has a uniform plate thickness.
From the first ridge line between the continuous top surface portion and the side wall toward the second ridge line, 20 to 20 to the distance between the first ridge line and the second ridge line in the direction perpendicular to the top surface portion. The top surface portion is provided in a region having a length equal to or greater than the distance between the first ridge line and the second ridge line in a direction perpendicular to the top surface portion in the extending direction of the first ridge line up to 35%. A low-strength region having a yield strength of 60 to 85% of the yield strength at the center of the side wall in a direction perpendicular to the low-strength region and a high-strength region having a higher yield strength than the low-strength region, from the second ridgeline. A region extending to the boundary between the low-strength region and the high-strength region, the first ridge line and the second ridge line in a direction perpendicular to the top surface portion in the extending direction of the first ridge line. A structural member including a high-strength region provided in a region having a length equal to or longer than the above distance .
四角形の断面を有する管状の構造部材であって、
前記断面の四角形の辺のうち一辺に相当する頂面部と、
前記頂面部の両端から延び、互いに対向する一対の側壁と、
前記頂面部に対向する底部であって、前記一対の側壁の前記頂面部側の一方端部とは反対側の他方端部の間に形成される底部と、を備え、
前記一対の側壁の各々は、板厚が均一であり、前記頂面部に垂直な方向における前記側壁の中央を含む高強度領域と、前記側壁の中央の降伏強度の60〜85%の降伏強度の低強度領域とを含み、前記低強度領域は、前記頂面部に垂直な方向において、前記側壁の前記一方端部から前記他方端部へ向かって前記側壁の高さの20〜35%の距離の位置に至るまで、かつ、前記側壁の長手方向において、前記側壁の高さ以上の距離に渡って形成され、
前記低強度領域は、前記側壁の長手方向において、前記側壁の高さの4倍以下の長さの領域に設けられる、構造部材。
A tubular structural member with a quadrangular cross section
The top surface corresponding to one side of the quadrangular side of the cross section and
A pair of side walls extending from both ends of the top surface and facing each other,
It is provided with a bottom portion facing the top surface portion and formed between the other end portions on the opposite side of the top surface portion side of the pair of side walls.
Each of the pair of side walls has a uniform plate thickness, and has a high strength region including the center of the side wall in a direction perpendicular to the top surface portion and a yield strength of 60 to 85% of the yield strength of the center of the side wall. The low-strength region includes a low-strength region, which is a distance of 20 to 35% of the height of the side wall from the one end of the side wall to the other end in a direction perpendicular to the top surface. It is formed up to the position and in the longitudinal direction of the side wall over a distance equal to or greater than the height of the side wall.
The low intensity regions in the longitudinal direction of the side wall, are provided at four times the length of the region of the height of the side wall, structural member.
前記一対の側壁のうち一方の側壁の降伏強度分布と、他方の側壁の降伏強度分布とは、互いに鏡像関係にある、請求項1〜3のいずれか1項に記載の構造部材。 The structural member according to any one of claims 1 to 3, wherein the yield strength distribution of one side wall and the yield strength distribution of the other side wall of the pair of side walls are in a mirror image relationship with each other. 前記頂面部に垂直な方向における前記側壁の中央の位置における引張強度は、980MPa以上である、請求項1〜のいずれか1項に記載の構造部材。 The structural member according to any one of claims 1 to 4 , wherein the tensile strength at the center position of the side wall in the direction perpendicular to the top surface portion is 980 MPa or more. 前記構造部材は、長手方向において前記頂面部側へ凸となるように湾曲している、請求項1〜のいずれか1項に記載の構造部材。 The structural member according to any one of claims 1 to 5 , wherein the structural member is curved so as to be convex toward the top surface portion in the longitudinal direction. 前記低強度領域は、前記側壁の長手方向中央に配置される、請求項1〜のいずれか1項に記載の構造部材。 The structural member according to any one of claims 1 to 6 , wherein the low-strength region is arranged at the center in the longitudinal direction of the side wall. 前記頂面部又は前記底部は、前記側壁の長手方向において互いに離れた位置において他の部材と連結される少なくとも2つの連結部を含み、
前記低強度領域は、前記側壁の長手方向において前記少なくとも2つの連結部の間の中央に配置される、請求項1〜のいずれか1項に記載の構造部材。
The top or bottom comprises at least two connecting parts that are connected to other members at positions apart from each other in the longitudinal direction of the side wall.
The structural member according to any one of claims 1 to 7 , wherein the low-strength region is arranged at the center between the at least two connecting portions in the longitudinal direction of the side wall.
板厚が均一な前記側壁において、前記低強度領域以外の領域は、前記低強度領域より降伏強度が高い、請求項1〜のいずれか1項に記載の構造部材。 The structural member according to any one of claims 1 to 8 , wherein the region other than the low-strength region has a higher yield strength than the low-strength region in the side wall having a uniform plate thickness. 請求項1〜9のいずれか1項に記載の構造部材を備える車両であって、
前記構造部材は、前記頂面部が前記車両の外側に、前記底部が前記車両の内側になるよう配置される、車両。
A vehicle including the structural member according to any one of claims 1 to 9.
The structural member is a vehicle in which the top surface portion is arranged on the outside of the vehicle and the bottom portion is arranged on the inside of the vehicle.
JP2016198423A 2015-10-09 2016-10-06 Structural members and vehicles Active JP6790697B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015200973 2015-10-09
JP2015200973 2015-10-09

Publications (2)

Publication Number Publication Date
JP2017071391A JP2017071391A (en) 2017-04-13
JP6790697B2 true JP6790697B2 (en) 2020-11-25

Family

ID=58539113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016198423A Active JP6790697B2 (en) 2015-10-09 2016-10-06 Structural members and vehicles

Country Status (1)

Country Link
JP (1) JP6790697B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10773669B2 (en) 2017-05-10 2020-09-15 Nippon Steel Corporation Structural member, vehicle-body structure and bumper reinforcement
JP6947046B2 (en) * 2018-01-16 2021-10-13 トヨタ自動車株式会社 How to determine the yield strength

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004114912A (en) * 2002-09-27 2004-04-15 Sumitomo Metal Ind Ltd Forming member having excellent axial crush resistant characteristic
JP4420830B2 (en) * 2005-01-24 2010-02-24 本田技研工業株式会社 Shock absorbing member
CN103260961B (en) * 2010-12-15 2016-06-29 Ud卡车株式会社 The brill of vehicle touches preventer

Also Published As

Publication number Publication date
JP2017071391A (en) 2017-04-13

Similar Documents

Publication Publication Date Title
EP3037187B1 (en) Production method for press-molded body, and press molding device
JP6743913B2 (en) Structural member and structural member for vehicle
JP6108058B1 (en) Structural member and vehicle
WO2018207668A1 (en) Structural member, vehicle structure, and bumper reinforcement
JP5168023B2 (en) Bumper reinforcement and manufacturing method thereof
JP6354927B2 (en) Metal tube and vehicle structural member using metal tube
WO2017170561A1 (en) Metal tube and structural member using metal tube
JP6790697B2 (en) Structural members and vehicles
JP6399268B1 (en) Structural members, body structure and bumper reinforcement
CN110475706B (en) Impact absorbing member and side member for automobile
JP6179700B1 (en) Metal tube and structural member using metal tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201019

R151 Written notification of patent or utility model registration

Ref document number: 6790697

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151