JP7385734B2 - Hollow particles, resin compositions, and resin molded bodies and laminates using the resin compositions - Google Patents

Hollow particles, resin compositions, and resin molded bodies and laminates using the resin compositions Download PDF

Info

Publication number
JP7385734B2
JP7385734B2 JP2022503168A JP2022503168A JP7385734B2 JP 7385734 B2 JP7385734 B2 JP 7385734B2 JP 2022503168 A JP2022503168 A JP 2022503168A JP 2022503168 A JP2022503168 A JP 2022503168A JP 7385734 B2 JP7385734 B2 JP 7385734B2
Authority
JP
Japan
Prior art keywords
particles
resin
hollow particles
resin composition
hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022503168A
Other languages
Japanese (ja)
Other versions
JPWO2021171858A1 (en
Inventor
ティ ノック タン レ
司 中村
大輔 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SETOLAS Holdings,Inc.
Original Assignee
SETOLAS Holdings,Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SETOLAS Holdings,Inc. filed Critical SETOLAS Holdings,Inc.
Publication of JPWO2021171858A1 publication Critical patent/JPWO2021171858A1/ja
Application granted granted Critical
Publication of JP7385734B2 publication Critical patent/JP7385734B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • C08K7/26Silicon- containing compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Description

本発明は、中空粒子、樹脂組成物、ならびに該樹脂組成物を用いた樹脂成形体および積層体に関する。 The present invention relates to hollow particles, a resin composition, and a resin molded article and a laminate using the resin composition.

例えば、近年、情報通信機器の分野では、高周波数帯での通信に対応すべく、電子部材(代表的には、樹脂部材)の低誘電率化、低誘電正接化が求められている。これを実現すべく、例えば、比誘電率の低い空気を部材に含有させることが提案されている。具体的には、中空粒子を用いて空気を導入することが提案されている(例えば、特許文献1参照)。このように、空気を含有させることで、部材の軽量化にも寄与し得る。 For example, in recent years, in the field of information and communication equipment, there has been a demand for electronic components (typically resin components) to have lower dielectric constants and lower dielectric loss tangents in order to support communications in high frequency bands. In order to achieve this, it has been proposed, for example, to include air with a low dielectric constant in the member. Specifically, it has been proposed to introduce air using hollow particles (for example, see Patent Document 1). In this way, containing air can also contribute to reducing the weight of the member.

一方で、部材の耐久性(例えば、曲げ弾性率等の機械的強度、寸法安定性)を確保することも求められる。 On the other hand, it is also required to ensure the durability of the member (for example, mechanical strength such as flexural modulus, and dimensional stability).

特開2007-56158号公報Japanese Patent Application Publication No. 2007-56158

本発明は、上記課題を解決するためになされたものであり、耐久性を確保しながら、低誘電率化、軽量化を達成し得ることを目的の1つとする。 The present invention has been made to solve the above problems, and one of the objects is to achieve a lower dielectric constant and a lighter weight while ensuring durability.

本発明の1つの局面によれば、中空粒子が提供される。この中空粒子は、シリカを含み、アスペクト比が2以上で板状である。
1つの実施形態においては、上記中空粒子の長径は0.1μm以上10μm以下である。
1つの実施形態においては、上記中空粒子の厚みは0.01μm以上5μm以下である。
1つの実施形態においては、上記中空粒子の殻の厚みは10nm以上100nm以下である。
1つの実施形態においては、上記中空粒子の中空率は20%以上95%以下である。
According to one aspect of the invention, hollow particles are provided. The hollow particles contain silica, have an aspect ratio of 2 or more, and are plate-shaped.
In one embodiment, the length of the hollow particle is 0.1 μm or more and 10 μm or less.
In one embodiment, the thickness of the hollow particles is 0.01 μm or more and 5 μm or less.
In one embodiment, the shell thickness of the hollow particles is 10 nm or more and 100 nm or less.
In one embodiment, the hollow particles have a hollowness ratio of 20% or more and 95% or less.

本発明の別の局面によれば、樹脂組成物が提供される。この樹脂組成物は、樹脂、および、上記中空粒子を含む。 According to another aspect of the invention, a resin composition is provided. This resin composition includes a resin and the hollow particles described above.

本発明のさらに別の局面によれば、樹脂成形体が提供される。この樹脂成形体は、上記樹脂組成物から形成される。 According to yet another aspect of the present invention, a resin molded article is provided. This resin molded body is formed from the above resin composition.

本発明のさらに別の局面によれば、積層体が提供される。この積層体は、上記樹脂組成物から形成される樹脂層を有する。
1つの実施形態においては、上記樹脂層の厚みは25μm以下である。
According to yet another aspect of the invention, a laminate is provided. This laminate has a resin layer formed from the above resin composition.
In one embodiment, the thickness of the resin layer is 25 μm or less.

本発明によれば、板状の中空粒子を用いることで、耐久性を確保しながら、低誘電率化、軽量化を達成し得る。 According to the present invention, by using plate-shaped hollow particles, it is possible to achieve a lower dielectric constant and a lighter weight while ensuring durability.

長径および厚みを説明する模式図である。It is a schematic diagram explaining a major axis and thickness. 本発明の1つの実施形態における積層体の概略断面図である。It is a schematic sectional view of the layered product in one embodiment of the present invention. 実施例1の中空粒子のTEM観察写真(10000倍)である。It is a TEM observation photograph (10000 times) of the hollow particle of Example 1. 実施例1の中空粒子のTEM観察写真(100000倍)である。1 is a TEM observation photograph (100,000 times magnification) of the hollow particles of Example 1. 実施例1で用いたコア粒子のSEM観察写真(20000倍)である。This is a SEM observation photograph (20,000 times) of the core particles used in Example 1.

以下、本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。 Embodiments of the present invention will be described below, but the present invention is not limited to these embodiments.

(用語の定義)
本明細書における用語の定義は、下記の通りである。
1.粒子の長径
走査型電子顕微鏡(SEM)または透過型電子顕微鏡(TEM)観察により測定した値であり、無作為に選んだ一次粒子の長径(例えば、図1のL)の平均値である。なお、一次粒子とは、SEMまたはTEMにより観察される最小の粒子であって、凝集している粒子(二次粒子)とは区別される。
2.粒子の厚み
SEMまたはTEM観察により測定した値であり、無作為に選んだ一次粒子の厚み(例えば、図1のT)の平均値である。
3.アスペクト比(長径/厚み)
上記粒子の長径から上記粒子の厚みを除して算出した値である。
4.粒径
粒径は、粒度分布測定における平均粒径である。
(Definition of terms)
Definitions of terms used herein are as follows.
1. Long diameter of particles This is a value measured by scanning electron microscopy (SEM) or transmission electron microscopy (TEM) observation, and is the average value of the long diameters (for example, L in FIG. 1) of randomly selected primary particles. Note that primary particles are the smallest particles observed by SEM or TEM, and are distinguished from aggregated particles (secondary particles).
2. Particle Thickness This is a value measured by SEM or TEM observation, and is the average value of the thicknesses of randomly selected primary particles (for example, T in FIG. 1).
3. Aspect ratio (length/thickness)
This is a value calculated by dividing the thickness of the particle from the major axis of the particle.
4. Particle size Particle size is the average particle size in particle size distribution measurement.

A.中空粒子
本発明の1つの実施形態における中空粒子は、代表的には、シリカで形成される。中空粒子のシリカの含有量は、例えば95重量%以上であり、好ましくは97重量%以上、さらに好ましくは98重量%以上である。
A. Hollow Particles Hollow particles in one embodiment of the invention are typically formed of silica. The content of silica in the hollow particles is, for example, 95% by weight or more, preferably 97% by weight or more, and more preferably 98% by weight or more.

上記中空粒子の形状は、板状である。板状を採用することにより、上述の耐久性と、低誘電率化、軽量化を同時に達成し得る。また、用いられる部材の小型化(薄膜化)にも十分対応することができる。さらには、高い中空率と中空粒子の強度との両立も図りやすい。 The hollow particles have a plate-like shape. By adopting a plate shape, the above-mentioned durability, low dielectric constant, and weight reduction can be achieved at the same time. Further, it is possible to sufficiently cope with downsizing (thinning) of the members used. Furthermore, it is easy to achieve both a high hollowness ratio and the strength of the hollow particles.

上記中空粒子のアスペクト比は、2以上であり、好ましくは3以上、さらに好ましくは4以上である。一方、中空粒子のアスペクト比は、例えば100以下であり、好ましくは60以下、さらに好ましくは50以下である。このようなアスペクト比によれば、例えば、後述の樹脂組成物を作製する際の加工性に優れ得る。 The aspect ratio of the hollow particles is 2 or more, preferably 3 or more, and more preferably 4 or more. On the other hand, the aspect ratio of the hollow particles is, for example, 100 or less, preferably 60 or less, and more preferably 50 or less. According to such an aspect ratio, for example, processability when producing a resin composition described below can be excellent.

中空粒子の長径は、好ましくは0.1μm以上、さらに好ましくは0.2μm以上である。このような長径によれば、後述の中空率を十分に満足し得る。一方、中空粒子の長径は、好ましくは10μm以下、さらに好ましくは5μm以下である。このような長径によれば、上記小型化(薄膜化)に大きく寄与し得る。 The long axis of the hollow particles is preferably 0.1 μm or more, more preferably 0.2 μm or more. With such a long axis, the hollowness ratio described below can be fully satisfied. On the other hand, the length of the hollow particles is preferably 10 μm or less, more preferably 5 μm or less. Such a long axis can greatly contribute to the above-mentioned size reduction (thin film reduction).

中空粒子の厚みは、好ましくは0.01μm以上、さらに好ましくは0.05μm以上、特に好ましくは0.1μm以上である。このような厚みによれば、後述の中空率を十分に満足し得る。一方、中空粒子の厚みは、好ましくは5μm以下、さらに好ましくは3μm以下、特に好ましくは2μm以下である。このような厚みによれば、上記小型化(薄膜化)に大きく寄与し得る。 The thickness of the hollow particles is preferably 0.01 μm or more, more preferably 0.05 μm or more, particularly preferably 0.1 μm or more. With such a thickness, the hollowness ratio described below can be fully satisfied. On the other hand, the thickness of the hollow particles is preferably 5 μm or less, more preferably 3 μm or less, particularly preferably 2 μm or less. Such a thickness can greatly contribute to the above-mentioned size reduction (thin film reduction).

中空粒子の殻の厚みは、好ましくは10nm以上、さらに好ましくは15nm以上である。このような厚みによれば、例えば、後述の樹脂組成物を作製する際に、中空粒子が壊れるのを効果的に防止し得る。一方、中空粒子の殻の厚みは、好ましくは100nm以下、さらに好ましくは60nm以下である。このような厚みによれば、後述の中空率を十分に満足し得、低誘電率化、軽量化に大きく寄与し得る。なお、殻の厚みは、TEM観察により測定することができる。例えば、無作為に選んだ中空粒子の殻の厚みを測定し、その平均値を算出することにより求められる。 The shell thickness of the hollow particles is preferably 10 nm or more, more preferably 15 nm or more. Such a thickness can effectively prevent the hollow particles from being broken, for example, when producing the resin composition described below. On the other hand, the thickness of the shell of the hollow particles is preferably 100 nm or less, more preferably 60 nm or less. Such a thickness can sufficiently satisfy the hollowness ratio described below, and can greatly contribute to lower dielectric constant and weight reduction. Note that the thickness of the shell can be measured by TEM observation. For example, it can be determined by measuring the shell thickness of randomly selected hollow particles and calculating the average value.

中空粒子の中空率は、好ましくは20%以上、より好ましくは30%以上、さらに好ましくは40%以上、特に好ましくは50%以上である。このような中空率によれば、例えば、低誘電率化、軽量化に大きく寄与し得る。一方、中空粒子の中空率は、好ましくは95%以下、さらに好ましくは90%以下である。このような中空率によれば、例えば、後述の樹脂組成物を作製する際に、中空粒子が壊れるのを効果的に防止し得る。なお、中空率は、後述のコア粒子の体積と中空粒子の体積から算出することができる。 The hollowness ratio of the hollow particles is preferably 20% or more, more preferably 30% or more, still more preferably 40% or more, particularly preferably 50% or more. Such a hollowness ratio can greatly contribute to lower dielectric constant and weight reduction, for example. On the other hand, the hollowness ratio of the hollow particles is preferably 95% or less, more preferably 90% or less. According to such a hollowness ratio, it is possible to effectively prevent the hollow particles from being broken, for example, when producing the resin composition described below. Note that the hollowness ratio can be calculated from the volume of the core particle and the volume of the hollow particle, which will be described later.

中空粒子の細孔容積は、好ましくは1.5cm/g以下、さらに好ましくは1.0cm/g以下である。The pore volume of the hollow particles is preferably 1.5 cm 3 /g or less, more preferably 1.0 cm 3 /g or less.

中空粒子の粒径は、好ましくは0.1μm以上、さらに好ましくは0.5μm以上である。一方、中空粒子の粒径は、好ましくは10μm以下、さらに好ましくは5μm以下である。 The particle size of the hollow particles is preferably 0.1 μm or more, more preferably 0.5 μm or more. On the other hand, the particle size of the hollow particles is preferably 10 μm or less, more preferably 5 μm or less.

中空粒子のBET比表面積は、例えば10m/g以上であってもよく、30m/g以上であってもよい。一方、中空粒子のBET比表面積は、好ましくは250m/g以下、さらに好ましくは200m/g以下である。The BET specific surface area of the hollow particles may be, for example, 10 m 2 /g or more, or 30 m 2 /g or more. On the other hand, the BET specific surface area of the hollow particles is preferably 250 m 2 /g or less, more preferably 200 m 2 /g or less.

1つの実施形態においては、上記中空粒子は、任意の適切な表面処理剤による表面処理が施されている。表面処理剤としては、例えば、高級脂肪酸類、アニオン系界面活性剤、カチオン系界面活性剤、リン酸エステル類、カップリング剤、多価アルコールと脂肪酸とのエステル類、アクリル系ポリマーおよびシリコーン処理剤からなる群から選択される少なくとも1つが用いられる。 In one embodiment, the hollow particles are surface-treated with any suitable surface treatment agent. Examples of surface treatment agents include higher fatty acids, anionic surfactants, cationic surfactants, phosphate esters, coupling agents, esters of polyhydric alcohols and fatty acids, acrylic polymers, and silicone treatment agents. At least one selected from the group consisting of is used.

上記中空粒子の製造方法としては、任意の適切な方法が採用され得る。1つの実施形態においては、中空粒子の製造方法は、コア粒子にシェル形成材料を被覆してコアシェル粒子を得ること、および、コアシェル粒子からコア粒子を除去することを含む。 Any suitable method may be employed as the method for manufacturing the hollow particles. In one embodiment, a method for producing hollow particles includes coating a core particle with a shell-forming material to obtain a core-shell particle, and removing the core particle from the core-shell particle.

上記コア粒子としては、上記中空粒子を製造し得る限り、任意の適切な粒子が採用され得る。具体的には、コア粒子の形状は、板状であることが好ましい。コア粒子のアスペクト比は、好ましくは2以上、さらに好ましくは3以上である。一方、コア粒子のアスペクト比は、好ましくは100以下であり、さらに好ましくは70以下である。 As the core particles, any suitable particles may be employed as long as the hollow particles can be produced. Specifically, the shape of the core particle is preferably plate-like. The aspect ratio of the core particles is preferably 2 or more, more preferably 3 or more. On the other hand, the aspect ratio of the core particles is preferably 100 or less, more preferably 70 or less.

コア粒子の長径は、好ましくは0.1μm以上、さらに好ましくは0.2μm以上である。一方、コア粒子の長径は、好ましくは10μm以下、さらに好ましくは5μm以下である。コア粒子の厚みは、好ましくは0.01μm以上、さらに好ましくは0.1μm以上、である。一方、コア粒子の厚みは、好ましくは5μm以下、さらに好ましくは2μm以下である。 The major diameter of the core particle is preferably 0.1 μm or more, more preferably 0.2 μm or more. On the other hand, the major diameter of the core particles is preferably 10 μm or less, more preferably 5 μm or less. The thickness of the core particle is preferably 0.01 μm or more, more preferably 0.1 μm or more. On the other hand, the thickness of the core particle is preferably 5 μm or less, more preferably 2 μm or less.

コア粒子の形成材料としては、例えば、後述する酸性溶液に溶解し得る材料が用いられる。この場合、コア粒子の形成材料としては、例えば、水酸化マグネシウム、ハイドロタルサイト、酸化マグネシウム、水酸化カルシウム等の水酸化物、ハイドロタルサイトの酸化物、酸化亜鉛、酸化カルシウム等の酸化物、炭酸カルシウム等の炭酸塩化合物が挙げられる。これらの中でも、水酸化マグネシウム、ハイドロタルサイトが好ましく用いられ、水酸化マグネシウムが特に好ましく用いられる。例えば、水系において安定に存在し得るからである。また、後述の酸性溶液に溶解させる際に、ガス(例えば、炭酸ガス)が発生せず、得られる中空粒子に欠陥が生じるのを抑制し得るからである。 As the material for forming the core particles, for example, a material that can be dissolved in an acidic solution, which will be described later, is used. In this case, the material for forming the core particles includes, for example, hydroxides such as magnesium hydroxide, hydrotalcite, magnesium oxide, and calcium hydroxide; oxides of hydrotalcite; oxides such as zinc oxide and calcium oxide; Examples include carbonate compounds such as calcium carbonate. Among these, magnesium hydroxide and hydrotalcite are preferably used, and magnesium hydroxide is particularly preferably used. For example, this is because it can exist stably in an aqueous system. In addition, gas (for example, carbon dioxide gas) is not generated when the particles are dissolved in an acidic solution, which will be described later, and defects can be suppressed from occurring in the hollow particles obtained.

上記シェル形成材料としては、例えば、水ガラス(NaO・nSiO)、テトラエトキシシラン(Si(OCHCH)に代表されるアルコキシシランが用いられる。As the shell forming material, for example, alkoxysilanes such as water glass (Na 2 O.nSiO 2 ) and tetraethoxysilane (Si(OCH 2 CH 3 ) 4 ) are used.

シェル形成材料による被覆量は、任意の適切な方法により調整され得る。例えば、水ガラスを含むシェル形成材料でコア粒子を被覆する際のpH値を制御することで、被覆量を調整する。具体的には、上記水ガラスは、高pH領域(例えば、pH11以上)において安定であり得る。したがって、例えば、pH調整剤を用いてpH値を下げることで(例えば、pH7以下に)、水ガラス分子を縮合させて、シリカを効率的にコア粒子上に析出させ得る。pH調整剤としては、好ましくは、酸性の溶液が用いられる。具体的には、塩酸、硝酸、硫酸等の強酸の溶液、硝酸アンモニウム、硫酸アンモニウム等の弱酸の溶液が好ましく用いられる。pH調整剤の添加量は、例えば、水ガラスに対する中和率で85%~98%とすることが好ましい。中和率が高すぎると、コア粒子上にシリカが析出するだけでなく、単独のシリカ粒子も生成してしまうおそれがある。また、シェル形成材料による被覆の際に、コア粒子を溶解させるおそれがある。なお、シェル形成材料でコア粒子を被覆する際に加熱(例えば、80℃~90℃に)することによっても、シェルの形成(具体的には、シェルの析出および形成速度)を促進し得る。 The amount of coverage with shell-forming material may be adjusted by any suitable method. For example, the amount of coating can be adjusted by controlling the pH value when coating core particles with a shell-forming material containing water glass. Specifically, the water glass may be stable in a high pH region (eg, pH 11 or higher). Thus, for example, by lowering the pH value (eg, to pH 7 or lower) using a pH adjuster, water glass molecules can be condensed and silica can be efficiently precipitated onto the core particles. As the pH adjuster, preferably an acidic solution is used. Specifically, solutions of strong acids such as hydrochloric acid, nitric acid, and sulfuric acid, and solutions of weak acids such as ammonium nitrate and ammonium sulfate are preferably used. The amount of the pH adjuster added is preferably, for example, 85% to 98% in terms of neutralization rate with respect to water glass. If the neutralization rate is too high, there is a risk that not only silica will precipitate on the core particles, but also individual silica particles will be produced. Furthermore, there is a risk that the core particles will be dissolved during coating with the shell-forming material. Note that the formation of the shell (specifically, the precipitation and formation rate of the shell) can also be promoted by heating (eg, to 80° C. to 90° C.) when the core particles are coated with the shell-forming material.

上記コア粒子の除去は、代表的には、酸性溶液にコア粒子を溶解させることにより行う。酸性溶液としては、例えば、塩酸、硫酸、硝酸が用いられる。溶解させる温度は、例えば、30℃~90℃であり、好ましくは50℃~70℃である。このような温度によれば、シェルが壊れやすくなる等の不具合を抑制しながら効率的にコア粒子を溶解させ得る。1つの実施形態においては、例えば、コア粒子と反応して得られる物質(例えば、塩)を再利用する観点から、酸性溶液として塩酸を用いる。 The core particles are typically removed by dissolving them in an acidic solution. As the acidic solution, for example, hydrochloric acid, sulfuric acid, and nitric acid are used. The melting temperature is, for example, 30°C to 90°C, preferably 50°C to 70°C. According to such a temperature, the core particles can be efficiently dissolved while suppressing problems such as the shell becoming easily broken. In one embodiment, hydrochloric acid is used as the acidic solution, for example, from the viewpoint of reusing the substance (eg, salt) obtained by reacting with the core particles.

好ましくは、上記中空粒子の製造方法は、シェルを焼成(例えば、大気雰囲気下で)することをさらに含む。焼成を行うことにより、例えば、シェルの疎水性を向上させて(具体的には、シェルのシラノール基をシロキサンに変化させて)、得られる中空粒子の誘電特性を向上させ得る。焼成は、任意の適切なタイミングで行い得る。好ましくは、コアシェル粒子からコア粒子を除去した後に行う。焼成の温度は、例えば、300℃~1300℃である。焼成時間は、例えば、1時間~20時間である。 Preferably, the hollow particle manufacturing method further includes firing the shell (for example, under an atmospheric atmosphere). By performing the calcination, for example, the hydrophobicity of the shell can be improved (specifically, the silanol groups of the shell are changed to siloxane), and the dielectric properties of the obtained hollow particles can be improved. Firing can be performed at any suitable timing. Preferably, this is carried out after removing the core particles from the core-shell particles. The firing temperature is, for example, 300°C to 1300°C. The firing time is, for example, 1 hour to 20 hours.

本発明の1つの実施形態においては、上記中空粒子は樹脂材料の機能付与剤として用いられる。以下、上記中空粒子を含む樹脂組成物について説明する。 In one embodiment of the present invention, the hollow particles are used as a functional agent for resin materials. The resin composition containing the hollow particles described above will be explained below.

B.樹脂組成物
本発明の1つの実施形態における樹脂組成物は、樹脂および上記中空粒子を含む。
B. Resin Composition A resin composition in one embodiment of the present invention includes a resin and the hollow particles described above.

上記樹脂は、例えば、得られる樹脂組成物の用途等に応じて、任意の適切な樹脂が選択され得る。例えば、樹脂は熱可塑性樹脂であってもよいし、熱硬化性樹脂であってもよい。樹脂の具体例としては、エポキシ樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリエーテルエーテルケトン樹脂、ポリエステル樹脂、ポリヒドロキシポリエーテル樹脂、ポリオレフィン樹脂、フッ素樹脂、液晶ポリマー、変性ポリイミドが挙げられる。これらは、単独で、または、2種以上を組み合わせて用い得る。 Any appropriate resin may be selected as the resin, depending on, for example, the intended use of the resulting resin composition. For example, the resin may be a thermoplastic resin or a thermosetting resin. Specific examples of the resin include epoxy resin, polyimide resin, polyamide resin, polyamideimide resin, polyetheretherketone resin, polyester resin, polyhydroxypolyether resin, polyolefin resin, fluororesin, liquid crystal polymer, and modified polyimide. These may be used alone or in combination of two or more.

上記樹脂組成物における上記中空粒子の含有割合は、好ましくは0.1重量%以上であり、さらに好ましくは0.5重量%以上である。一方、上記含有割合は、好ましくは90重量%以下であり、さらに好ましくは85重量%以下である。 The content of the hollow particles in the resin composition is preferably 0.1% by weight or more, more preferably 0.5% by weight or more. On the other hand, the content ratio is preferably 90% by weight or less, more preferably 85% by weight or less.

樹脂組成物において、樹脂100重量部に対し、中空粒子を0.5重量部以上含有させることが好ましく、さらに好ましくは1重量部以上である。一方、樹脂100重量部に対し、中空粒子を300重量部以下含有させることが好ましく、さらに好ましくは200重量部以下である。 In the resin composition, the hollow particles are preferably contained in an amount of 0.5 parts by weight or more, more preferably 1 part by weight or more, based on 100 parts by weight of the resin. On the other hand, the hollow particles are preferably contained in an amount of 300 parts by weight or less, more preferably 200 parts by weight or less, per 100 parts by weight of the resin.

樹脂組成物における中空粒子の体積比率は、好ましくは0.1%以上であり、さらに好ましくは0.5%以上である。一方、樹脂組成物における中空粒子の体積比率は、好ましくは70%以下であり、さらに好ましくは60%以下である。例えば、樹脂組成物を作製する際の加工性に優れ得るからである。 The volume ratio of hollow particles in the resin composition is preferably 0.1% or more, more preferably 0.5% or more. On the other hand, the volume ratio of hollow particles in the resin composition is preferably 70% or less, more preferably 60% or less. For example, this is because the processability when producing a resin composition can be excellent.

上記樹脂組成物は、任意成分を含み得る。任意成分としては、例えば、硬化剤(具体的には、上記樹脂の硬化剤)、低応力化剤、着色剤、密着向上剤、離型剤、流動調整剤、脱泡剤、溶剤、充填剤が挙げられる。これらは、単独で、または、2種以上を組み合わせて用い得る。1つの実施形態においては、樹脂組成物は硬化剤を含む。硬化剤の含有量は、樹脂100重量部に対し、例えば、1重量部~150重量部である。 The resin composition may contain optional components. Optional components include, for example, a curing agent (specifically, a curing agent for the above resin), a stress reducing agent, a coloring agent, an adhesion improver, a mold release agent, a fluidity regulator, a defoaming agent, a solvent, and a filler. can be mentioned. These may be used alone or in combination of two or more. In one embodiment, the resin composition includes a curing agent. The content of the curing agent is, for example, 1 part by weight to 150 parts by weight based on 100 parts by weight of the resin.

上記樹脂組成物の作製方法としては、任意の適切な方法が採用され得る。具体的には、上記樹脂中に、任意の適切な分散方法により、上記中空粒子を分散させることにより、樹脂組成物を得る。分散方法としては、例えば、ホモミキサー、ディスパー、ボールミル等の各種攪拌機による分散、自転公転ミキサーによる分散、3本ロールを用いた剪断力による分散、超音波処理による分散が挙げられる。 Any suitable method may be employed as a method for producing the resin composition. Specifically, the resin composition is obtained by dispersing the hollow particles in the resin using any appropriate dispersion method. Examples of the dispersion method include dispersion using various stirrers such as a homomixer, a disper, and a ball mill, dispersion using an autorotation-revolution mixer, dispersion using shear force using three rolls, and dispersion using ultrasonic treatment.

上記樹脂組成物は、代表的には、所望の形状に成形された樹脂成形体とされる。例えば、モールドを用いて所望の形状に成形された樹脂成形体とされる。樹脂成形体の成形に際し、樹脂組成物は、任意の適切な処理(例えば、硬化処理)が施され得る。 The resin composition is typically formed into a resin molded article into a desired shape. For example, it is a resin molded body formed into a desired shape using a mold. When molding a resin molded article, the resin composition may be subjected to any appropriate treatment (for example, curing treatment).

本発明の1つの実施形態においては、上記樹脂組成物は、積層体に含まれる樹脂層とされる。以下、上記樹脂組成物で形成される樹脂層を有する積層体について説明する。 In one embodiment of the present invention, the resin composition is used as a resin layer included in a laminate. Hereinafter, a laminate having a resin layer formed from the above resin composition will be explained.

C.積層体
図2は、本発明の1つの実施形態における積層体の概略断面図である。積層体10は、樹脂層11と金属箔12とを有する。樹脂層11は、上記樹脂組成物から形成される。具体的には、樹脂層11は、上記樹脂と上記中空粒子とを含む。樹脂層11において、樹脂層11の面内方向に、板状の中空粒子の面内方向が配向していることが好ましい。樹脂層の薄膜化に寄与し得るからである。図示しないが、積層体10は、その他の層を含み得る。例えば、樹脂層11の片側(金属箔12が配置されない側)に積層される基材(代表的には、樹脂フィルム)が挙げられる。積層体10は、代表的には、配線回路基板として用いられる。
C. Laminate FIG. 2 is a schematic cross-sectional view of a laminate in one embodiment of the present invention. The laminate 10 has a resin layer 11 and a metal foil 12. The resin layer 11 is formed from the above resin composition. Specifically, the resin layer 11 includes the resin and the hollow particles. In the resin layer 11, it is preferable that the in-plane direction of the plate-shaped hollow particles is oriented in the in-plane direction of the resin layer 11. This is because it can contribute to making the resin layer thinner. Although not shown, the laminate 10 may include other layers. For example, a base material (typically a resin film) that is laminated on one side of the resin layer 11 (the side on which the metal foil 12 is not placed) may be used. The laminate 10 is typically used as a printed circuit board.

上記樹脂層の厚みは、例えば5μm以上、好ましくは10μm以上である。一方、樹脂層の厚みは、例えば100μm以下、好ましくは50μm以下、さらに好ましくは25μm以下である。このような厚みによれば、例えば、近年の電子部材の小型化に十分に対応することができる。 The thickness of the resin layer is, for example, 5 μm or more, preferably 10 μm or more. On the other hand, the thickness of the resin layer is, for example, 100 μm or less, preferably 50 μm or less, and more preferably 25 μm or less. With such a thickness, for example, it is possible to sufficiently cope with the miniaturization of electronic components in recent years.

上記金属箔を形成する金属としては、任意の適切な金属が用いられ得る。例えば、銅、アルミニウム、ニッケル、クロム、金が挙げられる。これらは、単独で、または、2種以上を組み合わせて用い得る。金属箔の厚みは、例えば、2μm~35μmである。 Any suitable metal may be used as the metal forming the metal foil. Examples include copper, aluminum, nickel, chromium, and gold. These may be used alone or in combination of two or more. The thickness of the metal foil is, for example, 2 μm to 35 μm.

上記積層体の作製方法としては、任意の適切な方法が採用され得る。例えば、上記基材上に上記樹脂組成物を塗工して塗工層を形成し、この塗工層上に上記金属箔を積層して積層体を得る。別の具体例としては、上記金属箔に上記樹脂組成物を塗工して塗工層を形成して積層体を得る。代表的には、任意の適切なタイミングで、塗工層に加熱や光照射等の処理を施し、塗工層を硬化させる。塗工に際し、上記樹脂組成物を、任意の適切な溶剤に溶解させて用いてもよい。 Any suitable method may be employed as a method for producing the laminate. For example, the resin composition is coated on the base material to form a coating layer, and the metal foil is laminated on the coating layer to obtain a laminate. As another specific example, a laminate is obtained by coating the metal foil with the resin composition to form a coating layer. Typically, the coating layer is cured by applying a treatment such as heating or light irradiation to the coating layer at any appropriate timing. During coating, the resin composition may be dissolved in any suitable solvent.

以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。なお、各特性の測定方法は、断りがない限り、下記の通りである。
1.粒子の長径
SEM観察またはTEM観察により長径を算出した。具体的には、粒子のSEM写真またはTEM写真の中から無作為に選んだ100個の一次粒子の長径を測定し、得られた測定値の算術平均(平均長径)を求めた。なお、コア粒子のSEM観察の倍率は20000倍、中空粒子のTEM観察の倍率は10000倍とした。
2.厚み
SEM観察またはTEM観察により粒子の厚みおよび粒子の殻の厚みを算出した。具体的には、粒子のSEM写真またはTEM写真の中から無作為に選んだ100個の一次粒子の厚みを測定し、得られた測定値の算術平均(平均厚み)を求めた。なお、コア粒子のSEM観察の倍率は50000倍、中空粒子のTEM観察の倍率は10000倍および10000倍とした。
3.アスペクト比
SEM観察またはTEM観察によりアスペクト比を算出した。具体的には、上記粒子の平均長径を上記粒子の平均厚みで除してアスペクト比を算出した。
4.中空率
コア粒子の体積と中空粒子の体積から算出した。具体的には、(コア粒子1粒子当たりの体積)/(中空粒子1粒子当たりの体積)×100から算出した。なお、コア粒子および中空粒子の1粒子当たりの体積は、実際の形状を円柱における体積で近似し、上記長径を円の直径とし、上記厚みを円柱の高さとして算出した。
5.粒径
大塚電子製の「ELSZ-2」を用いて、動的光散乱法により粒径(平均二次粒子径)を測定した(解析条件は散乱強度分布)。測定用試料は、水70mLに粒子0.05gを加えた後、300μAで3分間超音波処理を施すことにより調製した。
6.細孔容積
マイクロトラック・ベル株式会社の「BELsorp-max」で測定した。具体的には、窒素ガスを用いた定容量式ガス吸着法で測定し、BJH法による解析で細孔容積を求めた。
7.BET比表面積
マイクロトラック・ベル株式会社の「BELsorp-mini」で測定した。具体的には、窒素ガスを用いた定容量式ガス吸着法で測定し、BET多点法による解析で比表面積を求めた。
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to these Examples. The method for measuring each characteristic is as follows unless otherwise specified.
1. Long axis of particle The long axis was calculated by SEM observation or TEM observation. Specifically, the major diameters of 100 primary particles randomly selected from SEM photographs or TEM photographs of the particles were measured, and the arithmetic mean (average major diameter) of the obtained measured values was determined. Note that the magnification for SEM observation of the core particles was 20,000 times, and the magnification for TEM observation of the hollow particles was 10,000 times.
2. Thickness The thickness of the particles and the thickness of the shell of the particles were calculated by SEM observation or TEM observation. Specifically, the thickness of 100 primary particles randomly selected from SEM photographs or TEM photographs of the particles was measured, and the arithmetic mean (average thickness) of the obtained measured values was determined. Note that the magnification for SEM observation of the core particle was 50,000 times, and the magnification for TEM observation of the hollow particle was 10,000 times and 10,000 times.
3. Aspect Ratio Aspect ratio was calculated by SEM observation or TEM observation. Specifically, the aspect ratio was calculated by dividing the average major axis of the particles by the average thickness of the particles.
4. Hollowness ratio Calculated from the volume of the core particle and the volume of the hollow particle. Specifically, it was calculated from (volume per core particle)/(volume per hollow particle)×100. The volume per particle of the core particle and the hollow particle was calculated by approximating the actual shape by the volume of a cylinder, using the major axis as the diameter of the circle, and the thickness as the height of the cylinder.
5. Particle size Particle size (average secondary particle size) was measured by dynamic light scattering using "ELSZ-2" manufactured by Otsuka Electronics (analysis conditions were scattering intensity distribution). A sample for measurement was prepared by adding 0.05 g of particles to 70 mL of water and then subjecting the mixture to ultrasonication at 300 μA for 3 minutes.
6. Pore volume Measured using "BELsorp-max" manufactured by Microtrac Bell Co., Ltd. Specifically, it was measured by a constant volume gas adsorption method using nitrogen gas, and the pore volume was determined by analysis using the BJH method.
7. BET specific surface area Measured using "BELsorp-mini" manufactured by Microtrac Bell Co., Ltd. Specifically, it was measured by a constant volume gas adsorption method using nitrogen gas, and the specific surface area was determined by analysis using the BET multipoint method.

[実施例1]
長径0.8μm、厚み0.2μm、アスペクト比4の板状の水酸化マグネシウム粒子を、イオン交換水を用いて固形分濃度60g/Lに調整し、水酸化マグネシウムのスラリーを得た。
[Example 1]
Plate-shaped magnesium hydroxide particles having a major diameter of 0.8 μm, a thickness of 0.2 μm, and an aspect ratio of 4 were adjusted to a solid content concentration of 60 g/L using ion-exchanged water to obtain a slurry of magnesium hydroxide.

次いで、得られた水酸化マグネシウムのスラリー6.7Lを撹拌しながら80℃に加温し、これに、0.57mol/Lの3号水ガラス(NaO・3.14SiO、富士フィルム和光純薬製)268mlを10分かけて加えた。その後、さらに、3号水ガラス1340mlと0.5Nの塩酸3.25Lを同時に加え始めた。ここで、3号水ガラスは50分かけて加え、塩酸は60分かけて加えた。こうして得られたスラリーを30分間熟成させた後、脱水・水洗し、コアシェル粒子前駆体のケーキを得た。Next, 6.7 L of the obtained slurry of magnesium hydroxide was heated to 80° C. while stirring, and 0.57 mol/L of No. 3 water glass (Na 2 O 3.14 SiO 2 , Fuji Film Wa 268 ml of Hikari Pure Chemical Industries, Ltd.) was added over 10 minutes. Thereafter, 1340 ml of No. 3 water glass and 3.25 L of 0.5N hydrochloric acid were simultaneously added. Here, No. 3 water glass was added over 50 minutes, and hydrochloric acid was added over 60 minutes. The slurry thus obtained was aged for 30 minutes, then dehydrated and washed with water to obtain a cake of core-shell particle precursors.

次いで、得られたコアシェル粒子前駆体のケーキをイオン交換水で固形分濃度60g/Lに調整し、撹拌しながら80℃に加温し、これに、0.57mol/Lの3号水ガラス268mlを10分かけて加えた。その後、さらに、3号水ガラス670mlと0.5Nの塩酸1.9Lを同時に加え始めた。ここで、3号水ガラスは25分かけて加え、塩酸は35分かけて加えた。こうして得られたスラリーを30分間熟成させた後、脱水・水洗し、コアシェル粒子のケーキを得た。
ここで、FT-IR(JASCO製の「FT/IR-4100」)を用いて得られたコアシェル粒子についてATR法で測定したところ、水酸化マグネシウムの3500~3800cm-1付近のOH由来のピークだけでなく、1000~1300cm-1付近のSi-O-Si由来のピークが確認された。
Next, the obtained core-shell particle precursor cake was adjusted to a solid concentration of 60 g/L with ion-exchanged water, heated to 80°C while stirring, and added with 268 ml of No. 3 water glass containing 0.57 mol/L. was added over 10 minutes. Thereafter, 670 ml of No. 3 water glass and 1.9 L of 0.5N hydrochloric acid were simultaneously added. Here, No. 3 water glass was added over 25 minutes, and hydrochloric acid was added over 35 minutes. The slurry thus obtained was aged for 30 minutes, then dehydrated and washed with water to obtain a cake of core-shell particles.
Here, when the core-shell particles obtained using FT-IR ("FT/IR-4100" manufactured by JASCO) were measured by the ATR method, only a peak derived from OH of magnesium hydroxide near 3500 to 3800 cm -1 was found. Instead, a peak derived from Si--O--Si near 1,000 to 1,300 cm -1 was confirmed.

次いで、得られたコアシェル粒子に0.7Nの塩酸21.6Lを加え、室温撹拌下で再懸濁し、コアシェル粒子の固形分濃度が25g/Lとなるように調整した後、これを60℃に加温し、1時間熟成させてコア粒子を溶解させ、中空シリカのスラリーを得た。
得られた中空シリカのスラリーを脱水・水洗して中空シリカのケーキとし、この中空シリカのケーキを60℃で28時間乾燥させて中空シリカ粒子(長径:0.86μm、厚み:0.26μm、アスペクト比:3.3、殻の厚み:30nm、中空率:66%、粒径:0.95μm、細孔容積:0.67cm/g、BET比表面積:123m/g)を得た。
Next, 21.6 L of 0.7N hydrochloric acid was added to the obtained core-shell particles, and the particles were resuspended under stirring at room temperature. After adjusting the solid content concentration of the core-shell particles to 25 g/L, the particles were heated to 60°C. The core particles were dissolved by heating and aging for 1 hour to obtain a slurry of hollow silica.
The obtained hollow silica slurry was dehydrated and washed with water to form a hollow silica cake, and this hollow silica cake was dried at 60°C for 28 hours to form hollow silica particles (length: 0.86 μm, thickness: 0.26 μm, aspect ratio: ratio: 3.3, shell thickness: 30 nm, hollow ratio: 66%, particle size: 0.95 μm, pore volume: 0.67 cm 3 /g, BET specific surface area: 123 m 2 /g).

FT-IR(JASCO製の「FT/IR-4100」)を用いて得られた中空シリカ粒子についてATR法で測定したところ、水酸化マグネシウム粒子の3500~3800cm-1付近のOH由来のピークは確認されず、1000~1300cm-1付近のSi-O-Si由来のピークのみが確認された。また、X線回折(PANalytical製の「EMPYRIAN」)で中空シリカ粒子を分析したところ、水酸化マグネシウムのピークは確認されず、アモルファスシリカであった。なお、得られた中空シリカ粒子の重量から、上記コアシェル粒子中のシリカの割合は26重量%であった。When hollow silica particles obtained using FT-IR (JASCO's "FT/IR-4100") were measured by the ATR method, an OH-derived peak near 3500 to 3800 cm -1 of magnesium hydroxide particles was confirmed. However, only a peak derived from Si--O--Si near 1000 to 1300 cm -1 was confirmed. Further, when the hollow silica particles were analyzed by X-ray diffraction ("EMPYRIAN" manufactured by PANalytical), no magnesium hydroxide peak was observed, indicating that the particles were amorphous silica. Note that, based on the weight of the hollow silica particles obtained, the proportion of silica in the core-shell particles was 26% by weight.

[実施例2]
コアシェル粒子の形成に際し、塩酸の濃度を0.5Nから0.52Nにしたこと以外は実施例1と同様にして、中空粒子(長径:0.88μm、厚み:0.28μm、アスペクト比:3.1、殻の厚み:40nm、中空率:59%、粒径:1.20μm、細孔容積:0.50cm/g、BET比表面積:81m/g)を得た。
[Example 2]
When forming core-shell particles, hollow particles (length: 0.88 μm, thickness: 0.28 μm, aspect ratio: 3. 1. Shell thickness: 40 nm, hollow ratio: 59%, particle size: 1.20 μm, pore volume: 0.50 cm 3 /g, BET specific surface area: 81 m 2 /g).

[実施例3]
長径0.8μm、厚み0.2μm、アスペクト比4の板状の水酸化マグネシウム粒子のかわりに長径0.2μm、厚み0.07μm、アスペクト比2.9の板状のハイドロタルサイト(協和化学工業株式会社製の「DHT4」)を用いたこと、および、コアシェル粒子の形成に際し、塩酸の濃度を0.5Nから0.49Nにしたこと以外は実施例1と同様にして、中空粒子(長径:0.246μm、厚み:0.116μm、アスペクト比:2.1、殻の厚み:23nm、中空率:53%、粒径:0.94μm、細孔容積:0.85cm/g、BET比表面積:135m/g)を得た。
[Example 3]
Instead of plate-shaped magnesium hydroxide particles with a major diameter of 0.8 μm, a thickness of 0.2 μm, and an aspect ratio of 4, plate-shaped hydrotalcite particles with a major diameter of 0.2 μm, a thickness of 0.07 μm, and an aspect ratio of 2.9 (Kyowa Chemical Industry Co., Ltd.) were used. Hollow particles (long diameter: 0.246 μm, thickness: 0.116 μm, aspect ratio: 2.1, shell thickness: 23 nm, hollow ratio: 53%, particle size: 0.94 μm, pore volume: 0.85 cm 3 /g, BET specific surface area :135 m 2 /g) was obtained.

<TEM観察>
実施例1の中空粒子について透過型電子顕微鏡(日本電子株式会社製の「JEM-2100PLUS」)による観察結果を図3に示す。図3から、殻(シリカ層)の厚みが30nmの板状の中空粒子であることが確認された。なお、図4にコア粒子として用いた水酸化マグネシウム粒子のSEM写真を示すが、図3および図4から、コア粒子の板状形状を保った中空粒子であることが確認された。
<TEM observation>
The results of observation of the hollow particles of Example 1 using a transmission electron microscope (JEM-2100PLUS manufactured by JEOL Ltd.) are shown in FIG. From FIG. 3, it was confirmed that the particles were plate-shaped hollow particles with a shell (silica layer) thickness of 30 nm. Incidentally, FIG. 4 shows a SEM photograph of the magnesium hydroxide particles used as the core particles, and it was confirmed from FIGS. 3 and 4 that the particles were hollow particles that maintained the plate-like shape of the core particles.

<樹脂組成物>
(1)超音波処理による混合
ビスフェノールF型エポキシ樹脂(三菱ケミカル株式会社製の「JER806」)1g、硬化剤(三菱ケミカル株式会社製の「LV11」)0.38gおよび実施例1で得られた中空粒シリカ粒子0.04gを混合し、樹脂組成物1を得た。混合は、株式会社日本精機製作所製の「NS-200-60」による超音波処理を1分間施すことにより行った。
(2)ホモジナイザーによる混合
ビスフェノールF型エポキシ樹脂(三菱ケミカル株式会社製の「JER806」)5g、硬化剤(三菱ケミカル株式会社製の「LV11」)1.9gおよび実施例1で得られた中空粒シリカ粒子0.2gを混合し、樹脂組成物2を得た。混合は、ハンディホモジナイザー(IKAジャパン株式会社製の「T10ベーシック」)を用いて8000rpm、5分の条件で行った。
(3)自転公転ミキサーによる混合
ビスフェノールF型エポキシ樹脂(三菱ケミカル株式会社製の「JER806」)5g、硬化剤(三菱ケミカル株式会社製の「LV11」)2.5gおよび実施例1で得られた中空粒シリカ粒子0.875gを混合し、樹脂組成物3を得た。混合は、自転公転ミキサー(株式会社写真化学製の「カクハンターSK-300SVII」)を用いて1700rpm、3分の条件で行った。
<Resin composition>
(1) Mixing by ultrasonication 1 g of bisphenol F type epoxy resin (“JER806” manufactured by Mitsubishi Chemical Corporation), 0.38 g of curing agent (“LV11” manufactured by Mitsubishi Chemical Corporation) and obtained in Example 1. A resin composition 1 was obtained by mixing 0.04 g of hollow silica particles. The mixing was performed by applying ultrasonic treatment for 1 minute using "NS-200-60" manufactured by Nippon Seiki Seisakusho Co., Ltd.
(2) Mixing using a homogenizer 5 g of bisphenol F type epoxy resin (“JER806” manufactured by Mitsubishi Chemical Corporation), 1.9 g of curing agent (“LV11” manufactured by Mitsubishi Chemical Corporation) and hollow particles obtained in Example 1 Resin composition 2 was obtained by mixing 0.2 g of silica particles. Mixing was performed using a handy homogenizer ("T10 Basic" manufactured by IKA Japan Co., Ltd.) at 8000 rpm for 5 minutes.
(3) Mixing using a rotation-revolution mixer 5 g of bisphenol F-type epoxy resin (“JER806” manufactured by Mitsubishi Chemical Corporation), 2.5 g of curing agent (“LV11” manufactured by Mitsubishi Chemical Corporation) and obtained in Example 1. 0.875 g of hollow silica particles were mixed to obtain a resin composition 3. The mixing was performed using a rotation and revolution mixer ("Kakuhunter SK-300SVII" manufactured by Photo Chemical Co., Ltd.) at 1700 rpm for 3 minutes.

<樹脂成形体>
上記樹脂組成物1-3を、それぞれ、厚み2mmのシリコーン樹脂製のモールドに流し込み、80℃で3時間の条件で硬化させて、樹脂成形体1-3を得た。
<Resin molded body>
Each of the resin compositions 1-3 was poured into a silicone resin mold with a thickness of 2 mm, and cured at 80° C. for 3 hours to obtain a resin molded article 1-3.

得られた成形体をクロスセクションポリッシャー(JEOL製の「IB-09010CP」)で切断し、断面をSEM(JEOL製の「JSM-7600F」)で観察したところ、樹脂成形体1-3のいずれにおいても、中空粒子の破壊は確認されなかった。また、樹脂成形体1-3のいずれにおいても、中空粒子内部への樹脂の侵入は確認されなかった。 The obtained molded body was cut with a cross-section polisher (“IB-09010CP” manufactured by JEOL), and the cross section was observed with an SEM (“JSM-7600F” manufactured by JEOL). However, no destruction of hollow particles was confirmed. Furthermore, in any of the resin molded bodies 1-3, no resin was found to have penetrated into the interior of the hollow particles.

本発明の中空粒子は、代表的には、電子材料に好適に用いられ得る。他にも、例えば、断熱材料、防音材料、衝撃緩衝材料、応力緩衝材料、光学材料、軽量化材料に用いられ得る。 The hollow particles of the present invention can typically be suitably used for electronic materials. In addition, it can be used in, for example, heat insulating materials, soundproofing materials, impact buffering materials, stress buffering materials, optical materials, and lightweight materials.

L 長径
T 厚み
10 積層体
11 樹脂層
12 金属箔
L Long axis T Thickness 10 Laminated body 11 Resin layer 12 Metal foil

Claims (9)

シリカを含み、アスペクト比が2以上、且つ100以下で、殻の厚みが10nm以上100nm以下で、細孔容積が1.5cm /g以下の板状の中空粒子と、樹脂とを含む、樹脂組成物A resin containing plate-shaped hollow particles containing silica , having an aspect ratio of 2 or more and 100 or less, a shell thickness of 10 nm or more and 100 nm or less, and a pore volume of 1.5 cm 3 /g or less , and a resin. Composition . 前記中空粒子の長径が0.1μm以上10μm以下である、請求項1に記載の樹脂組成物 The resin composition according to claim 1, wherein the hollow particles have a major axis of 0.1 μm or more and 10 μm or less. 前記中空粒子の厚みが0.01μm以上5μm以下である、請求項1または請求項2に記載の樹脂組成物 The resin composition according to claim 1 or 2 , wherein the hollow particles have a thickness of 0.01 μm or more and 5 μm or less. 前記中空粒子の中空率が20%以上95%以下である、請求項1から請求項3のいずれか1項に記載の樹脂組成物 The resin composition according to any one of claims 1 to 3 , wherein the hollow particles have a hollowness ratio of 20% to 95% . 請求項1から請求項4のいずれか1項に記載の樹脂組成物から形成される、樹脂成形体。 A resin molded article formed from the resin composition according to any one of claims 1 to 4 . 請求項1に記載の樹脂組成物の製造方法であって、A method for producing the resin composition according to claim 1, comprising:
コア粒子にシェル形成材料を被覆してコアシェル粒子を得ること、および、前記コアシェル粒子から前記コア粒子を除去すること、により前記中空粒子を得ること、obtaining the hollow particles by coating the core particles with a shell-forming material, and removing the core particles from the core shell particles;
を含む、樹脂組成物の製造方法。A method for producing a resin composition, comprising:
前記コア粒子は、水酸化マグネシウム若しくはハイドロタルサイトである、請求項6に記載の樹脂組成物の製造方法。The method for producing a resin composition according to claim 6, wherein the core particles are magnesium hydroxide or hydrotalcite. 前記シェル形成材料は、水ガラスである、請求項6又は請求項7に記載の樹脂組成物の製造方法。The method for producing a resin composition according to claim 6 or 7, wherein the shell forming material is water glass. 前記中空粒子は、前記コア粒子を除去した後に焼成される、請求項6ないし請求項8のいずれか1項に記載の樹脂組成物の製造方法。The method for producing a resin composition according to any one of claims 6 to 8, wherein the hollow particles are fired after removing the core particles.
JP2022503168A 2020-02-28 2021-01-25 Hollow particles, resin compositions, and resin molded bodies and laminates using the resin compositions Active JP7385734B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020033946 2020-02-28
JP2020033946 2020-02-28
PCT/JP2021/002364 WO2021171858A1 (en) 2020-02-28 2021-01-25 Hollow particle, resin composition, and resin molded article and laminate each using said resin composition

Publications (2)

Publication Number Publication Date
JPWO2021171858A1 JPWO2021171858A1 (en) 2021-09-02
JP7385734B2 true JP7385734B2 (en) 2023-11-22

Family

ID=77489957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022503168A Active JP7385734B2 (en) 2020-02-28 2021-01-25 Hollow particles, resin compositions, and resin molded bodies and laminates using the resin compositions

Country Status (5)

Country Link
JP (1) JP7385734B2 (en)
KR (1) KR20220132584A (en)
CN (1) CN115175873A (en)
TW (1) TW202200500A (en)
WO (1) WO2021171858A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006143487A (en) 2004-11-16 2006-06-08 Nissan Motor Co Ltd Platy alumina particles, method for manufacturing platy alumina particles, resin composition and method for manufacturing resin composition
JP2006256310A (en) 2005-02-16 2006-09-28 Konica Minolta Opto Inc Antireflection film, manufacturing method of antireflection film, and polarizing plate and display device
JP2007025329A (en) 2005-07-19 2007-02-01 Konica Minolta Opto Inc Antireflection film, method for producing same, polarizing plate, and display device
CN108483451A (en) 2018-05-25 2018-09-04 苏州大学 The preparation method of hollow-core construction micro/nano material
JP2019183005A (en) 2018-04-11 2019-10-24 Agc株式会社 Fluorine resin sheet, laminate, and manufacturing method therefor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007056158A (en) 2005-08-25 2007-03-08 Nagoya Institute Of Technology Resin composition and wiring circuit board using the same
EP2455428B1 (en) * 2009-07-14 2019-09-04 Kao Corporation Low-permittivity resin composition
KR20180086616A (en) * 2017-01-23 2018-08-01 한국산업기술대학교산학협력단 METHOD OF SILICA PARTICLES FROM SODIΜM SILICATE USING ZnO INORGANIC TEMPLATE PARTICLES
WO2019230661A1 (en) * 2018-05-28 2019-12-05 三菱瓦斯化学株式会社 Resin composition, prepreg, metal foil-clad laminate board, resin composite sheet, and, printed circuit board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006143487A (en) 2004-11-16 2006-06-08 Nissan Motor Co Ltd Platy alumina particles, method for manufacturing platy alumina particles, resin composition and method for manufacturing resin composition
JP2006256310A (en) 2005-02-16 2006-09-28 Konica Minolta Opto Inc Antireflection film, manufacturing method of antireflection film, and polarizing plate and display device
JP2007025329A (en) 2005-07-19 2007-02-01 Konica Minolta Opto Inc Antireflection film, method for producing same, polarizing plate, and display device
JP2019183005A (en) 2018-04-11 2019-10-24 Agc株式会社 Fluorine resin sheet, laminate, and manufacturing method therefor
CN108483451A (en) 2018-05-25 2018-09-04 苏州大学 The preparation method of hollow-core construction micro/nano material

Also Published As

Publication number Publication date
CN115175873A (en) 2022-10-11
JPWO2021171858A1 (en) 2021-09-02
WO2021171858A1 (en) 2021-09-02
TW202200500A (en) 2022-01-01
KR20220132584A (en) 2022-09-30

Similar Documents

Publication Publication Date Title
KR102368841B1 (en) Hexagonal boron nitride powder and method for manufacturing same, composition and heat dissipation material using same
KR101439216B1 (en) Method for producing fine mesoporous silica particles, fine mesoporous silica particles, liquid dispersion of fine mesoporous silica particles, composition containing fine mesoporous silica particles, and molded article containing fine mesoporous silica particles
EP3421420B1 (en) Hexagonal boron nitride powder, production method therefor, resin composition and resin sheet
US11078080B2 (en) Hexagonal boron nitride powder and method for producing the same, and composition and heat dissipation material using the same
WO2016092952A1 (en) Hexagonal boron nitride powder, method for producing same, resin composition, and resin sheet
KR20150137994A (en) Process for production of hollow silica particles, hollow silica particles, and composition and insulation sheet which contain same
WO2021172294A1 (en) Hollow silica particles and method for producing same
JP2023158027A (en) Hollow particle, method for producing hollow particle, resin composition, and resin molding and laminate using resin composition
KR101141956B1 (en) Magnesium fluoride doped hollow silica composites with low dielectric constant, process of the composites, forming solution containing the composites and low dielectric constant substrate manufactured by the solution
EP3564185A1 (en) Hexagonal boron nitride powder, method for producing same, resin composition and resin sheet
KR100372266B1 (en) Thermoplastic film and manufacturing method
JP2023138688A (en) Hollow particle, method for producing hollow particle, resin composition, and resin molded body and laminated body using resin composition
JP7385734B2 (en) Hollow particles, resin compositions, and resin molded bodies and laminates using the resin compositions
JP5480497B2 (en) Method for producing surface-encapsulated silica-based particles, surface-encapsulated silica-based particles, and a resin composition for semiconductor encapsulation obtained by mixing the particles
WO2021241547A1 (en) Method for producing dispersion
Miranda et al. Hierarchical microstructure of nanoparticles of calcium carbonate/epoxy composites: thermomechanical and surface properties
JP5358355B2 (en) Resin composition and method for producing metal resin laminate
JP2014009146A (en) Particle having voids therein and manufacturing method of the same
JP6028420B2 (en) Hollow particles and method for producing the same
TW202406842A (en) Hollow particle and method for manufacturing same
WO2023100676A1 (en) Hollow silica particles and method for producing same
WO2023175994A1 (en) Hollow inorganic particle material, method for producing same, inorganic filler, slurry composition and resin composition
JP2013082596A (en) Alumina multilayer porous body and method for producing the same
WO2023008290A1 (en) Spherical silica powder and method for producing spherical silica powder
WO2024004736A1 (en) Magnesium oxide powder and resin composition which uses same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220623

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20221107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231110

R150 Certificate of patent or registration of utility model

Ref document number: 7385734

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150