JP7192837B2 - Vehicle structural member - Google Patents

Vehicle structural member Download PDF

Info

Publication number
JP7192837B2
JP7192837B2 JP2020158100A JP2020158100A JP7192837B2 JP 7192837 B2 JP7192837 B2 JP 7192837B2 JP 2020158100 A JP2020158100 A JP 2020158100A JP 2020158100 A JP2020158100 A JP 2020158100A JP 7192837 B2 JP7192837 B2 JP 7192837B2
Authority
JP
Japan
Prior art keywords
hat
height
tension member
members
side wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020158100A
Other languages
Japanese (ja)
Other versions
JP2021054399A (en
Inventor
智宏 堺谷
健太郎 佐藤
貴之 二塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2021054399A publication Critical patent/JP2021054399A/en
Application granted granted Critical
Publication of JP7192837B2 publication Critical patent/JP7192837B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Body Structure For Vehicles (AREA)

Description

本発明は、2つのハット部材からなる閉断面構造を有する車両用の構造部材(骨格部材)に関する。特に、本発明は、2つの天板部の対向方向に沿った方向から入力される衝突荷重による曲げ変形に対し、耐衝突性能を有する構造部材を提供する技術に関する。 TECHNICAL FIELD The present invention relates to a vehicle structural member (framework member) having a closed cross-sectional structure composed of two hat members. In particular, the present invention relates to a technique for providing a structural member having collision resistance against bending deformation due to a collision load input from a direction along the direction in which two top plate portions face each other.

近年、自動車分野では、乗員保護の観点から衝突安全基準の厳格化が進められており、高強度鋼の適用拡大や衝突安全性能に優れる車両開発が強く求められている。
ここで、衝突の形態としては、軸圧壊する衝突形態(軸圧壊モード)と、曲げ変形する衝突形態(曲げ圧壊モード)とがある。軸圧壊する衝突形態では、自動車前面から入力される衝突荷重を受けるクラッシュボックスやフロントサイドメンバのように、部材の長手方向が衝突方向と一致して軸圧壊が発生する。曲げ変形する衝突形態では、側面衝突におけるBピラーやサイドシルのように、構造部材の側面に衝突荷重が負荷されて部材が曲げ変形する。両方の形態は、いずれも、部材が座屈変形することで衝突エネルギーを吸収することで、耐衝突性能を発揮する。
In recent years, in the automobile field, collision safety standards have been tightened from the viewpoint of passenger protection, and there is a strong demand for the expansion of the application of high-strength steel and the development of vehicles with excellent collision safety performance.
Here, as the form of collision, there are a collision form of axial crush (axial crush mode) and a collision form of bending deformation (bending crush mode). In a collision mode that causes axial crushing, axial crushing occurs when the longitudinal direction of a member coincides with the direction of collision, such as a crash box or a front side member that receives a collision load input from the front of an automobile. In a collision mode in which bending deformation occurs, a collision load is applied to the side surface of a structural member such as a B-pillar or a side sill in a side collision, and the member bends and deforms. Both forms exhibit collision resistance performance by absorbing collision energy through buckling deformation of the member.

上記のような耐衝突性能が要求される車両用構造部材には、ハット部材を用いた閉断面構造の構造部材が採用されることが多い。
このようなハット部材を用いた閉断面構造の構造部材に対する耐衝突性能を向上させる技術の1つとしては、部材の面に補強部材を取り付けることで構造部材の面剛性の強度を向上させる技術が提案されている。例えば、特許文献1には、中空部材を構成する底板部や天板部の内面に補強部材を密着して配置することが記載されている。また、特許文献2には、天板部と側壁部とを繋ぐ稜線部に接合される補強部材を備え、該稜線部に前記補強部材との溶接部が設けられている。また、特許文献3では、主壁部と立ち上がり壁部とフランジ部を有する第1の鋼板部材と、その稜線部の内側もしくは外側の面に接合される第2の鋼板部材を有する鋼板部材組合せ構造で、衝突エネルギー吸収効率を向上させることが記載されている。
A structural member having a closed cross-sectional structure using a hat member is often adopted as a structural member for a vehicle that requires the above collision resistance performance.
As one of the techniques for improving the collision resistance performance of a structural member having a closed cross-section structure using such a hat member, there is a technique for improving the strength of the surface rigidity of the structural member by attaching a reinforcing member to the surface of the member. Proposed. For example, Patent Literature 1 describes that a reinforcing member is arranged in close contact with the inner surfaces of the bottom plate portion and the top plate portion that constitute the hollow member. Further, in Japanese Unexamined Patent Application Publication No. 2002-100001, a reinforcing member is provided that is joined to a ridge connecting a top plate portion and a side wall portion, and a welded portion to the reinforcing member is provided at the ridge. Further, in Patent Document 3, a steel plate member combination structure includes a first steel plate member having a main wall portion, a rising wall portion, and a flange portion, and a second steel plate member joined to the inner or outer surface of the ridge portion. describes improving the collision energy absorption efficiency.

特開2017-159896号公報JP 2017-159896 A 特開2014-87848号公報JP 2014-87848 A 国際公開第2017/030191号WO2017/030191 特開2012-66795号公報JP 2012-66795 A

特許文献1~3に記載のような方法は、軸圧壊モードの衝突特性に対しては優れた補強方法であることが知られている。しかし、特許文献1~3に記載のような方法は、曲げ圧壊モードの場合、更にはロッカーのように底板にもハット部材が用いられる部品の場合の衝突特性に対しても最適な補強方法となっているとは言い難い。すなわち、特許文献1のような方法では、板材等による主補強部材とは別に、発泡樹脂等により成形される充填部材を副補強部材として用いる必要があり、工程数増加やリサイクル性など生産面での課題がある。また、特許文献2のような方法では、主補強部材が側壁部や稜線部に接合されているが、補強位置に関する検討がされていないため、各部品形状において効果的な補強位置であるとは言い難い。また、特許文献3のような方法では、前記縦壁の長さによって補強部材が接合される範囲を規定しているが、部材ごとに異なる最適な補強位置を狙って補強しているものではなく、効果的な補強となっているとは言い難い。 The methods described in Patent Documents 1 to 3 are known to be excellent reinforcement methods for the crash characteristics of the axial crush mode. However, the methods described in Patent Documents 1 to 3 are optimal reinforcement methods for crash characteristics in the case of a bending crush mode and also in the case of a part such as a rocker in which a hat member is also used for the bottom plate. It is hard to say that it is. That is, in the method of Patent Document 1, it is necessary to use a filling member formed of foamed resin or the like as a sub-reinforcing member separately from the main reinforcing member made of a plate material or the like. There is a problem. In addition, in the method disclosed in Patent Document 2, the main reinforcing member is joined to the side wall portion and the ridge line portion, but since no consideration has been given to the reinforcing position, it is difficult to say that it is an effective reinforcing position for each part shape. Hard to say. In addition, in the method disclosed in Patent Document 3, the length of the vertical wall defines the range in which the reinforcing member is joined. , it is difficult to say that it is an effective reinforcement.

また、特許文献4には、2つのハット部材を組み合わせてなる閉断面形状の構造部材に対し、各ハット部材毎に連結壁(補強部材)をそれぞれ設け、曲げ圧壊モードの衝突に対する耐力を向上させる構造の検討がなされているが、特許文献3と同様に、部材ごとに異なる最適な補強位置に対し効果的な補強となっているとは言い難い。 Further, in Patent Document 4, a connecting wall (reinforcing member) is provided for each hat member in a structural member having a closed cross section formed by combining two hat members, thereby improving the resistance against collision in bending crush mode. Although the structure has been examined, it is difficult to say that the reinforcement is effective for the optimum reinforcement position that differs for each member, as in Patent Document 3.

更に、構造部材の面に対し単純に補強部材を貼り付ける場合、耐衝突性能は向上するものの、部品点数の増加を招いて必要以上に構造部材の質量が増加したり、金型の増加を招いたりして、従来にあってはコスト面での課題がある。特に、従来にあっては、広い領域を補強部材で補強しようとするほど、質量増加が顕著となる。 Furthermore, simply attaching a reinforcing member to the surface of a structural member improves crash resistance, but increases the number of parts, resulting in an unnecessary increase in the mass of the structural member and an increase in the number of dies. Therefore, conventionally, there is a problem in terms of cost. In particular, in the conventional art, the larger a region is to be reinforced with a reinforcing member, the greater the increase in mass.

本発明は、上記のような点に着目したもので、構造部材の必要以上の質量増加を抑えつつ、構造部材の耐衝突性能、特に曲げ圧壊モードに対する耐衝突性能を効果的に向上させることを目的としている。 The present invention focuses on the above points, and aims to effectively improve the collision resistance performance of structural members, especially the collision resistance performance against bending crush mode, while suppressing an unnecessary increase in the mass of structural members. purpose.

本発明者は、閉断面形状を構成する中空部材における効果的な補強位置を検討し、特に2つのハット部材を組み合わせてなる閉断面形状の構造部材について、衝突荷重に対する変形モードを検討して、補強方法及び効果的な補強位置について鋭意検討した。その鋭意検討の結果、本発明をなした。 The present inventor studied the effective reinforcement position in a hollow member that constitutes a closed cross-sectional shape, and in particular, with respect to a closed cross-sectional structural member that is formed by combining two hat members, studied the deformation mode against a collision load. The reinforcement method and the effective reinforcement position were studied earnestly. As a result of the earnest investigation, the present invention was made.

そして、課題解決のために、本発明の一態様は、天板部の両側にそれぞれ側壁部及びフランジ部が連続する断面ハット形状からなる2つのハット部材を、フランジ部同士を接合して閉断面形状を構成する中空部材と、上記天板部の幅方向に沿って延在する金属板からなり、対向する2つの側壁部の内面同士を連結して上記2つの側壁部間の距離が広がることを拘束するテンション部材と、を備える。 In order to solve the problem, one aspect of the present invention provides two hat members each having a hat-shaped cross section in which a side wall portion and a flange portion are continuous on both sides of a top plate portion. It is composed of a hollow member forming a shape and a metal plate extending along the width direction of the top plate portion, and the inner surfaces of two opposing side wall portions are connected to each other to widen the distance between the two side wall portions. and a tension member for restraining the

更に、本発明の一態様は、例えば、上記2つのハット部材は、他方のハット部材の高さが、一方のハット部材の高さよりも低く、且つ一方のハット部材の高さの0.5倍以上の高さであり、上記テンション部材の厚さが、上記中空部材の板厚よりも板厚が薄い、ことを要旨とする。 Further, according to one aspect of the present invention, for example, in the two hat members, the height of the other hat member is lower than the height of the other hat member and is 0.5 times the height of the one hat member. and the thickness of the tension member is thinner than the thickness of the hollow member.

また、本発明の他の態様は、天板部の両側にそれぞれ側壁部及びフランジ部が連続する断面ハット形状からなる2つのハット部材を、フランジ部同士を接合して閉断面形状を構成する中空部材と、上記天板部の幅方向に沿って延在する金属板からなり、対向する2つの側壁部の内面同士を連結して上記2つの側壁部間の距離が広がることを拘束するテンション部材と、を備え、上記テンション部材の厚さが、上記中空部材の板厚よりも板厚が薄く、上記2つのハット部材の天板部同士が上下で対向配置させた状態において、上記2つのハット部材のうち、上側のハット部材の高さをh1とし、下側のハット部材の高さをh2とし、上記上側のハット部材の天板部から上記テンション部材までの上下方向の距離を補強位置pとしたとき、下記(1)式で定義される補強高さ比rが、下記(2)式を満足することを要旨とする。
r =(h1-p)/h1 :但し、h1 > pの場合
r =(h1-p)/h2 :但し、h1 < pの場合
・・・(1)
-0.5 ≦ r ≦ 0.375 ・・・(2)
In another aspect of the present invention, two hat members each having a hat-shaped cross section in which a side wall portion and a flange portion are continuous on both sides of a top plate portion are joined to each other to form a hollow cross-sectional shape with a closed cross-sectional shape. and a tension member comprising a metal plate extending along the width direction of the top plate portion and connecting the inner surfaces of two opposing side wall portions to restrain the distance between the two side wall portions from increasing. and wherein the thickness of the tension member is thinner than the thickness of the hollow member, and the top plate portions of the two hat members are arranged to face each other vertically. Among the members, the height of the upper hat member is h1, the height of the lower hat member is h2, and the vertical distance from the top plate of the upper hat member to the tension member is the reinforcement position p. , the gist is that the reinforcement height ratio r defined by the following formula (1) satisfies the following formula (2).
r = (h1-p)/h1 : when h1 > p r = (h1-p)/h2 : when h1 < p
... (1)
−0.5≦r≦0.375 (2)

本発明の態様によれば、2つのハット部材で閉断面形状を構成する中空部材における効果的な補強位置に補強部材を接合するようにしたため、より効果的な補強位置で補強を行うことができる。すなわち、本発明の態様によれば、構造部材の必要以上の質量増加を抑えつつ、構造部材の耐衝突性能、特に曲げ圧壊モードに対する、部材質量当たりの耐衝突性能を効果的に向上させることが可能となる。 According to the aspect of the present invention, since the reinforcing member is joined to the effective reinforcing position in the hollow member that forms the closed cross-sectional shape with the two hat members, the reinforcement can be performed at the more effective reinforcing position. . That is, according to the aspect of the present invention, it is possible to effectively improve the collision resistance performance of the structural member, particularly the collision resistance performance per member mass against the bending crush mode, while suppressing an unnecessary increase in the mass of the structural member. It becomes possible.

本発明に基づく実施形態に係る構造部材を示す斜視図である。1 is a perspective view of a structural member according to an embodiment of the invention; FIG. 本発明に基づく実施形態に係る構造部材を示す断面図である。1 is a cross-sectional view of a structural member according to an embodiment of the invention; FIG. 三点曲げ圧壊試験を説明する概念図である。It is a conceptual diagram explaining a three-point bending crush test. 荷重と変形ストロークの関係の一例を示す図である。It is a figure which shows an example of the relationship between a load and a deformation|transformation stroke. 三点曲げ圧壊試験による部材変形の挙動を説明する図であり、(a)は変形ストローク量:20mmでの状態を、(b)は変形ストローク量:60mmでの状態を示す。図5中、上側の図が断面図であり、下側の図が側面図である。It is a figure explaining the behavior of member deformation|transformation by a three-point bending crush test, (a) shows the state with deformation stroke amount: 20 mm, (b) shows the state with deformation stroke amount: 60 mm. In FIG. 5, the upper drawing is a cross-sectional view, and the lower drawing is a side view. 補強高さ比rと、質量当たりの最大荷重との関係を示す図である。It is a figure which shows the relationship between reinforcement height ratio r and the maximum load per mass. 横軸をテンション部材の板厚t、縦軸を構造部材の質量当たりの最大荷重としてまとめた結果の図である。FIG. 3 is a diagram showing the result of summarizing the horizontal axis as the plate thickness t of the tension member and the vertical axis as the maximum load per mass of the structural member. 補強高さ比rと性能向上比の関係を示す図である。It is a figure which shows the relationship between a reinforcement height ratio r and a performance improvement ratio.

次に、本発明の実施形態について図面を参照しつつ説明する。
(構成)
本実施形態の車両用構造部材は、図1及び図2に示すように、中空部材1と、中空部材1を補強するテンション部材5とを有する。
Next, embodiments of the present invention will be described with reference to the drawings.
(composition)
The vehicle structural member of the present embodiment has a hollow member 1 and a tension member 5 that reinforces the hollow member 1, as shown in FIGS.

<中空部材1>
中空部材1は、2つのハット部材1A、1Bを、フランジ部4A、4B同士を接合して閉断面形状を構成する。
各ハット部材1A、1Bはそれぞれ、天板部2A、2Bと、天板部2A、2Bの両側にそれぞれ側壁部3A、3B及びフランジ部4A、4Bが連続する断面ハット形状の部材である。各ハット部材1A、1Bは、天板部2A、2Bの幅方向で2つの側壁部3A、3Bが対向配置している。そして、各ハット部材1A、1Bの対向するフランジ部4A、4B同士が、溶接にて結合されることで、構造部材は閉断面となる。
<Hollow member 1>
The hollow member 1 forms a closed cross-sectional shape by joining two hat members 1A and 1B with flange portions 4A and 4B.
Each of the hat members 1A and 1B is a hat-shaped cross-sectional member having top plate portions 2A and 2B, and side wall portions 3A and 3B and flange portions 4A and 4B that are continuous on both sides of the top plate portions 2A and 2B, respectively. Each hat member 1A, 1B has two side wall portions 3A, 3B facing each other in the width direction of the top plate portions 2A, 2B. The opposing flange portions 4A and 4B of the hat members 1A and 1B are welded to each other, so that the structural member has a closed cross section.

ここで、本明細書では、図1及び図2に示すように、2つのハット部材1A、1Bの天板部2A、2B同士が上下で対向配置させた状態の姿勢で説明する。2つのハット部材1A、1Bを区別する場合には、上側のハット部材1Aを第1のハット部材1Aと記載し、下側のハット部材1Bを第2のハット部材1Bと記載する。本実施形態では、第1のハット部材1A側に構造部材側方からの衝撃が入力しやすい場合とする。 Here, in this specification, as shown in FIGS. 1 and 2, the top plate portions 2A and 2B of the two hat members 1A and 1B are arranged to face each other vertically. When distinguishing between the two hat members 1A and 1B, the upper hat member 1A is referred to as the first hat member 1A, and the lower hat member 1B is referred to as the second hat member 1B. In this embodiment, it is assumed that an impact from the side of the structural member is likely to be input to the first hat member 1A side.

この2つのハット部材1A、1Bは、同じ寸法である必要はない。例えば、第1のハット部材1Aの高さh1に比べて第2のハット部材1Bの高さh2の方が低くても構わない。2つのハット部材1A、1Bの高さ比は、例えば高さが大きい方のハット部材と高さが低い方のハット部材の比が、1:1~1:0.5とする。すなわち、2つのハット部材の高さが異なる場合、高さが低い方のハット部材の高さが、高さが大きい方のハット部材の高さよりも低く、且つ高さが大きい方のハット部材の高さの0.5倍以上の高さとするとよい。 The two hat members 1A, 1B need not have the same dimensions. For example, the height h2 of the second hat member 1B may be lower than the height h1 of the first hat member 1A. As for the height ratio of the two hat members 1A and 1B, for example, the ratio of the larger hat member to the smaller hat member is 1:1 to 1:0.5. That is, when the two hat members have different heights, the height of the hat member with the lower height is lower than the height of the hat member with the higher height, and the height of the hat member with the higher height is lower than that of the hat member with the higher height. The height should be 0.5 times or more the height.

ハット部材1A、1Bの高さとは、フランジ部4A、4Bから天板部2A、2Bまでの高さを指す。また、本実施形態では、各ハット部材1A、1Bにおいて、左右の側壁部3Aと3A、3Bと3Bの高さが実質、等しいとする。左右の側壁部の高さが等しいとは、左右の側壁部間の高さの差が2mm以内である場合とする。 The height of the hat members 1A, 1B refers to the height from the flange portions 4A, 4B to the top plate portions 2A, 2B. Further, in this embodiment, in each of the hat members 1A and 1B, the heights of the left and right side wall portions 3A and 3A and 3B and 3B are substantially equal. The right and left side walls having the same height means that the height difference between the left and right side walls is within 2 mm.

なお、天板部2A、2Bに、長手方向に向けて延びる1又は2以上のビードが形成されていても良い。長手方向に延びるビードを設けることで、車両用構造部材は、中空部材1の長手方向に沿った方向への荷重入力に対する強度が向上する。
また、図1及び図2には、実施例における部材の寸法を併記しているが、この寸法は、本発明を何ら限定するものではない。
One or more beads extending in the longitudinal direction may be formed on the top plate portions 2A and 2B. By providing the beads extending in the longitudinal direction, the strength of the vehicle structural member against load input in the direction along the longitudinal direction of the hollow member 1 is improved.
1 and 2 also show the dimensions of the members in the embodiment, but these dimensions do not limit the present invention.

<テンション部材5>
テンション部材5は、天板部2A、2Bの幅方向に向けて延在する金属板からなる。テンション部材5は、左右で対向する2つの側壁部3A又は3Bの内面同士を連結し、その2つの側壁部3A、3B間の開きを拘束する部材である。
テンション部材5の板厚は、使用される部位に要求される諸元に応じて設定される。
<Tension member 5>
The tension member 5 is made of a metal plate extending in the width direction of the top plate portions 2A and 2B. The tension member 5 is a member that connects the inner surfaces of the two side wall portions 3A or 3B facing each other on the left and right sides and restricts the opening between the two side wall portions 3A and 3B.
The plate thickness of the tension member 5 is set according to the specifications required for the portion where it is used.

本実施形態では、テンション部材5の板厚は、例えば、中空部材1の板厚未満、0.6mm以上、好ましくは、0.8mm以下0.6mm以上である。また、テンション部材5の板厚は、例えば、ハット部材1A、1Bの板厚の50%以上80%以下に設定することが好ましい。ここで、テンション部材5の板厚を、中空部材1の板厚未満に設定する際に、中空部材1を構成するハット部材1A、1Bの板厚が異なる場合には、ハット部材1A、1Bのうちの板厚が薄い側のハット部材の板厚の値を用いる。 In this embodiment, the thickness of the tension member 5 is, for example, less than the thickness of the hollow member 1, 0.6 mm or more, preferably 0.8 mm or less and 0.6 mm or more. Moreover, it is preferable to set the plate thickness of the tension member 5 to, for example, 50% or more and 80% or less of the plate thickness of the hat members 1A and 1B. Here, when setting the plate thickness of the tension member 5 to be less than the plate thickness of the hollow member 1, if the hat members 1A and 1B constituting the hollow member 1 have different plate thicknesses, the hat members 1A and 1B The value of the plate thickness of the hat member on the thinner side is used.

金属板からなるテンション部材5は、天板部2A、2Bの面と平行又は略平行であることが好ましいが。テンション部材5は、天板部2A、2Bの面と平行な仮想平面に対し、天板部2A、2Bの幅方向や長手方向に向けて傾いた状態で設けられていても良い。
なお、テンション部材5は、テンション部材5と各天板部2A、2B内面との間に空間を形成し、対向する天板部2A、2Bの間の空間を上下に仕切るように配置される。
The tension member 5 made of a metal plate is preferably parallel or substantially parallel to the surfaces of the top plate portions 2A and 2B. The tension member 5 may be provided in a state inclined in the width direction or the longitudinal direction of the top plate portions 2A and 2B with respect to a virtual plane parallel to the surfaces of the top plate portions 2A and 2B.
The tension member 5 forms a space between the tension member 5 and the inner surface of each of the top plate portions 2A and 2B, and is arranged so as to vertically partition the space between the opposing top plate portions 2A and 2B.

テンション部材5で連結する2つの側壁部3A又は3Bは、第1のハット部材1Aが有する左右で対向する2つの側壁部3Aか、第2のハット部材1Bが有する左右で対向する2つの側壁部3Bのいずれか一方とする。すなわち、2つの天板部2A、2B間に介在するテンション部材5は1枚とする。2つの天板部2A、2B間に介在するテンション部材5を2枚以上としても良いが、その分、構造部材の質量の増大に繋がるため、テンション部材5は1枚が好ましい。 The two side wall portions 3A or 3B connected by the tension member 5 are the two laterally opposed side wall portions 3A of the first hat member 1A or the two laterally opposed side wall portions of the second hat member 1B. 3B. That is, one tension member 5 is interposed between the two top plate portions 2A and 2B. Although two or more tension members 5 may be interposed between the two top plate portions 2A and 2B, one tension member 5 is preferable because it leads to an increase in the mass of the structural member.

テンション部材5の幅方向両側はそれぞれ、対向する2つの側壁部3A又は3B内面に対し溶接にて接合(連結)されている。図2では、例えば、テンション部材5の幅方向両端部にフランジ部が形成され、そのフランジ部の面を側壁部3B内面に突き当てて溶接することでテンション部材5を取り付けた例である。もっとも、テンション部材5と側壁部3A又は3B内面との接合方法は、特に限定されない。その接合は、例えば、レーザー溶接やスポット溶接、又は接着剤により実行する。 Both sides in the width direction of the tension member 5 are joined (connected) to the inner surfaces of the two opposing side wall portions 3A or 3B by welding. In FIG. 2, for example, flange portions are formed at both ends in the width direction of the tension member 5, and the tension member 5 is attached by abutting and welding the surfaces of the flange portions against the inner surfaces of the side wall portions 3B. However, the method of joining the tension member 5 and the inner surface of the side wall portion 3A or 3B is not particularly limited. The joining is performed, for example, by laser welding, spot welding, or an adhesive.

テンション部材5は、衝突時における2つの側壁部3A、3Bの開きに対しより大きな引張力が得られるように、テンション部材5とその端部に形成されるフランジ部との間の曲げ部の曲率半径は小さい方が好ましい。そのフランジ部の成形可能性を考慮し且つ上記曲げ部の曲率半径をより小さくするためには、テンション部材5の板厚は薄い方が好ましい。また、テンション部材5の引張強度は高い方が好ましい。但し、例えば上記の曲げ部の曲率半径を0.3mm以下と小さく設定する場合、その曲げ部での成形を実現するためには、テンション部材5の引張強度を例えば590MPa級以下と低く設定する。ここで、テンション部材5は、主として引張力を負担するためのものである。すなわち、テンション部材5の板厚は余り引張力に寄与しないので、軽量化の観点から、テンション部材5の板厚は薄い方が好ましい。したがって、テンション部材5の強度を落としてでも、上記の曲げ部の曲率半径を小さくすることが好ましい。 The tension member 5 has a curvature of the bending portion between the tension member 5 and the flange formed at its end so that a larger tensile force can be obtained for the opening of the two side wall portions 3A and 3B at the time of collision. A smaller radius is preferred. It is preferable that the thickness of the tension member 5 is thin in consideration of the moldability of the flange portion and in order to make the radius of curvature of the bent portion smaller. Moreover, the higher the tensile strength of the tension member 5, the better. However, if the curvature radius of the bent portion is set as small as 0.3 mm or less, for example, the tensile strength of the tension member 5 is set as low as 590 MPa or less in order to realize molding at the bent portion. Here, the tension member 5 is mainly for bearing the tensile force. That is, since the plate thickness of the tension member 5 does not contribute much to the tensile force, it is preferable that the plate thickness of the tension member 5 is thin from the viewpoint of weight reduction. Therefore, it is preferable to reduce the radius of curvature of the bent portion even if the strength of the tension member 5 is lowered.

ここで、テンション部材5は、中空部材1の長手方向全面に亘って連続して設ける必要はない。テンション部材5を、中空部材1の長手方向に沿って部分的に設けても良い。この場合、平面視において、テンション部材5は、少なくとも衝突荷重が負荷される可能性が高いと推定される位置を含む箇所に設けることが好ましい。 Here, the tension member 5 does not have to be provided continuously over the entire longitudinal direction of the hollow member 1 . The tension member 5 may be partially provided along the longitudinal direction of the hollow member 1 . In this case, in plan view, the tension member 5 is preferably provided at a location including at least a position where the collision load is likely to be applied.

衝突荷重が負荷される可能性が高いと推定される天板部2Aにおける面位置は、例えば、その構造部材を配置する車両位置に基づき、過去の事故情報などから、車両の側面衝突によって、対象とする構造部材のどの部分に衝突荷重が入力され易いかなどによって推定する。 The surface position of the top plate portion 2A where the collision load is likely to be applied is determined based on the vehicle position where the structural member is arranged, based on past accident information, etc. It is estimated based on which part of the structural member to which the collision load is likely to be input.

また、変形領域の特定は、例えば、FEMシミュレーション解析によって、部材の変形位置を解析して求める。予め設定した衝突荷重は、構造部材を使用する位置で耐衝突性能として要求される許容の衝突荷重を採用する。
また、2つのハット部材1A、1Bの高さが異なる場合に、テンション部材5は、どちらのハット部材に設けても良いが、例えば、高さが低いハット部材側に設ける。
Further, the deformation area is determined by analyzing the deformation position of the member by, for example, FEM simulation analysis. As the preset collision load, the permissible collision load required as collision resistance performance at the position where the structural member is used is adopted.
Also, when the two hat members 1A and 1B have different heights, the tension member 5 may be provided on either hat member, but is provided on the lower hat member side, for example.

また、例えば、テンション部材5は、2つのハット部材1A、1Bの天板部の対向方向に沿った衝突荷重が負荷される可能性が高いと推定される位置に配置される側のハット部材が分かっている場合には、テンション部材5は、衝突荷重が負荷される可能性が高いと推定される位置に配置される側のハット部材とは反対側に位置するハット部材に設けることが好ましい Further, for example, the tension member 5 is arranged at a position where it is estimated that a collision load along the opposing direction of the top plate portions of the two hat members 1A and 1B is likely to be applied. If known, the tension member 5 is preferably provided on the hat member located on the side opposite to the hat member located at the position where the collision load is likely to be applied.

<テンション部材5の高さ位置>
次に、金属板からなるテンション部材5の好適な配置位置(高さ方向の位置)について説明する。
ここで、図2のように、2つのハット部材1A、1Bのうち、第1のハット部材1A(上側のハット部材1A)の高さをh1とし、第2のハット部材1B(下側のハット部材1B)の高さをh2とする。また、第1のハット部材1Aの天板部2Aからテンション部材5までの上下方向の距離を補強位置pとする。また、構造部材の高さをHとし、各ハット部材の幅をwとする。
<Height Position of Tension Member 5>
Next, a suitable arrangement position (position in the height direction) of the tension member 5 made of a metal plate will be described.
Here, as shown in FIG. 2, of the two hat members 1A and 1B, the height of the first hat member 1A (upper hat member 1A) is set to h1, and the height of the second hat member 1B (lower hat member 1A) is set to h1. Let h2 be the height of the member 1B). Further, the vertical distance from the top plate portion 2A of the first hat member 1A to the tension member 5 is defined as a reinforcing position p. Let H be the height of the structural member, and w be the width of each hat member.

2つのハット部材1A、1Bの高さが異なる場合、2つのハット部材1A、1Bのうち、例えば、高さが高い方のハット部材を第1のハット部材1Aとする。高さが低い方のハット部材を第1のハット部材1Aとしても良い。 When the heights of the two hat members 1A and 1B are different, for example, the hat member having the higher height among the two hat members 1A and 1B is defined as the first hat member 1A. The lower hat member may be used as the first hat member 1A.

また、例えば、車両に設けた場合に、2つのハット部材1A、1Bの天板部の対向方向に沿った衝突荷重が負荷される可能性が高いと推定される位置に配置される側のハット部材を第1のハット部材1Aとする。 Further, for example, when provided in a vehicle, the hat on the side that is arranged at a position where it is estimated that there is a high possibility that a collision load is applied along the opposing direction of the top plate portions of the two hat members 1A and 1B. Let the member be the 1st hat member 1A.

テンション部材5は、左右の2つの側壁部3A、3B間が広がろうとする際に、引張力を負担するために設けられる。このため、補強位置pは、左右の側壁部3A、3B間が広がろうとする際に、テンション部材5が引張力を負荷する位置である。すなわち、テンション部材5が平板の場合、補強位置pは、例えば、テンション部材5の厚さ方向中央位置での値とする。また、テンション部材5の面が傾いた状態で配置される場合には、補強位置pは、例えば、平面視におけるテンション部材5の中央位置やテンション部材5の重心位置での値とする。 The tension member 5 is provided to bear the tensile force when the two left and right side wall portions 3A and 3B are about to widen. Therefore, the reinforcing position p is a position where the tension member 5 applies tensile force when the space between the left and right side wall portions 3A and 3B is about to widen. That is, when the tension member 5 is a flat plate, the reinforcement position p is, for example, the value at the central position in the thickness direction of the tension member 5 . When the surface of the tension member 5 is arranged in a tilted state, the reinforcement position p is, for example, a value at the central position of the tension member 5 or the center of gravity of the tension member 5 in plan view.

このとき、下記(1)式及び(2)式を満足するように、テンション部材5の高さ位置を設定することが好ましい(実施例参照)。
(1)式及び(2)式を満足することで、曲げ圧壊モードの衝突に対し、より効率良く耐衝突性能の向上ができるようになる。
r =(h1-p)/h1 :但し、h1 > pの場合
r =(h1-p)/h2 :但し、h1 < pの場合
・・・(1)
-0.5 ≦ r ≦ 0.375 ・・・(2)
更に好ましくは、下記(3)式を満足することが好ましい。
-0.25≦ r ≦ 0.125 ・・・(3)
なお、h1 > pの場合、rはゼロより大きい値であり、h1 < pの場合、rはゼロより小さい値である。
At this time, it is preferable to set the height position of the tension member 5 so as to satisfy the following formulas (1) and (2) (see Examples).
By satisfying the formulas (1) and (2), it is possible to improve the collision resistance performance more efficiently with respect to collisions in the bending crush mode.
r = (h1-p)/h1 : when h1 > p r = (h1-p)/h2 : when h1 < p
... (1)
−0.5≦r≦0.375 (2)
More preferably, it satisfies the following formula (3).
−0.25≦r≦0.125 (3)
Note that if h1>p, r is greater than zero, and if h1<p, r is less than zero.

<動作その他>
発明者は、FEM解析により、図1及び図2に示すような寸法のハット部材1A、1Bから閉断面を構成した構造部材(中空部材1で、テンション部材5は無い)に対し、三点曲げ圧壊試験での部材変形の挙動を詳細に解析した。三点曲げの解析条件は、図3に示すように、構造部材における長手方向に離れた下面の2点を支持部材10で支持し、天板部2A、2Bの長手方向中央部に対し、パンチ11によって上側から下方に向けて荷重を負荷するという条件である。具体的には、パンチ11を速度1m/sで図3中に矢印Fで示す方向に供試体である構造部材の幅方向と長手方向に垂直に動かして荷重を負荷した。また、供試体である構造部材の変形ストロークを80mmとした。そのときの、荷重と変形ストロークとの関係を図4に示す。
<Operation and others>
By FEM analysis, the inventors found that a structural member (a hollow member 1 without a tension member 5) having a closed cross section composed of hat members 1A and 1B having dimensions as shown in FIGS. The member deformation behavior in the crush test was analyzed in detail. As shown in FIG. 3, the three-point bending analysis conditions are such that two points on the lower surface of the structural member separated in the longitudinal direction are supported by a support member 10, and a punch is applied to the central portion in the longitudinal direction of the top plate portions 2A and 2B. 11 is a condition that the load is applied from the upper side toward the lower side. Specifically, the punch 11 was moved at a speed of 1 m/s in the direction indicated by the arrow F in FIG. Moreover, the deformation stroke of the structural member, which is the test piece, was set to 80 mm. FIG. 4 shows the relationship between the load and the deformation stroke at that time.

以上のような解析による部材変形の挙動は、部材中央の断面である図5に示すように、部材の変形に従い、第1のハット部材1Aが潰れるように変形すると共に第2のハット部材1Bの左右の側壁部3Bが外側に開くように変形する。そして、この変形により部材がV字型に折れ、図4に示すように部材にかかる荷重が低下することが分かった。ここで、図5中、(a)は変形ストロークが20mm、(b)は変形ストロークが60mmのときの状態である。 As shown in FIG. 5, which is a cross section at the center of the member, the member deformation behavior based on the above analysis is such that the first hat member 1A is deformed and the second hat member 1B is deformed in accordance with the deformation of the member. The left and right side wall portions 3B are deformed so as to open outward. It was found that this deformation caused the member to bend in a V shape, and the load applied to the member was reduced as shown in FIG. Here, in FIG. 5, (a) shows the state when the deformation stroke is 20 mm, and (b) shows the state when the deformation stroke is 60 mm.

そのため、このときの最大荷重を耐衝突性能ととらえると、その最大荷重を増加させるためには、上述の左右で対向する2つの側壁部3A、3Bの開きを抑えることが、耐衝突性能を向上させるためには有効であると考えた。 Therefore, if the maximum load at this time is regarded as the collision resistance performance, in order to increase the maximum load, it is necessary to suppress the opening of the two side wall portions 3A and 3B facing each other on the left and right sides as described above to improve the collision resistance performance. I thought it would be effective for

そこで、本実施形態では、図1及び図2に示すような、補強部材としてのテンション部材5を左右の側壁部3A又は3Bを連結するように設けることで、側方からの衝突による部材変形時に対し、対向する側壁部3A、3Bの開きが抑えるという効果を奏する。 Therefore, in this embodiment, as shown in FIGS. 1 and 2, by providing a tension member 5 as a reinforcing member so as to connect the left and right side wall portions 3A or 3B, when the member is deformed due to a collision from the side, On the other hand, there is an effect that the opening of the opposing side wall portions 3A and 3B is suppressed.

特に、後述の実施例で示すように、上記の補強高さ比rが(1)式及び(2)式を満足するように、テンション部材5を設けることで、構造部材の必要以上の質量増加を抑えつつ、構造部材の耐衝突性能、特に曲げ圧壊モードに対する、部材質量当たりの耐衝突性能を効果的に向上させることが可能となる。 In particular, as will be shown in the examples below, by providing the tension member 5 so that the reinforcement height ratio r satisfies the formulas (1) and (2), the mass of the structural member is increased more than necessary. is suppressed, it is possible to effectively improve the collision resistance performance of the structural member, particularly the collision resistance performance per member mass against the bending crush mode.

上記の図5のように、衝突による変形は、衝突荷重が入力される側と反対側である第2のハット部材1Bにおける左右の側壁部3Bが広がる。このため、単純に、衝突が入力されると推定される第1のハット部材1Aではない、第2のハット部材1Bに対してテンション部材5を設けるとしてもよい。第2のハット部材1Bにおける、対向する側壁部3B間をテンション部材5で連結することで、例えば天板部2Aに荷重が入力するような衝突による、部材変形時に対向する側壁部3A、3B間の距離が大きくなることを効率的に抑えることができて、耐衝突性能を向上させることが可能となる。このとき、左右の側壁が相対的に広がりやすいのは、第2のハット部材1Bのフランジ部4B側であるので、例えば、上側の天板部2Aからの距離で表される補強位置pを(4)式の範囲とする。
h1< p < h1+(h2/2) ・・・(4)
また、第1のハット部材1A側にテンション部材5を設ける場合には、例えば、補強位置pを(5)式の範囲とする。
0.625・h1 ≦ p < h1 ・・・(5)
As shown in FIG. 5, the deformation due to the collision spreads the left and right side wall portions 3B of the second hat member 1B, which is the side opposite to the side to which the collision load is input. For this reason, the tension member 5 may simply be provided for the second hat member 1B, not the first hat member 1A, to which the collision is presumed to be input. By connecting the opposing side wall portions 3B of the second hat member 1B with the tension member 5, the opposing side wall portions 3A and 3B are not deformed due to a collision such as a load input to the top plate portion 2A, for example. It is possible to efficiently suppress an increase in the distance between the two and improve the anti-collision performance. At this time, the left and right side walls tend to widen relatively on the flange portion 4B side of the second hat member 1B, so for example, the reinforcement position p represented by the distance from the upper top plate portion 2A is ( 4) within the range of the formula.
h1<p<h1+(h2/2) (4)
Further, when the tension member 5 is provided on the first hat member 1A side, for example, the reinforcing position p is set within the range of the formula (5).
0.625·h1≦p<h1 (5)

以上のように、本実施形態では、上記のようにテンション部材5を設けることで、特に、曲げ変形する衝突形態について、構造部材の耐衝突性能を向上させることができる。本実施形態のテンション部材5は、幅方向で対向する2つの側壁部3A、3Bが離れる方向に変位することを、テンション(引張力)によって拘束する。この結果、天板部2A、2Bへの衝突荷重の入力に対し、対向する2つの側壁部3A、3Bの面外方向への膨らみ(座屈)を抑制する。すなわち、本実施形態に基づくテンション部材5を設けることで、衝突時の部材断面変形を効果的に抑制し、特に曲げ変形における最大荷重を向上させることが可能となる。 As described above, in this embodiment, by providing the tension member 5 as described above, it is possible to improve the collision resistance performance of the structural member, particularly in the collision mode in which bending deformation occurs. The tension member 5 of the present embodiment restrains, by tension (pulling force), the two side wall portions 3A and 3B facing each other in the width direction from being displaced in the separating direction. As a result, the bulging (buckling) of the two opposing side wall portions 3A and 3B in the out-of-plane direction is suppressed with respect to the input of the collision load to the top plate portions 2A and 2B. That is, by providing the tension member 5 based on this embodiment, it is possible to effectively suppress member cross-sectional deformation at the time of collision, and particularly to increase the maximum load in bending deformation.

また、金属板からなるテンション部材5は、衝突荷重に対して、引張力を負担し、必ずしも圧縮力について負担する必要がないため、薄板の金属板でも効果を有する。すなわち、耐衝突性能を向上させるために、テンション部材5を設けても、従来に比べて荷重増加を抑制することが可能である。すなわち、金属板からなるテンション部材5を補強部材として設けても、それによる質量の増加を小さく抑えることができる。 Moreover, since the tension member 5 made of a metal plate bears the tensile force against the collision load and does not necessarily bear the compressive force, even a thin metal plate is effective. That is, even if the tension member 5 is provided in order to improve the anti-collision performance, it is possible to suppress an increase in load compared to the conventional art. That is, even if the tension member 5 made of a metal plate is provided as a reinforcing member, it is possible to suppress the increase in the mass caused by the tension member 5 .

次に、本発明に基づく実施例について説明する。
図1及び図2に示すような構成を考え、実施例のテンション部材5の接合は、連続接合で行った場合である。
ハット部材1A、1B及びテンション部材5は、表1のように設定した。またハット断面形状について、断面形状を、表2に示したような「1」~「6」の諸元に設定して解析を行った。
Next, examples based on the present invention will be described.
Considering the construction as shown in FIGS. 1 and 2, the joining of the tension member 5 in the embodiment is a case where continuous joining is performed.
The hat members 1A and 1B and the tension member 5 were set as shown in Table 1. Also, the hat cross-sectional shape was analyzed by setting the cross-sectional shape to the specifications of "1" to "6" as shown in Table 2.

Figure 0007192837000001
Figure 0007192837000001

Figure 0007192837000002
Figure 0007192837000002

そして、上記説明したFEM解析による、三点曲げ圧壊試験について、断面形状を「1」とし、補強高さ比rを変えて実行した。その結果を表3に示す。 Then, the three-point bending crush test by the FEM analysis described above was performed by setting the cross-sectional shape to "1" and changing the reinforcement height ratio r. Table 3 shows the results.

Figure 0007192837000003
Figure 0007192837000003

表3には、断面形状が「1」の場合における、構造部材の質量当たりの最大荷重を示す。
ここで、実施例1~11は各補強高さ比rに対応する補強位置pにテンション部材5を配置して補強を行った場合の結果であり、比較例1は、テンション部材5を設けなかった場合の結果である。
Table 3 shows the maximum load per mass of the structural member when the cross-sectional shape is "1".
Here, Examples 1 to 11 are the results when reinforcement is performed by arranging the tension member 5 at the reinforcement position p corresponding to each reinforcement height ratio r, and Comparative Example 1 does not provide the tension member 5. This is the result when

図6に、横軸を補強高さ比r、縦軸を構造部材の質量当たりの最大荷重としてまとめた結果を示す。図6では、比較例1の値は水平線で示している。
この図6から分かるように、質量当たりの最大荷重は、補強高さ比rが-0.1又はその前後のときに最大となることが分かった。
FIG. 6 shows the result of summarizing the reinforcement height ratio r on the horizontal axis and the maximum load per mass of the structural member on the vertical axis. In FIG. 6, the values for Comparative Example 1 are indicated by horizontal lines.
As can be seen from FIG. 6, the maximum load per mass is maximized when the reinforcement height ratio r is -0.1 or around it.

次に、上記説明したFEM解析による、三点曲げ圧壊試験を、表3に示した結果のうち、性能向上比が最大となった実施例5におけるテンション部材5の板厚tを変えて実行した。その結果を表4に示す。 Next, the three-point bending crush test by the FEM analysis described above was performed by changing the plate thickness t of the tension member 5 in Example 5, in which the performance improvement ratio was maximized among the results shown in Table 3. . Table 4 shows the results.

表4には、断面形状が「1」、補強高さ比rが-0.171の場合において、テンション部材5の板厚tを変えた場合の、構造部材の質量当たりの最大荷重を示す。ここで、比較例1はテンション部材5を設けなかった場合の結果である。 Table 4 shows the maximum load per mass of the structural member when the plate thickness t of the tension member 5 is changed when the cross-sectional shape is "1" and the reinforcement height ratio r is -0.171. Here, Comparative Example 1 is the result when the tension member 5 is not provided.

図7に、横軸をテンション部材の板厚t、縦軸を構造部材の質量当たりの最大荷重としてまとめた結果を示す。
この図7から分かるように、質量当たりの最大荷重はテンション部材5の板厚tが0.8のときに最大となることが分かった。

Figure 0007192837000004
FIG. 7 shows the result of summarizing the thickness t of the tension member on the horizontal axis and the maximum load per mass of the structural member on the vertical axis.
As can be seen from FIG. 7, the maximum load per mass is maximized when the plate thickness t of the tension member 5 is 0.8.
Figure 0007192837000004

次に、上記説明したFEM解析による、三点曲げ圧壊試験を、断面形状を「2」~「6」のいずれかに設定し、補強高さ比rを変えて実行した。その結果を表5に示す。 Next, the three-point bending crushing test by the FEM analysis described above was performed by setting the cross-sectional shape to any one of "2" to "6" and changing the reinforcement height ratio r. Table 5 shows the results.

Figure 0007192837000005
Figure 0007192837000005

表5に、断面形状が「2」~「6」の場合における、質量当たりの最大荷重を示す。また、表3や表5に、各断面形状でのテンション部材5による性能向上比の値を合わせて示す。この値は、各補強高さ比rでの質量当たりの最大荷重を、テンション部材5のない場合の質量当たりの最大荷重で除した値である。 Table 5 shows the maximum load per mass when the cross-sectional shape is "2" to "6". Tables 3 and 5 also show the performance improvement ratio values of the tension member 5 for each cross-sectional shape. This value is obtained by dividing the maximum load per mass at each reinforcement height ratio r by the maximum load per mass without the tension member 5 .

図8に、各断面形状において、横軸を補強高さ比r、縦軸を性能向上比としてまとめた結果を示す。
図8に示すように、テンション部材5による性能向上比が最大となるのは、構造部材の断面形状に関係無く、補強高さ比rが-0.1又はその前後のときであることが分かる。また、補強高さ比rが-0.5以上0.375以下で有意に性能向上していることが分かった。より好ましくは、-0.25以上0.125以下、更には、-0.25以上0.00以下であることが分かった。
FIG. 8 shows results obtained by plotting the reinforcement height ratio r on the horizontal axis and the performance improvement ratio on the vertical axis for each cross-sectional shape.
As shown in FIG. 8, it can be seen that the performance improvement ratio by the tension member 5 is maximized when the reinforcement height ratio r is -0.1 or around it, regardless of the cross-sectional shape of the structural member. . Moreover, it was found that the performance was significantly improved when the reinforcement height ratio r was -0.5 or more and 0.375 or less. It was found that it is more preferably -0.25 or more and 0.125 or less, and further -0.25 or more and 0.00 or less.

1 中空部材
1A 第1のハット部材
1B 第2のハット部材
2A、2B 天板部
3A、3B 側壁部
4A、4B フランジ部
5 テンション部材
p 補強位置
r 補強高さ比
1 Hollow member 1A First hat member 1B Second hat members 2A, 2B Top plate portions 3A, 3B Side wall portions 4A, 4B Flange portion 5 Tension member p Reinforcement position r Reinforcement height ratio

Claims (3)

天板部の両側にそれぞれ側壁部及びフランジ部が連続する断面ハット形状からなる2つのハット部材を、フランジ部同士を接合して閉断面形状を構成する中空部材と、
上記天板部の幅方向に沿って延在する金属板からなり、対向する2つの側壁部の内面同士を連結して上記2つの側壁部間の距離が広がることを拘束するテンション部材と、
を備え、
上記2つのハット部材は、他方のハット部材の高さが、一方のハット部材の高さよりも低く、且つ一方のハット部材の高さの0.5倍以上の高さであり、
上記テンション部材の厚さが、上記中空部材の板厚よりも板厚が薄く、
上記テンション部材は、上記他方のハット部材の対向する2つの側壁部の内面同士を連結する、
ことを特徴とする車両用構造部材。
a hollow member that forms a closed cross-sectional shape by joining two hat members each having a hat-shaped cross section in which a side wall portion and a flange portion are continuous on both sides of a top plate portion;
a tension member made of a metal plate extending along the width direction of the top plate portion and connecting inner surfaces of two opposing side wall portions to restrain the distance between the two side wall portions from increasing;
with
In the two hat members, the height of the other hat member is lower than the height of the other hat member and is 0.5 times or more the height of the one hat member,
The thickness of the tension member is thinner than the thickness of the hollow member,
The tension member connects inner surfaces of two opposing side walls of the other hat member.
A structural member for a vehicle characterized by:
天板部の両側にそれぞれ側壁部及びフランジ部が連続する断面ハット形状からなる2つのハット部材を、フランジ部同士を接合して閉断面形状を構成する中空部材と、
上記天板部の幅方向に沿って延在する金属板からなり、対向する2つの側壁部の内面同士を連結して上記2つの側壁部間の距離が広がることを拘束するテンション部材と、
を備え、
上記テンション部材の厚さが、上記中空部材の板厚よりも板厚が薄く、
上記2つのハット部材は、他方のハット部材の高さが、一方のハット部材の高さよりも低く、上記テンション部材は、上記他方のハット部材の対向する2つの側壁部の内面同士を連結し、
上記2つのハット部材の天板部同士が上下で対向配置させた状態において、
上記2つのハット部材のうち、上側のハット部材の高さをh1とし、下側のハット部材の高さをh2とし、上記上側のハット部材の天板部から上記テンション部材までの上下方向の距離を補強位置pとしたとき、
下記(1)式で定義される補強高さ比rが、下記(2)式を満足することを特徴とする車両用構造部材。
r =(h1-p)/h1 :但し、h1 > pの場合
r =(h1-p)/h2 :但し、h1 < pの場合
・・・(1)
-0.5 ≦ r ≦ 0.375 ・・・(2)
a hollow member that forms a closed cross-sectional shape by joining two hat members each having a hat-shaped cross section in which a side wall portion and a flange portion are continuous on both sides of a top plate portion;
a tension member made of a metal plate extending along the width direction of the top plate portion, and connecting inner surfaces of two opposing side wall portions to restrain an increase in the distance between the two side wall portions;
with
The thickness of the tension member is thinner than the thickness of the hollow member,
The two hat members are such that the height of the other hat member is lower than the height of the one hat member, and the tension member connects inner surfaces of two opposing side walls of the other hat member,
In a state in which the top plate portions of the two hat members are vertically opposed to each other,
Of the two hat members, the height of the upper hat member is h1, the height of the lower hat member is h2, and the vertical distance from the top plate of the upper hat member to the tension member is the reinforcement position p,
A structural member for a vehicle, wherein a reinforcement height ratio r defined by the following formula (1) satisfies the following formula (2).
r = (h1-p)/h1 : when h1 > p r = (h1-p)/h2 : when h1 < p
... (1)
−0.5≦r≦0.375 (2)
上記2つのハット部材は、他方のハット部材の高さが、一方のハット部材の高さよりも低く、且つ一方のハット部材の高さの0.5倍以上の高さである、
ことを特徴とする請求項2に記載の車両用構造部材。
In the two hat members, the height of the other hat member is lower than the height of the other hat member and is 0.5 times or more the height of the one hat member.
The vehicle structural member according to claim 2, characterized in that:
JP2020158100A 2019-09-27 2020-09-23 Vehicle structural member Active JP7192837B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019178025 2019-09-27
JP2019178025 2019-09-27

Publications (2)

Publication Number Publication Date
JP2021054399A JP2021054399A (en) 2021-04-08
JP7192837B2 true JP7192837B2 (en) 2022-12-20

Family

ID=75269632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020158100A Active JP7192837B2 (en) 2019-09-27 2020-09-23 Vehicle structural member

Country Status (1)

Country Link
JP (1) JP7192837B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005153705A (en) 2003-11-26 2005-06-16 Mitsubishi Motors Corp Vehicle body structure
JP2006062558A (en) 2004-08-27 2006-03-09 Kobe Steel Ltd Shock absorbing structure of automobile
JP2012236524A (en) 2011-05-12 2012-12-06 Mazda Motor Corp Vehicular frame structure
JP2019151167A (en) 2018-03-01 2019-09-12 株式会社豊田中央研究所 Vehicle frame member
WO2019176792A1 (en) 2018-03-13 2019-09-19 日本製鉄株式会社 Floor structure
JP2020138726A (en) 2019-02-26 2020-09-03 Jfeスチール株式会社 Vehicle structure member

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005153705A (en) 2003-11-26 2005-06-16 Mitsubishi Motors Corp Vehicle body structure
JP2006062558A (en) 2004-08-27 2006-03-09 Kobe Steel Ltd Shock absorbing structure of automobile
JP2012236524A (en) 2011-05-12 2012-12-06 Mazda Motor Corp Vehicular frame structure
JP2019151167A (en) 2018-03-01 2019-09-12 株式会社豊田中央研究所 Vehicle frame member
WO2019176792A1 (en) 2018-03-13 2019-09-19 日本製鉄株式会社 Floor structure
JP2020138726A (en) 2019-02-26 2020-09-03 Jfeスチール株式会社 Vehicle structure member

Also Published As

Publication number Publication date
JP2021054399A (en) 2021-04-08

Similar Documents

Publication Publication Date Title
JP4371059B2 (en) Shock absorbing member
JP5949925B2 (en) Crash box and car body
JP5168023B2 (en) Bumper reinforcement and manufacturing method thereof
JPWO2005010398A1 (en) Shock absorbing member
WO2018207668A1 (en) Structural member, vehicle structure, and bumper reinforcement
JP2017159896A (en) Structural member for vehicle
JP5203870B2 (en) Automotive body reinforcement with excellent bending crush characteristics
KR20120138785A (en) Vehicle component
JP6703322B1 (en) Vehicle frame members and electric vehicles
KR102558628B1 (en) Structural members for vehicles
JP5235007B2 (en) Crash box
JP5056643B2 (en) Bumper reinforcement and manufacturing method thereof
US11400800B2 (en) Structural member for automobiles
JP7192837B2 (en) Vehicle structural member
JP6399268B1 (en) Structural members, body structure and bumper reinforcement
JP7264597B2 (en) Vehicle structural members and vehicles
JP2008032227A (en) Method of absorbing impact
JP4036234B2 (en) Crash box
EP3932750B1 (en) Structural member for vehicle
JP7207452B2 (en) Automobile structural member and manufacturing method thereof
JP4904334B2 (en) Energy absorption member for automobile
JP2005104335A (en) Side member tube hydroforming member
JP7376836B2 (en) Structural components of automobile bodies
JP7376835B2 (en) Structural components of automobile bodies
JP7376797B2 (en) Automobile frame parts and electric vehicles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221121

R150 Certificate of patent or registration of utility model

Ref document number: 7192837

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150