JPH05105980A - Aluminum alloy for heat exchanger tube material - Google Patents

Aluminum alloy for heat exchanger tube material

Info

Publication number
JPH05105980A
JPH05105980A JP29370691A JP29370691A JPH05105980A JP H05105980 A JPH05105980 A JP H05105980A JP 29370691 A JP29370691 A JP 29370691A JP 29370691 A JP29370691 A JP 29370691A JP H05105980 A JPH05105980 A JP H05105980A
Authority
JP
Japan
Prior art keywords
heat exchanger
tube
alloy
brazing
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29370691A
Other languages
Japanese (ja)
Inventor
Chiaki Ara
千明 荒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Aluminum Co Ltd
Original Assignee
Furukawa Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Aluminum Co Ltd filed Critical Furukawa Aluminum Co Ltd
Priority to JP29370691A priority Critical patent/JPH05105980A/en
Publication of JPH05105980A publication Critical patent/JPH05105980A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PURPOSE:To provide an aluminum alloy for heat exchanger tube material capable of increasing the rigidity of a heat exchanger without deteriorating its productivity. CONSTITUTION:The aluminum alloy is (1) an aluminum alloy for heat exchanger tube material having a composition consisting of, by weight, 0.1-0.8% Si, 0.01-0.1% Cu, 0.2-0.8% Mg, and the balance Al with inevitable impurities and (2) an aluminum alloy for heat exchanger tube material having a composition containing, by weight, 0.1-0.8% Si, 0.01-0.1% Cu, 0.2-0.8% Mg, and further <=0.2% Cr and/or <=0.1% Ti.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は自動車用等の熱交換器の
チューブ材として使用される熱交換器チューブ材用アル
ミニウム合金に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum alloy for a heat exchanger tube material used as a tube material of a heat exchanger for automobiles and the like.

【0002】[0002]

【従来の技術】一般にろう接により組み立てられる熱交
換器は冷媒の通路を形成するチューブと空気側の冷却フ
ィンとからなり、通常フィンにはブレージングシートを
用いてろう接により金属的に接合されるが、カークーラ
ー用のコンデンサーやエバポレーターとする場合は、図
1に示すように熱間押出で形成した長手方向に冷媒通路
を有するチューブ(2) を用い、図2に示すようにチュー
ブ(2) を蛇行状に折り曲げてチューブ(2) 間に波型に成
形したブレージングシート(3) を装着して各種ろう付法
で接合する、図3に示す様なサーペンタイン式と呼ばれ
る形式が広く用いられてきた。ここでチューブ断面形状
は各種あるが図1に形状において、幅22mm、高さ5m
m、肉厚0.8mmを代表的な寸法として使用されてい
る。
2. Description of the Related Art Generally, a heat exchanger assembled by brazing comprises tubes forming a passage for a refrigerant and cooling fins on the air side, and the fins are usually metallically joined by brazing using a brazing sheet. However, when using as a condenser or evaporator for a car cooler, use a tube (2) having a refrigerant passage in the longitudinal direction formed by hot extrusion as shown in FIG. 1, and use the tube (2) as shown in FIG. A serpentine type, as shown in Fig. 3, has been widely used in which a brazing sheet (3) that is bent in a meandering shape is attached to a tube (2) and a brazing sheet (3) formed in a corrugated shape is attached and joined by various brazing methods. It was Here, there are various tube cross-sectional shapes, but in the shape shown in FIG. 1, width 22 mm, height 5 m
m and wall thickness of 0.8 mm are used as typical dimensions.

【0003】その構成材料としてフィン材には、例えば
A1050(純度99.5wt%以上の純Al)やA30
03(Al−Fe−Mn系)を芯材としてA4004
(Al−Si−Mg系)やA4043(Al−Si系)
を皮材とするブレージングシートを用いている。チュー
ブ材としては、A1050やA1100(99.0wt%
Al)が用いられて来たが、Al材はその特性から孔食
形態の腐食が知られており、Al製熱交換器用管材につ
いては、その内面は有機媒体に接しているため腐食の問
題は生じないが、外面は高温多湿の状態にさらされると
孔食を発生し、管材の肉厚を貫通すると内部に封入され
た冷媒が漏れる事故につながる重大な問題がある。その
問題を克服するため、Al−Cu−Mn系(特公昭58
−56016号公報)やAl−Cu−Ti系(特公昭6
0−34617号公報)およびAl−Cu−Mg系(特
開昭63−262439号公報)の開示により合金その
ものの耐食性は改善されて来た。
The fin material as its constituent material is, for example, A1050 (pure Al of 99.5 wt% or more) or A30.
03 (Al-Fe-Mn system) as a core material A4004
(Al-Si-Mg system) and A4043 (Al-Si system)
It uses a brazing sheet made from. As a tube material, A1050 or A1100 (99.0 wt%
Al) has been used, but Al materials are known to have pitting corrosion due to their characteristics. Al heat exchanger tube materials have a problem of corrosion because the inner surface is in contact with an organic medium. Although it does not occur, there is a serious problem that the outer surface causes pitting corrosion when exposed to a high temperature and high humidity condition, and when it penetrates the wall thickness of the pipe material, the refrigerant sealed inside leaks. In order to overcome the problem, Al-Cu-Mn system (Japanese Patent Publication Sho 58
-56016) and Al-Cu-Ti system (Japanese Examined Patent Publication 6)
No. 0-34617) and Al—Cu—Mg system (Japanese Patent Laid-Open No. 63-262439), the corrosion resistance of the alloy itself has been improved.

【0004】しかし、近年特開昭58−204169号
公報を一例とするチューブ材の表面にZnを被覆する技
術が公知となり、A1050やA1100であってもZ
n被覆により耐食性を飛躍的に改善した。他方で炉中ろ
う付工法も、塩化物系フラックスを用いるFB法や真空
雰囲気中でフラックス無しでろう付を行うVB法で行わ
れて来たが、FB法はフラックス成分にZnとClを含
むため、ろう付時に管材表面にZnの拡散層を形成し、
この層はAlより電位的に卑であることから電気化学的
に犠牲層として働き管材の貫通孔食を防止するが、同時
にClはイオン化傾向がAlより優位でありAl部材の
溶解腐食の原因になるため、ろう付後にフラックスを洗
浄除去する必要があり、手数がかかるばかりか、廃水処
理に問題がある。対してVB法では真空加熱なためフラ
ックスを必要としないが、蒸気圧が高く蒸発損失してし
まうZnも使用できないので、ろう付後もAl素地のま
まであるため、厳しい環境下では使用できない問題があ
った。その後、弗化物系の非腐食性フラックスを使用
し、非酸化性雰囲気中でろう付する方法(NB法)が実
用化された。この方法は非腐食性であるため洗浄を必要
とせず、炉中圧力もほぼ大気圧と等しくZnの蒸発損失
が少ないため、FB法とVB法両者の問題点を補うろう
付工法として使用が拡大している。先に述べたZn被覆
したチューブ材は、このNB法に適応するチューブ素材
として使用量は増加している。以上で述べた様に、従来
の熱交換器チューブ材用アルミニウム合金は耐食性と素
材生産性を両立した上での改善がなされたため、必然的
に純Al系を基とする合金構成になった経緯があり、純
Al系はアルミニウム合金のなかでも耐食性や素材生産
性に優れるのに対して強度が低い性質がある。
However, in recent years, a technique for coating the surface of a tube material with Zn, as disclosed in Japanese Patent Laid-Open No. 58-204169, has become known, and even A1050 and A1100 have Z.
Corrosion resistance was dramatically improved by coating with n. On the other hand, the brazing method in the furnace has also been performed by the FB method using chloride-based flux and the VB method performing brazing without flux in a vacuum atmosphere, but the FB method contains Zn and Cl in the flux components. Therefore, a Zn diffusion layer is formed on the surface of the pipe during brazing,
Since this layer is lower in electric potential than Al, it acts electrochemically as a sacrificial layer and prevents through-pitting corrosion of the pipe material, but at the same time, Cl has an ionization tendency superior to Al and causes dissolution corrosion of Al members. Therefore, it is necessary to wash and remove the flux after brazing, which is troublesome and has a problem in wastewater treatment. On the other hand, the VB method does not require a flux because it is a vacuum heating, but since Zn, which has a high vapor pressure and causes evaporation loss, cannot be used, the Al base remains as it is after brazing, which makes it unusable in a harsh environment. was there. After that, a method (NB method) of brazing in a non-oxidizing atmosphere using a fluoride-based non-corrosive flux was put into practical use. This method does not require cleaning because it is non-corrosive, and the furnace pressure is almost atmospheric pressure and Zn evaporation loss is small, so its use is expanding as a brazing method that compensates for the problems of both the FB method and the VB method. is doing. The amount of the Zn-coated tube material described above is increasing as a tube material adapted to the NB method. As described above, conventional aluminum alloys for heat exchanger tubes have been improved while achieving both corrosion resistance and material productivity. Therefore, it was inevitable that the alloy composition was based on pure Al. Among the aluminum alloys, the pure Al-based alloy has excellent corrosion resistance and material productivity, but has a low strength.

【0005】また、最近になって冷媒の流通形式が図2
のサーペンタイン式と異なり、図4へ示すように複数の
チューブを並列状に配置すると共に、隣接したチューブ
間にフィンを配置しかつ各チューブの両端が一対のアル
ミニウム製空中ヘッダー管に連通接続されてなるパラレ
ルフローと称する熱交換器が普及しつつある。このパラ
レルフロー式は熱交換性能に優れコアも小型で軽量にな
っている。従って使用されるチューブ材はその断面形状
が図5に示す通り幅20mm高さ2mm肉厚0.4mmを代表
寸法とするように、図1に示すサーペンタイン式に使わ
れるチューブ断面形状よりも小型薄肉化しており、その
単位重量も1/2以下と軽量になっているが、そのコア
を構成するチューブ材合金は現在サーペンタイン式に使
用されている前記Al系合金をそのまま適用しているの
が現状であり、次で述べるような問題を生じている。
In addition, recently, the flow type of the refrigerant is shown in FIG.
Unlike the serpentine type, a plurality of tubes are arranged in parallel as shown in FIG. 4, fins are arranged between adjacent tubes, and both ends of each tube are connected to a pair of aluminum aerial header tubes for communication. A heat exchanger called a parallel flow is becoming popular. This parallel flow type has excellent heat exchange performance and the core is small and lightweight. Therefore, the tube material to be used has a smaller cross-sectional shape, as shown in FIG. 5, with a width of 20 mm, a height of 2 mm, and a wall thickness of 0.4 mm as a representative dimension. However, the unit weight has been reduced to less than 1/2, but the present situation is that the tube material alloy that constitutes the core is the Al-based alloy currently used in the serpentine system. Therefore, the following problems occur.

【0006】[0006]

【発明が解決しようとする課題】現在、熱交換器の製造
工程は材料の切断から部品加工、コアの組立、ろう付に
いたるまでかなりの自動化が成されてきている。素材に
も切断時にバリが出ないことや、搬送時や組立時に変形
しないことが重要になっており、このような自動化設備
に適合しない材料は、ろう付性や耐食性に優れていても
不適切と判断せざるを得ない。従来合金では、特にパラ
レルフロー式熱交換器の製造工程において、短尺切断後
の搬送中に変形してライン途中でつかえてしまったり、
わずかな変形でも組立時にヘッダー管への挿入が上手く
行かないなどの障害が生じた。これらは合金自体の強度
が低い上にチューブが小型で薄肉になりチューブ単体で
の剛性が低下したことに起因しており、熱交換器の量産
性に対して甚大な不利益を生じる。また本発明に係わる
熱交換器の装着される乗用車は、近年車体構造の軽量化
が進み、余分な補強部材を省略する傾向にあり、特に車
体前面に装着される熱交換器は単なる補器ではなく車体
構造の一部と見なされることから、熱交換器にも変形や
振動に対する剛性を要求されるが、従来合金では合金自
体の強度が低くても、サーペンタイン式であればチュー
ブの断面積が大きく、1本のチューブを蛇行状に曲げて
いるため、熱交換器としての剛性を満足していた。しか
し、パラレルフロー式になると熱交換器自体が軽量小型
であり、車載用としての別の要求特性である省スペース
や省フロンについては優れているが、チューブ断面積が
小さいため熱交換器構造としての剛性が不十分であり、
他の特性に優れたパラレルフロー式熱交換器の普及を阻
害することによる不利益を生じる。
At present, the process of manufacturing a heat exchanger has been considerably automated from cutting of materials to processing of parts, assembling of cores, and brazing. It is important that burrs do not appear in the material when cutting and that it does not deform during transportation or assembly.Materials that are not compatible with such automated equipment are not suitable even if they have excellent brazing and corrosion resistance. I have no choice but to judge. In the conventional alloy, especially in the manufacturing process of the parallel flow heat exchanger, it may be deformed during transportation after short cutting and stuck in the middle of the line,
Even a slight deformation caused problems such as the insertion into the header tube not working properly during assembly. These are because the strength of the alloy itself is low, and the tube is small and thin so that the rigidity of the tube itself is lowered, which causes a great disadvantage to the mass productivity of the heat exchanger. Further, in the passenger car equipped with the heat exchanger according to the present invention, the weight of the vehicle body structure has been reduced in recent years, and an excessive reinforcing member tends to be omitted. Since it is regarded as a part of the vehicle body structure, the heat exchanger is also required to have rigidity against deformation and vibration, but even if the conventional alloy has low strength itself, if it is a serpentine type, the cross-sectional area of the tube is Since it is large and one tube is bent in a meandering shape, the rigidity as a heat exchanger was satisfied. However, the parallel flow type makes the heat exchanger itself lightweight and compact, and is excellent in terms of space saving and CFC saving, which are other required characteristics for in-vehicle use, but because of the small tube cross-sectional area, it has a heat exchanger structure. Has insufficient rigidity,
A disadvantage is caused by hindering the spread of the parallel flow heat exchanger having other excellent characteristics.

【0007】[0007]

【課題を解決するための手段】本発明はかかる状況に鑑
み、素材の生産性を損なうことなく、熱交換器としての
他の特性を損なわずに熱交換器の生産性を改善し、同時
に熱交換器の剛性を改善することのできる熱交換器チュ
ーブ材用アルミニウム合金を開発したものであり、請求
項1記載の発明は、Si0.1〜0.8wt%、Cu0.
01〜0.1wt%、Mg0.2〜0.8wt%を含有し、
残部Alと不可避的不純物とからなることを特徴とする
熱交換器チューブ材用アルミニウム合金であり、請求項
2記載の発明は、Si0.1〜0.8wt%、Cu0.0
1〜0.1wt%、Mg0.2〜0.8wt%を含有し、さ
らにCr0.2wt%以下、Ti0.1wt%以下のうちの
1種または2種を含有し、残部Alと不可避的不純物と
からなることを特徴とする熱交換器チューブ材用アルミ
ニウム合金である。
In view of such a situation, the present invention improves the productivity of the heat exchanger without impairing the productivity of the raw material and the other characteristics of the heat exchanger, and at the same time, improves the productivity of the heat exchanger. An aluminum alloy for a heat exchanger tube material, which can improve the rigidity of the exchanger, has been developed. The invention according to claim 1 has Si0.1 to 0.8 wt%, Cu0.
01-0.1 wt%, Mg 0.2-0.8 wt%,
An aluminum alloy for a heat exchanger tube material, characterized in that the balance is Al and unavoidable impurities. The invention according to claim 2 has Si 0.1 to 0.8 wt% and Cu 0.0
1 to 0.1 wt%, Mg 0.2 to 0.8 wt%, further contains one or two of Cr 0.2 wt% or less and Ti 0.1 wt% or less, and the balance Al and unavoidable impurities. It is an aluminum alloy for a heat exchanger tube material, characterized in that

【0008】[0008]

【作用】本発明合金はAlにSiおよびMgを添加する
ことにより金属間化合物Mg2 Siを時効析出し、素材
強度向上効果を得られると共に、熱交換器組立のろう付
加熱およびその後の冷却によってもMg2 Siを時効析
出し、熱交換器の構造強度を向上する効果を得られる。
同時にCuを添加することにより、合金の電位を高めて
犠牲陽極フィンと組合せた場合に優れた耐孔食性を示
し、素材の生産性や強度、耐食性に優れた合金を得たも
のであり、またこれに更にCr又は/およびTiを添加
することにより、合金の耐食性や加工性を損なうこと無
く合金の強度を一層向上するものである。本発明合金の
添加元素の含有量を上記の如く限定したのは、次の理由
によるものである。MgはSiと共に時効析出処理によ
り極めて微細なMg2 Siを形成し、強度を向上する効
果を有する。しかし、Mg含有量が0.2%未満では十
分な強度が得られず、0.8%を超えるとNBろう付性
を劣化するためである。Siはマトリックス中に固溶
し、強度を向上させると共に、Mgと共に時効析出処理
により極めて微細なMg2 Siを形成し強度を向上する
効果を有する。しかし、Si含有量が0.1%未満では
十分な強度が得られず、0.8を超えると固相線温度が
低くなり、ろう付加熱時に溶融する恐れがある。Cuは
Al−Cu系、Al−Cu−Mg系の微細な析出物を生
じ材料の電位を貴にして耐食性を向上する効果を有す
る。しかし、Cu含有量が0.01%未満では電位を貴
にする効果を得られず0.1%を超えると加工性を劣化
すると共に、電位が上がり過ぎて自己腐食性が顕著にな
る恐れがある。Cr、Tiはその上限を超えると押出性
を阻害する。特にCrは0.2%を超えると粗大なAl
−Cr化合物ができ易くなり、合金の加工性を損なうば
かりか、強度の向上も飽和するため上記のように限定し
たものである。
The alloy of the present invention age-precipitates the intermetallic compound Mg 2 Si by adding Si and Mg to Al to obtain the effect of improving the material strength, and at the same time, by the brazing heat of the heat exchanger assembly and the subsequent cooling. Also has the effect of precipitating Mg 2 Si and improving the structural strength of the heat exchanger.
At the same time, by adding Cu, the potential of the alloy was increased to show excellent pitting corrosion resistance when combined with a sacrificial anode fin, and an alloy excellent in material productivity, strength, and corrosion resistance was obtained. By further adding Cr or / and Ti to this, the strength of the alloy is further improved without impairing the corrosion resistance and workability of the alloy. The reason for limiting the content of the additive element in the alloy of the present invention as described above is as follows. Mg has the effect of forming extremely fine Mg 2 Si by the aging precipitation treatment together with Si and improving the strength. However, if the Mg content is less than 0.2%, sufficient strength cannot be obtained, and if it exceeds 0.8%, the NB brazing property deteriorates. Si dissolves in the matrix to improve the strength, and also has the effect of forming extremely fine Mg 2 Si with Mg and improving the strength by the age precipitation treatment. However, if the Si content is less than 0.1%, sufficient strength cannot be obtained, and if it exceeds 0.8, the solidus temperature becomes low, and there is a risk of melting during the brazing heat. Cu has the effect of producing fine Al-Cu-based and Al-Cu-Mg-based precipitates, making the potential of the material noble and improving corrosion resistance. However, if the Cu content is less than 0.01%, the effect of making the potential noble cannot be obtained, and if it exceeds 0.1%, the workability is deteriorated, and the potential is increased too much, so that the self-corrosion may become remarkable. is there. When Cr and Ti exceed the upper limits, the extrudability is impaired. Especially when Cr exceeds 0.2%, coarse Al
Since the Cr compound is easily formed, the workability of the alloy is impaired, and the improvement in strength is saturated, the above limits are set.

【0009】本発明合金によってチューブ材を製造する
方法としては熱間押出やコンフォーム押出が適用でき
る。また従来と同様にチューブ表面にZnを被覆するこ
とにより更に耐食性を改善することができる。
As a method for producing a tube material from the alloy of the present invention, hot extrusion or conform extrusion can be applied. Further, as in the conventional case, by coating the tube surface with Zn, the corrosion resistance can be further improved.

【0010】[0010]

【実施例】以下本発明を実施例により、更に詳細に説明
する。 〔実施例1〕表1に示す組成のアルミニウム合金ビレッ
ト(直径175mm)を水冷鋳造し、鋳塊を450℃〜4
80℃で2時間の均質化処理後、押出ダイス温度480
℃〜510℃に調整して図4に示す異形チューブ(幅2
0mm高さ2mm肉厚0.4mm)に熱間押出し、押出直後に
水冷して製造した。一方フィン材となるアルミニウム合
金はAl−1.1%Mn−0.06%Mn−0.6%Z
nを芯材として、この両面にAl−10%Si−1.5
%Mgをクラッド圧延して作製したブレージングシート
(板厚0.11mm)で、これを高さ10mm、フィンピッ
チ2mmのコルゲート状に加工した。上記のチューブとフ
ィンを脱脂後、鉄製治具で拘束して5×10-5Torrの真
空中で600℃×3分の真空ろう付を行い加熱後の冷却
速度を等しくして、模擬コアを作製した。この模擬コア
について種々の評価を行った結果を表2に示す。先ず、
押出性は素材生産性の指標となる特性である押出速度に
よって評価される。ここでは従来合金のA1050を基
準として同等以上を○、A1050より劣るのを×と表
記した。素材強度は押出後4日間の室温時効後の引張強
さで示した。組立性は模擬コアの作製に当たり曲がりや
変形の有無で評価した。ろう付性は模擬コアのろう付後
チューブとフィンの接合不良の有無で評価した。ろう付
加熱後強度は模擬コアよりチューブ単体を取り出し、ろ
う付後4日間室温時効後の引張強さで評価し、コア剛性
については従来A3003同等以上を○とした。耐食性
はCASS試験による孔食が貫通するまでの時間で評価
した。また本発明合金は時効硬化特性を有することか
ら、ろう付加熱後に人工時効処理を施すことにより、更
に強度を向上できる。ここでは、ろう付の完了したコア
を200℃×2時間の熱処理を行い、チューブ単体を取
り出しての引張強さを表2に合わせて示すが、ろう付後
のままよりも強度は向上し熱交換器の剛性を更に改善し
ている。
EXAMPLES The present invention will now be described in more detail with reference to examples. [Example 1] An aluminum alloy billet (diameter 175 mm) having the composition shown in Table 1 was water-cooled and the ingot was heated at 450 ° C to 4 ° C.
Extrusion die temperature of 480 after homogenization treatment at 80 ° C for 2 hours
Adjusted to ℃ ~ 510 ℃, the deformed tube shown in Fig. 4 (width 2
It was manufactured by hot extrusion into 0 mm height 2 mm wall thickness 0.4 mm) and water cooling immediately after extrusion. On the other hand, the aluminum alloy used as the fin material is Al-1.1% Mn-0.06% Mn-0.6% Z.
n as a core material, and Al-10% Si-1.5 on both surfaces
% Brazing sheet (plate thickness 0.11 mm) produced by clad rolling% Mg, and processed into a corrugated shape having a height of 10 mm and a fin pitch of 2 mm. After degreasing the above tubes and fins, restraining them with an iron jig and vacuum brazing at 600 ° C. for 3 minutes in a vacuum of 5 × 10 -5 Torr to equalize the cooling rate after heating, and to set the simulated core. It was made. Table 2 shows the results of various evaluations of this simulated core. First,
Extrudability is evaluated by the extrusion rate, which is a characteristic that is an index of material productivity. Here, the equivalent or higher than the conventional alloy A1050 is expressed as ◯, and inferior to A1050 is expressed as x. The material strength was indicated by the tensile strength after aging at room temperature for 4 days after extrusion. The assemblability was evaluated based on the presence or absence of bending or deformation when the simulated core was manufactured. The brazing property was evaluated by the presence or absence of a defective joint between the tube and the fin after brazing the simulated core. For the strength after brazing, the tube was taken out from the simulated core, and the tensile strength after aging at room temperature for 4 days after brazing was evaluated. The corrosion resistance was evaluated by the time until the pitting corrosion penetrated by the CASS test. Further, since the alloy of the present invention has age hardening characteristics, the strength can be further improved by performing artificial aging treatment after the heat of brazing. Here, the brazed core is heat-treated at 200 ° C for 2 hours, and the tensile strength after taking out the tube alone is shown in Table 2 as well. The rigidity of the exchanger is further improved.

【0011】[0011]

【表1】 [Table 1]

【0012】[0012]

【表2】 [Table 2]

【0013】表2から明らかなように本発明合金材試料
No.1〜9は従来合金材16、17に比較して強度、組
立性、コア剛性、耐食性のいずれにも優れている。これ
に対し、Si、Mgの含有量が本発明の範囲より少ない
比較合金材試料No.10、11は強度、組立性、コア剛
性が従来合金と変わらず、Siの含有量が本発明の範囲
より多い比較合金材試料No.12はろう付性が悪く、ろ
う付不可であり、Mg含有量が本発明の範囲より多い比
較合金材試料No.13は押出性が悪くCr含有量、Ti
含有量が本発明の範囲より多い比較合金材試料No.1
4、15は押出性が悪いことが判る。
As is clear from Table 2, the alloy material sample of the present invention
No. 1 to 9 are superior in strength, assemblability, core rigidity and corrosion resistance to the conventional alloy materials 16 and 17. On the other hand, the comparative alloy material sample No. 1 containing less Si and Mg than the range of the present invention. Nos. 10 and 11 have the same strength, assemblability, and core rigidity as those of the conventional alloy, and the comparative alloy material sample Nos. Having a Si content higher than the range of the present invention. No. 12 has a poor brazing property and cannot braze, and has a Mg content higher than the range of the present invention. No. 13 has poor extrudability, and contains Cr and Ti.
Comparative alloy material sample No. with a content higher than the range of the present invention 1
It can be seen that Nos. 4 and 15 have poor extrudability.

【0014】〔実施例2〕表1に示す組成のアルミニウ
ム合金ビレット(直径175mm)を水冷鋳造し、鋳塊を
450℃〜480℃で2時間の均質化処理後、押出ダイ
ス温度480℃〜510℃に調整して図4に示す異形チ
ューブ(幅20mm高さ2mm肉厚0.4mm)に熱間押出
し、押出直後のチューブ全表面に単位面積当たり付着量
が10g/m2 〜20g/m2 になる様にZnを溶射
し、その直後に水冷して製造した。一方フィン材となる
アルミニウム合金はAl−1.1%Mn−0.06%M
n−0.6%Znを芯材として、この両面にAl−10
%Si−1.0%Znをクラッドして圧延して作製した
ブレージングシート(板厚0.11mm)で、これを高さ
10mm、フィンピッチ2mmのコレゲート状に加工した。
上記のチューブとフィンを脱脂後、鉄製治具で拘束し
た。次いで、これを弗化物系フラックス浴中に浸漬した
後で200℃×15分加熱して乾燥したものを、露点が
−40℃のN2 ガス雰囲気中で600℃×3分間加熱す
ることによりろう付し、加熱後の冷却速度を等しくし
て、模擬コアを作製した。この模擬コアにつき実施例1
と同様な方法で種々の評価を行った結果を表3に示す。
Example 2 An aluminum alloy billet (diameter 175 mm) having the composition shown in Table 1 was water-cooled and the ingot was homogenized at 450 ° C. to 480 ° C. for 2 hours, and then the extrusion die temperature was 480 ° C. to 510 °. ℃ adjustment to hot extruded into second tube (width 20mm height 2mm thickness 0.4 mm) shown in FIG. 4, the amount of deposition per unit area on the tube the entire surface immediately after extrusion 10g / m 2 ~20g / m 2 Zn was sprayed so that On the other hand, the aluminum alloy used as the fin material is Al-1.1% Mn-0.06% M
Using n-0.6% Zn as a core material, Al-10
A brazing sheet (sheet thickness: 0.11 mm) produced by clad and rolling% Si-1.0% Zn was processed into a corrugate shape having a height of 10 mm and a fin pitch of 2 mm.
After degreasing the above tubes and fins, they were restrained with an iron jig. Then, this is dipped in a fluoride flux bath, heated at 200 ° C. for 15 minutes and dried, and then heated at 600 ° C. for 3 minutes in a N 2 gas atmosphere having a dew point of −40 ° C. Then, the cooling rate after heating was made equal to prepare a simulated core. Example 1 for this simulated core
Table 3 shows the results of various evaluations performed in the same manner as in.

【0015】[0015]

【表3】 [Table 3]

【0016】表3から明らかなように本発明合金材試料
No.21〜29は従来合金材試料No.36、37に比較
して強度、組立性、コア剛性、耐食性のいずれにも優れ
ている。これに対し、Si、Mgの含有量がそれぞれ本
発明の範囲より少ない比較合金材試料No.30、31は
強度、組立性、コア剛性が従来合金と変わらず、Siの
含有量が本発明の範囲より多い比較合金材試料No.32
はろう付性が悪く、ろう付不可であり、Mg含有量が本
発明の範囲より多い比較合金材試料No.33は押出性、
ろう付性が悪く、Cr含有量、Ti含有量がそれぞれ本
発明の範囲より多い比較合金材試料No.34、35は押
出性が悪いことが判る。
As is clear from Table 3, the alloy material sample of the present invention
No. 21 to 29 are conventional alloy material sample Nos. It is superior in strength, assemblability, core rigidity, and corrosion resistance to 36 and 37. On the other hand, the comparative alloy material sample Nos. Containing less Si and Mg than the range of the present invention respectively. Nos. 30 and 31 have the same strength, assemblability, and core rigidity as those of the conventional alloy, and the comparative alloy material sample No. having a Si content higher than the range of the present invention. 32
Is poor in brazing property, is not brazable, and has a Mg content higher than the range of the present invention. 33 is extrudability,
Comparative alloy material sample No. 3 having poor brazing property and Cr content and Ti content exceeding the respective ranges of the present invention. It can be seen that 34 and 35 have poor extrudability.

【0017】〔実施例3〕表1に示す組成のアルミニウ
ム合金素線を作製し、コンフォーム押出機により、押出
ダイス温度480℃〜510℃に調整して図4に示す異
形チューブ(幅20mm高さ2mm肉厚0.4mm)に連続造
管し、押出直後に水冷して製造した。一方フィン材とな
るアルミニウム合金はAl−1.1%Mn−0.06%
Mn−0.6%Znを芯材として、この両面にAl−1
0%Si−1.5%Mgをクラッド圧延して作製したブ
レージングシート(板厚0.11mm)で、これを高さ1
0mm、フィンピッチ2mmのコルゲート状に加工した。上
記のチューブとフィンを脱脂後、鉄製治具で拘束して5
×10-5Torrの真空中で600℃×3分の真空ろう付を
行い加熱後の冷却速度を等しくして、模擬コアを作製し
た。この模擬コアにつき実施例1と同様の方法で種々の
評価を行った結果を表4に示す。ここで、素材強度はコ
ンフォーム押出の方が高めになっているが、これは熱間
押出よりも加熱時間が短く急冷されているためである。
Example 3 An aluminum alloy wire having the composition shown in Table 1 was prepared, and the extrusion die temperature was adjusted to 480 ° C. to 510 ° C. by a conform extruder, and the deformed tube shown in FIG. 2 mm thick and 0.4 mm thick) was continuously pipe-formed, and water-cooled immediately after extrusion to manufacture. On the other hand, the aluminum alloy used as the fin material is Al-1.1% Mn-0.06%
Mn-0.6% Zn was used as the core material, and Al-1
A brazing sheet (sheet thickness 0.11 mm) produced by clad rolling 0% Si-1.5% Mg, which has a height of 1
It was processed into a corrugated shape with 0 mm and fin pitch of 2 mm. After degreasing the above tubes and fins, restrain them with an iron jig.
Vacuum brazing was performed at 600 ° C. for 3 minutes in a vacuum of × 10 -5 Torr to make the cooling rate after heating equal, and a simulated core was produced. Table 4 shows the results of various evaluations performed on this simulated core in the same manner as in Example 1. Here, the material strength is higher in the conform extrusion, but this is because the heating time is shorter than in the hot extrusion and the material is rapidly cooled.

【0018】[0018]

【表4】 [Table 4]

【0019】表4から明らかなように本発明合金材試料
No.41〜49は従来合金材56、57に比較して強
度、組立性、コア剛性、耐食性のいずれにも優れてい
る。これに対し、Si、Mgの含有量が本発明の範囲よ
り少ない比較合金材試料No.50、51は強度、組立
性、コア剛性が従来合金材と変わらず、Siの含有量が
本発明の範囲より多い比較合金材試料No.52はろう付
性が悪く、ろう付不可であり、Mg含有量が本発明の範
囲より多い比較合金材試料No.53は押出性が悪くCr
含有量、Ti含有量が本発明の範囲より多い比較合金材
試料No.54、55は押出性が悪いことが判る。
As is clear from Table 4, the alloy material sample of the present invention
No. 41 to 49 are superior in strength, assemblability, core rigidity and corrosion resistance to the conventional alloy materials 56 and 57. On the other hand, the comparative alloy material sample No. 1 containing less Si and Mg than the range of the present invention. Nos. 50 and 51 have the same strength, assemblability, and core rigidity as the conventional alloy material, and the comparative alloy material sample No. having a Si content higher than the range of the present invention. No. 52 has a poor brazing property and cannot braze, and has a Mg content higher than the range of the present invention. 53 has poor extrudability and is Cr
Comparative alloy material sample No. 1 whose content and Ti content are higher than the range of the present invention. It can be seen that 54 and 55 have poor extrudability.

【0020】〔実施例4〕表1に示す組成のアルミニウ
ム合金素線を作製し、コンフォーム押出機により、押出
ダイス温度480℃〜510℃に調整して図4に示す異
形チューブ(幅20mm高さ2mm肉厚0.4mm)に連続造
管し、押出直後のチューブ全表面に単位面積当たり付着
量が10g/m2 〜20g/m2 になる様にZnを溶射
し、その直後に水冷して製造した。一方フィン材となる
アルミニウム合金はAl−1.1%Mn−0.06%M
n−0.6%Znを芯材として、この両面にAl−10
%Si−1.0%Znをクラッド圧延して作製したブレ
ージングシート(板厚0.11mm)で、これを高さ10
mm、フィンピッチ2mmのコルゲート状に加工した。上記
のチューブとフィンを脱脂後、鉄製治具で拘束した。次
いで、これを弗化物系フラックス浴中に浸漬した後で2
00℃×15分加熱して乾燥したものを、露点が−40
℃のN2 ガス雰囲気中で600℃×3分間加熱すること
によりろう付し、加熱後の冷却速度を等しくして、模擬
コアを作製した。この模擬コアにつき実施例1と同様な
方法で種々の評価を行った結果を表5に示す。
Example 4 An aluminum alloy element wire having the composition shown in Table 1 was prepared, and the extrusion die temperature was adjusted to 480 ° C. to 510 ° C. by a conform extruder and the deformed tube shown in FIG. is continuously forming tube to 2mm thickness 0.4 mm), coating weight per unit area on the tube the entire surface immediately after extrusion is sprayed Zn so as to be 10g / m 2 ~20g / m 2 , and water-cooled immediately thereafter Manufactured. On the other hand, the aluminum alloy used as the fin material is Al-1.1% Mn-0.06% M
Using n-0.6% Zn as a core material, Al-10
% Si-1.0% Zn is a brazing sheet (plate thickness 0.11 mm) produced by clad rolling.
mm, fin pitch 2 mm processed into a corrugated shape. After degreasing the above tubes and fins, they were restrained with an iron jig. Then, after immersing it in a fluoride-based flux bath, 2
Dried point of -40 after heating and drying at 00 ℃ for 15 minutes
By brazing by heating at 600 ° C. for 3 minutes in a N 2 gas atmosphere at 0 ° C., the cooling rate after heating was made equal, and a simulated core was produced. Table 5 shows the results of various evaluations performed on this simulated core in the same manner as in Example 1.

【0021】[0021]

【表5】 [Table 5]

【0022】表5から明らかなように本発明合金材試料
No.61〜69は従来合金材76、77に比較して強
度、組立性、コア剛性、耐食性のいずれにも優れてい
る。これに対し、Si、Mgの含有量がそれぞれ本発明
の範囲より少ない比較合金材試料No.70、71は強
度、組立性、コア剛性が従来合金材と変わらず、Siの
含有量が本発明の範囲より多い比較合金材試料No.72
はろう付性が悪く、ろう付不可であり、Mg含有量が本
発明の範囲より多い比較合金材試料No.73は押出性、
ろう付性が悪く、Cr含有量、Ti含有量がそれぞれ本
発明の範囲より多い比較合金材試料No.74は押出性が
悪いことが判る。
As is clear from Table 5, the alloy material sample of the present invention
No. 61 to 69 are superior in strength, assemblability, core rigidity and corrosion resistance to the conventional alloy materials 76 and 77. On the other hand, the comparative alloy material sample Nos. Containing less Si and Mg than the range of the present invention respectively. Nos. 70 and 71 have the same strength, assemblability, and core rigidity as those of the conventional alloy material, and the comparative alloy material sample No. having a Si content higher than the range of the present invention. 72
Is poor in brazing property, is not brazable, and has a Mg content higher than the range of the present invention. 73 is extrudability,
Comparative alloy material sample No. 3 having poor brazing property and Cr content and Ti content exceeding the respective ranges of the present invention. It can be seen that 74 has poor extrudability.

【0023】[0023]

【発明の効果】以上述べたように本発明合金材は、素材
強度とろう付後強度を向上することにより、熱交換器の
組立性と剛性を改善し今後需要拡大の見込めるパラレル
フロー式熱交換器の量産性向上と用途拡大に顕著な効果
を奏するものである。
As described above, the alloy material of the present invention improves the assembling property and rigidity of the heat exchanger by improving the material strength and the strength after brazing, and the parallel flow type heat exchange which is expected to grow in demand in the future. This has a remarkable effect on the improvement of mass productivity and expansion of applications.

【図面の簡単な説明】[Brief description of drawings]

【図1】熱交換器チューブの一例を示す斜視図。FIG. 1 is a perspective view showing an example of a heat exchanger tube.

【図2】サーペンタイン式熱交換器の部分を示す斜視
図。
FIG. 2 is a perspective view showing a portion of a serpentine heat exchanger.

【図3】サーペンタイン式熱交換器の一例を示す正面
図。
FIG. 3 is a front view showing an example of a serpentine heat exchanger.

【図4】パラレルフロー式熱交換器の一例を示す正面
図。
FIG. 4 is a front view showing an example of a parallel flow heat exchanger.

【図5】パラレルフロー式熱交換器のチューブの一例を
示す斜視図。
FIG. 5 is a perspective view showing an example of a tube of a parallel flow heat exchanger.

【符号の説明】 1 チューブ(折り曲げ部) 1a 冷媒通路 2 チューブ(平坦部) 3 フィン 4 冷媒出入口金具 5 中空ヘッダー管[Explanation of reference numerals] 1 tube (folded portion) 1a refrigerant passage 2 tube (flat portion) 3 fins 4 refrigerant inlet / outlet fitting 5 hollow header tube

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Si0.1〜0.8wt%、Cu0.01
〜0.1wt%、Mg0.2〜0.8wt%を含有し、残部
Alと不可避的不純物とからなることを特徴とする熱交
換器チューブ材用アルミニウム合金。
1. Si 0.1-0.8 wt%, Cu 0.01
An aluminum alloy for a heat exchanger tube material containing 0.1 to 0.1 wt% and Mg 0.2 to 0.8 wt% and the balance Al and inevitable impurities.
【請求項2】 Si0.1〜0.8wt%、Cu0.01
〜0.1wt%、Mg0.2〜0.8wt%を含有し、さら
にCr0.2wt%以下、Ti0.1wt%以下のうちの1
種または2種を含有し、残部Alと不可避的不純物とか
らなることを特徴とする熱交換器チューブ材用アルミニ
ウム合金。
2. Si 0.1 to 0.8 wt%, Cu 0.01
.About.0.1 wt%, Mg 0.2 to 0.8 wt%, and one of Cr 0.2 wt% or less and Ti 0.1 wt% or less.
An aluminum alloy for a heat exchanger tube material, which contains one or two kinds and comprises the balance Al and unavoidable impurities.
JP29370691A 1991-10-14 1991-10-14 Aluminum alloy for heat exchanger tube material Pending JPH05105980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29370691A JPH05105980A (en) 1991-10-14 1991-10-14 Aluminum alloy for heat exchanger tube material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29370691A JPH05105980A (en) 1991-10-14 1991-10-14 Aluminum alloy for heat exchanger tube material

Publications (1)

Publication Number Publication Date
JPH05105980A true JPH05105980A (en) 1993-04-27

Family

ID=17798182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29370691A Pending JPH05105980A (en) 1991-10-14 1991-10-14 Aluminum alloy for heat exchanger tube material

Country Status (1)

Country Link
JP (1) JPH05105980A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007070699A (en) * 2005-09-08 2007-03-22 Calsonic Kansei Corp Extruded aluminum alloy tube for heat exchanger, heat exchanger and method for manufacturing the tube
JP2023013719A (en) * 2021-07-16 2023-01-26 Maアルミニウム株式会社 Aluminum alloy for extruded element tube with inner surface straight linear groove and extruded element tube with inner surface linear groove and manufacturing method of inner surface spiral tube with groove and heat exchanger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007070699A (en) * 2005-09-08 2007-03-22 Calsonic Kansei Corp Extruded aluminum alloy tube for heat exchanger, heat exchanger and method for manufacturing the tube
JP2023013719A (en) * 2021-07-16 2023-01-26 Maアルミニウム株式会社 Aluminum alloy for extruded element tube with inner surface straight linear groove and extruded element tube with inner surface linear groove and manufacturing method of inner surface spiral tube with groove and heat exchanger

Similar Documents

Publication Publication Date Title
JP4166613B2 (en) Aluminum alloy fin material for heat exchanger and heat exchanger formed by assembling the fin material
US4749627A (en) Brazing sheet and heat exchanger using same
JP3847077B2 (en) Aluminum alloy fin material for heat exchangers with excellent formability and brazing
JPH11335764A (en) Manufacture of high strength aluminum extruding alloy for heat exchanger, excellent in extrudability, and high strength aluminum alloy extruded material for heat exchanger
JP2000008130A (en) Member for heat exchanger made of aluminum alloy excellent in corrosion resistance
JPH05263172A (en) Aluminum alloy for fin material of heat exchanger
JPH05105980A (en) Aluminum alloy for heat exchanger tube material
JP3863595B2 (en) Aluminum alloy brazing sheet
JPH05263173A (en) Aluminum alloy for fin material of heat exchanger
JPH05305307A (en) Manufacture of high strength aluminum alloy clad fin stock for heat exchanger
JPH05171324A (en) Aluminum alloy clad fin material
JP4612510B2 (en) Aluminum alloy extruded tube for heat exchanger, heat exchanger and method for producing the tube
JP3291042B2 (en) Aluminum alloy fin material and method for manufacturing aluminum alloy heat exchanger
JP2001226729A (en) Aluminum alloy for heat exchanger excellent in corrosion resistance
JPH0873973A (en) Extruded perforated tube material of aluminum alloy for heat exchanger
JPH0313549A (en) Production of high strength aluminum alloy fin material for heat exchanger
JP2813484B2 (en) Aluminum brazing sheet
JPH05305306A (en) Manufacture of high strength aluminum alloy clad fin stock for heat exchanger
JP2813479B2 (en) Aluminum brazing sheet
JPH0797652A (en) Production of aluminum alloy brazing sheet fin material and heat exchanger made of aluminum alloy
JPH01198453A (en) Manufacture of high electric conductive aluminum alloy fin material
JP2003147465A (en) Aluminum alloy fin material for heat exchanger having excellent formability and brazability
JPS5812333B2 (en) Aluminum alloy for heat exchanger tube
JPH0357177B2 (en)
JPH02133553A (en) Manufacture of aluminum alloy fin material for heat exchanger