JP4604740B2 - Shock absorbing member - Google Patents

Shock absorbing member Download PDF

Info

Publication number
JP4604740B2
JP4604740B2 JP2005021791A JP2005021791A JP4604740B2 JP 4604740 B2 JP4604740 B2 JP 4604740B2 JP 2005021791 A JP2005021791 A JP 2005021791A JP 2005021791 A JP2005021791 A JP 2005021791A JP 4604740 B2 JP4604740 B2 JP 4604740B2
Authority
JP
Japan
Prior art keywords
cross
axial direction
external member
impact
absorbing member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005021791A
Other languages
Japanese (ja)
Other versions
JP2006207726A (en
Inventor
嘉明 中澤
憲司 田村
一男 岡村
経尊 吉田
頼史 阪本
雄一 竹本
勝彦 合楽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2005021791A priority Critical patent/JP4604740B2/en
Publication of JP2006207726A publication Critical patent/JP2006207726A/en
Application granted granted Critical
Publication of JP4604740B2 publication Critical patent/JP4604740B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Body Structure For Vehicles (AREA)
  • Vibration Dampers (AREA)

Description

本発明は、衝撃吸収部材に関する。具体的には、本発明は、例えば自動車等の車両の衝突時に発生する衝撃エネルギを吸収することができる衝撃吸収部材に関する。   The present invention relates to an impact absorbing member. Specifically, the present invention relates to an impact absorbing member that can absorb impact energy generated when a vehicle such as an automobile collides.

周知のように、現在の多くの自動車の車体は、軽量化と高剛性とを両立するために、フレームと一体化したボディ全体により荷重を支えるモノコックボディによって構成される。自動車の車体は、車両の衝突時には、車両の機能の損傷を抑制し、かつキャビン内の乗員の生命を守る機能を有さなければならない。車両の衝突時の衝撃エネルギを吸収してキャビンへの衝撃力を緩和することによってキャビンの損傷をできるだけ低減するためには、例えばエンジンルームやトランクルームといったキャビン以外のスペースを優先的に潰すことが有効である。   As is well known, the body of many current automobiles is constituted by a monocoque body that supports the load by the entire body integrated with the frame in order to achieve both weight reduction and high rigidity. The body of an automobile must have a function of suppressing damage to the functions of the vehicle and protecting the lives of passengers in the cabin in the event of a vehicle collision. In order to reduce the damage to the cabin as much as possible by absorbing the impact energy at the time of vehicle collision and reducing the impact force on the cabin, it is effective to preferentially crush spaces other than the cabin, such as the engine room and trunk room It is.

このような安全上の要請から、車体の前部、後部あるいは側部等の適宜箇所には、衝突時の衝撃荷重が負荷されると圧壊することによって衝撃エネルギを積極的に吸収するための衝撃吸収部材が設けられている。これまでにも、このような衝撃吸収部材として、フロントサイドメンバ、サイドシルさらにはリアサイドメンバ等が知られている。   Because of these safety requirements, impacts to actively absorb impact energy by collapsing when impact loads are applied to the appropriate parts such as the front, rear, or side of the vehicle body. An absorbent member is provided. Conventionally, as such an impact absorbing member, a front side member, a side sill, a rear side member, and the like are known.

近年には、クラッシュボックスといわれる衝撃吸収部材をフロントサイドメンバの先端に例えば締結や溶接等の適宜手段によって装着することによって、車体の安全性の向上と、軽衝突による車体の損傷を略解消することによる修理費の低減とをともに図ることが、行われるようになってきた。クラッシュボックスとは、軸方向(本明細書ではこの衝撃吸収部材の長手方向を意味する)へ負荷される衝撃荷重によって軸方向へ蛇腹状(アコーデオン状)に優先的に座屈することにより衝撃エネルギを吸収する部材である。   In recent years, a shock absorbing member called a crash box is attached to the tip of the front side member by an appropriate means such as fastening or welding, for example, to improve the safety of the vehicle body and substantially eliminate the vehicle damage caused by a light collision. It has come to be carried out together with the reduction of the repair cost. A crash box means that impact energy is generated by buckling preferentially in a bellows shape (accordion shape) in the axial direction by an impact load applied in the axial direction (in this specification, the longitudinal direction of the shock absorbing member). It is a member to absorb.

この衝撃吸収部材に要求される衝撃吸収性能とは、具体的には、衝撃荷重が軸方向へ負荷されると軸方向へ繰り返し安定して座屈することにより蛇腹状に変形すること、圧壊時の平均荷重が高いこと、さらには、圧壊の際に発生する最大反力がこの衝撃吸収部材の近傍に配置された他の部材を破壊しない範囲に抑制されることである。   Specifically, the impact absorbing performance required for this impact absorbing member is that when an impact load is applied in the axial direction, it is repeatedly buckled in the axial direction to be deformed into a bellows shape, The average load is high, and further, the maximum reaction force generated at the time of crushing is suppressed within a range in which other members disposed in the vicinity of the shock absorbing member are not destroyed.

これまでにも、衝撃吸収部材の衝撃吸収性能を向上させるための材質や形状が多数開発されている。一般的に広く用いられてきた衝撃吸収部材は、例えば特許文献1に開示されるような、ハット形の横断面形状の部材の縁に設けられたフランジを介して裏板をスポット溶接することによって横断面が四角形の箱状部材としたものである。なお、本明細書において「フランジ」とは、横断面における輪郭から外部へ向けて突出した平板状部を意味する。   Many materials and shapes for improving the shock absorbing performance of the shock absorbing member have been developed so far. A shock absorbing member that has been widely used in general is, for example, by spot welding a back plate via a flange provided at the edge of a hat-shaped cross-sectional member as disclosed in Patent Document 1. A box-shaped member having a square cross section is used. In the present specification, the “flange” means a flat plate-like portion protruding outward from the outline in the cross section.

これに対し、特許文献2には、一端から他端へ向けての横断面形状が四角形以上の凸多角形からこの凸多角形よりも辺の数が多い他の凸多角形へと連続的に変化する閉断面構造を有することによって、衝突の初期の荷重を低減しながら衝撃吸収量を向上させた衝撃吸収部材に係る発明が開示されている。なお、本明細書において「凸多角形」とは、内部に存在する任意の二点を結んで得られる線分の全てがその内部に存在する多角形を意味する。   On the other hand, in Patent Document 2, the cross-sectional shape from one end to the other end is continuously changed from a convex polygon having a quadrangle or more to another convex polygon having more sides than the convex polygon. There has been disclosed an invention relating to an impact absorbing member that has a closed cross-sectional structure that changes, and that has improved impact absorption while reducing the initial load of collision. In the present specification, the term “convex polygon” means a polygon in which all of the line segments obtained by connecting two arbitrary points existing inside are present.

また、特許文献3には、内部に隔壁を有し、輪郭の横断面形状が凸多角形である衝撃吸収部材に係る発明が開示されている。
また、特許文献4には、四角形の横断面を有する素材の4つの頂点を含む4つの角部に、内部へ向けた略直角二等辺三角形状の溝部を形成することによって、強度を高めた衝撃吸収部材に係る発明が開示されている。
Patent Document 3 discloses an invention relating to an impact absorbing member having a partition inside and having a contour cross-sectional shape that is a convex polygon.
Further, in Patent Document 4, an impact with increased strength is obtained by forming a groove portion having a substantially right isosceles triangle shape toward the inside at four corners including four apexes of a material having a quadrangular cross section. An invention relating to an absorbent member is disclosed.

さらに、特許文献5には、フランジを有するハット形の横断面形状のフロントサイドフレームの側面に、軸方向へ延在するビードを形成することによって、衝撃荷重が負荷された際のフロントサイドフレームの折れ曲がりを抑制する発明が開示されている。   Further, in Patent Document 5, a bead extending in the axial direction is formed on a side surface of a front side frame having a hat-shaped cross section having a flange, whereby the front side frame when an impact load is applied is formed. An invention for suppressing bending is disclosed.

特開平8−128487号公報JP-A-8-128487 特開平9−277953号公報Japanese Patent Laid-Open No. 9-277753 特開2003−48569号公報JP 2003-48569 A 特開2002−284033号公報JP 2002-284033 A 特開平8−108863号公報JP-A-8-108863

しかし、これらの従来のいずれの発明によっても、衝撃荷重、特に、衝撃吸収部材の軸方向と交差する方向、例えば軸方向との交差角度が0度超15度以下に含まれる方向へ向けての衝撃荷重(本明細書では、「斜め荷重」という)が入力された場合に、軸方向での屈曲を生じることなく安定して軸方向へ蛇腹状に座屈することによって所定の衝撃エネルギの吸収量を確保することができ、安定した高性能を発揮し得る衝撃吸収部材を提供することはできない。   However, according to any of these conventional inventions, the impact load, in particular, the direction intersecting the axial direction of the impact absorbing member, for example, the direction in which the intersecting angle with the axial direction is included in the range of more than 0 degrees and 15 degrees or less. When an impact load (referred to as “oblique load” in this specification) is input, a predetermined amount of impact energy is absorbed by buckling in an accordion-like manner without causing bending in the axial direction. Therefore, it is not possible to provide an impact absorbing member that can ensure stable and high performance.

すなわち、実際の車両衝突時に衝撃吸収部材に負荷される衝撃荷重は、衝撃吸収部材の軸方向と平行な方向ではなく、衝撃吸収部材の軸方向からずれた方向へ負荷されることのほうが多い。しかし、上述した特許文献1〜5に記載された発明が想定する衝撃荷重の負荷方向は、いずれも、衝撃吸収部材の軸方向と平行な方向である。このため、特許文献1〜5に開示された衝撃吸収部材に、斜め荷重が負荷されると、軸方向での屈曲を生じて安定して軸方向へ蛇腹状に座屈することができなくなり、所定の衝撃エネルギの吸収量を確保できないおそれが高い。   That is, the impact load applied to the impact absorbing member during an actual vehicle collision is more often applied in a direction shifted from the axial direction of the impact absorbing member than in a direction parallel to the axial direction of the impact absorbing member. However, the load direction of the impact load assumed by the inventions described in Patent Documents 1 to 5 described above is a direction parallel to the axial direction of the shock absorbing member. For this reason, when an oblique load is applied to the shock absorbing members disclosed in Patent Documents 1 to 5, bending in the axial direction occurs, and it becomes impossible to stably buckle in the bellows shape in the axial direction. There is a high possibility that the amount of shock energy absorbed cannot be secured.

なお、自動車の車体に用いられる衝撃吸収部材の横断面形状は、殆どの場合、扁平である。このため、特許文献1により開示されたような単純な正多角形等の凸多角形の横断面形状を有する衝撃吸収部材を用いることは、そもそも難しい。   In most cases, the cross-sectional shape of the impact absorbing member used in the automobile body is flat. For this reason, it is difficult to use an impact absorbing member having a convex polygonal cross-sectional shape such as a simple regular polygon as disclosed in Patent Document 1 in the first place.

また、特許文献2により開示された発明では、衝撃吸収部材の横断面形状が略全長に渡って徐々に変化する。このため、軸方向の位置によっては、衝撃吸収部材の横断面形状が不可避的に安定した座屈には適さない形状になる。したがって、この衝撃吸収部材は、衝撃荷重が軸方向と平行な方向へ負荷される場合であっても、軸方向へ繰り返し安定して座屈することが難しく、蛇腹状に変形しないおそれがある。   In the invention disclosed in Patent Document 2, the cross-sectional shape of the shock absorbing member gradually changes over substantially the entire length. For this reason, depending on the position in the axial direction, the cross-sectional shape of the shock absorbing member is inevitably in a shape that is not suitable for stable buckling. Therefore, even when the impact load is applied in a direction parallel to the axial direction, it is difficult for the impact absorbing member to buckle stably and repeatedly in the axial direction and may not be deformed into a bellows shape.

また、特許文献3により開示された発明では、隔壁を設けられた部分の強度が過剰に上昇するおそれがある。このため、この発明では、座屈が不安定となってかえって衝撃エネルギの吸収量が不足するおそれがあるとともに、圧壊の特に初期に衝撃吸収部材に生じる最大反力が、この衝撃吸収部材の近傍に存在する他の部材の強度を超え、衝撃吸収部材が圧壊される前に他の部材が先に圧壊されるおそれもある。したがって、この衝撃吸収部材は、衝撃荷重が軸方向と平行な方向へ負荷される場合であっても、軸方向へ繰り返し安定して座屈することができず、蛇腹状に変形しないおそれがある。   Further, in the invention disclosed in Patent Document 3, the strength of the portion provided with the partition wall may increase excessively. For this reason, in the present invention, the buckling may become unstable and the amount of absorption of impact energy may be insufficient, and the maximum reaction force generated in the impact absorbing member particularly in the initial stage of crushing is in the vicinity of the impact absorbing member. There is also a possibility that the strength of the other member existing in the above will be exceeded and the other member may be crushed first before the shock absorbing member is crushed. Therefore, even when the impact load is applied in a direction parallel to the axial direction, this impact absorbing member cannot be stably buckled repeatedly in the axial direction and may not be deformed into a bellows shape.

また、特許文献4により開示された発明では、もともと強度が高いコーナ部にさらに加工を行って切欠き部を設けるため、この切欠き部の強度が過剰に上昇し、安定して座屈することができないおそれがある。したがって、この発明では、特許文献3により開示された発明と同様に、衝撃エネルギの吸収量が不足するおそれがあるとともに、この衝撃吸収部材が圧壊される前に他の部材が先に圧壊してしまうおそれがあり、衝撃荷重が軸方向と平行な方向へ負荷される場合であっても、軸方向へ繰り返し安定して座屈することができず、蛇腹状に変形しないおそれがある。   Moreover, in the invention disclosed by patent document 4, since the notch part was originally processed and provided with a notch part, the intensity | strength of this notch part will rise excessively and it may buckle stably. It may not be possible. Therefore, in this invention, similarly to the invention disclosed in Patent Document 3, there is a possibility that the amount of shock energy absorbed may be insufficient, and other members may be crushed before the shock absorbing member is crushed. Even if the impact load is applied in a direction parallel to the axial direction, it cannot be repeatedly buckled stably in the axial direction and may not be deformed into a bellows shape.

さらに、特許文献5により開示された発明では、衝撃吸収部材がフランジを有するハット形の横断面形状を有する。このため、この発明によれば、負荷された衝撃荷重による折れ曲がりを抑制することは確かに可能になると考えられる。しかし、この発明によっては、衝撃荷重が軸方向と平行なへ負荷される場合であっても、軸方向へ繰り返し安定して座屈することができず、蛇腹状に変形しないおそれがある。   Furthermore, in the invention disclosed by Patent Document 5, the shock absorbing member has a hat-shaped cross-sectional shape having a flange. For this reason, according to the present invention, it is considered that the bending due to the applied impact load can surely be suppressed. However, depending on the present invention, even when the impact load is applied in parallel to the axial direction, it cannot be repeatedly buckled stably in the axial direction and may not be deformed into a bellows shape.

したがって、本発明の目的は、軸方向への衝撃荷重が負荷された場合のみならず、軸方向と交差する方向、例えば軸方向との交差角度が0度超15度以下に含まれる方向へ向けての衝撃荷重が負荷された場合においても、軸方向での屈曲を生じることなく安定して軸方向へ蛇腹状に座屈することによって所定の衝撃エネルギの吸収量を確保することができ、安定した高性能を発揮し得る衝撃吸収部材を提供することである。   Therefore, an object of the present invention is not only when an impact load is applied in the axial direction, but also in a direction intersecting the axial direction, for example, a direction in which the intersecting angle with the axial direction is included in the range of more than 0 degrees to 15 degrees or less. Even when all impact loads are applied, it is possible to secure a predetermined amount of shock energy absorption by stably buckling in the axial direction without causing bending in the axial direction. An object of the present invention is to provide an impact absorbing member capable of exhibiting high performance.

本発明者らは、上述した従来の技術が有する課題に鑑みて種々検討を重ねた結果、以下に列記する新規かつ重要な知見(I)〜(V)を得て、本発明を完成した。
(I)衝撃吸収部材の横断面形状を、(a)筒体からなる外部部材と、この外部部材の内部に配置されて外部部材の曲げ剛性を向上する曲げ剛性向上部材とを少なくとも備える多層構造とすることにより衝撃吸収部材の横断面の曲げ剛性をさらに高めるとともに(b)上記の外部部材が、複数の頂点を有する閉断面をなし、外向きのフランジを有さないとともに、複数の頂点のうちの一部を直線で連結して得られる最大の輪郭からなる基本断面の少なくとも一の辺の一部の領域であってこの辺の端点を除く位置に、この輪郭の内側へ凹んだ溝部を有することという要素(a)及び(b)を備える形状とすることによって、実際の衝撃吸収部材では多用される扁平な横断面形状を呈する場合であっても、軸方向への衝撃荷重や斜め荷重が負荷されても、軸方向での屈曲変形を招くことなく軸方向へ安定して蛇腹状に座屈することにより所定の衝撃吸収性能を確保できること。
The present inventors have made various studies in view of the problems of the above-described conventional techniques, and as a result, obtained the new and important findings (I) to (V) listed below, thereby completing the present invention.
(I) A multilayer structure including at least a cross-sectional shape of the shock absorbing member, (a) an external member made of a cylindrical body, and a bending rigidity improving member disposed inside the external member to improve the bending rigidity of the external member (B) The outer member has a closed cross section having a plurality of vertices, does not have an outward flange, and has a plurality of vertices. It is a partial area of at least one side of the basic cross section consisting of the largest outline obtained by connecting a part of them with a straight line, and has a groove part recessed inward of this outline at a position excluding the end point of this side. By adopting a shape including the elements (a) and (b), even when an actual shock absorbing member has a flat cross-sectional shape often used, an axial impact load or an oblique load is generated. Load Be stable can be secured predetermined impact absorbing performance by buckling into an accordion shape in the axial direction without causing bending deformation in the axial direction.

(II)軸方向での屈曲変形を招くことなく軸方向へ安定して蛇腹状に屈曲するためには、曲げ剛性向上部材が、軸方向の横断面形状が複数の頂点を有する閉断面である形状を有する内部部材であることが望ましく、この内部部材と外部部材との間の距離が13mm以上であるとともに内部部材の横断面積が外部部材の横断面積の20%以上であることがさらに望ましいこと。
(III)軸方向での屈曲変形を招くことなく軸方向へ安定して蛇腹状に屈曲するためには、曲げ剛性向上部材が板状部材であってもよいこと。
(II) In order to bend in the axial direction stably without causing bending deformation in the axial direction, the bending rigidity improving member has a closed cross section in which the cross-sectional shape in the axial direction has a plurality of vertices. It is desirable that the inner member has a shape, and it is further desirable that the distance between the inner member and the outer member is 13 mm or more, and the cross-sectional area of the inner member is 20% or more of the cross-sectional area of the outer member. .
(III) The bending rigidity improving member may be a plate-like member in order to bend in the axial direction stably without causing bending deformation in the axial direction.

(IV)FEM解析を行った結果、曲げ剛性向上部材を外部部材に固定する位置には、座屈の安定化を図るために選択すべき好適な条件が存在し、この条件を逸脱してしまうと座屈の挙動が不安定となって、衝撃吸収性能が低下するおそれがあること。及び
(V)FEM解析を行った結果、外部部材に設けられる上述した溝部の形状には、座屈の安定化を図るために選択すべき好適な条件が存在し、この条件を逸脱してしまうと座屈の挙動が不安定となって、衝撃吸収性能が低下するおそれがあること。
(IV) As a result of the FEM analysis, there is a suitable condition to be selected for stabilizing the buckling at the position where the bending rigidity improving member is fixed to the external member, and the condition deviates from this condition. The buckling behavior becomes unstable, and the shock absorption performance may be reduced. (V) As a result of the FEM analysis, there is a preferable condition to be selected for stabilizing the buckling in the shape of the groove portion provided in the external member, and the condition deviates from this condition. The buckling behavior becomes unstable, and the shock absorption performance may be reduced.

本発明は、筒体からなる外部部材と、この外部部材の内部に配置されて曲げ剛性を向上する曲げ剛性向上部材とを少なくとも備え、筒体の軸方向の一方の端部からこの軸方向又はこの軸方向と交差する方向へ向けて衝撃荷重を負荷されて座屈することにより蛇腹状に変形することによって衝撃エネルギを吸収するための衝撃吸収部材であって、外部部材の軸方向の少なくとも一部の横断面形状が、複数の頂点を有する閉断面であり、この閉断面の外側にフランジを具備しないとともに、複数の頂点のうちの一部を直線で連結して得られる最大の輪郭からなる基本断面の少なくとも一の辺の一部であってかつこの辺の端点を除く領域が、輪郭の内側へ凹んだ溝部を形成するように、屈曲して形成されること、凹んだ溝部が、外部部材の軸方向へ延びて設けられること、および曲げ剛性向上部材が、外部部材の複数の頂点を含まない領域を介して、外部部材の内面に固定されることを特徴とする衝撃吸収部材である。 The present invention includes at least an external member formed of a cylindrical body and a bending rigidity improving member that is disposed inside the external member and improves the bending rigidity, and the axial direction or the axial direction from one end of the cylindrical body in the axial direction. An impact absorbing member for absorbing impact energy by deforming into an accordion shape by buckling with an impact load applied in a direction crossing the axial direction, and at least a part of the external member in the axial direction The cross-sectional shape of this is a closed cross section having a plurality of vertices, and is not provided with a flange outside the closed cross section, and is composed of a maximum contour obtained by connecting a part of the plurality of vertices with straight lines. region excluding the end points of the part at a by and the sides of at least one side of the cross section, so as to form a groove recessed into the inside of the contour, be formed by bending, grooves I concavely, outer member To the axial direction of It is provided with beauty, and flexural stiffness enhancing member, through an area that does not include a plurality of vertices of the outer member is a shock absorbing member characterized by being fixed to the inner surface of the outer member.

本発明に係る衝撃吸収部材では、曲げ剛性向上部材が、軸方向の横断面形状が複数の頂点を有する閉断面を有するとともに軸方向へ延びて設けられる内部部材であることが望ましい。この場合に、この内部部材と外部部材との間の距離が13mm以上であるとともに、内部部材の横断面積が、外部部材の横断面積の20%以上であることが、望ましい。 In the impact absorbing member according to the present invention, it is desirable that the bending rigidity improving member is an internal member provided with a closed cross section having a plurality of vertices in the axial cross section and extending in the axial direction . In this case, it is desirable that the distance between the internal member and the external member is 13 mm or more, and the cross-sectional area of the internal member is 20% or more of the cross-sectional area of the external member.

また、本発明に係る衝撃吸収部材では、曲げ剛性向上部材が、例えば平板や波板等の板状不在であっても、上述した内部部材と同様の効果を得ることができる Moreover, in the impact-absorbing member according to the present invention, even if the bending rigidity improving member is not present in a plate shape such as a flat plate or a corrugated plate, the same effect as the above-described internal member can be obtained .

これらの本発明に係る衝撃吸収部材では、外部部材に設けられる溝部を有する辺の前記一部の領域を除いた辺の残余の領域が、直線状に又は曲線状に、形成されることが望ましい。   In these shock absorbing members according to the present invention, it is desirable that the remaining region of the side excluding the partial region of the side having the groove portion provided in the external member is formed linearly or in a curved shape. .

本発明に係る衝撃吸収部材では、外部部材に設けられる溝部が、この溝部を有する辺の幅をaとし、一つの溝部の開口幅をWiとし、外部部材の板厚をtとし、辺に設けられた溝部の個数をnとし、辺に設けられたn個の溝部によって分割されて残った(n+1)個の残余の領域のそれぞれの幅をXjとした場合に、下記(1)式及び(2)式を満足するように、設けられることが望ましい。   In the shock absorbing member according to the present invention, the groove provided in the external member is provided on the side where the width of the side having the groove is a, the opening width of one groove is Wi, the plate thickness of the external member is t. When the number of the grooves formed is n and the width of each of the (n + 1) remaining regions divided by the n grooves provided on the side is Xj, the following equation (1) and ( 2) It is desirable to be provided so as to satisfy the equation.

4t<Wi<65t i=1〜n ・・・・・(1)
4t<Xj<65t j=1〜(n+1) ・・・・・(2)
ただし、ΣWi+ΣXj=aであり、かつΣWiは、幅aの辺に形成された溝部の開口幅Wiの総和であり、溝部の開口幅は、幅aの辺と溝部の輪郭線との2つの交点の間の距離であり、ΣXjは幅Xjの総和である。
4t <Wi <65t i = 1 to n (1)
4t <Xj <65t j = 1 to (n + 1) (2)
However, ΣWi + ΣXj = a, and ΣWi is the sum of the opening widths Wi of the grooves formed on the side of the width a, and the opening width of the groove is the two intersections of the side of the width a and the outline of the groove ΣXj is the sum of the widths Xj.

これらの本発明に係る衝撃吸収部材では、外部部材の軸方向の全長をTとした場合に(a)溝部を、一方の端部から軸方向へ距離(T×0.3)離れた位置までの範囲の全部又は一部には、設けないこと、又は(b)外部部材の横断面積が、一方の端部から軸方向へ距離(T×0.3)離れた位置までの範囲の少なくとも一部において、他の部位よりも小さいことが、それぞれ望ましい。   In these shock absorbing members according to the present invention, when the total length in the axial direction of the external member is T, (a) the groove is axially separated from one end (T × 0.3). Or (b) at least one of the ranges up to a position where the cross-sectional area of the external member is separated from one end by a distance (T × 0.3) in the axial direction. It is desirable that each part is smaller than other parts.

これらの本発明に係る衝撃吸収部材は、外部部材に設けられる溝部を有する幅aの辺と溝部の輪郭線との交点の内角(α)が、辺の端点の内角(β)以上であることが望ましい。   In these shock absorbing members according to the present invention, the internal angle (α) of the intersection of the side of the width a having the groove portion provided in the external member and the outline of the groove portion is equal to or larger than the internal angle (β) of the end point of the side. Is desirable.

さらに、これらの本発明に係る衝撃吸収部材では、外部部材に設けられる溝部の断面形状が、台形状、曲線を有する形状、三角形状若しくは四角形状、又はこれらの形状を二つ以上組み合わせた形状であることが望ましい。   Furthermore, in these shock absorbing members according to the present invention, the cross-sectional shape of the groove provided in the external member is trapezoidal, curved, triangular or square, or a combination of two or more of these shapes. It is desirable to be.

本発明により、軸方向と平行な方向のみならず、軸方向と交差する方向、例えば軸方向との交差角度が0度超15度以下に含まれる方向へ衝撃荷重(斜め荷重)が入力された場合であっても、軸方向での屈曲を生じることなく安定して軸方向へ蛇腹状に座屈することによって所定の衝撃吸収量を確保することができ、安定した高性能を発揮し得る衝撃吸収部材を提供することができる。   According to the present invention, an impact load (oblique load) is input not only in a direction parallel to the axial direction but also in a direction intersecting the axial direction, for example, a direction in which the intersecting angle with the axial direction is included in the range of more than 0 degrees to 15 degrees or less. Even if it is a case, it is possible to ensure a predetermined amount of shock absorption by stably buckling in the axial direction without causing bending in the axial direction, and shock absorption that can exhibit stable high performance A member can be provided.

(実施の形態1)
本発明に係る衝撃吸収部材を実施するための最良の形態を、添付図面を参照しながら詳述する。なお、この説明では、曲げ剛性向上部材が、軸方向の横断面形状が複数の頂点を有する閉断面を有する内部部材20である場合を例にとる。
(Embodiment 1)
The best mode for carrying out the shock absorbing member according to the present invention will be described in detail with reference to the accompanying drawings. In this description, the case where the bending rigidity improving member is the internal member 20 having a closed cross section in which the cross-sectional shape in the axial direction has a plurality of apexes is taken as an example.

図1は、本実施の形態の衝撃吸収部材1の横断面を模式的に示す説明図である。図1に示すように、この衝撃吸収部材1は、外部部材10と、曲げ剛性向上部材である内部部材20とを備えるため、以下、外部部材10及び内部部材20について順次説明する。なお、この実施の形態1の説明では、外部部材10に設けられる溝部14が、横断面において、複数の頂点A〜Pのうちの一部A、B、C、D、I、J、K、Lを直線で連結して得られる最大の輪郭A−B−C−D−I−J−K−L−Aからなる基本断面の少なくとも一の辺D−I、L−Aの一部の領域であってこの辺の端点D、I、L、Aを除く位置に、最大の輪郭A−B−C−D−I−J−K−L−Aの内側へ凹んだ形状に設け、かつ、一の辺からこの領域を除いた残余の領域D−E、H−I、L−M、P−Aが直線状に形成される場合を例にとる。   FIG. 1 is an explanatory view schematically showing a cross section of the shock absorbing member 1 of the present embodiment. As shown in FIG. 1, since the shock absorbing member 1 includes an external member 10 and an internal member 20 that is a bending rigidity improving member, the external member 10 and the internal member 20 will be sequentially described below. In the description of the first embodiment, the groove portion 14 provided in the external member 10 has, in the cross section, some of the vertices A to P A, B, C, D, I, J, K, A region of at least one side D-I and L-A of the basic cross-section composed of the maximum contour A-B-C-D-I-J-K-LA obtained by connecting L with a straight line And provided at a position excluding the end points D, I, L, A of this side in a shape recessed inward of the maximum contour A-B-C-D-I-J-K-L-A, and For example, the remaining areas D-E, H-I, L-M, and P-A excluding this area are formed in a straight line.

[外部部材10]
図1に示すように、本実施の形態の衝撃吸収部材1を構成する外部部材10は、軸方向の少なくとも一部の横断面形状が、複数の頂点A、B、C、D、E、F、G、H、I、J、K、L、M、N、O及びPを有する閉断面であり、かつ、この閉断面の外側へ向けたフランジを具備しない形状の筒体である。さらに、軸方向の少なくとも一部の横断面形状が、複数の頂点A〜Pのうちの一部A、B、C、D、I、J、K、L及びAを直線で連結して得られる最大の輪郭A−B−C−D−I−J−K−L−Aからなる基本断面の少なくとも一の辺D−I、L−Aの一部の領域であってこの辺の端点D、I、L、Aを除く位置に、最大の輪郭A−B−C−D−I−J−K−L−Aの内側へ凹んだ溝部を有する形状である。
[External member 10]
As shown in FIG. 1, the external member 10 constituting the shock absorbing member 1 of the present embodiment has at least part of the cross-sectional shape in the axial direction having a plurality of vertices A, B, C, D, E, and F. , G, H, I, J, K, L, M, N, O, and P, and a cylindrical body having a shape that does not include a flange toward the outside of the closed section. Furthermore, at least a part of the cross-sectional shape in the axial direction is obtained by connecting a part A, B, C, D, I, J, K, L, and A of the vertices A to P with a straight line. It is a partial area of at least one side D-I, LA of the basic cross section composed of the largest outline A-B-C-D-I-J-K-L-A, and end points D, I of this side , L, and A at a position excluding A, a shape having a groove portion recessed inward of the maximum contour A-B-C-D-I-J-K-LA.

つまり、この外部部材10の横断面形状は、(i)複数の頂点A〜Pを有する閉断面であること、(ii)この閉断面の外側へ向けたフランジを具備しないこと、及び(iii)複数の頂点A〜Pのうちの一部A、B、C、D、I、J、K、L及びAを直線で連結して得られる最大の輪郭A−B−C−D−I−J−K−L−Aからなる基本断面の少なくとも一の辺D−I、L−Aの一部の領域でかつこの辺の端点D、I、L、Aを除く位置に最大の輪郭A−B−C−D−I−J−K−L−Aの内側へ凹んだ溝部14を有する形状であることという3要素(i)〜(iii)を全て備える形状である。   That is, the cross-sectional shape of the external member 10 is (i) a closed cross-section having a plurality of vertices AP, (ii) not having a flange facing the outside of the closed cross-section, and (iii) Maximum contour A-B-C-D-I-J obtained by connecting a part of a plurality of vertices A to P with straight lines A, B, C, D, I, J, K, L, and A -Maximum contour AB- in a region of a part of at least one side D-I, LA of the basic cross section composed of K-LA and excluding end points D, I, L, A of this side It is a shape provided with all three elements (i) to (iii) that have a groove portion 14 that is recessed inward of C-D-I-J-K-L-A.

本実施の形態の衝撃吸収部材1は、上記3要素(i)〜(iii)を全て備える外部部材10を備えることにより、衝撃荷重を負荷されると、軸方向での屈曲を招くことなく軸方向へ蛇腹状に安定して座屈することによって所定の衝撃吸収性能を確保する。そこで、本実施の形態の外部部材10の原理を説明する。   The impact absorbing member 1 according to the present embodiment includes the external member 10 including all the three elements (i) to (iii), so that when an impact load is applied, the shaft is not bent in the axial direction. A predetermined shock absorbing performance is secured by buckling stably in a bellows shape in the direction. Therefore, the principle of the external member 10 of the present embodiment will be described.

説明を行うための対象材料として、590MPa級の1.6mm厚の鋼板からなり、長さが200mmである外部部材10を用いた。この外部部材の横断面形状は、(a)長辺の長さが80mm、短辺の長さが60mmの四角形、又は、一辺の長さが35mmの正八角形をなし、(b)外向きのフランジを有さないとともに(c)台形形状の溝部14を有する多角形形状とし、そのうちの対向する2辺の長さを延ばすことによって八角形の扁平度を様々に変更して、これらの外部部材10についてFEM数値解析を行うことにより、座屈安定性に対する溝部14の形状の効果を調査した。なお、本明細書において「扁平度」とは、衝撃吸収部材の横断面における輪郭に外接する長方形のうちで短辺長さが最も短い長方形における長辺及び短辺の長さの比(長辺長さ/短辺長さ)を意味する。   As an object material for explanation, an external member 10 made of a 590 MPa class 1.6 mm thick steel plate and having a length of 200 mm was used. The cross-sectional shape of the external member is (a) a square having a long side length of 80 mm and a short side length of 60 mm, or a regular octagon having a side length of 35 mm, and (b) outward facing. (C) A polygonal shape having a trapezoidal groove portion 14 and (c) an octagonal flatness is changed variously by extending the lengths of two opposing sides thereof, and these external members The effect of the shape of the groove 14 on the buckling stability was investigated by performing FEM numerical analysis on 10. In this specification, “flatness” means the ratio of the length of the long side to the short side of the rectangle with the shortest side length among the rectangles circumscribing the contour of the cross section of the shock absorbing member (long side) Length / short side length).

その結果、以下に列記する本実施の形態の外部部材の変形安定化に関する知見(知見1)〜(知見3)を得た。
(知見1)
例えばプレス成形等によって成形された2つ以上の部材を、例えばスポット溶接等により接合する際の接合代となるフランジを具備する外部部材と、このフランジを具備しない外部部材とのそれぞれに衝撃荷重を負荷したときの圧壊の挙動を、FEM数値解析によって分析した。
As a result, knowledge (Knowledge 1) to (Knowledge 3) regarding deformation stabilization of the external member of the present embodiment listed below was obtained.
(Knowledge 1)
For example, an impact load is applied to each of an external member having a flange as a joining margin when two or more members formed by press molding or the like are joined by, for example, spot welding, and the external member not having this flange. The behavior of collapse when loaded was analyzed by FEM numerical analysis.

図2は、FEM数値解析による四角形の横断面を有する外部部材の圧壊の様子を示す説明図であり、図2(a)はフランジを具備する衝撃吸収部材30を示し、図2(b)はフランジを具備しない衝撃吸収部材31を示す。   FIG. 2 is an explanatory view showing a state of crushing of an external member having a quadrangular cross section by FEM numerical analysis. FIG. 2 (a) shows an impact absorbing member 30 having a flange, and FIG. An impact absorbing member 31 that does not include a flange is shown.

図2(a)に示すように、衝撃吸収部材30がフランジを具備すると、衝撃荷重を負荷された衝撃吸収部材30に生じる座屈が極めて不安定になり、衝撃吸収部材30は圧壊の途中で長手方向で折れ曲がる。これに対し、図2(b)に示すように、衝撃吸収部材31がフランジを具備しないと、衝撃吸収部材31は長手方向で折れ曲がることなく安定して蛇腹状に座屈する。   As shown in FIG. 2A, when the shock absorbing member 30 has a flange, the buckling generated in the shock absorbing member 30 loaded with an impact load becomes extremely unstable, and the shock absorbing member 30 is in the middle of being crushed. Bends in the longitudinal direction. On the other hand, as shown in FIG. 2B, if the shock absorbing member 31 does not have a flange, the shock absorbing member 31 is stably buckled in a bellows shape without being bent in the longitudinal direction.

(知見2)
正八角形の横断面形状を有する衝撃吸収部材32を用い、正八角形から対向する2辺の長さを徐々に大きくした扁平な形状の八角形の圧壊の様子を図3に模式的に示す。衝撃吸収部材32の扁平度を増していくと、圧壊時の座屈が安定しなくなって複雑な形状となり、次第に圧壊時の座屈が不安定になる。
(知見3)
この際、座屈が不安定となる扁平な八角形の長辺部に溝部を設けることにより、衝撃吸収部材32の座屈を安定にすることができる。
(Knowledge 2)
FIG. 3 schematically shows a state of crushing a flat octagon in which the length of two sides facing each other from the regular octagon is gradually increased using a shock absorbing member 32 having a regular octagonal cross-sectional shape. When the flatness of the shock absorbing member 32 is increased, the buckling at the time of crushing becomes unstable and becomes a complicated shape, and the buckling at the time of crushing becomes gradually unstable.
(Knowledge 3)
At this time, the buckling of the shock absorbing member 32 can be stabilized by providing the groove on the long side of the flat octagon where the buckling becomes unstable.

図4は、衝撃吸収部材1の扁平な八角形の横断面を有する外部部材10の長辺部12の一部に、台形状に溝部14を設けた状況を示す説明図である。この例では、溝部14は、幅W及び深さdの寸法で対称な位置に二つ設けられている。   FIG. 4 is an explanatory diagram showing a situation in which a trapezoidal groove portion 14 is provided in a part of the long side portion 12 of the external member 10 having a flat octagonal cross section of the shock absorbing member 1. In this example, two groove portions 14 are provided at symmetrical positions with dimensions of width W and depth d.

本実施の形態の衝撃吸収部材1の外部部材10の横断面形状を図4に示す形状とすること、具体的には(i)複数の頂点A〜Pを有する閉断面とすること、(ii)この閉断面の外側へ向けたフランジを具備しないこと、及び(iii)複数の頂点A〜Pのうちの一部A、B、C、D、I、J、K、L及びAを直線で連結して得られる最大の輪郭からなる基本断面(図4における図形A−B−C−D−I−J−K−L−A)の内側へ凹んだ溝部14を、この基本断面A−B−C−D−I−J−K−L−Aを構成する辺12(A−L)及び辺12(D−I)のそれぞれの一部の領域であって頂点A、D、I、Lをいずれも含まない位置に一つ有すること、の3要素(i)〜(iii)を全て備える形状とすることにより、衝撃吸収性能を発揮でき、安定して座屈が起こり、外部部材10は蛇腹状に座屈する。すなわち、この外部部材10は、衝撃荷重を受けて座屈することにより、溝部14とこの溝部14によって分割されて残った直線部分とが交互に変形することにより、蛇腹状に座屈する。   The cross-sectional shape of the external member 10 of the shock absorbing member 1 of the present embodiment is the shape shown in FIG. 4, specifically (i) a closed cross-section having a plurality of vertices AP, (ii) ) Do not have a flange facing the outside of the closed cross section, and (iii) A part of the vertices A to P A, B, C, D, I, J, K, L, and A in a straight line A groove 14 that is recessed inward of a basic cross section (the figure A-B-C-D-I-J-K-L-A in FIG. 4) having the maximum contour obtained by connecting the basic cross section A-B. −C−D−I−J−K−L−A, which is a partial area of each of the side 12 (A−L) and the side 12 (D−I) and constituting the vertices A, D, I, and L By having a shape with all three elements (i) to (iii) of having one at a position that does not contain any of Stable occur buckling, outer member 10 buckles into a bellows shape. That is, the external member 10 is buckled in a bellows shape by being deformed by receiving the impact load and by alternately deforming the groove portion 14 and the remaining straight portion divided by the groove portion 14.

外部部材10を備える本実施の形態の衝撃吸収部材1がこのような優れた作用効果を奏する機構は、前述のFEM数値解析の結果等を勘案して総合的に判断すると、以下のように考えられる。   The mechanism by which the shock absorbing member 1 of the present embodiment including the external member 10 exhibits such excellent operational effects is considered as follows when comprehensively determined in consideration of the results of the FEM numerical analysis described above. It is done.

辺12に設ける溝部14は、上述した基本断面(図4における図形A−B−C−D−I−J−K−L−A)の内側へ凹んでいる。このため、衝撃荷重が負荷された際に溝部14、14を構成する頂点E、F、G、H、M、N、O及びPの変位は、図形A−B−C−D−I−J−K−L−Aの内側を指向する方向となる。   The groove portion 14 provided on the side 12 is recessed inward of the basic cross section described above (figure A-B-C-D-I-J-K-L-A in FIG. 4). For this reason, when an impact load is applied, the displacement of the vertices E, F, G, H, M, N, O, and P constituting the groove portions 14 and 14 is represented by a graphic ABCDJIJ. The direction is directed to the inside of -KLA.

これに対し、基本断面(図形A−B−C−D−I−J−K−L−A)を構成する頂点A、B、C、D、I、J、K及びLの変位は、図形A−B−C−D−I−J−K−L−Aの外側を指向する方向となる。   On the other hand, the displacement of the vertices A, B, C, D, I, J, K, and L constituting the basic cross section (figure A-B-C-D-I-J-K-L-A) A-B-C-D-I-J-K-L-A is directed to the outside.

このため、頂点E、F、G、H、M、N、O及びPの変位方向と、頂点A、B、C、D、I、J、K及びLの変位方向とは、互いに反対向きとなり、それぞれの変位が互いに打ち消され合う。   For this reason, the displacement directions of the vertices E, F, G, H, M, N, O, and P are opposite to the displacement directions of the vertices A, B, C, D, I, J, K, and L. , The respective displacements cancel each other.

このため、外部部材10が座屈の途中で一方向へ折れ曲がるといった大きな崩れを生じ難い。さらに、溝部14を構成する頂点E、F、G、H、M、N、O及びPにおいて座屈が発生する時期と、基本断面(図形A−B−C−D−I−J−K−L−A)を構成する頂点A、B、C、D、I、J、K及びLにおいて座屈が発生する時期とが、相違する。このため、座屈の挙動が安定する。   For this reason, it is hard to produce the big collapse that the external member 10 bends in one direction in the middle of buckling. Furthermore, the time when buckling occurs at the vertices E, F, G, H, M, N, O and P constituting the groove portion 14 and the basic cross section (figure A-B-C-D-I-J-K- The timing at which buckling occurs at vertices A, B, C, D, I, J, K, and L constituting LA) is different. For this reason, the buckling behavior is stabilized.

そして、この溝部14が形成される範囲についての好適条件をFEM解析により調査した。この調査では、正四角形、正六角形、正八角形、正十角形の圧壊時のFEM解析を行って、各多角形を構成する辺の長さの好適な範囲を検討した。   And the suitable conditions about the range in which this groove part 14 is formed were investigated by FEM analysis. In this investigation, FEM analysis at the time of crushing of regular tetragon, regular hexagon, regular octagon, and regular decagon was performed, and a suitable range of the length of the side constituting each polygon was examined.

FEM解析の結果を図5にグラフで示す。図5のグラフにおける横軸はl(外部部材10の辺の長さ)/t(外部部材10の板厚)を示し、縦軸Sは70%圧壊での単位断面周長当りの平均荷重(kN/mm)を示す。   The results of the FEM analysis are shown graphically in FIG. The horizontal axis in the graph of FIG. 5 indicates l (the length of the side of the external member 10) / t (the thickness of the external member 10), and the vertical axis S indicates the average load per unit cross-sectional circumference at 70% collapse ( kN / mm).

図5にグラフで示すように、外部部材10の一つの辺の長さlがその板厚tに対して、4<(l/t)<65の範囲を満足すれば、多角形の角数には関係なく安定した変形が得られ、衝撃吸収性能が安定して確保される。すなわち、図5に示すグラフにおいて、(l/t)が4を僅かに下回る3.6であると、外部部材10が蛇腹状に座屈せずに折れ曲がりを生じ、吸収エネルギを確保できなくなることがある。一方、(l/t)が4を僅かに上回る4.7であると、外部部材10は折れ曲がりを生じることなく蛇腹状の望ましい座屈が得られ、吸収エネルギを十分に確保できる。   As shown in the graph of FIG. 5, if the length l of one side of the external member 10 satisfies the range of 4 <(l / t) <65 with respect to the plate thickness t, the number of corners of the polygon Stable deformation can be obtained regardless of, and the shock absorbing performance can be secured stably. That is, in the graph shown in FIG. 5, if (l / t) is 3.6, which is slightly less than 4, the external member 10 is bent without being buckled in a bellows shape, and the absorbed energy cannot be secured. is there. On the other hand, when (l / t) is 4.7, which is slightly higher than 4, the outer member 10 can be bent in a desired shape without bending, and sufficient absorbed energy can be secured.

一方、同図に示すグラフにおいて、(1/t)が65を僅かに下回る64であると、蛇腹状の座屈が得られ吸収エネルギを十分に確保できる。一方、(l/t)が65以上であると外部部材10の全体の曲がりを生じるために吸収エネルギ量は低下する。   On the other hand, in the graph shown in the figure, when (1 / t) is 64, which is slightly less than 65, bellows-like buckling is obtained, and sufficient absorbed energy can be secured. On the other hand, if (l / t) is 65 or more, the entire external member 10 is bent, and the amount of absorbed energy decreases.

以上の結果から、外部部材10に設ける溝部14が、この溝部14を有する辺の幅をaとし、一つの溝部14の開口幅をWiとし、外部部材10の板厚をtとし、上記辺に設けられた溝部14の個数をnとし、距離aの辺がn個の溝部14によって分割されて残った(n+1)個の残余の領域の一つの領域の幅をXjとした場合に、下記(1)式及び(2)式を満足するように、設けられることが望ましい。   From the above results, the groove 14 provided in the external member 10 has a width of the side having the groove 14 as a, an opening width of one groove 14 as Wi, a plate thickness of the external member 10 as t, When the number of the grooves 14 provided is n and the width of one of the remaining (n + 1) remaining areas divided by the n grooves 14 is Xj, the following ( It is desirable to be provided so as to satisfy the formulas (1) and (2).

4t<Wi<65t i=1〜n ・・・・・(1)
4t<Xj<65t j=1〜n+1 ・・・・・(2)
ただし、ΣWi+ΣXj=aであり、かつΣWiは、幅aの辺に形成された溝部の開口幅Wiの総和であり、溝部の開口幅は、幅aの辺と溝部の輪郭線との2つの交点の間の距離であり、ΣXjは前記幅Xjの総和である。
4t <Wi <65t i = 1 to n (1)
4t <Xj <65t j = 1 to n + 1 (2)
However, ΣWi + ΣXj = a, and ΣWi is the sum of the opening widths Wi of the grooves formed on the side of the width a, and the opening width of the groove is the two intersections of the side of the width a and the outline of the groove ΣXj is the sum of the widths Xj.

より好ましくは、図5のグラフにおいて、顕著に平均荷重が増加する範囲として、
4t<Wi<35t i=1〜n ・・・・・(1a)
4t<Xj<35t j=1〜n+1 ・・・・・(2a)
である。
More preferably, in the graph of FIG.
4t <Wi <35t i = 1 to n (1a)
4t <Xj <35t j = 1 to n + 1 (2a)
It is.

なお、溝部14の深さdは、この溝部14の開口幅Wiの0.3未満と小さ過ぎる場合には、溝部14の強度が溝部14を構成しない他の頂点の強度に対して弱くなり、座屈が不安定となり易い。このため、溝部14の深さdは、溝部14の開口幅Wiの0.3倍以上であることが望ましい。   If the depth d of the groove portion 14 is too small, less than 0.3 of the opening width Wi of the groove portion 14, the strength of the groove portion 14 becomes weaker than the strength of other vertices that do not constitute the groove portion 14, Buckling tends to be unstable. For this reason, it is desirable that the depth d of the groove 14 is 0.3 times or more the opening width Wi of the groove 14.

すなわち、一つの溝部14の開口幅Wiは、外部部材10の板厚をtとしたとき、4t<Wi<65tを満足する。Wiが4t以下である場合には、溝部14の座屈に対する強度が、多角形をなす他の頂点A、B、C、D、I、J、K及びLよりも過剰に高くなり、圧壊中に曲がり等の座屈不安定を生じるおそれがある。一方、Wiが65t以上である場合は、逆に溝部14を設けることの効果が弱まるおそれがある。このような関係はn個数のいずれについても満足される。   That is, the opening width Wi of one groove portion 14 satisfies 4t <Wi <65t, where t is the thickness of the external member 10. When Wi is 4 t or less, the strength against buckling of the groove 14 is excessively higher than the other apexes A, B, C, D, I, J, K, and L forming the polygon, and the crushing is in progress. May cause buckling instability such as bending. On the other hand, when Wi is 65 t or more, the effect of providing the groove 14 may be weakened. Such a relationship is satisfied for any of n.

また、本実施の形態における溝部14は、多角形のいずれの辺に設けても良いし、溝部14の個数は一の辺に2以上であってもよい。ただし、溝部14を、基本断面の頂点A、B、C、D、I、J、K及びLのいずれかを含む位置に設けると、上述した特許文献4に記載された発明と同様に、その頂点の強度が過剰に上昇する。このために座屈が不安定となって、かえって衝撃吸収量が不足するおそれがあるとともに、圧壊の特に初期に外部部材10に生じる最大反力が他の部材の強度を超え、他の部材が損傷するおそれもある。   Moreover, the groove part 14 in this Embodiment may be provided in any side of a polygon, and the number of the groove parts 14 may be two or more in one side. However, when the groove portion 14 is provided at a position including any one of the vertices A, B, C, D, I, J, K, and L of the basic cross section, as in the invention described in Patent Document 4 described above, Vertex strength increases excessively. For this reason, buckling may become unstable, and the amount of shock absorption may be insufficient. In addition, the maximum reaction force generated in the external member 10 particularly in the initial stage of crushing exceeds the strength of other members, and other members There is also a risk of damage.

次に、溝部14が形成された一部の領域を除いた残余の領域について説明する。
図4において、辺12にn個の溝部14を設けた場合、この辺は溝部14によって(n+1)個の新たな直線部分に分割されることになる。このとき、(n+1)個の分割された各直線部分の幅をXjとすると、(2)式を満足する。
Next, the remaining area excluding a part of the area where the groove 14 is formed will be described.
In FIG. 4, when n grooves 14 are provided on the side 12, the side is divided into (n + 1) new straight line portions by the groove 14. At this time, when the width of each of the (n + 1) divided linear portions is Xj, the expression (2) is satisfied.

4t<Xj<65t j=1〜n+1 ・・・・・(2)
この幅Xjが、4t以下又は65t以上である場合には、十分な吸収エネルギが得られない。
4t <Xj <65t j = 1 to n + 1 (2)
When the width Xj is 4 t or less or 65 t or more, sufficient absorbed energy cannot be obtained.

これらの関係を図6に具体的に示す。図6には幅aを有する辺12上に、溝部14を3つ設けた場合を示す。各溝部14の開口幅W1、W2、W3が、いずれも、外部部材10の板厚tの4倍より大きいとともに板厚tの65倍よりも小さい。同時に、幅aの辺12が分割されて残存する4つの直線部分の幅X1、X2、X3、X4のいずれもが板厚tの4倍より大きいとともに板厚tの65倍よりも小さい。   These relationships are specifically shown in FIG. FIG. 6 shows a case where three grooves 14 are provided on the side 12 having the width a. Each of the opening widths W1, W2, and W3 of each groove portion 14 is larger than 4 times the plate thickness t of the external member 10 and smaller than 65 times the plate thickness t. At the same time, the widths X1, X2, X3, and X4 of the four straight portions remaining after the side 12 of the width a is divided are both larger than four times the plate thickness t and smaller than 65 times the plate thickness t.

以上の説明では、溝部14の横断面形状が台形である形態を例にとった。しかし、本発明はこの形態に限定されるものではない。この形態以外に、溝部の横断面形状は、曲線を有する形状、三角形状若しくは四角形状又はこれらの形状を二以上組み合わせた形状であってもよい。   In the above description, an example in which the cross-sectional shape of the groove 14 is a trapezoid is taken as an example. However, the present invention is not limited to this form. In addition to this form, the cross-sectional shape of the groove may be a curved shape, a triangular shape or a quadrangular shape, or a shape obtained by combining two or more of these shapes.

また、この溝部14の底部の形状は平坦面でなくともよい。溝部14の断面形状の幾つかの例を図7(a)〜図7(d)にまとめて示す。図7(a)は円弧を有する形状に形成された場合を示し、図7(b)は四角形状に形成された場合を示し、図7(c)は三角形状に形成された場合を示し、さらに、図7(d)は三角形の一部と円弧を有する形状とを組み合わせた形状に形成された場合を示す。   Further, the shape of the bottom of the groove 14 need not be a flat surface. Several examples of the cross-sectional shape of the groove 14 are collectively shown in FIGS. 7 (a) to 7 (d). FIG. 7 (a) shows a case where it is formed in a shape having an arc, FIG. 7 (b) shows a case where it is formed in a quadrangular shape, FIG. 7 (c) shows a case where it is formed in a triangular shape, Further, FIG. 7D shows a case where a part of a triangle and a shape having an arc are combined.

図8は、図4と同様の図面であって、同一符号は同一部材を示す。
本実施の形態では、図8に示すように、溝部14の輪郭線と辺との交点Mの内角αが、辺の端点Lの内角β以上であること、すなわち図8においてα≧βであることが好ましい。αがβ未満では、溝部14の強度が基本断面の頂点A、D、I、Lの強度を上回り、座屈が不安定になり易い。
FIG. 8 is a drawing similar to FIG. 4, and the same reference numerals denote the same members.
In the present embodiment, as shown in FIG. 8, the internal angle α of the intersection M between the contour line of the groove 14 and the side is not less than the internal angle β of the end point L of the side, that is, α ≧ β in FIG. It is preferable. If α is less than β, the strength of the groove portion 14 exceeds the strength of the vertices A, D, I, and L of the basic cross section, and the buckling tends to be unstable.

この外部部材10を備える本実施の形態の衝撃吸収部材1は、十分な吸収エネルギを確保できるが、圧壊開始時の初期荷重が高くなり問題となることがある。このため、他の部材との関係によっては、高い初期最大荷重により他の部材を損傷するおそれがある。そこで、本実施の形態では、初期最大荷重を低減するために、外部部材10の軸方向の全長をTとした場合に、外部部材10の横断面積が距離(T×0.3)離れた位置までの範囲において他の部位よりも小さいように設ける。例えば、一方の端部から軸方向へ距離(T×0.3)離れた位置までの範囲の少なくとも一部の領域において、距離(T×0.3)離れた位置から一方の端部15へ向かうにつれて横断面積が徐々に減少するように、設ける。   Although the shock absorbing member 1 of the present embodiment including the external member 10 can secure sufficient absorbed energy, the initial load at the start of crushing becomes high and may cause a problem. For this reason, depending on the relationship with other members, the other members may be damaged by a high initial maximum load. Therefore, in this embodiment, in order to reduce the initial maximum load, the position where the cross-sectional area of the external member 10 is separated by a distance (T × 0.3), where T is the total axial length of the external member 10. It is provided so as to be smaller than other parts in the range up to For example, in at least a part of the range from the one end to the position separated in the axial direction by the distance (T × 0.3), the position away from the distance (T × 0.3) to the one end 15. It is provided so that the cross-sectional area gradually decreases as it goes.

次に、横断面積を減少させる軸方向の長さと、初期最大荷重の低減効果との関係を説明する。
図9は、本実施の形態の衝撃吸収部材1を構成する外部部材10を示す説明図である。同図に示すように、扁平度が2.0で全長がTである八角形断面の筒体に、開口幅Wが37.5tである溝部14を設けて、衝撃吸収部材とした。本例では、衝撃荷重が負荷される一方の端部15における横断面積を、他方の端部16における横断面積の60%とした。そして、一方の端部15から(T×0.3)以下の長さの範囲でこの横断面積を徐々に増加させ、この範囲を脱する位置の横断面積を、他方の端部16における横断面積と同じとした。そして、軸方向へ部材長の70%を圧壊する条件で解析を行って、初期最大荷重の大小を検討した。
Next, the relationship between the axial length that reduces the cross-sectional area and the effect of reducing the initial maximum load will be described.
FIG. 9 is an explanatory view showing the external member 10 constituting the shock absorbing member 1 of the present embodiment. As shown in the figure, an impact-absorbing member was obtained by providing a groove 14 having an opening width W of 37.5 t in a cylinder having an octagonal cross section having a flatness of 2.0 and a total length of T. In this example, the cross-sectional area at one end 15 to which an impact load is applied is 60% of the cross-sectional area at the other end 16. Then, this cross-sectional area is gradually increased from one end 15 within a range of (T × 0.3) or less, and the cross-sectional area at a position outside this range is set as the cross-sectional area at the other end 16. And the same. Then, the analysis was performed under the condition of crushing 70% of the member length in the axial direction, and the magnitude of the initial maximum load was examined.

検討結果を図10にグラフで示す。図10のグラフにおける横軸Uは、外部部材10の断面積を減じる部位の長さ/外部部材10の長さTを示す。また、左側の縦軸Vは、初期最大荷重比(断面積を減じない場合を1とする)を示し、右側の縦軸Zは、70%圧壊時の吸収エネルギ比(断面積を減じない場合を1とする)を示す。また、図10のグラフでは、黒四角印は初期最大荷重比を示し、黒丸印は吸収エネルギ比を示す。   The examination results are shown graphically in FIG. The horizontal axis U in the graph of FIG. 10 indicates the length of the portion where the cross-sectional area of the external member 10 is reduced / the length T of the external member 10. The left vertical axis V indicates the initial maximum load ratio (when the cross-sectional area is not reduced is 1), and the right vertical axis Z is the absorbed energy ratio at the time of 70% collapse (when the cross-sectional area is not reduced). Is 1). In the graph of FIG. 10, the black square mark indicates the initial maximum load ratio, and the black circle mark indicates the absorbed energy ratio.

図10にグラフで示すように、一方の端部15の断面積を減少させない場合に比較すると、一方の端部15から軸方向へ距離(T×0.3)離れた位置までの範囲の少なくとも一部において、所定の位置から一方の端部に向かうにつれて横断面積を徐々に減少させることにより、初期最大荷重の低減効果が得られ、かつ、衝撃エネルギ吸収量の大幅な低下を抑制できる。   As shown in the graph of FIG. 10, when compared with the case where the cross-sectional area of one end 15 is not reduced, at least a range from the one end 15 to a position away from the end 15 in the axial direction (T × 0.3). In some cases, by gradually reducing the cross-sectional area from the predetermined position toward one end, an effect of reducing the initial maximum load can be obtained, and a significant reduction in the impact energy absorption amount can be suppressed.

また、図9に示す例とは異なり、図11に示すように、この範囲では、一方の端部15から軸方向へ距離(T×0.3)離れた位置までの範囲の少なくとも一部には、溝部14を設けないようにしてもよい。   Further, unlike the example shown in FIG. 9, as shown in FIG. 11, in this range, at least a part of the range from one end portion 15 to a position away in the axial direction (T × 0.3) is provided. The groove 14 may not be provided.

このように、本実施の形態では、初期最大荷重を低減するとともに衝撃エネルギ吸収量の大幅な低下を抑制するために、一方の端部15から軸方向へ距離(T×0.3)離れた位置までの範囲の全部又は一部において、(1)図9に示すように、一方の端部15の横断面積を他方の端部16における横断面積の60%とし、一方の端部15から(T×0.3)以下の長さの範囲でこの横断面積を徐々に増加させ、この範囲を脱する位置の横断面積を、他方の端部16における横断面積と同じとすること、または(2)図11に示すように、安定座屈のための溝部14を設けないことによって、この範囲の外部部材10をあえて不安定座屈として初期最大荷重を低減すること、のいずれかによって、初期最大荷重の低減効果が得られるとともに、衝撃エネルギ吸収量の大幅な低下を抑制できる。   As described above, in this embodiment, in order to reduce the initial maximum load and to suppress a significant decrease in the amount of shock energy absorption, the distance from the one end portion 15 in the axial direction (T × 0.3) is increased. In all or part of the range up to the position, (1) as shown in FIG. 9, the cross-sectional area of one end 15 is set to 60% of the cross-sectional area of the other end 16, and from one end 15 ( Gradually increase this cross-sectional area over a range of length equal to or less than (T × 0.3) and make the cross-sectional area at a position out of this range the same as the cross-sectional area at the other end 16 or (2 11) As shown in FIG. 11, by not providing the groove portion 14 for stable buckling, the initial maximum load can be reduced by either destabilizing the external member 10 in this range as unstable buckling. While reducing the load, A significant decrease in attack energy absorption can be suppressed.

なお、図9では、距離(T×0.3)を超える範囲の横断面積は、他方の端部の横断面積と同じとしたが、必ずしも一定の断面積でなくてもよい。
これら(1)又は(2)の手段を部材長Tの30%を超える範囲にまで施してしまうと、初期座屈以後の座屈にまで影響し、安定座屈が得られなくなる。換言すれば、本発明で規定する溝部14は、外部部材10に衝撃荷重が作用する一方の端部15の反対の他方の端部16から軸方向の70%以上の領域にわたって設けられることが望ましい。
In FIG. 9, the cross-sectional area in the range exceeding the distance (T × 0.3) is the same as the cross-sectional area at the other end, but it does not necessarily have a constant cross-sectional area.
If the means of (1) or (2) is applied to a range exceeding 30% of the member length T, it affects the buckling after the initial buckling, and stable buckling cannot be obtained. In other words, it is desirable that the groove portion 14 defined in the present invention is provided over a region of 70% or more in the axial direction from the other end portion 16 opposite to the one end portion 15 where the impact load acts on the external member 10. .

なお、図9、11に示す例では、他方の端部16から軸方向へ70%以上の領域の全域において溝部14を連続して設けたが、溝部14はこの領域の全域に連続して設ける必要はなく、この領域内に断続的に設けるようにしてもよい。   In the example shown in FIGS. 9 and 11, the groove portion 14 is continuously provided in the entire region of 70% or more in the axial direction from the other end portion 16, but the groove portion 14 is continuously provided in the entire region. It is not necessary and may be provided intermittently in this region.

なお、図9に示す(1)の手段は、図9からも分かるように、外部部材10の軸方向の全長をTとした場合にこの外部部材10の横断面積が距離(T×0.3)離れた位置までの範囲の少なくとも一部において他の部位よりも小さい限り、横断面積を急激に又は徐々に減じるように構成してもよい。また、これら(1)又は(2)の手段の他に、距離(T×0.3)離れた位置までの範囲の少なくとも一部に、連続的又は断続的につぶれの起点となるビードを形成してもよい。   As shown in FIG. 9, the means (1) shown in FIG. 9 is such that the cross-sectional area of the external member 10 is a distance (T × 0.3) when the total axial length of the external member 10 is T. As long as it is smaller than other parts in at least a part of the range up to a distant position, the cross-sectional area may be reduced rapidly or gradually. In addition to the means (1) or (2), a bead that is a starting point of crushing is formed at least partially in a range up to a position separated by a distance (T × 0.3). May be.

本実施の形態における外部部材10は、周知慣用の適宜手段により製造すればよく、特定の製造法には限定されない。例えば、中空材に押出、ハイドロフォーム(液封成形)若しくはロールフォーミング等の加工をいずれか一つあるいは複数行うことや、所定厚さの鋼板にプレス曲げ、絞り、巻き若しくはロールフォーミング等の加工をいずれか一つあるいは複数行うことにより、多角形の横断面形状を有する筒体としてから適宜箇所を接合することにより閉断面形状としてもよい。この際の接合方法としては、例えばスポット、カシメ若しくはスポット摩擦攪拌接合等の断続接合や、アーク(プラズマ)、レーザー若しくは摩擦攪拌接合等の連続接合等を用いればよい。   The external member 10 in the present embodiment may be manufactured by well-known and appropriate means, and is not limited to a specific manufacturing method. For example, one or more processes such as extrusion, hydroforming (liquid seal molding) or roll forming are performed on the hollow material, or press bending, drawing, winding or roll forming is performed on a steel sheet having a predetermined thickness. It is good also as a closed cross-sectional shape by joining a part suitably after making it a cylinder which has a polygonal cross-sectional shape by performing any one or more. As a joining method at this time, for example, intermittent joining such as spot, caulking or spot friction stir welding, or continuous joining such as arc (plasma), laser or friction stir welding may be used.

また、成形された後の外部部材10に高周波焼き入れ、レーザ焼き入れ、浸炭、窒化等の後処理を行えば、外部部材10の強度をさらに高めることができるため、望ましい。なお、テーラードブランク、さらには軽量化のために薄鋼板、アルミニウム合金以外の素材等を利用して本例の外部部材10を構成すれば高荷重化を図ることもできる。   Further, post-treatment such as induction quenching, laser quenching, carburizing, and nitriding is preferably performed on the molded external member 10 because the strength of the external member 10 can be further increased. In addition, if the external member 10 of this example is comprised using materials other than a tailored blank and also a thin steel plate, an aluminum alloy, etc. for weight reduction, high load can also be achieved.

なお、この外部部材10の扁平度は、1.0以上3.5以下であることが例示される。扁平度が3.5超であると、座屈が不安定となって衝撃吸収量が不足する恐れがあるとともに、圧壊の特に初期に筒体に生じる最大反力が他の部材の強度を超え、他の部材が損傷する恐れがある。   In addition, it is illustrated that the flatness of this external member 10 is 1.0 or more and 3.5 or less. If the flatness exceeds 3.5, buckling may become unstable and the amount of shock absorption may be insufficient, and the maximum reaction force generated in the cylindrical body at the initial stage of crushing exceeds the strength of other members. Other members may be damaged.

次に、この外部部材10の変形例10−1を説明する。
この変形例10−1は、最大の輪郭からなる基本断面の少なくとも一の辺の一部の領域で、かつこの辺の端点を含まない位置に、輪郭の内側へ凹んだ溝部を有する点では、上述した外部部材10と共通する。
Next, a modified example 10-1 of the external member 10 will be described.
This modification 10-1 is the above-mentioned in that it has a groove portion recessed inwardly at the position which is a partial region of at least one side of the basic cross section having the maximum contour and does not include the end point of this side. The external member 10 is common.

しかし、変形例10−1では、この一部の領域を除いた残余の領域を、外部部材10のように直線状に形成するのではなく、輪郭の外側に凸となる曲線、又は輪郭の内側に凹となる曲線を有する形状に形成することにより、外部部材10をさらに発展・改良するものである。   However, in the modified example 10-1, the remaining area excluding the partial area is not formed linearly like the external member 10, but is a curve that protrudes outside the outline, or the inside of the outline. The external member 10 is further developed and improved by forming a shape having a concave curve.

そこで、以降の説明では、上述した外部部材10に対する相違点を中心に説明し、共通する部分については、重複する説明を適宜省略する。
一般的に、衝撃吸収部材の衝突性能は、衝撃吸収部材が座屈する荷重(座屈荷重)によって支配される。この座屈荷重は、衝撃吸収部材の横断面において剛性が高い頂点が座屈変形する際の荷重によって、略支配される。
Therefore, in the following description, the differences from the above-described external member 10 will be mainly described, and overlapping descriptions will be appropriately omitted for the common parts.
In general, the impact performance of the shock absorbing member is governed by a load (buckling load) at which the shock absorbing member buckles. This buckling load is substantially governed by the load when the apex having high rigidity in the cross section of the shock absorbing member undergoes buckling deformation.

一方、荷重が上昇するときは頂点に圧縮のひずみが蓄積され、座屈するまでに頂点には圧縮変形が進行する。その後、この頂点の座屈が発生すると荷重は急激に低下する。この荷重の低下を抑制するためには、頂点の座屈をより局所的に小さいエリアに限定して発生させること、及び、頂点の間に形成される面部に座屈しわが発生及び成長する際に発生する曲げ変形の変形応力を増大させることが、ともに重要である。   On the other hand, when the load increases, compressive strain is accumulated at the apex, and compressive deformation proceeds at the apex before buckling. Thereafter, when this apex buckling occurs, the load decreases rapidly. In order to suppress this decrease in load, it is necessary to limit the buckling of the apex to a more locally small area, and to generate and grow the buckling wrinkle on the surface portion formed between the apexes. It is both important to increase the deformation stress of the bending deformation that occurs.

そこで、座屈時の荷重を上昇させるためには、頂点以外の面部を、容易に座屈せずに圧縮変形を促進することができる形状とし、圧縮変形が発生している領域を拡大することが望ましい。また、曲げ変形時の変形応力を高めるために、座屈しわが発生及び成長する面部に加工硬化を生じさせておけば、座屈開始までに圧縮変形を促進して曲げ変形時の変形応力を高めることができ、これにより、座屈時における上述した荷重の急激な低下を抑制できる。   Therefore, in order to increase the load at the time of buckling, it is necessary to enlarge the area where the compressive deformation occurs by making the surface portion other than the apex a shape that can easily compress the deformation without buckling. desirable. In order to increase the deformation stress at the time of bending deformation, if work hardening is generated on the surface where buckling wrinkles are generated and grow, the compressive deformation is accelerated before the buckling starts to increase the deformation stress at the time of bending deformation. This can suppress the rapid decrease in load described above during buckling.

つまり、上述した外部部材10における残余の領域を、輪郭の外側に凸となる形状、又は輪郭の内側に凹となる形状に形成する理由は、面部の剛性を高め、座屈の開始までにこの面部にも圧縮ひずみを蓄積させることである。これにより、座屈荷重を高めて圧縮ひずみを蓄積すること(加工硬化)により座屈しわの発生及び成長時の変形抵抗を高めて、座屈時における荷重の低下を抑制することができる。   In other words, the reason why the remaining region of the external member 10 described above is formed in a shape that is convex outside the contour or a shape that is concave inside the contour is to increase the rigidity of the surface portion and That is, compressive strain is accumulated in the surface portion. As a result, by increasing the buckling load and accumulating compressive strain (work hardening), it is possible to increase the generation of buckling wrinkles and the deformation resistance during growth, and to suppress a decrease in load during buckling.

しかし、外部部材10の横断面形状によっては、残余の領域を曲線状に形成することにより、面部の剛性が高まり、これにより、面部と頂点との間の剛性バランスが崩れ、頂点の座屈が不安定となる場合がある。したがって、残余の領域に曲線状の形状を形成して面部の剛性を高める場合には、頂点の剛性がもともと高い横断面形状を有する外部部材10に適用することが望ましい。   However, depending on the cross-sectional shape of the external member 10, by forming the remaining region in a curved shape, the rigidity of the surface portion is increased, thereby breaking the rigidity balance between the surface portion and the vertex and causing the buckling of the vertex to occur. May become unstable. Therefore, when a curved shape is formed in the remaining region to increase the rigidity of the surface portion, it is desirable to apply to the external member 10 having a cross-sectional shape that originally has a high rigidity at the apex.

図12は、変形例の外部部材10−1の横断面を示す説明図である。
図12に示すように、変形例の外部部材10−1では、頂点(A−L、D−I)間に高性能かつ安定した座屈を図るために溝部14、14を設け、かつ面部(D−E1、H1−E2、H2−I、L−M1、P1−M2、P2−A)に各種曲率ρを有する曲線形状を付与した横断面形状を有する外部部材10−1について、FEM解析を行った。
FIG. 12 is an explanatory view showing a cross section of a modified external member 10-1.
As shown in FIG. 12, in the modified external member 10-1, grooves 14 and 14 are provided in order to achieve high performance and stable buckling between the vertices (AL, DI), and surface portions ( D-E1, H1-E2, H2-I, L-M1, P1-M2, P2-A) FEM analysis is performed on the external member 10-1 having a cross-sectional shape obtained by adding curved shapes having various curvatures ρ. went.

このFEM解析では、外部部材10−1の材料を590MPa級の1.0mm厚の鋼板とし、ひずみ速度依存性はCowper−Symonds則により考慮した。また、曲率の付与条件は、図12に示した対象部位において頂点(A−L、D−I)間の幅28mmの面部(D−E1、H1−E2、H2−I、L−M1、P1−M2、P2−A)に対して、外側又は内側に向けて高さhが0.5〜15.0mmの曲線形状を形成するように曲率を付与し、面部(D−E1、H1−E2、H2−I、L−M1、P1−M2、P2−A)が直線状に形成された場合に対する衝突性能を解析した。   In this FEM analysis, the material of the external member 10-1 was a 590 MPa class 1.0 mm-thick steel plate, and the strain rate dependency was taken into account according to the Cowper-Symmonds law. Further, the conditions for giving the curvature are as follows. Surface portions (D-E1, H1-E2, H2-I, L-M1, P1) having a width of 28 mm between the vertices (AL, D-I) in the target portion shown in FIG. -M2, P2-A) is given a curvature so as to form a curved shape having a height h of 0.5 to 15.0 mm toward the outside or the inside, and the surface portion (D-E1, H1-E2). H2-I, L-M1, P1-M2, and P2-A) were analyzed for collision performance when formed in a straight line.

性能は、部材の単位重量に対し、部材長の70%圧壊変位までの吸収エネルギ比で比較した。解析に用いた部材長Tは200mmである。各条件間の比較は、面部(D−E1、H1−E2、H2−I、L−M1、P1−M2、P2−A)が直線状に形成された場合に対して相対的に行った。結果を図13にグラフでまとめて示す。   The performance was compared by the ratio of absorbed energy up to 70% collapse displacement of the member length with respect to the unit weight of the member. The member length T used for the analysis is 200 mm. Comparison between the conditions was performed relative to the case where the surface portions (D-E1, H1-E2, H2-I, L-M1, P1-M2, and P2-A) were formed in a straight line. The results are summarized in a graph in FIG.

図13のグラフにおける横軸はh/Xを示し、縦軸Yは単位重量当たりの衝突性能(%)を示しており、面部が直線状に形成された場合には100%である。また、このグラフでは、黒丸印は面部の外側へ向けて凸形状を設けた場合を示し、白丸印は面部の内側へ向けて凹形状を設けたことを示す。   In the graph of FIG. 13, the horizontal axis represents h / X, the vertical axis Y represents the collision performance (%) per unit weight, and is 100% when the surface portion is formed in a straight line. In this graph, a black circle indicates a case where a convex shape is provided toward the outside of the surface portion, and a white circle indicates that a concave shape is provided toward the inside of the surface portion.

図13のグラフから理解されるように、(h/X)が0.075以下の領域では内側に凹んだ形状(凹形状)を設け、(h/X)が0.075〜0.375の領域では外側に凸の形状(凸形状)を設け、さらに、(h/X)が0.26以上の領域では内側に凹形状を設けることにより、単位重量当たりの衝突性能を向上できる。   As can be understood from the graph of FIG. 13, in the region where (h / X) is 0.075 or less, a concave shape (concave shape) is provided, and (h / X) is 0.075 to 0.375. By providing a convex shape (convex shape) on the outer side in the region, and further providing a concave shape on the inner side in the region where (h / X) is 0.26 or more, the collision performance per unit weight can be improved.

このように、面部(D−E1、H1−E2、H2−I、L−M1、P1−M2、P2−A)に曲率を付与することにより、衝突性能をさらに向上させることができる。
図14は、溝部14を有する外部部材10−1の面部に曲率を付与した場合の頂点及び面部の弾性座屈によるたわみの状況を模式的に示す説明図であり、図14(a)は外側に凸となる曲率を付与した場合を示し、図14(b)は内側に凹となる曲率を付与した場合を示す。
Thus, the collision performance can be further improved by providing the curvature to the surface portions (D-E1, H1-E2, H2-I, L-M1, P1-M2, P2-A).
FIG. 14 is an explanatory view schematically showing a state of bending due to elastic buckling of the apex and the surface when the curvature is given to the surface of the external member 10-1 having the groove 14, and FIG. FIG. 14B shows a case where a convex curvature is given to the inside.

図14(a)に示すように、外側に凸となる曲率を付与すると、付与した曲率が小さい場合は衝突の初期における断面の広がりが大きくなる。このため、面部(D−E1、H1−E2、H2−I、L−M1、P1−M2、P2−A)が直線である場合に比較すると、断面が外側へ広がる弾性座屈を生じて頂点(A〜P2)において軸方向へ作用する圧縮ひずみ量が小さくなり、座屈荷重が低下する。   As shown in FIG. 14 (a), when a curvature that is convex outward is applied, if the applied curvature is small, the spread of the cross section at the initial stage of the collision becomes large. For this reason, when compared with the case where the surface portions (D-E1, H1-E2, H2-I, L-M1, P1-M2, P2-A) are straight, the cross section causes elastic buckling to spread outward and the apex. In (A to P2), the amount of compressive strain acting in the axial direction is reduced, and the buckling load is reduced.

しかし、面部(D−E1、H1−E2、H2−I、L−M1、P1−M2、P2−A)に付与した曲率がある程度大きくなると、面部(D−E1、H1−E2、H2−I、L−M1、P1−M2、P2−A)自体の剛性が高まり、面部(D−E1、H1−E2、H2−I、L−M1、P1−M2、P2−A)においても圧縮のひずみが高まり、座屈荷重が上昇する。また、面部(D−E1、H1−E2、H2−I、L−M1、P1−M2、P2−A)に付与する凸の高さを、h/Xで0.075〜0.375程度と大きくすることにより、面部(D−E1、H1−E2、H2−I、L−M1、P1−M2、P2−A)の塑性変形も促進されることから、座屈しわの成長時の変形抵抗が高まって座屈発生後の荷重低下が抑制される。これにより、面部(D−E1、H1−E2、H2−I、L−M1、P1−M2、P2−A)が直線である場合よりも衝突性能が向上する。   However, when the curvature applied to the surface portions (D-E1, H1-E2, H2-I, L-M1, P1-M2, P2-A) increases to some extent, the surface portions (D-E1, H1-E2, H2-I). , L-M1, P1-M2, P2-A) itself is increased in rigidity, and compression distortion is also caused in the surface portions (D-E1, H1-E2, H2-I, L-M1, P1-M2, P2-A). Increases and the buckling load increases. Moreover, the height of the convex imparted to the surface portions (D-E1, H1-E2, H2-I, L-M1, P1-M2, P2-A) is about 0.075 to 0.375 in h / X. Since the plastic deformation of the face portions (D-E1, H1-E2, H2-I, L-M1, P1-M2, and P2-A) is promoted by increasing the size, the deformation resistance during the growth of buckling wrinkles Is increased, and a decrease in load after occurrence of buckling is suppressed. Thereby, collision performance improves rather than the case where a surface part (D-E1, H1-E2, H2-I, L-M1, P1-M2, P2-A) is a straight line.

一方、図14(b)に示すように、内側に凹となる曲率を付与すると、付与した曲率が小さい場合は衝突の初期における頂点(A〜P2)及び面部(D−E1、H1−E2、H2−I、L−M1、P1−M2、P2−A)それぞれにおける弾性座屈の方向が異なる。これにより、頂点(A〜P2)の広がりが抑制され、より大きい圧縮のひずみが蓄積される。これによって、座屈荷重が大きくなり、面部(D−E1、H1−E2、H2−I、L−M1、P1−M2、P2−A)が直線である場合よりも衝突性能が向上する。   On the other hand, as shown in FIG. 14B, when a concave curvature is applied to the inside, if the applied curvature is small, the apex (A to P2) and the surface portion (D-E1, H1-E2, H2-I, L-M1, P1-M2, and P2-A) have different directions of elastic buckling. Thereby, the spread of the vertices (A to P2) is suppressed, and a larger compression strain is accumulated. As a result, the buckling load is increased and the collision performance is improved as compared with the case where the surface portions (D-E1, H1-E2, H2-I, L-M1, P1-M2, and P2-A) are straight lines.

しかし、付与する曲率がさらに大きくなると、外部部材10−1の全体において繰り返し発生する座屈モードが不安定となり、衝突性能は低下する。これは、頂点(A〜P2)及び面部(D−E1、H1−E2、H2−I、L−M1、P1−M2、P2−A)へ付与する凹の高さが、h/Xで0.075〜0.26程度と大きくなることにより、成長する座屈しわを巻き込んで座屈が進行するような形態となるため、繰り返し発生する座屈が不安定となり、外部部材10−1の全体での衝突性能の悪化を招くことになる。   However, when the curvature to be applied is further increased, the buckling mode repeatedly generated in the entire external member 10-1 becomes unstable, and the collision performance is deteriorated. This is because the height of the recesses imparted to the apex (A to P2) and the surface (D-E1, H1-E2, H2-I, L-M1, P1-M2, P2-A) is 0 in h / X. By increasing it to about .075 to 0.26, it becomes a form in which buckling wrinkles that grow are involved and the buckling proceeds, so that the repeatedly generated buckling becomes unstable, and the entire external member 10-1 This will cause the collision performance to deteriorate.

しかしながら、付与する凹の高さを、h/Xで0.26〜0.55程度とさらに大きくすると、外側へ向けて凸となる曲率を付与した場合と同様に、面部(D−E1、H1−E2、H2−I、L−M1、P1−M2、P2−A)の塑性変形が促進され、座屈発生までの座屈荷重を上昇させるとともに、座屈しわの成長時の変形抵抗も高まるため、座屈発生後の荷重低下も抑制でき、面部(D−E1、H1−E2、H2−I、L−M1、P1−M2、P2−A)が直線である場合よりも衝突性能が向上する。   However, when the height of the concave portion to be applied is further increased to about 0.26 to 0.55 in h / X, the surface portion (D-E1, H1) is provided in the same manner as in the case of giving a convex curvature toward the outside. -E2, H2-I, L-M1, P1-M2, and P2-A) are promoted to increase the buckling load until buckling occurs and also increase the deformation resistance during the growth of buckling wrinkles. Therefore, load reduction after occurrence of buckling can be suppressed, and collision performance is improved as compared with the case where the surface portions (D-E1, H1-E2, H2-I, L-M1, P1-M2, P2-A) are straight lines. To do.

本実施の形態のように、頂点(A〜P2)の座屈強度を制御するとともに面部(D−E1、H1−E2、H2−I、L−M1、P1−M2、P2−A)に対しても適度な曲率を付与することにより、衝突性能をさらに向上することができる。   As in the present embodiment, the buckling strength of the apex (A to P2) is controlled and the surface portions (D-E1, H1-E2, H2-I, L-M1, P1-M2, P2-A) are controlled. However, the collision performance can be further improved by providing an appropriate curvature.

なお、面部(D−E1、H1−E2、H2−I、L−M1、P1−M2、P2−A)に付与する曲率の最適値は、外部部材10−1の全体の断面剛性と、面部(D−E1、H1−E2、H2−I、L−M1、P1−M2、P2−A)の剛性、すなわち面部(D−E1、H1−E2、H2−I、L−M1、P1−M2、P2−A)の長さによって、変化すると考えられる。   In addition, the optimal value of the curvature given to the surface portions (D-E1, H1-E2, H2-I, L-M1, P1-M2, P2-A) is the overall cross-sectional rigidity of the external member 10-1, and the surface portion. (D-E1, H1-E2, H2-I, L-M1, P1-M2, P2-A), that is, the surface (D-E1, H1-E2, H2-I, L-M1, P1-M2) , P2-A) is considered to change.

一方、この外部部材10−1を備える自動車の車体用の衝撃吸収部材は、他の部材との寸法の取り合いの関係で、適用でき得る断面積には上限がある。また、他の部材を接合する際の基準平面を形成することも考慮する必要がある。   On the other hand, the impact absorbing member for a vehicle body of an automobile provided with the external member 10-1 has an upper limit in the applicable cross-sectional area because of the dimensional relationship with other members. In addition, it is necessary to consider forming a reference plane for joining other members.

このため、高さhは50mm以下とすることが望ましい。
このように、変形例の外部部材10−1は、衝突時における軸方向への圧壊過程での頂点以外の部位である面部においても、軸方向の圧縮ひずみの蓄積と、その部位において座屈しわの形成時における変形応力とをともに高めることによって、優れた衝撃吸収性能を得るものである。このためには、面部においても形状(曲率)を付与し、この面部の剛性を向上させることが望ましい。
このように、本実施の形態の衝撃吸収部材1は、外部部材10又は10−1を備えるため、軸方向に衝撃荷重が作用した際に安定した圧壊挙動が実現することができる。
For this reason, the height h is desirably 50 mm or less.
As described above, the external member 10-1 according to the modified example also accumulates the compressive strain in the axial direction and buckles at the surface portion which is a portion other than the apex in the axial crushing process at the time of collision. By increasing both the deformation stress at the time of forming, an excellent shock absorbing performance is obtained. For this purpose, it is desirable to impart a shape (curvature) also to the surface portion and improve the rigidity of the surface portion.
Thus, since the impact absorbing member 1 of the present embodiment includes the external member 10 or 10-1, a stable crushing behavior can be realized when an impact load is applied in the axial direction.

[内部部材20]
本実施の形態の衝撃吸収部材1は、図1に示すように、上述した外部部材10の内部に内部部材20を備える。この内部部材20の軸方向の横断面形状は、複数の頂点を有する閉断面である。
[Internal member 20]
As shown in FIG. 1, the impact absorbing member 1 of the present embodiment includes an internal member 20 inside the external member 10 described above. The cross-sectional shape of the internal member 20 in the axial direction is a closed cross section having a plurality of vertices.

この内部部材20は、上述したように、上述した外部部材10の内部に配置されて衝撃吸収部材1の曲げ剛性を向上するための曲げ剛性向上部材として機能する。
すなわち、本実施の形態の衝撃吸収部材1は、この内部部材20を備えることにより外部部材10の曲げ剛性を高め、これにより、軸方向と平行な方向のみならず、軸方向と交差する方向、例えば軸方向との交差角度が0度超15度以下に含まれる方向へ衝撃荷重(斜め荷重)が入力された場合であっても、軸方向での屈曲を生じることなく安定して軸方向へ蛇腹状に塑性座屈することによって所定の衝撃吸収量を確保でき、優れた衝撃吸収性能を発揮できる。内部部材20の変形安定化に関する知見を以下に説明する。
As described above, the internal member 20 is disposed inside the external member 10 described above and functions as a bending rigidity improving member for improving the bending rigidity of the shock absorbing member 1.
That is, the shock absorbing member 1 of the present embodiment increases the bending rigidity of the external member 10 by including the internal member 20, whereby not only the direction parallel to the axial direction but also the direction intersecting the axial direction, For example, even when an impact load (diagonal load) is input in a direction in which the angle of intersection with the axial direction is greater than 0 ° and not more than 15 °, the axial direction is stable without causing bending in the axial direction. A predetermined amount of shock absorption can be ensured by plastic buckling in a bellows shape, and excellent shock absorption performance can be exhibited. The knowledge about the deformation stabilization of the internal member 20 will be described below.

(知見4)
本実施の形態の衝撃吸収部材1は、図1に示すように、外部部材10の内部に配置された内部部材20を有する。すなわち、本実施の形態では、外部部材10(A−B−C−D−E−F−G−H−I−J−K−L−M−N−O−P)の内部に、外部部材10に対して相似比0.65の相似形の内部部材20を配置している。内部部材20は、接合部材21によって、外部部材10の辺F−G、O−Nを介して外部部材10に接合されている。
(Knowledge 4)
As shown in FIG. 1, the shock absorbing member 1 of the present embodiment has an internal member 20 disposed inside an external member 10. That is, in the present embodiment, the external member 10 (A-B-C-D-E-F-G-H-I-J-K-LM-N-OP) is disposed inside the external member 10. An internal member 20 having a similarity ratio of 0.65 to 10 is arranged. The internal member 20 is joined to the external member 10 by the joining member 21 via the sides FG and ON of the external member 10.

このように、外部部材10の内部に内部部材20を配置すると、衝撃吸収部材1の横断面の曲げ剛性が高まるため、軸方向と交差する方向、例えば軸方向との交差角度が0度超15度以下に含まれるあらゆる方向の衝撃荷重に対しても、屈曲変形を生じることなく安定した圧壊変形を示すようになる。   Thus, when the internal member 20 is arranged inside the external member 10, the bending rigidity of the cross section of the shock absorbing member 1 is increased, so that the crossing angle with the axial direction, for example, the crossing angle with the axial direction is more than 0 degree 15 Stable crushing deformation is exhibited without causing bending deformation with respect to impact loads in all directions included below the degree.

一般的に、衝撃吸収部材に斜め荷重が入力すると、衝突端側(斜め荷重入力側)の衝撃吸収部材には倒れ込みを誘発させるような荷重が作用する。この際に、外部部材10しか存在せず内部部材20を有さない構造であると、衝撃吸収部材の横断面の曲げ剛性が低いために、作用する荷重によって長手方向への倒れ込み(屈曲変形)が誘発されてしまい、軸方向への座屈変形を発生させるために必要となる圧縮ひずみが蓄積しない。このため、安定した座屈変形を示さずに衝撃吸収部材全体での屈曲変形を生じてしまい、衝撃エネルギの吸収量が所望の値に達しなくなる。   In general, when an oblique load is input to the impact absorbing member, a load that induces a collapse acts on the impact absorbing member on the collision end side (the oblique load input side). At this time, when the structure has only the external member 10 and does not have the internal member 20, the bending rigidity of the cross section of the shock absorbing member is low, so that it falls in the longitudinal direction due to the applied load (bending deformation). Is induced, and the compressive strain necessary to generate the buckling deformation in the axial direction does not accumulate. For this reason, bending deformation occurs in the entire shock absorbing member without showing stable buckling deformation, and the amount of shock energy absorbed does not reach a desired value.

そこで、本実施の形態では、上述したように、外部部材10の内部に内部部材20を配置して、特に衝突端側(斜め荷重入力側)における衝撃吸収部材1の横断面の曲げ剛性を高める。これにより、外部部材10及び内部部材20が一体となって入力される斜め荷重を負担するようになり、衝撃吸収部材1を固定する支持点での剛性向上ならびに、斜め荷重の入力端側における外部部材10の倒れこみを誘発させる荷重(外部部材10を屈曲変形させようとするモーメント)を軽減することができる。このため、斜め方向の荷重に対しても安定した圧壊変形(座屈変形)を発生することが可能となり、斜め荷重に対する高い衝撃エネルギの吸収量を得ることができるようになり、衝突端側での座屈を確実に誘発させ、また反衝突端側の剛性を高め、衝撃吸収部材1を支える箇所(他部材との結合位置)を起点とした衝撃吸収部材1の倒れ込みを抑制することができるようになる。   Therefore, in the present embodiment, as described above, the internal member 20 is disposed inside the external member 10 to increase the bending rigidity of the cross section of the shock absorbing member 1 particularly on the collision end side (oblique load input side). . As a result, the external member 10 and the internal member 20 come to bear an oblique load that is input as a unit, and the rigidity at the support point for fixing the shock absorbing member 1 is improved, and the external at the input end side of the oblique load A load that induces the collapse of the member 10 (moment for bending and deforming the external member 10) can be reduced. For this reason, it is possible to generate a stable crushing deformation (buckling deformation) even with a load in an oblique direction, and to obtain a high impact energy absorption amount with respect to the oblique load. Can be reliably induced, the rigidity on the anti-collision end side can be increased, and the shock absorbing member 1 can be prevented from falling from the position where the shock absorbing member 1 is supported (the position where the shock absorbing member 1 is coupled). It becomes like this.

次に、内部部材20を設けることにより、斜め荷重が負荷された場合であっても、安定した変形特性を実現することができることを、FEM解析結果を参照しながら具体的に説明する。   Next, it will be specifically described with reference to the FEM analysis result that by providing the internal member 20, it is possible to realize stable deformation characteristics even when an oblique load is applied.

図15は、内部部材20を有する衝撃吸収部材、及び内部部材20を有さない衝撃吸収部材について、衝突変形時の荷重特性をFEM解析した結果を示すグラフである。
図15のグラフにおける条件1は、内部部材20が存在せず外部部材10のみからなる衝撃吸収部材の軸方向と略平行な方向へ衝撃荷重が入力した場合(荷重入力A)における荷重特性(変位と荷重との関係)を示しており、条件3は、条件1の衝撃吸収部材と同一の衝撃吸収部材に軸方向に対し10゜の方向から斜め荷重Faが入力した場合(荷重入力B)における荷重特性を示している。これに対し、条件2、4は、上述した図1に示す衝撃吸収部材1に、軸方向と平行な方向、斜め10゜方向から衝撃荷重が入力した場合(荷重入力A,B)の荷重特性を、それぞれ示す。
FIG. 15 is a graph showing the result of FEM analysis of load characteristics at the time of collision deformation for an impact absorbing member having the internal member 20 and an impact absorbing member not having the internal member 20.
Condition 1 in the graph of FIG. 15 is that load characteristics (displacement) when an impact load is input in a direction substantially parallel to the axial direction of the impact absorbing member including only the external member 10 without the internal member 20 (load input A). Condition 3 shows a case where an oblique load Fa is inputted to the same shock absorbing member as the shock absorbing member of Condition 1 from a direction of 10 ° with respect to the axial direction (load input B). The load characteristics are shown. On the other hand, the conditions 2 and 4 are the load characteristics when the impact load is input to the impact absorbing member 1 shown in FIG. 1 described above from the direction parallel to the axial direction and the oblique 10 ° direction (load inputs A and B). Are shown respectively.

なお、このFEM解析において用いる衝撃吸収部材1の外部部材10及び内部部材20の材料特性は、板厚1.0mmの590MPa級高張力鋼板である。また、この外部部材10には、衝突時の初期荷重低下を図るために、衝撃荷重入力側のE−F−G−HとM−N−O−Pの頂点部を対象に、長手方向への長さ15mmの範囲に切り欠きを設けた。内部部材20にも同様に切り欠きを設けた。   The material characteristics of the external member 10 and the internal member 20 of the shock absorbing member 1 used in this FEM analysis are 590 MPa class high-tensile steel plates with a plate thickness of 1.0 mm. Further, in order to reduce the initial load at the time of the collision, the external member 10 is directed in the longitudinal direction with respect to the apex portions of the E-F-G-H and M-N-O-P on the impact load input side. A notch was provided in a range of 15 mm in length. Similarly, the inner member 20 was provided with a notch.

図15にグラフで示すように、内部部材20を設けない条件1、条件3では、荷重入力Aの場合には変形変位110mmまで安定した荷重特性を示しているのに対し、荷重入力Bの場合には変位変位30mm以降荷重が急激に低下する傾向を示す。しかしながら、内部部材20を設けた条件2、4では、荷重入力AならびにBともに安定した荷重特性を示し、良好である。   As shown in the graph of FIG. 15, in conditions 1 and 3 where the internal member 20 is not provided, the load input A shows stable load characteristics up to a deformation displacement of 110 mm, whereas the load input B Shows a tendency for the load to rapidly decrease after displacement 30 mm. However, the conditions 2 and 4 in which the internal member 20 is provided are satisfactory because the load inputs A and B both show stable load characteristics.

つまり、内部部材20を設けない場合には、軸方向の荷重に対しては安定した荷重特性を示すものの、斜め荷重が作用すると倒れ込みが発生し、衝撃吸収部材全体での屈曲を生じ、変形荷重が低下する。しかしながら、内部部材20を設けると、軸方向の荷重のみならず斜め荷重が作用しても衝撃吸収部材全体での屈曲を生じることなく、安定した座屈変形を発生し、良好な衝突性能を得ることができる。   That is, when the internal member 20 is not provided, stable load characteristics are exhibited with respect to an axial load, but when an oblique load is applied, a collapse occurs, and the entire shock absorbing member is bent, resulting in a deformation load. Decreases. However, when the internal member 20 is provided, even if an oblique load is applied as well as an axial load, the entire shock absorbing member does not bend, and a stable buckling deformation occurs and a good collision performance is obtained. be able to.

図15のグラフにおける条件3における変形荷重の急激な低下と、大きな荷重変動の原因は、斜め荷重が負荷されると外部部材10が倒れ込んでしまうことである。このため、条件4のように、外部部材10の内部に内部部材20を配置して、衝撃吸収部材1の横断面における剛性を高めることにより、斜め荷重が負荷されたことに起因した外部部材10の倒れ込みを抑制でき、これにより、衝撃吸収部材全体での屈曲を生じることなく、安定した座屈変形を発生し、良好な衝突性能を得ることができる。   The cause of the rapid drop of the deformation load and the large load fluctuation in the condition 3 in the graph of FIG. 15 is that the external member 10 falls when an oblique load is applied. For this reason, as in Condition 4, the internal member 20 is arranged inside the external member 10 to increase the rigidity in the cross section of the shock absorbing member 1, thereby causing the external member 10 due to an oblique load being applied. Can be suppressed, whereby stable buckling deformation can be generated without causing bending of the entire shock absorbing member, and good collision performance can be obtained.

この結果より、外部部材10の内部に内部部材20を設けることにより、軸方向のみならず軸方向と交差する方向から衝撃荷重が入力された場合においても、安定した性能を示し、所望の高性能な吸収エネルギを実現することが可能となることがわかる。   From this result, by providing the internal member 20 inside the external member 10, even when an impact load is input not only from the axial direction but also from the direction intersecting the axial direction, stable performance is obtained and desired high performance is achieved. It can be seen that it is possible to realize a large absorbed energy.

次に、この内部部材20についてさらに具体的に説明する。
内径部材20の最大サイズは、圧壊(座屈)していく際に生成するしわのサイズによって決定される。つまり、外部部材10と内部部材20とがそれぞれ座屈することによって生成される座屈しわ同士が干渉してお互いの座屈変形を阻害することがないようにするために、内部部材20は、その全周において、外部部材10から13mm以上の距離を持たせ配置されることが望ましい。
Next, the internal member 20 will be described more specifically.
The maximum size of the inner diameter member 20 is determined by the size of wrinkles generated when crushing (buckling). That is, in order to prevent the buckling wrinkles generated by the buckling of the outer member 10 and the inner member 20 from interfering with each other, the inner member 20 It is desirable to arrange the outer member 10 with a distance of 13 mm or more from the entire circumference.

圧壊変形時に生成するしわのサイズは辺の長さに依存し、長い辺は大きい座屈しわが生成する。したがって、上述したように外部部材10と内部部材20のしわの干渉は、外部部材10及び内部部材20それぞれの長い辺同士の間の距離(後述する図22における距離SP)が重要であり、特にこの部位において13mm以上の時に部材の変形挙動を大きく支配する。   The size of the wrinkle generated during crushing deformation depends on the length of the side, and a large buckling wrinkle is generated on the long side. Therefore, as described above, the interference between wrinkles between the external member 10 and the internal member 20 is an important distance between the long sides of the external member 10 and the internal member 20 (distance SP in FIG. 22 to be described later). In this part, the deformation behavior of the member is largely governed when it is 13 mm or more.

また、上述したように、内部部材20が外部部材10と一体になって入力される斜め荷重を負担するためには、内部部材20の横断面積が、外部部材10の横断面積の20%以上であることも望ましい。   Further, as described above, in order for the internal member 20 to bear an oblique load that is input integrally with the external member 10, the cross-sectional area of the internal member 20 is 20% or more of the cross-sectional area of the external member 10. It is also desirable to be.

また、内部部材20は、外部部材10が負担する斜め荷重を軽減してその倒れ込みを防止するとともに、外部部材10の稜線間平面部の剛性向上による長手方向での屈曲を抑制することであるため、内部部材20の形状ならびに配置は、特段の限定を要さない。例えば、内部部材20は外部部材10に対して相似形又は非相似形に構成されていてもよいし、内部部材20は外部部材10の対称線(図1における直線l、m)に対して対称となる位置又は非対称となる位置に設けてもよい。   Further, the internal member 20 is to reduce the oblique load borne by the external member 10 to prevent the internal member 20 from falling down, and to suppress bending in the longitudinal direction due to the rigidity improvement of the plane portion between the ridge lines of the external member 10. The shape and arrangement of the internal member 20 do not require any particular limitation. For example, the inner member 20 may be configured to be similar or non-similar to the outer member 10, and the inner member 20 is symmetric with respect to a symmetry line (straight lines 1 and m in FIG. 1) of the outer member 10. You may provide in the position used as or asymmetrical position.

なお、本実施の形態では、内部部材20を支持する接合部材21を、外部部材10の辺F−G、O−Nの内面側に固定した。しかし、FEM解析を行った結果、接合部材20を外部部材10の各頂点A〜Pの内面を含む位置に接合すると、接合された頂点A〜Pの剛性が高まることに起因して、座屈の挙動が不安定となって衝撃吸収性能が低下するおそれがある。このため、負荷された衝撃荷重により座屈して蛇腹状に変形することによって衝撃エネルギを吸収することを阻害しないためには、曲げ剛性向上部材である内部部材20は、外部部材10の各頂点A〜Pを含まない領域、具体的には外部部材10の隣接する各頂点A〜Pの間に形成される各直線部(各辺)を介して、外部部材10の内面に固定されることが、望ましい。   In the present embodiment, the joining member 21 that supports the internal member 20 is fixed to the inner surfaces of the sides FG and ON of the external member 10. However, as a result of FEM analysis, when the joining member 20 is joined to a position including the inner surfaces of the vertices A to P of the external member 10, the rigidity of the joined vertices A to P increases. There is a risk that the shock absorption performance will be deteriorated due to the unstable behavior. For this reason, in order not to impede the absorption of impact energy by buckling and deforming into a bellows shape due to the applied impact load, the internal member 20 that is a bending rigidity improving member has each apex A of the external member 10. It is fixed to the inner surface of the external member 10 through a straight line portion (each side) formed between the adjacent apexes AP of the external member 10, specifically, an area not including P. ,desirable.

このように、内部部材20の寸法は、衝撃荷重が入力される方向に対応して適宜調整すればよく、本実施の形態では、図1に示すように、例えばFaの荷重が入力されることを想定して、外部部材10の辺F−Gと、辺O−Nとをつなぐように接合部材21を介して内部部材20を配置した。内部部材20の断面の大きさは、外部部材10の断面の大きさの80%程度とした。   In this way, the dimensions of the internal member 20 may be adjusted as appropriate in accordance with the direction in which the impact load is input. In the present embodiment, for example, as shown in FIG. As a result, the internal member 20 is arranged via the joining member 21 so as to connect the side FG of the external member 10 and the side ON. The size of the cross section of the internal member 20 is about 80% of the size of the cross section of the external member 10.

さらに、本実施の形態の衝撃吸収部材1をクラッシュボックスとして自動車車体のフロントサイドメンバの先端に例えば締結や溶接等の適宜手段によって装着する場合、内部部材20の内部に、タイダウンフック取付用のナットを内蔵することが考えられる。この場合、内径部材20は、その面積がこのナットを内蔵するのに必要な面積を有する必要があるが、この面積は内蔵されるナットの寸法も勘案して適宜決定すればよく、例えば40×40mm以上の面積を確保することが例示される。なお、内部部材20がこの面積を確保できない場合には、タイダウンフック取付用のナットの取付位置を、内部部材20の内部以外の位置に変更すればよい。   Further, when the shock absorbing member 1 of the present embodiment is mounted as a crash box at the front end of a front side member of an automobile body by appropriate means such as fastening or welding, a tie-down hook is mounted inside the internal member 20. It is conceivable to incorporate a nut. In this case, the inner diameter member 20 needs to have an area necessary for incorporating the nut, but the area may be appropriately determined in consideration of the dimension of the incorporated nut. For example, securing an area of 40 mm or more is exemplified. If the internal member 20 cannot secure this area, the mounting position of the nut for attaching the tie-down hook may be changed to a position other than the inside of the internal member 20.

内部部材20は、外部部材10と同様に、周知慣用の適宜手段により製造すればよく、特定の製造法には限定されない。例えば、中空材に押出、ハイドロフォーム(液封成形)又はロールフォーミング等の加工のいずれか一つ、あるいはこれらを複数組み合わせて行うことや、所定厚さの鋼板にプレス曲げ、絞り、巻き若しくはロールフォーミング等の加工をいずれか一つあるいは複数行うことによって、多角形の横断面形状を有する筒体に成形してから適宜箇所を接合することにより閉断面形状とすることが例示される。この際の接合方法として、例えばスポット、カシメ若しくはスポット摩擦攪拌接合等の断続接合や、アーク(プラズマ)、レーザー若しくは摩擦攪拌接合等の連続接合等を用いることが例示される。   Similar to the external member 10, the internal member 20 may be manufactured by well-known and appropriate means, and is not limited to a specific manufacturing method. For example, one of extrusion, hydrofoam (liquid seal molding), roll forming, etc., or a combination of these may be performed on a hollow material, or press bending, drawing, winding, or rolling on a steel plate of a predetermined thickness By performing any one or a plurality of processes such as forming, a closed cross-sectional shape is obtained by forming a cylindrical body having a polygonal cross-sectional shape and then joining the appropriate portions. Examples of the joining method in this case include intermittent joining such as spot, caulking or spot friction stir welding, and continuous joining such as arc (plasma), laser or friction stir welding.

また、内部部材20を接合部材21を介して外部部材10に接合する際にも、スポットやアーク等の溶接を用いて組み立てればよい。
さらに、さらなる高性能化を図るために、内部部材20に高周波焼き入れ、レーザ焼き入れ、浸炭、窒化等の後処理を行うことは有効である。また、内部部材20の素材には、テーラードブランク、さらには軽量化のために薄鋼板、アルミニウム合金以外の素材等を利用することも可能である。
Moreover, what is necessary is just to assemble using welding, such as a spot and an arc, also when joining the internal member 20 to the external member 10 via the joining member 21. FIG.
Furthermore, it is effective to perform post-treatment such as induction hardening, laser hardening, carburizing, and nitriding on the internal member 20 in order to further improve the performance. Further, as the material of the internal member 20, a tailored blank, and a material other than a thin steel plate and an aluminum alloy can be used for weight reduction.

本実施の形態の衝撃吸収部材1は、外部部材10と、この外部部材10の内部に配置される内部部材20とを備えるため、軸方向の一方の端部から、軸方向と平行な方向のみならず、軸方向と交差する方向、例えば軸方向との交差角度が0度超15度以下に含まれるあらゆる方向へ向けて衝撃荷重を負荷されても、確実に座屈して蛇腹状に変形することにより衝撃エネルギを十分に吸収して、所定の衝撃吸収性能を確保することができる。このため、この衝撃吸収部材1を、上述したクラッシュボックスに適用してフロントサイドメンバの先端に、例えば締結や溶接等の適宜手段によって装着すれば、車体の安全性の向上と、軽衝突による車体の損傷を略解消することによる修理費の低減とを、ともに図ることができる。   Since the shock absorbing member 1 of the present embodiment includes the external member 10 and the internal member 20 disposed inside the external member 10, only the direction parallel to the axial direction is provided from one end in the axial direction. In addition, even if an impact load is applied in a direction crossing the axial direction, for example, in any direction in which the crossing angle with the axial direction is included in the range of more than 0 degrees to 15 degrees or less, it is surely buckled and deformed into a bellows shape. Thus, it is possible to sufficiently absorb the impact energy and to secure a predetermined impact absorption performance. For this reason, if the shock absorbing member 1 is applied to the above-described crash box and attached to the front end of the front side member by appropriate means such as fastening or welding, the safety of the vehicle body is improved and the vehicle body caused by a light collision is obtained. The repair cost can be reduced by substantially eliminating the damage.

このようにして、本実施の形態により、特に斜め荷重が入力された場合であっても、軸方向での屈曲を生じることなく安定して軸方向へ蛇腹状に座屈することによって所定の衝撃吸収量を確保することができ、安定した高性能を発揮し得る衝撃吸収部材を提供できた。   In this way, according to the present embodiment, even when an oblique load is input, a predetermined shock absorption is achieved by buckling in the axial direction stably without causing bending in the axial direction. It was possible to provide an impact-absorbing member capable of securing the amount and exhibiting stable high performance.

(実施の形態2)
さらに、本発明を別の実施の形態を参照しながら詳細に説明する。なお、以降の実施の形態2〜4の説明では、上述した実施の形態1と相違する部分を説明し、重複する部分については同一の図中符合を付することにより重複する説明を適宜省略する。
(Embodiment 2)
Further, the present invention will be described in detail with reference to another embodiment. In the following description of the second to fourth embodiments, portions that are different from the above-described first embodiment will be described, and overlapping portions will be omitted by appropriately attaching the same reference numerals in the drawings. .

図16は、実施の形態2に係る衝撃吸収部材1−1の横断面を模式的に示す説明図である。なお、図16における三角印は、スポット溶接部を示す。
本実施の形態の衝撃吸収部材1−1が実施の形態1に係る衝撃吸収部材1と相違するのは、内部部材20−1の横断面形状である。
FIG. 16 is an explanatory diagram schematically showing a cross section of the shock absorbing member 1-1 according to the second embodiment. In addition, the triangle mark in FIG. 16 shows a spot weld part.
The shock absorbing member 1-1 according to the present embodiment is different from the shock absorbing member 1 according to the first embodiment in the cross-sectional shape of the internal member 20-1.

本実施の形態の衝撃吸収部材1−1における内部部材20−1は、ハットチャンネル部材20−1a、20−1bをふたつ重ねて鼓状に組み立てるとともに、各ハットチャンネル部材20−1a、20−1bそれぞれの端部をクランク状に屈曲させて、接合部材21−1を一体に構成した点である。   The internal member 20-1 in the shock absorbing member 1-1 of the present embodiment is assembled in a drum shape by overlapping two hat channel members 20-1a and 20-1b, and each hat channel member 20-1a and 20-1b. Each of the end portions is bent in a crank shape to integrally form the joining member 21-1.

本例においても、内部部材20はその全周において外部部材10から13mm以上離間して配置したとともに、内部部材20の横断面積を外部部材10の横断面積の45%に設定した。   Also in this example, the inner member 20 was arranged at a distance of 13 mm or more from the outer member 10 on the entire circumference, and the cross-sectional area of the inner member 20 was set to 45% of the cross-sectional area of the outer member 10.

本例の衝撃吸収部材1−1によれば、実施の形態1の衝撃吸収部材1と同様に、外部部材10と、この外部部材10の内部に配置される内部部材20−1とを備えるため、軸方向の一方の端部から、この軸方向のみならずこの軸方向と交差するあらゆる方向へ向けて衝撃荷重を負荷されても、確実に座屈して蛇腹状に変形することにより衝撃エネルギを十分に吸収して、所定の衝撃吸収性能を確保することができる。このため、この衝撃吸収部材1−1を、上述したクラッシュボックスに適用してフロントサイドメンバの先端に、例えば締結や溶接等の適宜手段によって装着すれば、車体の安全性の向上と、軽衝突による車体の損傷を略解消することによる修理費の低減とを、ともに図ることができる。   According to the shock absorbing member 1-1 of the present example, the external member 10 and the internal member 20-1 disposed inside the external member 10 are provided in the same manner as the shock absorbing member 1 of the first embodiment. Even if an impact load is applied from one end in the axial direction not only in this axial direction but in any direction that intersects with this axial direction, the impact energy can be reduced by reliably buckling and deforming into a bellows shape. It is possible to sufficiently absorb and secure a predetermined shock absorbing performance. For this reason, if this shock absorbing member 1-1 is applied to the above-mentioned crash box and attached to the front end of the front side member by an appropriate means such as fastening or welding, the safety of the vehicle body can be improved and light collision can be achieved. It is possible to reduce the repair cost by substantially eliminating the damage to the vehicle body caused by.

また、本例の衝撃吸収部材1−1は、内部部材に関して、実施の形態1の衝撃吸収部材1よりも簡素な構造を有するために、低コストで製造することができる。
このようにして、本実施の形態により、特に斜め荷重が入力された場合であっても、軸方向での屈曲を生じることなく安定して軸方向へ蛇腹状に座屈することによって所定の衝撃吸収量を確保することができ、安定した高性能を発揮し得る衝撃吸収部材を、実施の形態1よりも安価に提供できる。
Moreover, since the impact-absorbing member 1-1 of this example has a simpler structure than the impact-absorbing member 1 of Embodiment 1 regarding an internal member, it can be manufactured at low cost.
In this way, according to the present embodiment, even when an oblique load is input, a predetermined shock absorption is achieved by buckling in the axial direction stably without causing bending in the axial direction. The impact absorbing member that can secure the amount and can exhibit stable high performance can be provided at a lower cost than the first embodiment.

(実施の形態3)
図17は、実施の形態3に係る衝撃吸収部材1−2の横断面を模式的に示す説明図である。なお、図17における三角印は、スポット溶接部を示す。
(Embodiment 3)
FIG. 17 is an explanatory diagram schematically showing a cross section of the shock absorbing member 1-2 according to the third embodiment. In addition, the triangle mark in FIG. 17 shows a spot weld part.

本実施の形態の衝撃吸収部材1−2が実施の形態1、2に係る衝撃吸収部材1、1−1と相違する点も、内部部材20−2の横断面形状である。
本実施の形態の衝撃吸収部材1−1における内部部材20−2は、ハット形のチャンネル部材20−2aと底板20−2bとを接合してなるものであり、ハット形のチャンネル部材20−2a及び底板20−2bそれぞれの端部をクランク状に屈曲させて、接合部材21−2を一体に構成して、外部部材部材10の対称線mよりも左方へオフセットした非対称な位置に配置したものである。
The point that the shock absorbing member 1-2 of the present embodiment is different from the shock absorbing members 1, 1-1 according to the first and second embodiments is also the cross-sectional shape of the internal member 20-2.
The internal member 20-2 in the shock absorbing member 1-1 of the present embodiment is formed by joining a hat-shaped channel member 20-2a and a bottom plate 20-2b, and a hat-shaped channel member 20-2a. The end portions of the base plate 20-2b and the bottom plate 20-2b are bent in a crank shape, and the joining member 21-2 is integrally formed and arranged at an asymmetrical position offset to the left from the symmetry line m of the external member member 10. Is.

なお、本例においても、内部部材20−2はその全周において外部部材10から13mm以上離間して配置したとともに、内部部材20−2の横断面積を外部部材10の横断面積の25%に設定した。   Also in this example, the inner member 20-2 is arranged at a distance of 13 mm or more from the outer member 10 on the entire circumference, and the cross-sectional area of the inner member 20-2 is set to 25% of the cross-sectional area of the outer member 10. did.

自動車車体の構成部材によっては、他の部材との形状上の要件や結合上の要件から、想定される衝撃荷重の入力方向が一方向に特定されるものがある。このような部材に本発明を適用する場合には、図17に示すように、面内で剛性の向上が必要とされる領域のみに頂点を多数有する内部部材20−2をオフセットして配置することにより、確実に座屈して蛇腹状に変形することにより衝撃エネルギを十分に吸収して、所定の衝撃吸収性能を確保することができるとともに、衝撃吸収部材1−2全体の軽量化を図ることができる。   Depending on the components of the automobile body, the input direction of the assumed impact load may be specified in one direction from the requirements on the shape and the connection with other members. When the present invention is applied to such a member, as shown in FIG. 17, the internal member 20-2 having a large number of vertices is arranged in an offset manner only in an area where the rigidity needs to be improved. Thus, it is possible to sufficiently absorb the impact energy by reliably buckling and deforming into a bellows shape, ensuring a predetermined shock absorption performance, and reducing the weight of the entire shock absorbing member 1-2. Can do.

このように、本発明によれば、想定される衝撃荷重の入力条件に応じて内部部材20の形状や配置を適宜調整することにより、所望の衝撃吸収性能を重量増を最小限に抑制しながら、得ることができる。   As described above, according to the present invention, by appropriately adjusting the shape and arrangement of the internal member 20 in accordance with the assumed shock load input conditions, the desired shock absorption performance can be suppressed while minimizing the increase in weight. ,Obtainable.

(実施の形態4)
図18は、本実施の形態の衝撃吸収部材1−3の横断面を模式的に示す説明図である。同図に示すように、本実施の形態の衝撃吸収部材1−3では、曲げ剛性向上部材として、実施の形態1で用いた内部部材20、実施の形態2で用いた内部部材20−1、さらには実施の形態3で用いた内部部材20−2に替えて、平板状の仕切り板40を用いた。
(Embodiment 4)
FIG. 18 is an explanatory view schematically showing a cross section of the shock absorbing member 1-3 of the present embodiment. As shown in the figure, in the impact absorbing member 1-3 of the present embodiment, the internal member 20 used in the first embodiment, the inner member 20-1 used in the second embodiment, Furthermore, it replaced with the internal member 20-2 used in Embodiment 3, and used the flat partition plate 40. FIG.

図18に示すように、この仕切り板40は、平板の素材の二つの縁部を互いに逆方向へ曲げる加工を行って二つのフランジ部40a、40bを形成したものである。本例では、荷重Faが入力されることを想定し、この仕切り板40を外部部材40の内部に挿入して仮止めし、図18に示す三角印の位置でスポット溶接等の接合を行うことにより、フランジ部40a、40bを介して外部部材10の辺F−Gと、辺O−Nとをつないだ。   As shown in FIG. 18, the partition plate 40 is formed by bending two edges of a flat plate material in opposite directions to form two flange portions 40a and 40b. In this example, assuming that the load Fa is inputted, the partition plate 40 is inserted into the external member 40 and temporarily fixed, and joining such as spot welding is performed at the position of the triangle mark shown in FIG. Thus, the side FG of the external member 10 is connected to the side ON via the flange portions 40a and 40b.

仕切り板40の配置は、想定される荷重の入力方向に対応して決定すればよい。すなわち、上述したように、本例では荷重Faが入力されることを想定したために仕切り板40を外部部材10の辺F−Gと辺O−Nとをつなぐように配置したが、荷重Faの方向とは90°異なる方向から入力される荷重Fbを想定する場合には、仕切り板40を外部部材10の辺B−Cと辺K−Jとをつなぐように配置すればよい。   What is necessary is just to determine arrangement | positioning of the partition plate 40 corresponding to the input direction of the assumed load. That is, as described above, in this example, since it is assumed that the load Fa is input, the partition plate 40 is disposed so as to connect the side FG and the side ON of the external member 10, but the load Fa When assuming a load Fb input from a direction 90 ° different from the direction, the partition plate 40 may be disposed so as to connect the side BC and the side KJ of the external member 10.

また、図19は、仕切り板40の別の設置方法を示す説明図である。図19に示すように、仕切り板40に相当する部分40’を備える閉じた断面形状を有する第1の外部部材10aと、開いた断面形状を有する第2の外部部材10bとを製作し、これらを図示するように重ね合わせて、図中における三角印の位置で、例えばスポット溶接等の適当な接合手段によって接合することが例示される。なお、外部部材10の構造や製作方法等は、上述した実施の形態1と同様であるため、説明は省略する。   FIG. 19 is an explanatory view showing another installation method of the partition plate 40. As shown in FIG. 19, a first external member 10a having a closed cross-sectional shape provided with a portion 40 ′ corresponding to the partition plate 40 and a second external member 10b having an open cross-sectional shape are manufactured. As shown in the figure, it is exemplified that joining is carried out by an appropriate joining means such as spot welding at the position of a triangle mark in the figure. Note that the structure, manufacturing method, and the like of the external member 10 are the same as those in the first embodiment described above, and thus the description thereof is omitted.

本実施の形態の衝撃吸収部材1−3は、外部部材10と、この外部部材10の内部に外部部材10の曲げ剛性向上部材として配置される仕切り板40とを備えるため、軸方向の一方の端部から、軸方向と平行な方向のみならず、軸方向と交差する方向、例えば軸方向との交差角度が0度超15度以下に含まれるあらゆる方向へ向けて衝撃荷重を負荷されても、確実に座屈して蛇腹状に変形することにより衝撃エネルギを十分に吸収して、所定の衝撃吸収性能を確保することができる。   Since the shock absorbing member 1-3 of the present embodiment includes the external member 10 and the partition plate 40 arranged as a bending rigidity improving member of the external member 10 inside the external member 10, one of the axial members is arranged in the axial direction. Even if an impact load is applied not only in a direction parallel to the axial direction but also in a direction crossing the axial direction from the end, for example, in any direction where the crossing angle with the axial direction is included in the range of more than 0 degrees to 15 degrees or less By reliably buckling and deforming into a bellows shape, it is possible to sufficiently absorb the impact energy and to secure a predetermined shock absorption performance.

図20は、図18に示す横断面形状を有する衝撃吸収部材1−3に、軸方向から衝撃荷重が負荷された場合(条件5)における変位−荷重線図と、軸方向と10度交差する方向から衝撃荷重が負荷された場合(条件6)における変位−荷重線図とをあわせて示すグラフである。   FIG. 20 intersects the displacement-load diagram when the impact load is applied to the impact absorbing member 1-3 having the cross-sectional shape shown in FIG. 18 from the axial direction (condition 5) and the axial direction by 10 degrees. It is a graph which shows collectively the displacement-load diagram in the case where an impact load is applied from the direction (condition 6).

図20にグラフで示すように、本実施の形態の衝撃吸収部材1−3は、上述した実施の形態1〜3の衝撃吸収部材1、1−1、1−2と同様に外部部材10を有するため、軸方向へ衝撃荷重が負荷されると、蛇腹状に安定して座屈変形でき、衝撃エネルギを十分に吸収することができる。   As shown in the graph of FIG. 20, the shock absorbing member 1-3 of the present embodiment is similar to the shock absorbing members 1, 1-1, 1-2 of the first to third embodiments described above. Therefore, when an impact load is applied in the axial direction, it can be stably buckled and deformed in a bellows shape, and the impact energy can be sufficiently absorbed.

また、図20にグラフで示すように、本実施の形態の衝撃吸収部材1−3は、外部部材10の内部に外部部材10の曲げ剛性向上部材として仕切り板40を配置されているために横断面の曲げ剛性が高められていることから、斜め荷重を入力されても、この入力の初期の時点における衝撃吸収部材1−3の倒れ込みが抑制され、軸方向へ安定して蛇腹状に座屈することにより所定の衝撃吸収量を確保でき、安定した衝撃吸収性能を示す。   Further, as shown in the graph of FIG. 20, the shock absorbing member 1-3 of the present embodiment is crossed because the partition plate 40 is disposed as the bending rigidity improving member of the external member 10 inside the external member 10. Since the bending rigidity of the surface is enhanced, even if an oblique load is input, the impact absorbing member 1-3 is prevented from falling at the initial time of the input, and the buckling is stably buckled in the axial direction. As a result, a predetermined amount of shock absorption can be secured, and stable shock absorption performance is exhibited.

このように、本実施の形態の衝撃吸収部材1−3も、上述した実施の形態1〜3の衝撃吸収部材1、1−1、1−2と同様に、外部部材10の内部に曲げ剛性向上部材を有するため、軸方向の一方の端部から、軸方向と平行な方向のみならず、軸方向と交差する方向、例えば軸方向との交差角度が0度超15度以下に含まれるあらゆる方向へ向けて衝撃荷重を負荷されても、確実に座屈して蛇腹状に変形することにより衝撃エネルギを十分に吸収して、所定の衝撃吸収性能を確保することができる。このため、この衝撃吸収部材1−3を、上述したクラッシュボックスに適用してフロントサイドメンバの先端に、例えば締結や溶接等の適宜手段によって装着すれば、車体の安全性の向上と、軽衝突による車体の損傷を略解消することによる修理費の低減とを、ともに図ることができる。   As described above, the shock absorbing member 1-3 of the present embodiment is also provided with a bending rigidity inside the external member 10 in the same manner as the shock absorbing members 1, 1-1, 1-2 of the first to third embodiments. Since the improvement member is included, not only the direction parallel to the axial direction but also the direction intersecting the axial direction from the one end in the axial direction, for example, the crossing angle with the axial direction is included within 0 degree or more and 15 degrees or less Even if an impact load is applied in the direction, it is possible to sufficiently absorb the impact energy by reliably buckling and deforming into a bellows shape, thereby ensuring a predetermined impact absorption performance. For this reason, if this shock absorbing member 1-3 is applied to the above-mentioned crash box and attached to the front end of the front side member by appropriate means such as fastening or welding, the safety of the vehicle body can be improved and light collision can be achieved. It is possible to reduce the repair cost by substantially eliminating the damage to the vehicle body caused by.

また、本実施の形態を、上述した実施の形態1と比較すると、相違点は曲げ剛性向上部材40、20の横断面形状のみとなる。すなわち、衝撃吸収部材に作用する荷重は実施の形態1の衝撃吸収部材1のほうが大きいが、構造が簡素である点や軽量である点においては、本実施の形態の衝撃吸収部材1−3のほうが有利である。このため、衝撃吸収部材に個別に要求されるスペックに応じて、曲げ剛性向上部材として仕切り板40を用いるか、あるいは内部部材20を用いるかを適宜決定すればよい。   Further, when the present embodiment is compared with the first embodiment described above, the only difference is the cross-sectional shape of the bending rigidity improving members 40 and 20. That is, the load acting on the shock absorbing member is larger in the shock absorbing member 1 of the first embodiment. However, in terms of the simple structure and the light weight, the load of the shock absorbing member 1-3 of the present embodiment is the same. Is more advantageous. For this reason, what is necessary is just to determine suitably whether the partition plate 40 is used as a bending rigidity improvement member, or the internal member 20 according to the specification separately request | required of an impact-absorbing member.

なお、曲げ剛性向上部材として、実施の形態1では内部部材20を、実施の形態2では内部部材20−1を、実施の形態3では内部部材20−2を、さらに本実施の形態4では仕切り板40を、それぞれ例示した。しかしながら、本発明に係る衝撃吸収部材における曲げ剛性向上部材は、これら4例に限定されるものでないことはいうまでもなく、外部部材の内部に配置されてこの外部部材の蛇腹状の座屈変形を阻害することなくこの外部部材の曲げ剛性を高めることができる部材であれば、その形状や材質等には影響されずに、等しく適用可能である。   As the bending rigidity improving member, the internal member 20 in the first embodiment, the internal member 20-1 in the second embodiment, the internal member 20-2 in the third embodiment, and a partition in the fourth embodiment. Each of the plates 40 is illustrated. However, it goes without saying that the bending rigidity improving member in the impact absorbing member according to the present invention is not limited to these four examples, and is arranged inside the external member so that the external member has a bellows-like buckling deformation. Any member that can increase the bending rigidity of the external member without hindering the above is applicable equally without being affected by the shape, material, and the like.

次に、本発明を実施例を参照しながらさらに具体的に説明する。
板厚1.0mmの590MPa級の高張力鋼板を素材として折り曲げ加工を行って多角形断面とし、突き合わせ面を溶接することによって、図21に示す横断面形状を有する筒体から成る外部部材10を構成した。外部部材10は、扁平八角形に溝部14を一つ導入し、各形状の寸法諸元は、W=60mm、深さd=11.5mm、辺X5=35mm、X6=35mm、内角α=100°、β=106°である。部材長さは180mmである。
Next, the present invention will be described more specifically with reference to examples.
The outer member 10 made of a cylindrical body having a cross-sectional shape shown in FIG. 21 is formed by bending a 590 MPa class high-tensile steel plate having a thickness of 1.0 mm to form a polygonal cross section and welding the butt surfaces. Configured. The external member 10 has one groove portion 14 introduced into a flat octagon, and dimensions of each shape are as follows: W = 60 mm, depth d = 11.5 mm, side X5 = 35 mm, X6 = 35 mm, inner angle α = 100 °, β = 106 °. The member length is 180 mm.

さらに、図22に示すように、外部部材10の内部に、横断面積が外部部材10の横断面積の80%となるように製作した内部部材20を配置し、接合部材21を介して、辺14においてスポット溶接を行って外部部材10と接合することによって、本実施例の衝撃吸収部材1を製作した。   Furthermore, as shown in FIG. 22, the internal member 20 manufactured so that the cross-sectional area is 80% of the cross-sectional area of the external member 10 is arranged inside the external member 10, and the side 14 is interposed via the joining member 21. The impact absorbing member 1 of this example was manufactured by performing spot welding and joining to the external member 10 in FIG.

内部部材20の製作に用いた材料は、外部部材10と同様の、厚さ1.0mmの590MPa級の高張力鋼板である。
なお、図19における三角印は、スポット溶接部を示す。また、本例では、外部部材10と内部部材20との間の距離は、外部部材10の全周で13mmが確保されるようにした
また、表1には、外部部材10及び内部部材20それぞれの形状の寸法諸元を示す。
The material used for manufacturing the internal member 20 is a high-tensile steel plate of 590 MPa class having a thickness of 1.0 mm, similar to the external member 10.
In addition, the triangle mark in FIG. 19 shows a spot weld part. Further, in this example, the distance between the external member 10 and the internal member 20 is ensured to be 13 mm on the entire circumference of the external member 10. Also, Table 1 shows the external member 10 and the internal member 20 respectively. The dimension specification of the shape of is shown.

Figure 0004604740
Figure 0004604740

そして、図23に示すように、斜め方向からの荷重入力を実現するために、製作した衝撃吸収部材1を、10°傾いた台40の上に搭載して固定した後、200kgfの重量の錘体41を11.9mの高さから自由落下させることにより衝撃吸収部材1の衝突端側に軸方向に55km/hの速度で衝突させた。   Then, as shown in FIG. 23, in order to realize load input from an oblique direction, the manufactured shock absorbing member 1 is mounted and fixed on a table 40 tilted by 10 °, and then a weight having a weight of 200 kgf. The body 41 was allowed to freely fall from a height of 11.9 m to be collided at a speed of 55 km / h in the axial direction on the collision end side of the shock absorbing member 1.

そして、衝撃吸収部材1の圧壊時の変型抵抗を、圧電式のロードセルで測定した。なお、部材長Tはいずれも180mmとし、130mm圧壊までの吸収エネルギを測定した。表2には、初期の最大荷重と70%圧壊時の吸収エネルギを示す。なお、表2には比較のために内部部材20を設けなかった衝撃吸収部材の測定値も併せて示す。   And the deformation resistance at the time of crushing of the impact-absorbing member 1 was measured with the piezoelectric load cell. In addition, all member length T was 180 mm, and the absorbed energy until 130 mm collapse was measured. Table 2 shows the initial maximum load and the absorbed energy at 70% collapse. For comparison, Table 2 also shows the measured values of the impact absorbing member in which the internal member 20 is not provided.

Figure 0004604740
Figure 0004604740

表2に示す結果から、内部部材20を設けることにより、斜め荷重が負荷された場合であっても良好な吸収エネルギを示すことを確認できた。   From the results shown in Table 2, it was confirmed that by providing the internal member 20, good absorption energy was exhibited even when an oblique load was applied.

板厚1.6mmの590MPa級の高張力鋼板を素材として折り曲げ加工を行って多角形断面とし、突き合わせ面を溶接することによって、図18に示す横断面形状を有する衝撃吸収部材1−3を製作した。また比較のため、図18に示す仕切り板40を設けていない衝撃吸収部材も製作した。   A shock absorbing member 1-3 having a cross-sectional shape shown in FIG. 18 is manufactured by bending a 590 MPa class high-tensile steel plate with a thickness of 1.6 mm into a polygonal cross section and welding the butted surfaces. did. For comparison, an impact absorbing member not provided with the partition plate 40 shown in FIG. 18 was also manufactured.

そして、これらの衝撃吸収部材をそれぞれ、図23に示す試験装置における10°傾いた台40の上に設置した後、200kgfの重量の錘体41を11.9mの高さからこれらの衝撃吸収部材に対して自由落下させ、55km/hの速度で衝撃吸収部材に軸方向へ衝突させ、衝撃吸収部材の圧壊時の変形抵抗を、圧電式のロードセルで測定した。なお、衝撃吸収部材の長さTはいずれも180mmとし、130mm圧壊までの衝撃エネルギの吸収量を比較した。表3には、初期最大荷重と、70%圧壊時の衝撃エネルギの吸収量(70(%)圧壊吸収エネルギ)とを示す。   Then, after each of these shock absorbing members is installed on a table 40 inclined at 10 ° in the test apparatus shown in FIG. 23, a weight body 41 having a weight of 200 kgf is moved from the height of 11.9 m to these shock absorbing members. The impact-absorbing member was allowed to fall freely at a speed of 55 km / h in the axial direction, and the deformation resistance when the impact-absorbing member was crushed was measured with a piezoelectric load cell. In addition, all the length T of the impact absorbing member was 180 mm, and the amount of impact energy absorbed until the collapse of 130 mm was compared. Table 3 shows the initial maximum load and the amount of shock energy absorbed at 70% collapse (70 (%) collapse absorption energy).

Figure 0004604740
Figure 0004604740

表3に示す結果から、仕切り板40を設けることにより、軸方向と交差する方向、例えば軸方向との交差角度が0度超15度以下に含まれるあらゆる方向へ向けて衝撃荷重を負荷されても、確実に座屈して蛇腹状に変形することにより衝撃エネルギを十分に吸収して、所定の衝撃吸収性能を確保することができることがわかる。   From the results shown in Table 3, by providing the partition plate 40, an impact load is applied in a direction intersecting the axial direction, for example, in any direction in which the intersecting angle with the axial direction is included in the range of more than 0 degrees to 15 degrees or less. However, it can be seen that, by buckling reliably and deforming into a bellows shape, the impact energy can be sufficiently absorbed to ensure a predetermined impact absorption performance.

実施の形態1の衝撃吸収部材の横断面を模式的に示す説明図である。FIG. 3 is an explanatory diagram schematically showing a cross section of the shock absorbing member according to Embodiment 1. FEM数値解析による四角形の横断面を有する外部部材の圧壊の様子を示す説明図であり、図2(a)はフランジを具備する衝撃吸収部材を示し、図2(b)はフランジを具備しない衝撃吸収部材を示す。It is explanatory drawing which shows the mode of the crushing of the external member which has a square cross section by FEM numerical analysis, Fig.2 (a) shows the impact-absorbing member which comprises a flange, FIG.2 (b) shows the impact which does not comprise a flange. An absorbent member is shown. 扁平な八角形の横断面形状を有する外部部材の圧壊の様子を模式的に示す説明図である。It is explanatory drawing which shows typically the mode of the crushing of the external member which has a flat octagonal cross-sectional shape. 扁平な八角形の横断面を有する外部部材の長辺部の一部に、台形状に溝部を設けた状況を示す説明図である。It is explanatory drawing which shows the condition which provided the groove part in the trapezoid shape in a part of long side part of the external member which has a flat octagonal cross section. 溝部が形成される範囲についての好適条件をFEM解析した結果を示すグラフである。It is a graph which shows the result of having performed the FEM analysis on the suitable conditions about the range in which a groove part is formed. 外部部材の一例の横断面を示す説明図である。It is explanatory drawing which shows the cross section of an example of an external member. 溝の例を示す説明図である。It is explanatory drawing which shows the example of a groove | channel. 外部部材の一例の横断面を示す説明図である。It is explanatory drawing which shows the cross section of an example of an external member. 外部部材の入力端側を示す説明図である。It is explanatory drawing which shows the input end side of an external member. 外部部材の断面積を減じる部位の長さ/外部部材の長さと、初期最大荷重比又は70%圧壊時の吸収エネルギ比との関係を示すグラフである。It is a graph which shows the relationship between the length of the site | part which reduces the cross-sectional area of an external member / the length of an external member, and the initial maximum load ratio or the absorbed energy ratio at the time of 70% collapse. 外部部材の入力端側を示す説明図である。It is explanatory drawing which shows the input end side of an external member. 外部部材の一例の横断面を示す説明図である。It is explanatory drawing which shows the cross section of an example of an external member. 比(h/X)と単位重量当たりの衝突性能(%)との関係を示すグラフである。It is a graph which shows the relationship between ratio (h / X) and the impact performance (%) per unit weight. 溝部を有する外部部材の面部に曲率を付与した場合の頂点及び面部の弾性座屈によるたわみの状況を模式的に示す説明図であり、図14(a)は外側に凸となる曲率を付与した場合を示し、図14(b)は内側に凹となる曲率を付与した場合を示す。It is explanatory drawing which shows typically the condition of the bending | flexion by the elastic buckling of the vertex and surface part at the time of giving a curvature to the surface part of the external member which has a groove part, Fig.14 (a) provided the curvature which becomes convex outward. FIG. 14B shows a case where a concave curvature is given to the inside. 内部部材の効果についての試験結果を示すグラフである。It is a graph which shows the test result about the effect of an internal member. 実施の形態2の衝撃吸収部材の横断面を模式的に示す説明図である。It is explanatory drawing which shows the cross section of the impact-absorbing member of Embodiment 2 typically. 実施の形態3の衝撃吸収部材の横断面を模式的に示す説明図である。It is explanatory drawing which shows the cross section of the impact-absorbing member of Embodiment 3 typically. 実施の形態4の衝撃吸収部材の横断面を模式的に示す説明図である。It is explanatory drawing which shows the cross section of the impact-absorbing member of Embodiment 4 typically. 仕切り板の別の設置方法を示す説明図である。It is explanatory drawing which shows another installation method of a partition plate. 図18に模式的に示す横断面を有する衝撃吸収部材に、軸方向から衝撃荷重が負荷された場合(条件5)における変位−荷重線図と、軸方向と10度交差する方向から衝撃荷重が負荷された場合(条件t6)における変位−荷重線図とをあわせて示すグラフである。FIG. 18 schematically shows a displacement-load diagram when an impact load is applied from the axial direction to the impact absorbing member having a cross section schematically shown in FIG. 18 and the impact load from the direction intersecting the axial direction by 10 degrees. It is a graph which shows collectively the displacement-load diagram in the case of being loaded (condition t6). 実施例における外部部材の横断面形状を示す説明図である。It is explanatory drawing which shows the cross-sectional shape of the external member in an Example. 実施例における衝撃吸収部材の横断面形状を示す説明図である。It is explanatory drawing which shows the cross-sectional shape of the impact-absorbing member in an Example. 試験装置の構成を模式的に示す説明図である。It is explanatory drawing which shows the structure of a test apparatus typically.

符号の説明Explanation of symbols

1 衝撃吸収部材
10 外部部材
20 内部部材
40 仕切り板
1 Shock absorbing member 10 External member 20 Internal member 40 Partition plate

Claims (6)

筒体からなる外部部材と、該外部部材の内部に配置されて曲げ剛性を向上する曲げ剛性向上部材とを少なくとも備え、前記筒体の軸方向の一方の端部から該軸方向又は該軸方向と交差する方向へ向けて衝撃荷重を負荷されて座屈することにより蛇腹状に変形することによって衝撃エネルギを吸収するための衝撃吸収部材であって、
前記外部部材の軸方向の少なくとも一部の横断面形状は、複数の頂点を有する閉断面であり、該閉断面の外側にフランジを具備しないとともに、前記複数の頂点のうちの一部を直線で連結して得られる最大の輪郭からなる基本断面の少なくとも一の辺の一部であってかつ該辺の端点を除く領域が、前記輪郭の内側へ凹んだ溝部を形成するように、屈曲して形成されること
前記凹んだ溝部は、前記外部部材の軸方向へ延びて設けられること、および
前記曲げ剛性向上部材は、前記外部部材の前記複数の頂点を含まない領域を介して、前記外部部材の内面に固定されること
を特徴とする衝撃吸収部材。
An external member made of a cylindrical body, and a bending rigidity improving member arranged at the inside of the external member to improve the bending rigidity, the axial direction or the axial direction from one axial end of the cylindrical body An impact absorbing member for absorbing impact energy by deforming into an accordion shape by buckling with an impact load applied in a direction intersecting with
The cross-sectional shape of at least a part of the external member in the axial direction is a closed cross section having a plurality of vertices, and has no flange outside the closed cross section, and a part of the plurality of vertices is a straight line. The region that is a part of at least one side of the basic cross-section consisting of the maximum contour obtained by connecting and excluding the end point of the side is bent so as to form a groove portion recessed inward of the contour. Formed ,
The recessed groove is provided extending in the axial direction of the external member ; and
The impact absorbing member, wherein the bending rigidity improving member is fixed to an inner surface of the external member through a region not including the plurality of apexes of the external member.
前記曲げ剛性向上部材は、前記軸方向の横断面形状が複数の頂点を有する閉断面を有するとともに該軸方向へ延びて設けられる内部部材である請求項1に記載された衝撃吸収部材。   2. The impact absorbing member according to claim 1, wherein the bending rigidity improving member is an internal member provided so as to have a closed cross section having a plurality of apexes in a cross section in the axial direction and to extend in the axial direction. 前記内部部材と前記外部部材との間の距離は13mm以上であるとともに、前記内部部材の横断面積は前記外部部材の横断面積の20%以上である請求項2に記載された衝撃吸収部材。   The impact absorbing member according to claim 2, wherein a distance between the internal member and the external member is 13 mm or more, and a cross-sectional area of the internal member is 20% or more of a cross-sectional area of the external member. 前記曲げ剛性向上部材は、板状部材である請求項1に記載された衝撃吸収部材。   The impact absorbing member according to claim 1, wherein the bending rigidity improving member is a plate-like member. 前記溝部は、該溝部を有する前記辺の幅をaとし、一つの前記溝部の開口幅をWiとし、前記外部部材の板厚をtとし、前記辺に設けられた前記溝部の個数をnとし、前記辺に設けられたn個の前記溝部によって分割されて残った(n+1)個の残余の領域のそれぞれの幅をXjとした場合に、下記(1)式及び(2)式を満足するように、設けられる請求項1から請求項までのいずれか1項に記載された衝撃吸収部材。
4t<Wi<65t i=1〜n ・・・・・(1)
4t<Xj<65t j=1〜n+1 ・・・・・(2)
ただし、ΣWi+ΣXj=aであり、かつΣWiは、幅aの辺に形成された溝部の開口幅Wiの総和であり、溝部の開口幅は、幅aの辺と溝部の輪郭線との2つの交点の間の距離であり、ΣXjは前記幅Xjの総和である。
The width of the side having the groove is a, the opening width of one groove is Wi, the thickness of the external member is t, and the number of the grooves provided on the side is n. The following equations (1) and (2) are satisfied, where Xj is the width of each of the (n + 1) remaining regions divided and left by the n groove portions provided on the side. The shock absorbing member according to any one of claims 1 to 4 , which is provided as described above.
4t <Wi <65t i = 1 to n (1)
4t <Xj <65t j = 1 to n + 1 (2)
However, ΣWi + ΣXj = a, and ΣWi is the sum of the opening widths Wi of the grooves formed on the side of the width a, and the opening width of the groove is the two intersections of the side of the width a and the outline of the groove ΣXj is the sum of the widths Xj.
前記衝撃吸収部材はクラッシュボックスである請求項1から請求項までのいずれか1項に記載された衝撃吸収部材。 The impact absorbing member according to any one of claims 1 to 5, wherein the impact absorbing member is a crash box.
JP2005021791A 2005-01-28 2005-01-28 Shock absorbing member Active JP4604740B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005021791A JP4604740B2 (en) 2005-01-28 2005-01-28 Shock absorbing member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005021791A JP4604740B2 (en) 2005-01-28 2005-01-28 Shock absorbing member

Publications (2)

Publication Number Publication Date
JP2006207726A JP2006207726A (en) 2006-08-10
JP4604740B2 true JP4604740B2 (en) 2011-01-05

Family

ID=36964816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005021791A Active JP4604740B2 (en) 2005-01-28 2005-01-28 Shock absorbing member

Country Status (1)

Country Link
JP (1) JP4604740B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5141379B2 (en) * 2008-05-28 2013-02-13 新日鐵住金株式会社 Steel hollow columnar member
JP5179390B2 (en) * 2009-01-20 2013-04-10 株式会社神戸製鋼所 Energy absorbing member
KR20160043127A (en) 2011-08-09 2016-04-20 신닛테츠스미킨 카부시키카이샤 Shock absorbing member
JP5488769B2 (en) 2011-08-09 2014-05-14 新日鐵住金株式会社 Shock absorbing member
JP5320490B2 (en) * 2012-06-04 2013-10-23 株式会社東芝 Shock absorber, shock absorber, and shock absorber manufacturing method
CN114857193B (en) * 2022-04-19 2023-04-14 福建工程学院 Clamping groove type thin-walled tube energy absorption system easy to disassemble and assemble and capable of achieving three-dimensional self-locking

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003095135A (en) * 2001-09-20 2003-04-03 Nissan Motor Co Ltd Body front structure of automobile
JP2003225714A (en) * 2002-02-04 2003-08-12 Jfe Steel Kk Method for forming metallic tube and member for absorbing collision energy

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS606674U (en) * 1983-06-23 1985-01-18 トヨタ自動車株式会社 Buffer structure for automobile bodies
JPH04310477A (en) * 1991-04-05 1992-11-02 Nissan Motor Co Ltd Side member of vehicle
JPH05116645A (en) * 1991-10-29 1993-05-14 Toyota Motor Corp Front body structure for automobile
JPH1143069A (en) * 1997-07-29 1999-02-16 Nissan Motor Co Ltd Strength member for automobile
JPH11208519A (en) * 1998-01-22 1999-08-03 Honda Motor Co Ltd Body frame structure of automobile

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003095135A (en) * 2001-09-20 2003-04-03 Nissan Motor Co Ltd Body front structure of automobile
JP2003225714A (en) * 2002-02-04 2003-08-12 Jfe Steel Kk Method for forming metallic tube and member for absorbing collision energy

Also Published As

Publication number Publication date
JP2006207726A (en) 2006-08-10

Similar Documents

Publication Publication Date Title
JP4371059B2 (en) Shock absorbing member
JP3912422B2 (en) Crash box
JP5949925B2 (en) Crash box and car body
JP4375239B2 (en) Shock absorbing member and shock energy absorbing method
JP5348910B2 (en) Shock absorbing member and arrangement structure thereof
JP5488069B2 (en) Crash box and car body
JP4386036B2 (en) Crash box
KR101494120B1 (en) Metallic hollow column-like member
JP4604740B2 (en) Shock absorbing member
JP2008261493A (en) Shock absorbing member and its manufacturing method
JP5147003B2 (en) Side member
JP5034793B2 (en) Shock absorption method
KR102558628B1 (en) Structural members for vehicles
JP4036234B2 (en) Crash box
KR20140013103A (en) Shock absorbing member
JPH09277953A (en) Shock absorbing member
JP2011056997A (en) Metal hollow columnar member
WO2013022001A1 (en) Shock absorbing member
JP7192837B2 (en) Vehicle structural member
JP5056198B2 (en) Shock absorption structure of automobile body
JP4543778B2 (en) Shock absorbing member
EP3932750A1 (en) Structural member for vehicle
JP2005301429A (en) Designing method for structural member with good bending load absorbing characteristic
JP2005299717A (en) Structural member excellent in bending load absorbing characteristics
EP3604086A1 (en) Shock-absorbing member and side member of automobile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100920

R150 Certificate of patent or registration of utility model

Ref document number: 4604740

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350