WO2021171858A1 - Hollow particle, resin composition, and resin molded article and laminate each using said resin composition - Google Patents

Hollow particle, resin composition, and resin molded article and laminate each using said resin composition Download PDF

Info

Publication number
WO2021171858A1
WO2021171858A1 PCT/JP2021/002364 JP2021002364W WO2021171858A1 WO 2021171858 A1 WO2021171858 A1 WO 2021171858A1 JP 2021002364 W JP2021002364 W JP 2021002364W WO 2021171858 A1 WO2021171858 A1 WO 2021171858A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
resin
hollow
resin composition
less
Prior art date
Application number
PCT/JP2021/002364
Other languages
French (fr)
Japanese (ja)
Inventor
ティ ノック タン レ
中村 司
大輔 工藤
Original Assignee
協和化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 協和化学工業株式会社 filed Critical 協和化学工業株式会社
Priority to JP2022503168A priority Critical patent/JP7385734B2/en
Priority to KR1020227029228A priority patent/KR20220132584A/en
Priority to CN202180016759.7A priority patent/CN115175873A/en
Publication of WO2021171858A1 publication Critical patent/WO2021171858A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • C08K7/26Silicon- containing compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Definitions

  • the present invention relates to hollow particles, a resin composition, and a resin molded body and a laminated body using the resin composition.
  • the member for example, mechanical strength such as flexural modulus and dimensional stability.
  • the present invention has been made to solve the above problems, and one of the objects of the present invention is to be able to achieve low dielectric constant and light weight while ensuring durability.
  • hollow particles are provided.
  • the hollow particles contain silica and have an aspect ratio of 2 or more and are plate-like.
  • the major axis of the hollow particles is 0.1 ⁇ m or more and 10 ⁇ m or less.
  • the thickness of the hollow particles is 0.01 ⁇ m or more and 5 ⁇ m or less.
  • the shell thickness of the hollow particles is 10 nm or more and 100 nm or less.
  • the hollowness of the hollow particles is 20% or more and 95% or less.
  • a resin composition is provided.
  • This resin composition contains a resin and the above-mentioned hollow particles.
  • a resin molded product is provided.
  • This resin molded body is formed from the above resin composition.
  • a laminate is provided.
  • This laminate has a resin layer formed from the above resin composition.
  • the thickness of the resin layer is 25 ⁇ m or less.
  • FIG. 6 is an SEM observation photograph (20,000 times) of the core particles used in Example 1.
  • Particle major axis A value measured by scanning electron microscope (SEM) or transmission electron microscope (TEM) observation, and is the average value of the major axis (for example, L in FIG. 1) of randomly selected primary particles.
  • the primary particles are the smallest particles observed by SEM or TEM, and are distinguished from aggregated particles (secondary particles).
  • Particle Thickness A value measured by SEM or TEM observation, which is an average value of randomly selected primary particle thicknesses (eg, T in FIG. 1).
  • Aspect ratio (major axis / thickness) It is a value calculated by dividing the thickness of the particles from the major axis of the particles.
  • Particle size The particle size is the average particle size in the particle size distribution measurement.
  • the hollow particles in one embodiment of the present invention are typically formed of silica.
  • the silica content of the hollow particles is, for example, 95% by weight or more, preferably 97% by weight or more, and more preferably 98% by weight or more.
  • the shape of the hollow particles is plate-like.
  • the above-mentioned durability, low dielectric constant, and light weight can be achieved at the same time.
  • the aspect ratio of the hollow particles is 2 or more, preferably 3 or more, and more preferably 4 or more.
  • the aspect ratio of the hollow particles is, for example, 100 or less, preferably 60 or less, and more preferably 50 or less. According to such an aspect ratio, for example, the processability when producing the resin composition described later can be excellent.
  • the major axis of the hollow particles is preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more. According to such a major axis, the hollow ratio described later can be sufficiently satisfied. On the other hand, the major axis of the hollow particles is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less. According to such a major axis, it can greatly contribute to the miniaturization (thin film).
  • the thickness of the hollow particles is preferably 0.01 ⁇ m or more, more preferably 0.05 ⁇ m or more, and particularly preferably 0.1 ⁇ m or more. With such a thickness, the hollow ratio described later can be sufficiently satisfied. On the other hand, the thickness of the hollow particles is preferably 5 ⁇ m or less, more preferably 3 ⁇ m or less, and particularly preferably 2 ⁇ m or less. With such a thickness, it can greatly contribute to the miniaturization (thin film).
  • the thickness of the shell of the hollow particles is preferably 10 nm or more, more preferably 15 nm or more. According to such a thickness, for example, when the resin composition described later is produced, it is possible to effectively prevent the hollow particles from being broken.
  • the thickness of the shell of the hollow particles is preferably 100 nm or less, more preferably 60 nm or less. With such a thickness, the hollow ratio described later can be sufficiently satisfied, which can greatly contribute to the reduction of the dielectric constant and the weight.
  • the thickness of the shell can be measured by TEM observation. For example, it is obtained by measuring the thickness of the shell of randomly selected hollow particles and calculating the average value thereof.
  • the hollow ratio of the hollow particles is preferably 20% or more, more preferably 30% or more, further preferably 40% or more, and particularly preferably 50% or more. According to such a hollow ratio, for example, it can greatly contribute to lowering the dielectric constant and reducing the weight.
  • the hollow ratio of the hollow particles is preferably 95% or less, more preferably 90% or less. According to such a hollow ratio, for example, when the resin composition described later is produced, it is possible to effectively prevent the hollow particles from being broken.
  • the hollow ratio can be calculated from the volume of the core particles and the volume of the hollow particles, which will be described later.
  • the pore volume of the hollow particles is preferably 1.5 cm 3 / g or less, more preferably 1.0 cm 3 / g or less.
  • the particle size of the hollow particles is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more.
  • the particle size of the hollow particles is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less.
  • the BET specific surface area of the hollow particles may be, for example, 10 m 2 / g or more, or 30 m 2 / g or more. On the other hand, the BET specific surface area of the hollow particles is preferably 250 m 2 / g or less, more preferably 200 m 2 / g or less.
  • the hollow particles are surface treated with any suitable surface treatment agent.
  • suitable surface treatment agent include higher fatty acids, anionic surfactants, cationic surfactants, phosphoric acid esters, coupling agents, esters of polyhydric alcohols and fatty acids, acrylic polymers and silicone treatment agents. At least one selected from the group consisting of is used.
  • the method of producing hollow particles comprises coating the core particles with a shell-forming material to obtain the core-shell particles, and removing the core particles from the core-shell particles.
  • the core particles any suitable particles can be adopted as long as the hollow particles can be produced.
  • the shape of the core particles is preferably plate-like.
  • the aspect ratio of the core particles is preferably 2 or more, more preferably 3 or more.
  • the aspect ratio of the core particles is preferably 100 or less, more preferably 70 or less.
  • the major axis of the core particles is preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more. On the other hand, the major axis of the core particles is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less.
  • the thickness of the core particles is preferably 0.01 ⁇ m or more, more preferably 0.1 ⁇ m or more. On the other hand, the thickness of the core particles is preferably 5 ⁇ m or less, more preferably 2 ⁇ m or less.
  • the core particle forming material for example, a material that can be dissolved in an acidic solution described later is used.
  • the material for forming the core particles for example, hydroxides such as magnesium hydroxide, hydrotalcite, magnesium oxide and calcium hydroxide, oxides of hydrotalcite, oxides such as zinc oxide and calcium oxide, and the like. Examples thereof include carbonate compounds such as calcium carbonate.
  • magnesium hydroxide and hydrotalcite are preferably used, and magnesium hydroxide is particularly preferably used. For example, it can exist stably in an aqueous system. Further, when it is dissolved in an acidic solution described later, gas (for example, carbon dioxide gas) is not generated, and it is possible to suppress the occurrence of defects in the obtained hollow particles.
  • gas for example, carbon dioxide gas
  • alkoxysilane typified by water glass (Na 2 O ⁇ nSiO 2 ) and tetraethoxysilane (Si (OCH 2 CH 3 ) 4 ) are used.
  • the amount of coating with the shell-forming material can be adjusted by any suitable method.
  • the coating amount is adjusted by controlling the pH value when coating the core particles with a shell-forming material containing water glass.
  • the water glass can be stable in a high pH region (eg, pH 11 or higher). Therefore, for example, by lowering the pH value with a pH adjuster (for example, to pH 7 or less), water glass molecules can be condensed to efficiently precipitate silica on the core particles.
  • a pH adjuster for example, to pH 7 or less
  • an acidic solution is preferably used.
  • a solution of a strong acid such as hydrochloric acid, nitric acid and sulfuric acid, and a solution of a weak acid such as ammonium nitrate and ammonium sulfate are preferably used.
  • the amount of the pH adjuster added is preferably 85% to 98% in terms of the neutralization rate with respect to water glass, for example. If the neutralization rate is too high, not only silica may be precipitated on the core particles, but also single silica particles may be generated. In addition, there is a risk of dissolving core particles when coating with a shell-forming material. It should be noted that heating (for example, 80 ° C. to 90 ° C.) when coating the core particles with the shell-forming material can also promote shell formation (specifically, shell precipitation and formation rate).
  • the core particles are typically removed by dissolving the core particles in an acidic solution.
  • an acidic solution for example, hydrochloric acid, sulfuric acid, and nitric acid are used.
  • the melting temperature is, for example, 30 ° C. to 90 ° C., preferably 50 ° C. to 70 ° C. With such a temperature, the core particles can be efficiently dissolved while suppressing defects such as the shell becoming fragile.
  • hydrochloric acid is used as the acidic solution from the viewpoint of reusing a substance (for example, a salt) obtained by reacting with core particles.
  • the method for producing hollow particles further comprises firing the shell (eg, in an air atmosphere).
  • firing for example, the hydrophobicity of the shell can be improved (specifically, the silanol group of the shell is changed to siloxane), and the dielectric properties of the obtained hollow particles can be improved.
  • Baking can be performed at any suitable timing. Preferably, it is performed after removing the core particles from the core shell particles.
  • the firing temperature is, for example, 300 ° C to 1300 ° C.
  • the firing time is, for example, 1 hour to 20 hours.
  • the hollow particles are used as a function-imparting agent for a resin material.
  • the resin composition containing the hollow particles will be described.
  • the resin composition in one embodiment of the present invention comprises a resin and the hollow particles described above.
  • the resin for example, any suitable resin can be selected depending on the use of the obtained resin composition and the like.
  • the resin may be a thermoplastic resin or a thermosetting resin.
  • Specific examples of the resin include epoxy resin, polyimide resin, polyamide resin, polyamideimide resin, polyether ether ketone resin, polyester resin, polyhydroxypolyether resin, polyolefin resin, fluororesin, liquid crystal polymer, and modified polyimide. These can be used alone or in combination of two or more.
  • the content ratio of the hollow particles in the resin composition is preferably 0.1% by weight or more, and more preferably 0.5% by weight or more. On the other hand, the content ratio is preferably 90% by weight or less, and more preferably 85% by weight or less.
  • the resin composition preferably contains 0.5 parts by weight or more of hollow particles with respect to 100 parts by weight of the resin, and more preferably 1 part by weight or more.
  • the hollow particles are contained in an amount of 300 parts by weight or less, more preferably 200 parts by weight or less, based on 100 parts by weight of the resin.
  • the volume ratio of the hollow particles in the resin composition is preferably 0.1% or more, and more preferably 0.5% or more.
  • the volume ratio of the hollow particles in the resin composition is preferably 70% or less, more preferably 60% or less. For example, this is because the processability when producing a resin composition can be excellent.
  • the resin composition may contain arbitrary components.
  • Optional components include, for example, a curing agent (specifically, a curing agent for the above resin), a low stress agent, a colorant, an adhesion improver, a mold release agent, a flow conditioner, a defoaming agent, a solvent, and a filler. Can be mentioned. These can be used alone or in combination of two or more.
  • the resin composition comprises a curing agent.
  • the content of the curing agent is, for example, 1 part by weight to 150 parts by weight with respect to 100 parts by weight of the resin.
  • the resin composition is obtained by dispersing the hollow particles in the resin by an arbitrary appropriate dispersion method.
  • the dispersion method include dispersion by various stirrers such as a homomixer, a dispenser, and a ball mill, dispersion by a rotation / revolution mixer, dispersion by a shearing force using three rolls, and dispersion by sonication.
  • the resin composition is typically a resin molded product molded into a desired shape.
  • it is a resin molded body molded into a desired shape using a mold.
  • the resin composition can be subjected to any appropriate treatment (for example, curing treatment).
  • the resin composition is a resin layer contained in a laminate.
  • a laminate having a resin layer formed of the above resin composition will be described.
  • FIG. 2 is a schematic cross-sectional view of the laminated body according to one embodiment of the present invention.
  • the laminate 10 has a resin layer 11 and a metal foil 12.
  • the resin layer 11 is formed from the above resin composition. Specifically, the resin layer 11 contains the resin and the hollow particles. In the resin layer 11, it is preferable that the in-plane direction of the plate-shaped hollow particles is oriented in the in-plane direction of the resin layer 11. This is because it can contribute to thinning the resin layer.
  • the laminate 10 may include other layers. For example, a base material (typically, a resin film) laminated on one side of the resin layer 11 (the side on which the metal foil 12 is not arranged) can be mentioned.
  • the laminate 10 is typically used as a wiring circuit board.
  • the thickness of the resin layer is, for example, 5 ⁇ m or more, preferably 10 ⁇ m or more.
  • the thickness of the resin layer is, for example, 100 ⁇ m or less, preferably 50 ⁇ m or less, and more preferably 25 ⁇ m or less. With such a thickness, for example, it is possible to sufficiently cope with the recent miniaturization of electronic members.
  • metal forming the metal foil Any suitable metal can be used as the metal forming the metal foil.
  • copper, aluminum, nickel, chromium and gold can be mentioned. These can be used alone or in combination of two or more.
  • the thickness of the metal foil is, for example, 2 ⁇ m to 35 ⁇ m.
  • the resin composition is coated on the base material to form a coating layer, and the metal foil is laminated on the coating layer to obtain a laminate.
  • the resin composition is applied to the metal foil to form a coating layer to obtain a laminate.
  • the coating layer is subjected to a treatment such as heating or light irradiation at an arbitrary appropriate timing to cure the coating layer.
  • the above resin composition may be dissolved in any suitable solvent and used.
  • the measurement method for each characteristic is as follows. 1.
  • the major axis was calculated by SEM observation or TEM observation. Specifically, the major axis of 100 primary particles randomly selected from the SEM photograph or the TEM photograph of the particles was measured, and the arithmetic mean (average major axis) of the obtained measured values was obtained.
  • the SEM observation magnification of the core particles was 20000 times, and the TEM observation magnification of the hollow particles was 10000 times.
  • Thickness The particle thickness and the particle shell thickness were calculated by SEM observation or TEM observation.
  • the thicknesses of 100 primary particles randomly selected from SEM photographs or TEM photographs of the particles were measured, and the arithmetic mean (average thickness) of the obtained measured values was obtained.
  • the SEM observation magnification of the core particles was 50,000 times, and the TEM observation magnification of the hollow particles was 10000 times and 10000 times. 3.
  • Aspect ratio The aspect ratio was calculated by SEM observation or TEM observation. Specifically, the aspect ratio was calculated by dividing the average major axis of the particles by the average thickness of the particles. 4.
  • Hollow ratio Calculated from the volume of core particles and the volume of hollow particles. Specifically, it was calculated from (volume per core particle) / (volume per hollow particle) ⁇ 100.
  • the volumes of the core particles and the hollow particles per particle were calculated by approximating the actual shape with the volume of the cylinder, the major axis being the diameter of the circle, and the thickness being the height of the cylinder. 5.
  • Particle size Using "ELSZ-2" manufactured by Otsuka Electronics Co., Ltd., the particle size (average secondary particle size) was measured by a dynamic light scattering method (analysis condition is scattering intensity distribution). The sample for measurement was prepared by adding 0.05 g of particles to 70 mL of water and then sonicating at 300 ⁇ A for 3 minutes. 6. Pore volume Measured by "BELsorp-max" of Microtrac Bell Co., Ltd.
  • the measurement was carried out by a constant-volume gas adsorption method using nitrogen gas, and the pore volume was determined by analysis by the BJH method. 7.
  • BET specific surface area Measured with "BELsorp-mini" of Microtrac Bell Co., Ltd. Specifically, the measurement was carried out by a constant-volume gas adsorption method using nitrogen gas, and the specific surface area was determined by analysis by the BET multipoint method.
  • Example 1 Plate-shaped magnesium hydroxide particles having a major axis of 0.8 ⁇ m, a thickness of 0.2 ⁇ m, and an aspect ratio of 4 were adjusted to a solid content concentration of 60 g / L using ion-exchanged water to obtain a magnesium hydroxide slurry.
  • the cake of the obtained core-shell particle precursor was adjusted to a solid content concentration of 60 g / L with ion-exchanged water and heated to 80 ° C. with stirring, to which 268 ml of No. 3 water glass of 0.57 mol / L was added. Was added over 10 minutes. Then, further, 670 ml of No. 3 water glass and 1.9 L of 0.5 N hydrochloric acid were started to be added at the same time. Here, No. 3 water glass was added over 25 minutes, and hydrochloric acid was added over 35 minutes. The slurry thus obtained was aged for 30 minutes, then dehydrated and washed with water to obtain a cake of core-shell particles.
  • Example 2 Hollow particles (major axis: 0.88 ⁇ m, thickness: 0.28 ⁇ m, aspect ratio: 3. 1. Shell thickness: 40 nm, hollow ratio: 59%, particle size: 1.20 ⁇ m, pore volume: 0.50 cm 3 / g, BET specific surface area: 81 m 2 / g).
  • Example 3 Instead of plate-shaped magnesium hydroxide particles with a major axis of 0.8 ⁇ m, thickness of 0.2 ⁇ m, and an aspect ratio of 4, plate-shaped hydrotalcite with a major axis of 0.2 ⁇ m, thickness of 0.07 ⁇ m, and an aspect ratio of 2.9 (Kyowa Chemical Industry Co., Ltd.) Hollow particles (major axis: major axis:: 0.246 ⁇ m, thickness: 0.116 ⁇ m, aspect ratio: 2.1, shell thickness: 23 nm, hollow ratio: 53%, particle size: 0.94 ⁇ m, pore volume: 0.85 cm 3 / g, BET specific surface area : 135 m 2 / g) was obtained.
  • FIG. 3 shows the observation results of the hollow particles of Example 1 with a transmission electron microscope (“JEM-2100PLUS” manufactured by JEOL Ltd.). From FIG. 3, it was confirmed that the shell (silica layer) was a plate-shaped hollow particle having a thickness of 30 nm.
  • FIG. 4 shows an SEM photograph of the magnesium hydroxide particles used as the core particles, it was confirmed from FIGS. 3 and 4 that the core particles were hollow particles having a plate-like shape.
  • ⁇ Resin composition> (1) Mixing by sonication 1 g of bisphenol F type epoxy resin (“JER806” manufactured by Mitsubishi Chemical Co., Ltd.), 0.38 g of curing agent (“LV11” manufactured by Mitsubishi Chemical Co., Ltd.), and obtained in Example 1. 0.04 g of hollow silica particles were mixed to obtain a resin composition 1. Mixing was carried out by applying ultrasonic treatment with "NS-200-60” manufactured by Nissei Tokyo Office Co., Ltd. for 1 minute. (2) Mixing with a homogenizer 5 g of bisphenol F type epoxy resin (“JER806” manufactured by Mitsubishi Chemical Co., Ltd.), 1.9 g of curing agent (“LV11” manufactured by Mitsubishi Chemical Co., Ltd.) and hollow particles obtained in Example 1.
  • silica particles were mixed to obtain a resin composition 2.
  • Mixing was carried out using a handy homogenizer (“T10 Basic” manufactured by IKA Japan Co., Ltd.) at 8000 rpm for 5 minutes.
  • 0.875 g of hollow grain silica particles were mixed to obtain a resin composition 3.
  • Mixing was carried out using a rotation / revolution mixer (“Kakuhunter SK-300SVII” manufactured by Photochemical Co., Ltd.) at 1700 rpm for 3 minutes.
  • the obtained molded product was cut with a cross section polisher (JEOL's "IB-09010CP"), and the cross section was observed with an SEM (JEOL's "JSM-7600F”).
  • JEOL's "JSM-7600F” SEM
  • no destruction of hollow particles was confirmed.
  • invasion of the resin into the hollow particles was not confirmed in any of the resin molded bodies 1-3.
  • the hollow particles of the present invention can typically be suitably used for electronic materials.
  • it can be used as a heat insulating material, a soundproofing material, a shock-cushioning material, a stress-cushioning material, an optical material, and a weight-reducing material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Silicon Compounds (AREA)

Abstract

Provided is a hollow particle which can be reduced in electric permittivity and weight while keeping the durability thereof. The hollow particle according to the present invention contains silica, has an aspect ratio of 2 or more, and has a plate-like shape.

Description

中空粒子、樹脂組成物、ならびに該樹脂組成物を用いた樹脂成形体および積層体Hollow particles, resin composition, and resin molded products and laminates using the resin composition.
 本発明は、中空粒子、樹脂組成物、ならびに該樹脂組成物を用いた樹脂成形体および積層体に関する。 The present invention relates to hollow particles, a resin composition, and a resin molded body and a laminated body using the resin composition.
 例えば、近年、情報通信機器の分野では、高周波数帯での通信に対応すべく、電子部材(代表的には、樹脂部材)の低誘電率化、低誘電正接化が求められている。これを実現すべく、例えば、比誘電率の低い空気を部材に含有させることが提案されている。具体的には、中空粒子を用いて空気を導入することが提案されている(例えば、特許文献1参照)。このように、空気を含有させることで、部材の軽量化にも寄与し得る。 For example, in recent years, in the field of information and communication equipment, in order to support communication in a high frequency band, it is required to reduce the dielectric constant and the low dielectric loss tangent of an electronic member (typically, a resin member). In order to realize this, for example, it has been proposed to include air having a low relative permittivity in the member. Specifically, it has been proposed to introduce air using hollow particles (see, for example, Patent Document 1). By containing air in this way, it is possible to contribute to weight reduction of the member.
 一方で、部材の耐久性(例えば、曲げ弾性率等の機械的強度、寸法安定性)を確保することも求められる。 On the other hand, it is also required to ensure the durability of the member (for example, mechanical strength such as flexural modulus and dimensional stability).
特開2007-56158号公報JP-A-2007-56158
 本発明は、上記課題を解決するためになされたものであり、耐久性を確保しながら、低誘電率化、軽量化を達成し得ることを目的の1つとする。 The present invention has been made to solve the above problems, and one of the objects of the present invention is to be able to achieve low dielectric constant and light weight while ensuring durability.
 本発明の1つの局面によれば、中空粒子が提供される。この中空粒子は、シリカを含み、アスペクト比が2以上で板状である。
 1つの実施形態においては、上記中空粒子の長径は0.1μm以上10μm以下である。
 1つの実施形態においては、上記中空粒子の厚みは0.01μm以上5μm以下である。
 1つの実施形態においては、上記中空粒子の殻の厚みは10nm以上100nm以下である。
 1つの実施形態においては、上記中空粒子の中空率は20%以上95%以下である。
According to one aspect of the invention, hollow particles are provided. The hollow particles contain silica and have an aspect ratio of 2 or more and are plate-like.
In one embodiment, the major axis of the hollow particles is 0.1 μm or more and 10 μm or less.
In one embodiment, the thickness of the hollow particles is 0.01 μm or more and 5 μm or less.
In one embodiment, the shell thickness of the hollow particles is 10 nm or more and 100 nm or less.
In one embodiment, the hollowness of the hollow particles is 20% or more and 95% or less.
 本発明の別の局面によれば、樹脂組成物が提供される。この樹脂組成物は、樹脂、および、上記中空粒子を含む。 According to another aspect of the present invention, a resin composition is provided. This resin composition contains a resin and the above-mentioned hollow particles.
 本発明のさらに別の局面によれば、樹脂成形体が提供される。この樹脂成形体は、上記樹脂組成物から形成される。 According to yet another aspect of the present invention, a resin molded product is provided. This resin molded body is formed from the above resin composition.
 本発明のさらに別の局面によれば、積層体が提供される。この積層体は、上記樹脂組成物から形成される樹脂層を有する。
 1つの実施形態においては、上記樹脂層の厚みは25μm以下である。
According to yet another aspect of the present invention, a laminate is provided. This laminate has a resin layer formed from the above resin composition.
In one embodiment, the thickness of the resin layer is 25 μm or less.
 本発明によれば、板状の中空粒子を用いることで、耐久性を確保しながら、低誘電率化、軽量化を達成し得る。 According to the present invention, by using plate-shaped hollow particles, it is possible to achieve low dielectric constant and light weight while ensuring durability.
長径および厚みを説明する模式図である。It is a schematic diagram explaining a major axis and thickness. 本発明の1つの実施形態における積層体の概略断面図である。It is the schematic sectional drawing of the laminated body in one Embodiment of this invention. 実施例1の中空粒子のTEM観察写真(10000倍)である。It is a TEM observation photograph (10000 times) of the hollow particle of Example 1. FIG. 実施例1の中空粒子のTEM観察写真(100000倍)である。It is a TEM observation photograph (100,000 times) of the hollow particle of Example 1. FIG. 実施例1で用いたコア粒子のSEM観察写真(20000倍)である。6 is an SEM observation photograph (20,000 times) of the core particles used in Example 1.
 以下、本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。 Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to these embodiments.
(用語の定義)
 本明細書における用語の定義は、下記の通りである。
1.粒子の長径
 走査型電子顕微鏡(SEM)または透過型電子顕微鏡(TEM)観察により測定した値であり、無作為に選んだ一次粒子の長径(例えば、図1のL)の平均値である。なお、一次粒子とは、SEMまたはTEMにより観察される最小の粒子であって、凝集している粒子(二次粒子)とは区別される。
2.粒子の厚み
 SEMまたはTEM観察により測定した値であり、無作為に選んだ一次粒子の厚み(例えば、図1のT)の平均値である。
3.アスペクト比(長径/厚み)
 上記粒子の長径から上記粒子の厚みを除して算出した値である。
4.粒径
 粒径は、粒度分布測定における平均粒径である。
(Definition of terms)
The definitions of terms in the present specification are as follows.
1. 1. Particle major axis A value measured by scanning electron microscope (SEM) or transmission electron microscope (TEM) observation, and is the average value of the major axis (for example, L in FIG. 1) of randomly selected primary particles. The primary particles are the smallest particles observed by SEM or TEM, and are distinguished from aggregated particles (secondary particles).
2. Particle Thickness A value measured by SEM or TEM observation, which is an average value of randomly selected primary particle thicknesses (eg, T in FIG. 1).
3. 3. Aspect ratio (major axis / thickness)
It is a value calculated by dividing the thickness of the particles from the major axis of the particles.
4. Particle size The particle size is the average particle size in the particle size distribution measurement.
A.中空粒子
 本発明の1つの実施形態における中空粒子は、代表的には、シリカで形成される。中空粒子のシリカの含有量は、例えば95重量%以上であり、好ましくは97重量%以上、さらに好ましくは98重量%以上である。
A. Hollow Particles The hollow particles in one embodiment of the present invention are typically formed of silica. The silica content of the hollow particles is, for example, 95% by weight or more, preferably 97% by weight or more, and more preferably 98% by weight or more.
 上記中空粒子の形状は、板状である。板状を採用することにより、上述の耐久性と、低誘電率化、軽量化を同時に達成し得る。また、用いられる部材の小型化(薄膜化)にも十分対応することができる。さらには、高い中空率と中空粒子の強度との両立も図りやすい。 The shape of the hollow particles is plate-like. By adopting the plate shape, the above-mentioned durability, low dielectric constant, and light weight can be achieved at the same time. In addition, it is possible to sufficiently cope with the miniaturization (thin film) of the members used. Furthermore, it is easy to achieve both a high hollow ratio and the strength of hollow particles.
 上記中空粒子のアスペクト比は、2以上であり、好ましくは3以上、さらに好ましくは4以上である。一方、中空粒子のアスペクト比は、例えば100以下であり、好ましくは60以下、さらに好ましくは50以下である。このようなアスペクト比によれば、例えば、後述の樹脂組成物を作製する際の加工性に優れ得る。 The aspect ratio of the hollow particles is 2 or more, preferably 3 or more, and more preferably 4 or more. On the other hand, the aspect ratio of the hollow particles is, for example, 100 or less, preferably 60 or less, and more preferably 50 or less. According to such an aspect ratio, for example, the processability when producing the resin composition described later can be excellent.
 中空粒子の長径は、好ましくは0.1μm以上、さらに好ましくは0.2μm以上である。このような長径によれば、後述の中空率を十分に満足し得る。一方、中空粒子の長径は、好ましくは10μm以下、さらに好ましくは5μm以下である。このような長径によれば、上記小型化(薄膜化)に大きく寄与し得る。 The major axis of the hollow particles is preferably 0.1 μm or more, more preferably 0.2 μm or more. According to such a major axis, the hollow ratio described later can be sufficiently satisfied. On the other hand, the major axis of the hollow particles is preferably 10 μm or less, more preferably 5 μm or less. According to such a major axis, it can greatly contribute to the miniaturization (thin film).
 中空粒子の厚みは、好ましくは0.01μm以上、さらに好ましくは0.05μm以上、特に好ましくは0.1μm以上である。このような厚みによれば、後述の中空率を十分に満足し得る。一方、中空粒子の厚みは、好ましくは5μm以下、さらに好ましくは3μm以下、特に好ましくは2μm以下である。このような厚みによれば、上記小型化(薄膜化)に大きく寄与し得る。 The thickness of the hollow particles is preferably 0.01 μm or more, more preferably 0.05 μm or more, and particularly preferably 0.1 μm or more. With such a thickness, the hollow ratio described later can be sufficiently satisfied. On the other hand, the thickness of the hollow particles is preferably 5 μm or less, more preferably 3 μm or less, and particularly preferably 2 μm or less. With such a thickness, it can greatly contribute to the miniaturization (thin film).
 中空粒子の殻の厚みは、好ましくは10nm以上、さらに好ましくは15nm以上である。このような厚みによれば、例えば、後述の樹脂組成物を作製する際に、中空粒子が壊れるのを効果的に防止し得る。一方、中空粒子の殻の厚みは、好ましくは100nm以下、さらに好ましくは60nm以下である。このような厚みによれば、後述の中空率を十分に満足し得、低誘電率化、軽量化に大きく寄与し得る。なお、殻の厚みは、TEM観察により測定することができる。例えば、無作為に選んだ中空粒子の殻の厚みを測定し、その平均値を算出することにより求められる。 The thickness of the shell of the hollow particles is preferably 10 nm or more, more preferably 15 nm or more. According to such a thickness, for example, when the resin composition described later is produced, it is possible to effectively prevent the hollow particles from being broken. On the other hand, the thickness of the shell of the hollow particles is preferably 100 nm or less, more preferably 60 nm or less. With such a thickness, the hollow ratio described later can be sufficiently satisfied, which can greatly contribute to the reduction of the dielectric constant and the weight. The thickness of the shell can be measured by TEM observation. For example, it is obtained by measuring the thickness of the shell of randomly selected hollow particles and calculating the average value thereof.
 中空粒子の中空率は、好ましくは20%以上、より好ましくは30%以上、さらに好ましくは40%以上、特に好ましくは50%以上である。このような中空率によれば、例えば、低誘電率化、軽量化に大きく寄与し得る。一方、中空粒子の中空率は、好ましくは95%以下、さらに好ましくは90%以下である。このような中空率によれば、例えば、後述の樹脂組成物を作製する際に、中空粒子が壊れるのを効果的に防止し得る。なお、中空率は、後述のコア粒子の体積と中空粒子の体積から算出することができる。 The hollow ratio of the hollow particles is preferably 20% or more, more preferably 30% or more, further preferably 40% or more, and particularly preferably 50% or more. According to such a hollow ratio, for example, it can greatly contribute to lowering the dielectric constant and reducing the weight. On the other hand, the hollow ratio of the hollow particles is preferably 95% or less, more preferably 90% or less. According to such a hollow ratio, for example, when the resin composition described later is produced, it is possible to effectively prevent the hollow particles from being broken. The hollow ratio can be calculated from the volume of the core particles and the volume of the hollow particles, which will be described later.
 中空粒子の細孔容積は、好ましくは1.5cm/g以下、さらに好ましくは1.0cm/g以下である。 The pore volume of the hollow particles is preferably 1.5 cm 3 / g or less, more preferably 1.0 cm 3 / g or less.
 中空粒子の粒径は、好ましくは0.1μm以上、さらに好ましくは0.5μm以上である。一方、中空粒子の粒径は、好ましくは10μm以下、さらに好ましくは5μm以下である。 The particle size of the hollow particles is preferably 0.1 μm or more, more preferably 0.5 μm or more. On the other hand, the particle size of the hollow particles is preferably 10 μm or less, more preferably 5 μm or less.
 中空粒子のBET比表面積は、例えば10m/g以上であってもよく、30m/g以上であってもよい。一方、中空粒子のBET比表面積は、好ましくは250m/g以下、さらに好ましくは200m/g以下である。 The BET specific surface area of the hollow particles may be, for example, 10 m 2 / g or more, or 30 m 2 / g or more. On the other hand, the BET specific surface area of the hollow particles is preferably 250 m 2 / g or less, more preferably 200 m 2 / g or less.
 1つの実施形態においては、上記中空粒子は、任意の適切な表面処理剤による表面処理が施されている。表面処理剤としては、例えば、高級脂肪酸類、アニオン系界面活性剤、カチオン系界面活性剤、リン酸エステル類、カップリング剤、多価アルコールと脂肪酸とのエステル類、アクリル系ポリマーおよびシリコーン処理剤からなる群から選択される少なくとも1つが用いられる。 In one embodiment, the hollow particles are surface treated with any suitable surface treatment agent. Examples of the surface treatment agent include higher fatty acids, anionic surfactants, cationic surfactants, phosphoric acid esters, coupling agents, esters of polyhydric alcohols and fatty acids, acrylic polymers and silicone treatment agents. At least one selected from the group consisting of is used.
 上記中空粒子の製造方法としては、任意の適切な方法が採用され得る。1つの実施形態においては、中空粒子の製造方法は、コア粒子にシェル形成材料を被覆してコアシェル粒子を得ること、および、コアシェル粒子からコア粒子を除去することを含む。 Any appropriate method can be adopted as the method for producing the hollow particles. In one embodiment, the method of producing hollow particles comprises coating the core particles with a shell-forming material to obtain the core-shell particles, and removing the core particles from the core-shell particles.
 上記コア粒子としては、上記中空粒子を製造し得る限り、任意の適切な粒子が採用され得る。具体的には、コア粒子の形状は、板状であることが好ましい。コア粒子のアスペクト比は、好ましくは2以上、さらに好ましくは3以上である。一方、コア粒子のアスペクト比は、好ましくは100以下であり、さらに好ましくは70以下である。 As the core particles, any suitable particles can be adopted as long as the hollow particles can be produced. Specifically, the shape of the core particles is preferably plate-like. The aspect ratio of the core particles is preferably 2 or more, more preferably 3 or more. On the other hand, the aspect ratio of the core particles is preferably 100 or less, more preferably 70 or less.
 コア粒子の長径は、好ましくは0.1μm以上、さらに好ましくは0.2μm以上である。一方、コア粒子の長径は、好ましくは10μm以下、さらに好ましくは5μm以下である。コア粒子の厚みは、好ましくは0.01μm以上、さらに好ましくは0.1μm以上、である。一方、コア粒子の厚みは、好ましくは5μm以下、さらに好ましくは2μm以下である。 The major axis of the core particles is preferably 0.1 μm or more, more preferably 0.2 μm or more. On the other hand, the major axis of the core particles is preferably 10 μm or less, more preferably 5 μm or less. The thickness of the core particles is preferably 0.01 μm or more, more preferably 0.1 μm or more. On the other hand, the thickness of the core particles is preferably 5 μm or less, more preferably 2 μm or less.
 コア粒子の形成材料としては、例えば、後述する酸性溶液に溶解し得る材料が用いられる。この場合、コア粒子の形成材料としては、例えば、水酸化マグネシウム、ハイドロタルサイト、酸化マグネシウム、水酸化カルシウム等の水酸化物、ハイドロタルサイトの酸化物、酸化亜鉛、酸化カルシウム等の酸化物、炭酸カルシウム等の炭酸塩化合物が挙げられる。これらの中でも、水酸化マグネシウム、ハイドロタルサイトが好ましく用いられ、水酸化マグネシウムが特に好ましく用いられる。例えば、水系において安定に存在し得るからである。また、後述の酸性溶液に溶解させる際に、ガス(例えば、炭酸ガス)が発生せず、得られる中空粒子に欠陥が生じるのを抑制し得るからである。 As the core particle forming material, for example, a material that can be dissolved in an acidic solution described later is used. In this case, as the material for forming the core particles, for example, hydroxides such as magnesium hydroxide, hydrotalcite, magnesium oxide and calcium hydroxide, oxides of hydrotalcite, oxides such as zinc oxide and calcium oxide, and the like. Examples thereof include carbonate compounds such as calcium carbonate. Among these, magnesium hydroxide and hydrotalcite are preferably used, and magnesium hydroxide is particularly preferably used. For example, it can exist stably in an aqueous system. Further, when it is dissolved in an acidic solution described later, gas (for example, carbon dioxide gas) is not generated, and it is possible to suppress the occurrence of defects in the obtained hollow particles.
 上記シェル形成材料としては、例えば、水ガラス(NaO・nSiO)、テトラエトキシシラン(Si(OCHCH)に代表されるアルコキシシランが用いられる。 As the shell-forming material, for example, alkoxysilane typified by water glass (Na 2 O · nSiO 2 ) and tetraethoxysilane (Si (OCH 2 CH 3 ) 4 ) are used.
 シェル形成材料による被覆量は、任意の適切な方法により調整され得る。例えば、水ガラスを含むシェル形成材料でコア粒子を被覆する際のpH値を制御することで、被覆量を調整する。具体的には、上記水ガラスは、高pH領域(例えば、pH11以上)において安定であり得る。したがって、例えば、pH調整剤を用いてpH値を下げることで(例えば、pH7以下に)、水ガラス分子を縮合させて、シリカを効率的にコア粒子上に析出させ得る。pH調整剤としては、好ましくは、酸性の溶液が用いられる。具体的には、塩酸、硝酸、硫酸等の強酸の溶液、硝酸アンモニウム、硫酸アンモニウム等の弱酸の溶液が好ましく用いられる。pH調整剤の添加量は、例えば、水ガラスに対する中和率で85%~98%とすることが好ましい。中和率が高すぎると、コア粒子上にシリカが析出するだけでなく、単独のシリカ粒子も生成してしまうおそれがある。また、シェル形成材料による被覆の際に、コア粒子を溶解させるおそれがある。なお、シェル形成材料でコア粒子を被覆する際に加熱(例えば、80℃~90℃に)することによっても、シェルの形成(具体的には、シェルの析出および形成速度)を促進し得る。 The amount of coating with the shell-forming material can be adjusted by any suitable method. For example, the coating amount is adjusted by controlling the pH value when coating the core particles with a shell-forming material containing water glass. Specifically, the water glass can be stable in a high pH region (eg, pH 11 or higher). Therefore, for example, by lowering the pH value with a pH adjuster (for example, to pH 7 or less), water glass molecules can be condensed to efficiently precipitate silica on the core particles. As the pH adjuster, an acidic solution is preferably used. Specifically, a solution of a strong acid such as hydrochloric acid, nitric acid and sulfuric acid, and a solution of a weak acid such as ammonium nitrate and ammonium sulfate are preferably used. The amount of the pH adjuster added is preferably 85% to 98% in terms of the neutralization rate with respect to water glass, for example. If the neutralization rate is too high, not only silica may be precipitated on the core particles, but also single silica particles may be generated. In addition, there is a risk of dissolving core particles when coating with a shell-forming material. It should be noted that heating (for example, 80 ° C. to 90 ° C.) when coating the core particles with the shell-forming material can also promote shell formation (specifically, shell precipitation and formation rate).
 上記コア粒子の除去は、代表的には、酸性溶液にコア粒子を溶解させることにより行う。酸性溶液としては、例えば、塩酸、硫酸、硝酸が用いられる。溶解させる温度は、例えば、30℃~90℃であり、好ましくは50℃~70℃である。このような温度によれば、シェルが壊れやすくなる等の不具合を抑制しながら効率的にコア粒子を溶解させ得る。1つの実施形態においては、例えば、コア粒子と反応して得られる物質(例えば、塩)を再利用する観点から、酸性溶液として塩酸を用いる。 The core particles are typically removed by dissolving the core particles in an acidic solution. As the acidic solution, for example, hydrochloric acid, sulfuric acid, and nitric acid are used. The melting temperature is, for example, 30 ° C. to 90 ° C., preferably 50 ° C. to 70 ° C. With such a temperature, the core particles can be efficiently dissolved while suppressing defects such as the shell becoming fragile. In one embodiment, for example, hydrochloric acid is used as the acidic solution from the viewpoint of reusing a substance (for example, a salt) obtained by reacting with core particles.
 好ましくは、上記中空粒子の製造方法は、シェルを焼成(例えば、大気雰囲気下で)することをさらに含む。焼成を行うことにより、例えば、シェルの疎水性を向上させて(具体的には、シェルのシラノール基をシロキサンに変化させて)、得られる中空粒子の誘電特性を向上させ得る。焼成は、任意の適切なタイミングで行い得る。好ましくは、コアシェル粒子からコア粒子を除去した後に行う。焼成の温度は、例えば、300℃~1300℃である。焼成時間は、例えば、1時間~20時間である。 Preferably, the method for producing hollow particles further comprises firing the shell (eg, in an air atmosphere). By performing firing, for example, the hydrophobicity of the shell can be improved (specifically, the silanol group of the shell is changed to siloxane), and the dielectric properties of the obtained hollow particles can be improved. Baking can be performed at any suitable timing. Preferably, it is performed after removing the core particles from the core shell particles. The firing temperature is, for example, 300 ° C to 1300 ° C. The firing time is, for example, 1 hour to 20 hours.
 本発明の1つの実施形態においては、上記中空粒子は樹脂材料の機能付与剤として用いられる。以下、上記中空粒子を含む樹脂組成物について説明する。 In one embodiment of the present invention, the hollow particles are used as a function-imparting agent for a resin material. Hereinafter, the resin composition containing the hollow particles will be described.
B.樹脂組成物
 本発明の1つの実施形態における樹脂組成物は、樹脂および上記中空粒子を含む。
B. Resin Composition The resin composition in one embodiment of the present invention comprises a resin and the hollow particles described above.
 上記樹脂は、例えば、得られる樹脂組成物の用途等に応じて、任意の適切な樹脂が選択され得る。例えば、樹脂は熱可塑性樹脂であってもよいし、熱硬化性樹脂であってもよい。樹脂の具体例としては、エポキシ樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリエーテルエーテルケトン樹脂、ポリエステル樹脂、ポリヒドロキシポリエーテル樹脂、ポリオレフィン樹脂、フッ素樹脂、液晶ポリマー、変性ポリイミドが挙げられる。これらは、単独で、または、2種以上を組み合わせて用い得る。 For the above resin, for example, any suitable resin can be selected depending on the use of the obtained resin composition and the like. For example, the resin may be a thermoplastic resin or a thermosetting resin. Specific examples of the resin include epoxy resin, polyimide resin, polyamide resin, polyamideimide resin, polyether ether ketone resin, polyester resin, polyhydroxypolyether resin, polyolefin resin, fluororesin, liquid crystal polymer, and modified polyimide. These can be used alone or in combination of two or more.
 上記樹脂組成物における上記中空粒子の含有割合は、好ましくは0.1重量%以上であり、さらに好ましくは0.5重量%以上である。一方、上記含有割合は、好ましくは90重量%以下であり、さらに好ましくは85重量%以下である。 The content ratio of the hollow particles in the resin composition is preferably 0.1% by weight or more, and more preferably 0.5% by weight or more. On the other hand, the content ratio is preferably 90% by weight or less, and more preferably 85% by weight or less.
 樹脂組成物において、樹脂100重量部に対し、中空粒子を0.5重量部以上含有させることが好ましく、さらに好ましくは1重量部以上である。一方、樹脂100重量部に対し、中空粒子を300重量部以下含有させることが好ましく、さらに好ましくは200重量部以下である。 The resin composition preferably contains 0.5 parts by weight or more of hollow particles with respect to 100 parts by weight of the resin, and more preferably 1 part by weight or more. On the other hand, it is preferable that the hollow particles are contained in an amount of 300 parts by weight or less, more preferably 200 parts by weight or less, based on 100 parts by weight of the resin.
 樹脂組成物における中空粒子の体積比率は、好ましくは0.1%以上であり、さらに好ましくは0.5%以上である。一方、樹脂組成物における中空粒子の体積比率は、好ましくは70%以下であり、さらに好ましくは60%以下である。例えば、樹脂組成物を作製する際の加工性に優れ得るからである。 The volume ratio of the hollow particles in the resin composition is preferably 0.1% or more, and more preferably 0.5% or more. On the other hand, the volume ratio of the hollow particles in the resin composition is preferably 70% or less, more preferably 60% or less. For example, this is because the processability when producing a resin composition can be excellent.
 上記樹脂組成物は、任意成分を含み得る。任意成分としては、例えば、硬化剤(具体的には、上記樹脂の硬化剤)、低応力化剤、着色剤、密着向上剤、離型剤、流動調整剤、脱泡剤、溶剤、充填剤が挙げられる。これらは、単独で、または、2種以上を組み合わせて用い得る。1つの実施形態においては、樹脂組成物は硬化剤を含む。硬化剤の含有量は、樹脂100重量部に対し、例えば、1重量部~150重量部である。 The resin composition may contain arbitrary components. Optional components include, for example, a curing agent (specifically, a curing agent for the above resin), a low stress agent, a colorant, an adhesion improver, a mold release agent, a flow conditioner, a defoaming agent, a solvent, and a filler. Can be mentioned. These can be used alone or in combination of two or more. In one embodiment, the resin composition comprises a curing agent. The content of the curing agent is, for example, 1 part by weight to 150 parts by weight with respect to 100 parts by weight of the resin.
 上記樹脂組成物の作製方法としては、任意の適切な方法が採用され得る。具体的には、上記樹脂中に、任意の適切な分散方法により、上記中空粒子を分散させることにより、樹脂組成物を得る。分散方法としては、例えば、ホモミキサー、ディスパー、ボールミル等の各種攪拌機による分散、自転公転ミキサーによる分散、3本ロールを用いた剪断力による分散、超音波処理による分散が挙げられる。 Any appropriate method can be adopted as the method for producing the above resin composition. Specifically, the resin composition is obtained by dispersing the hollow particles in the resin by an arbitrary appropriate dispersion method. Examples of the dispersion method include dispersion by various stirrers such as a homomixer, a dispenser, and a ball mill, dispersion by a rotation / revolution mixer, dispersion by a shearing force using three rolls, and dispersion by sonication.
 上記樹脂組成物は、代表的には、所望の形状に成形された樹脂成形体とされる。例えば、モールドを用いて所望の形状に成形された樹脂成形体とされる。樹脂成形体の成形に際し、樹脂組成物は、任意の適切な処理(例えば、硬化処理)が施され得る。 The resin composition is typically a resin molded product molded into a desired shape. For example, it is a resin molded body molded into a desired shape using a mold. In molding the resin molded product, the resin composition can be subjected to any appropriate treatment (for example, curing treatment).
 本発明の1つの実施形態においては、上記樹脂組成物は、積層体に含まれる樹脂層とされる。以下、上記樹脂組成物で形成される樹脂層を有する積層体について説明する。 In one embodiment of the present invention, the resin composition is a resin layer contained in a laminate. Hereinafter, a laminate having a resin layer formed of the above resin composition will be described.
C.積層体
 図2は、本発明の1つの実施形態における積層体の概略断面図である。積層体10は、樹脂層11と金属箔12とを有する。樹脂層11は、上記樹脂組成物から形成される。具体的には、樹脂層11は、上記樹脂と上記中空粒子とを含む。樹脂層11において、樹脂層11の面内方向に、板状の中空粒子の面内方向が配向していることが好ましい。樹脂層の薄膜化に寄与し得るからである。図示しないが、積層体10は、その他の層を含み得る。例えば、樹脂層11の片側(金属箔12が配置されない側)に積層される基材(代表的には、樹脂フィルム)が挙げられる。積層体10は、代表的には、配線回路基板として用いられる。
C. Laminated Body FIG. 2 is a schematic cross-sectional view of the laminated body according to one embodiment of the present invention. The laminate 10 has a resin layer 11 and a metal foil 12. The resin layer 11 is formed from the above resin composition. Specifically, the resin layer 11 contains the resin and the hollow particles. In the resin layer 11, it is preferable that the in-plane direction of the plate-shaped hollow particles is oriented in the in-plane direction of the resin layer 11. This is because it can contribute to thinning the resin layer. Although not shown, the laminate 10 may include other layers. For example, a base material (typically, a resin film) laminated on one side of the resin layer 11 (the side on which the metal foil 12 is not arranged) can be mentioned. The laminate 10 is typically used as a wiring circuit board.
 上記樹脂層の厚みは、例えば5μm以上、好ましくは10μm以上である。一方、樹脂層の厚みは、例えば100μm以下、好ましくは50μm以下、さらに好ましくは25μm以下である。このような厚みによれば、例えば、近年の電子部材の小型化に十分に対応することができる。 The thickness of the resin layer is, for example, 5 μm or more, preferably 10 μm or more. On the other hand, the thickness of the resin layer is, for example, 100 μm or less, preferably 50 μm or less, and more preferably 25 μm or less. With such a thickness, for example, it is possible to sufficiently cope with the recent miniaturization of electronic members.
 上記金属箔を形成する金属としては、任意の適切な金属が用いられ得る。例えば、銅、アルミニウム、ニッケル、クロム、金が挙げられる。これらは、単独で、または、2種以上を組み合わせて用い得る。金属箔の厚みは、例えば、2μm~35μmである。 Any suitable metal can be used as the metal forming the metal foil. For example, copper, aluminum, nickel, chromium and gold can be mentioned. These can be used alone or in combination of two or more. The thickness of the metal foil is, for example, 2 μm to 35 μm.
 上記積層体の作製方法としては、任意の適切な方法が採用され得る。例えば、上記基材上に上記樹脂組成物を塗工して塗工層を形成し、この塗工層上に上記金属箔を積層して積層体を得る。別の具体例としては、上記金属箔に上記樹脂組成物を塗工して塗工層を形成して積層体を得る。代表的には、任意の適切なタイミングで、塗工層に加熱や光照射等の処理を施し、塗工層を硬化させる。塗工に際し、上記樹脂組成物を、任意の適切な溶剤に溶解させて用いてもよい。 Any appropriate method can be adopted as the method for producing the above-mentioned laminate. For example, the resin composition is coated on the base material to form a coating layer, and the metal foil is laminated on the coating layer to obtain a laminate. As another specific example, the resin composition is applied to the metal foil to form a coating layer to obtain a laminate. Typically, the coating layer is subjected to a treatment such as heating or light irradiation at an arbitrary appropriate timing to cure the coating layer. At the time of coating, the above resin composition may be dissolved in any suitable solvent and used.
 以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。なお、各特性の測定方法は、断りがない限り、下記の通りである。
1.粒子の長径
 SEM観察またはTEM観察により長径を算出した。具体的には、粒子のSEM写真またはTEM写真の中から無作為に選んだ100個の一次粒子の長径を測定し、得られた測定値の算術平均(平均長径)を求めた。なお、コア粒子のSEM観察の倍率は20000倍、中空粒子のTEM観察の倍率は10000倍とした。
2.厚み
 SEM観察またはTEM観察により粒子の厚みおよび粒子の殻の厚みを算出した。具体的には、粒子のSEM写真またはTEM写真の中から無作為に選んだ100個の一次粒子の厚みを測定し、得られた測定値の算術平均(平均厚み)を求めた。なお、コア粒子のSEM観察の倍率は50000倍、中空粒子のTEM観察の倍率は10000倍および10000倍とした。
3.アスペクト比
 SEM観察またはTEM観察によりアスペクト比を算出した。具体的には、上記粒子の平均長径を上記粒子の平均厚みで除してアスペクト比を算出した。
4.中空率
 コア粒子の体積と中空粒子の体積から算出した。具体的には、(コア粒子1粒子当たりの体積)/(中空粒子1粒子当たりの体積)×100から算出した。なお、コア粒子および中空粒子の1粒子当たりの体積は、実際の形状を円柱における体積で近似し、上記長径を円の直径とし、上記厚みを円柱の高さとして算出した。
5.粒径
 大塚電子製の「ELSZ-2」を用いて、動的光散乱法により粒径(平均二次粒子径)を測定した(解析条件は散乱強度分布)。測定用試料は、水70mLに粒子0.05gを加えた後、300μAで3分間超音波処理を施すことにより調製した。
6.細孔容積
 マイクロトラック・ベル株式会社の「BELsorp-max」で測定した。具体的には、窒素ガスを用いた定容量式ガス吸着法で測定し、BJH法による解析で細孔容積を求めた。
7.BET比表面積
 マイクロトラック・ベル株式会社の「BELsorp-mini」で測定した。具体的には、窒素ガスを用いた定容量式ガス吸着法で測定し、BET多点法による解析で比表面積を求めた。
Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples. Unless otherwise specified, the measurement method for each characteristic is as follows.
1. 1. Major axis of particles The major axis was calculated by SEM observation or TEM observation. Specifically, the major axis of 100 primary particles randomly selected from the SEM photograph or the TEM photograph of the particles was measured, and the arithmetic mean (average major axis) of the obtained measured values was obtained. The SEM observation magnification of the core particles was 20000 times, and the TEM observation magnification of the hollow particles was 10000 times.
2. Thickness The particle thickness and the particle shell thickness were calculated by SEM observation or TEM observation. Specifically, the thicknesses of 100 primary particles randomly selected from SEM photographs or TEM photographs of the particles were measured, and the arithmetic mean (average thickness) of the obtained measured values was obtained. The SEM observation magnification of the core particles was 50,000 times, and the TEM observation magnification of the hollow particles was 10000 times and 10000 times.
3. 3. Aspect ratio The aspect ratio was calculated by SEM observation or TEM observation. Specifically, the aspect ratio was calculated by dividing the average major axis of the particles by the average thickness of the particles.
4. Hollow ratio Calculated from the volume of core particles and the volume of hollow particles. Specifically, it was calculated from (volume per core particle) / (volume per hollow particle) × 100. The volumes of the core particles and the hollow particles per particle were calculated by approximating the actual shape with the volume of the cylinder, the major axis being the diameter of the circle, and the thickness being the height of the cylinder.
5. Particle size Using "ELSZ-2" manufactured by Otsuka Electronics Co., Ltd., the particle size (average secondary particle size) was measured by a dynamic light scattering method (analysis condition is scattering intensity distribution). The sample for measurement was prepared by adding 0.05 g of particles to 70 mL of water and then sonicating at 300 μA for 3 minutes.
6. Pore volume Measured by "BELsorp-max" of Microtrac Bell Co., Ltd. Specifically, the measurement was carried out by a constant-volume gas adsorption method using nitrogen gas, and the pore volume was determined by analysis by the BJH method.
7. BET specific surface area Measured with "BELsorp-mini" of Microtrac Bell Co., Ltd. Specifically, the measurement was carried out by a constant-volume gas adsorption method using nitrogen gas, and the specific surface area was determined by analysis by the BET multipoint method.
[実施例1]
 長径0.8μm、厚み0.2μm、アスペクト比4の板状の水酸化マグネシウム粒子を、イオン交換水を用いて固形分濃度60g/Lに調整し、水酸化マグネシウムのスラリーを得た。
[Example 1]
Plate-shaped magnesium hydroxide particles having a major axis of 0.8 μm, a thickness of 0.2 μm, and an aspect ratio of 4 were adjusted to a solid content concentration of 60 g / L using ion-exchanged water to obtain a magnesium hydroxide slurry.
 次いで、得られた水酸化マグネシウムのスラリー6.7Lを撹拌しながら80℃に加温し、これに、0.57mol/Lの3号水ガラス(NaO・3.14SiO、富士フィルム和光純薬製)268mlを10分かけて加えた。その後、さらに、3号水ガラス1340mlと0.5Nの塩酸3.25Lを同時に加え始めた。ここで、3号水ガラスは50分かけて加え、塩酸は60分かけて加えた。こうして得られたスラリーを30分間熟成させた後、脱水・水洗し、コアシェル粒子前駆体のケーキを得た。 Next, 6.7 L of the obtained magnesium hydroxide slurry was heated to 80 ° C. with stirring, and this was mixed with 0.57 mol / L No. 3 water glass (Na 2 O · 3.14SiO 2 , Fujifilm sum). 268 ml (manufactured by Kojunyaku) was added over 10 minutes. After that, 1340 ml of No. 3 water glass and 3.25 L of 0.5 N hydrochloric acid were started to be added at the same time. Here, No. 3 water glass was added over 50 minutes, and hydrochloric acid was added over 60 minutes. The slurry thus obtained was aged for 30 minutes, then dehydrated and washed with water to obtain a cake of core-shell particle precursor.
 次いで、得られたコアシェル粒子前駆体のケーキをイオン交換水で固形分濃度60g/Lに調整し、撹拌しながら80℃に加温し、これに、0.57mol/Lの3号水ガラス268mlを10分かけて加えた。その後、さらに、3号水ガラス670mlと0.5Nの塩酸1.9Lを同時に加え始めた。ここで、3号水ガラスは25分かけて加え、塩酸は35分かけて加えた。こうして得られたスラリーを30分間熟成させた後、脱水・水洗し、コアシェル粒子のケーキを得た。
 ここで、FT-IR(JASCO製の「FT/IR-4100」)を用いて得られたコアシェル粒子についてATR法で測定したところ、水酸化マグネシウムの3500~3800cm-1付近のOH由来のピークだけでなく、1000~1300cm-1付近のSi-O-Si由来のピークが確認された。
Next, the cake of the obtained core-shell particle precursor was adjusted to a solid content concentration of 60 g / L with ion-exchanged water and heated to 80 ° C. with stirring, to which 268 ml of No. 3 water glass of 0.57 mol / L was added. Was added over 10 minutes. Then, further, 670 ml of No. 3 water glass and 1.9 L of 0.5 N hydrochloric acid were started to be added at the same time. Here, No. 3 water glass was added over 25 minutes, and hydrochloric acid was added over 35 minutes. The slurry thus obtained was aged for 30 minutes, then dehydrated and washed with water to obtain a cake of core-shell particles.
Here, when the core-shell particles obtained by using FT-IR (“FT / IR-4100” manufactured by JASCO) were measured by the ATR method, only the peak derived from OH of magnesium hydroxide near 3500 to 3800 cm-1 was measured. However, a peak derived from Si—O—Si near 1000 to 1300 cm -1 was confirmed.
 次いで、得られたコアシェル粒子に0.7Nの塩酸21.6Lを加え、室温撹拌下で再懸濁し、コアシェル粒子の固形分濃度が25g/Lとなるように調整した後、これを60℃に加温し、1時間熟成させてコア粒子を溶解させ、中空シリカのスラリーを得た。
 得られた中空シリカのスラリーを脱水・水洗して中空シリカのケーキとし、この中空シリカのケーキを60℃で28時間乾燥させて中空シリカ粒子(長径:0.86μm、厚み:0.26μm、アスペクト比:3.3、殻の厚み:30nm、中空率:66%、粒径:0.95μm、細孔容積:0.67cm/g、BET比表面積:123m/g)を得た。
Next, 21.6 L of 0.7 N hydrochloric acid was added to the obtained core-shell particles, and the mixture was resuspended under stirring at room temperature to adjust the solid content concentration of the core-shell particles to 25 g / L, and then the temperature was adjusted to 60 ° C. The mixture was heated and aged for 1 hour to dissolve the core particles to obtain a hollow silica slurry.
The obtained hollow silica slurry is dehydrated and washed with water to obtain a hollow silica cake, and the hollow silica cake is dried at 60 ° C. for 28 hours to obtain hollow silica particles (major axis: 0.86 μm, thickness: 0.26 μm, aspect). Ratio: 3.3, shell thickness: 30 nm, hollow ratio: 66%, particle size: 0.95 μm, pore volume: 0.67 cm 3 / g, BET specific surface area: 123 m 2 / g) was obtained.
 FT-IR(JASCO製の「FT/IR-4100」)を用いて得られた中空シリカ粒子についてATR法で測定したところ、水酸化マグネシウム粒子の3500~3800cm-1付近のOH由来のピークは確認されず、1000~1300cm-1付近のSi-O-Si由来のピークのみが確認された。また、X線回折(PANalytical製の「EMPYRIAN」)で中空シリカ粒子を分析したところ、水酸化マグネシウムのピークは確認されず、アモルファスシリカであった。なお、得られた中空シリカ粒子の重量から、上記コアシェル粒子中のシリカの割合は26重量%であった。 When the hollow silica particles obtained by using FT-IR (“FT / IR-4100” manufactured by JASCO) were measured by the ATR method, the peak derived from OH of the magnesium hydroxide particles near 3500 to 3800 cm-1 was confirmed. However, only the peak derived from Si—O—Si around 1000 to 1300 cm -1 was confirmed. Moreover, when the hollow silica particles were analyzed by X-ray diffraction (“EMPYRIAN” manufactured by PANalytical), the peak of magnesium hydroxide was not confirmed, and it was amorphous silica. From the weight of the obtained hollow silica particles, the ratio of silica in the core-shell particles was 26% by weight.
[実施例2]
 コアシェル粒子の形成に際し、塩酸の濃度を0.5Nから0.52Nにしたこと以外は実施例1と同様にして、中空粒子(長径:0.88μm、厚み:0.28μm、アスペクト比:3.1、殻の厚み:40nm、中空率:59%、粒径:1.20μm、細孔容積:0.50cm/g、BET比表面積:81m/g)を得た。
[Example 2]
Hollow particles (major axis: 0.88 μm, thickness: 0.28 μm, aspect ratio: 3. 1. Shell thickness: 40 nm, hollow ratio: 59%, particle size: 1.20 μm, pore volume: 0.50 cm 3 / g, BET specific surface area: 81 m 2 / g).
[実施例3]
 長径0.8μm、厚み0.2μm、アスペクト比4の板状の水酸化マグネシウム粒子のかわりに長径0.2μm、厚み0.07μm、アスペクト比2.9の板状のハイドロタルサイト(協和化学工業株式会社製の「DHT4」)を用いたこと、および、コアシェル粒子の形成に際し、塩酸の濃度を0.5Nから0.49Nにしたこと以外は実施例1と同様にして、中空粒子(長径:0.246μm、厚み:0.116μm、アスペクト比:2.1、殻の厚み:23nm、中空率:53%、粒径:0.94μm、細孔容積:0.85cm/g、BET比表面積:135m/g)を得た。
[Example 3]
Instead of plate-shaped magnesium hydroxide particles with a major axis of 0.8 μm, thickness of 0.2 μm, and an aspect ratio of 4, plate-shaped hydrotalcite with a major axis of 0.2 μm, thickness of 0.07 μm, and an aspect ratio of 2.9 (Kyowa Chemical Industry Co., Ltd.) Hollow particles (major axis: major axis:: 0.246 μm, thickness: 0.116 μm, aspect ratio: 2.1, shell thickness: 23 nm, hollow ratio: 53%, particle size: 0.94 μm, pore volume: 0.85 cm 3 / g, BET specific surface area : 135 m 2 / g) was obtained.
<TEM観察>
 実施例1の中空粒子について透過型電子顕微鏡(日本電子株式会社製の「JEM-2100PLUS」)による観察結果を図3に示す。図3から、殻(シリカ層)の厚みが30nmの板状の中空粒子であることが確認された。なお、図4にコア粒子として用いた水酸化マグネシウム粒子のSEM写真を示すが、図3および図4から、コア粒子の板状形状を保った中空粒子であることが確認された。
<TEM observation>
FIG. 3 shows the observation results of the hollow particles of Example 1 with a transmission electron microscope (“JEM-2100PLUS” manufactured by JEOL Ltd.). From FIG. 3, it was confirmed that the shell (silica layer) was a plate-shaped hollow particle having a thickness of 30 nm. Although FIG. 4 shows an SEM photograph of the magnesium hydroxide particles used as the core particles, it was confirmed from FIGS. 3 and 4 that the core particles were hollow particles having a plate-like shape.
<樹脂組成物>
(1)超音波処理による混合
 ビスフェノールF型エポキシ樹脂(三菱ケミカル株式会社製の「JER806」)1g、硬化剤(三菱ケミカル株式会社製の「LV11」)0.38gおよび実施例1で得られた中空粒シリカ粒子0.04gを混合し、樹脂組成物1を得た。混合は、株式会社日本精機製作所製の「NS-200-60」による超音波処理を1分間施すことにより行った。
(2)ホモジナイザーによる混合
 ビスフェノールF型エポキシ樹脂(三菱ケミカル株式会社製の「JER806」)5g、硬化剤(三菱ケミカル株式会社製の「LV11」)1.9gおよび実施例1で得られた中空粒シリカ粒子0.2gを混合し、樹脂組成物2を得た。混合は、ハンディホモジナイザー(IKAジャパン株式会社製の「T10ベーシック」)を用いて8000rpm、5分の条件で行った。
(3)自転公転ミキサーによる混合
 ビスフェノールF型エポキシ樹脂(三菱ケミカル株式会社製の「JER806」)5g、硬化剤(三菱ケミカル株式会社製の「LV11」)2.5gおよび実施例1で得られた中空粒シリカ粒子0.875gを混合し、樹脂組成物3を得た。混合は、自転公転ミキサー(株式会社写真化学製の「カクハンターSK-300SVII」)を用いて1700rpm、3分の条件で行った。
<Resin composition>
(1) Mixing by sonication 1 g of bisphenol F type epoxy resin (“JER806” manufactured by Mitsubishi Chemical Co., Ltd.), 0.38 g of curing agent (“LV11” manufactured by Mitsubishi Chemical Co., Ltd.), and obtained in Example 1. 0.04 g of hollow silica particles were mixed to obtain a resin composition 1. Mixing was carried out by applying ultrasonic treatment with "NS-200-60" manufactured by Nissei Tokyo Office Co., Ltd. for 1 minute.
(2) Mixing with a homogenizer 5 g of bisphenol F type epoxy resin (“JER806” manufactured by Mitsubishi Chemical Co., Ltd.), 1.9 g of curing agent (“LV11” manufactured by Mitsubishi Chemical Co., Ltd.) and hollow particles obtained in Example 1. 0.2 g of silica particles were mixed to obtain a resin composition 2. Mixing was carried out using a handy homogenizer (“T10 Basic” manufactured by IKA Japan Co., Ltd.) at 8000 rpm for 5 minutes.
(3) Mixing with a rotation / revolution mixer 5 g of bisphenol F type epoxy resin (“JER806” manufactured by Mitsubishi Chemical Co., Ltd.), 2.5 g of curing agent (“LV11” manufactured by Mitsubishi Chemical Co., Ltd.), and obtained in Example 1. 0.875 g of hollow grain silica particles were mixed to obtain a resin composition 3. Mixing was carried out using a rotation / revolution mixer (“Kakuhunter SK-300SVII” manufactured by Photochemical Co., Ltd.) at 1700 rpm for 3 minutes.
<樹脂成形体>
 上記樹脂組成物1-3を、それぞれ、厚み2mmのシリコーン樹脂製のモールドに流し込み、80℃で3時間の条件で硬化させて、樹脂成形体1-3を得た。
<Resin molded product>
Each of the above resin compositions 1-3 was poured into a silicone resin mold having a thickness of 2 mm and cured at 80 ° C. for 3 hours to obtain a resin molded product 1-3.
 得られた成形体をクロスセクションポリッシャー(JEOL製の「IB-09010CP」)で切断し、断面をSEM(JEOL製の「JSM-7600F」)で観察したところ、樹脂成形体1-3のいずれにおいても、中空粒子の破壊は確認されなかった。また、樹脂成形体1-3のいずれにおいても、中空粒子内部への樹脂の侵入は確認されなかった。 The obtained molded product was cut with a cross section polisher (JEOL's "IB-09010CP"), and the cross section was observed with an SEM (JEOL's "JSM-7600F"). However, no destruction of hollow particles was confirmed. In addition, invasion of the resin into the hollow particles was not confirmed in any of the resin molded bodies 1-3.
 本発明の中空粒子は、代表的には、電子材料に好適に用いられ得る。他にも、例えば、断熱材料、防音材料、衝撃緩衝材料、応力緩衝材料、光学材料、軽量化材料に用いられ得る。 The hollow particles of the present invention can typically be suitably used for electronic materials. In addition, for example, it can be used as a heat insulating material, a soundproofing material, a shock-cushioning material, a stress-cushioning material, an optical material, and a weight-reducing material.
 L 長径
 T 厚み
10 積層体
11 樹脂層
12 金属箔
L Major axis T Thickness 10 Laminated body 11 Resin layer 12 Metal leaf

Claims (9)

  1.  シリカを含み、アスペクト比が2以上で板状の中空粒子。 Plate-shaped hollow particles containing silica and having an aspect ratio of 2 or more.
  2.  長径が0.1μm以上10μm以下である、請求項1に記載の中空粒子。 The hollow particle according to claim 1, wherein the major axis is 0.1 μm or more and 10 μm or less.
  3.  厚みが0.01μm以上5μm以下である、請求項1または2に記載の中空粒子。 The hollow particle according to claim 1 or 2, which has a thickness of 0.01 μm or more and 5 μm or less.
  4.  殻の厚みが10nm以上100nm以下である、請求項1から3のいずれかに記載の中空粒子。 The hollow particle according to any one of claims 1 to 3, wherein the thickness of the shell is 10 nm or more and 100 nm or less.
  5.  中空率が20%以上95%以下である、請求項1から4のいずれかに記載の中空粒子。 The hollow particle according to any one of claims 1 to 4, wherein the hollow ratio is 20% or more and 95% or less.
  6.  樹脂、および、
     請求項1から5のいずれかに記載の中空粒子、
     を含む、樹脂組成物。
    Resin and
    The hollow particle according to any one of claims 1 to 5.
    A resin composition comprising.
  7.  請求項6に記載の樹脂組成物から形成される、樹脂成形体。 A resin molded product formed from the resin composition according to claim 6.
  8.  請求項6に記載の樹脂組成物から形成される樹脂層を有する、積層体。 A laminate having a resin layer formed from the resin composition according to claim 6.
  9.  前記樹脂層の厚みが25μm以下である、請求項8に記載の積層体。 The laminate according to claim 8, wherein the thickness of the resin layer is 25 μm or less.
PCT/JP2021/002364 2020-02-28 2021-01-25 Hollow particle, resin composition, and resin molded article and laminate each using said resin composition WO2021171858A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022503168A JP7385734B2 (en) 2020-02-28 2021-01-25 Hollow particles, resin compositions, and resin molded bodies and laminates using the resin compositions
KR1020227029228A KR20220132584A (en) 2020-02-28 2021-01-25 Hollow particles, resin composition, and resin molded article and laminate using the resin composition
CN202180016759.7A CN115175873A (en) 2020-02-28 2021-01-25 Hollow particle, resin composition, and resin molded body and laminate using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-033946 2020-02-28
JP2020033946 2020-02-28

Publications (1)

Publication Number Publication Date
WO2021171858A1 true WO2021171858A1 (en) 2021-09-02

Family

ID=77489957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002364 WO2021171858A1 (en) 2020-02-28 2021-01-25 Hollow particle, resin composition, and resin molded article and laminate each using said resin composition

Country Status (5)

Country Link
JP (1) JP7385734B2 (en)
KR (1) KR20220132584A (en)
CN (1) CN115175873A (en)
TW (1) TW202200500A (en)
WO (1) WO2021171858A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006143487A (en) * 2004-11-16 2006-06-08 Nissan Motor Co Ltd Platy alumina particles, method for manufacturing platy alumina particles, resin composition and method for manufacturing resin composition
KR20180086616A (en) * 2017-01-23 2018-08-01 한국산업기술대학교산학협력단 METHOD OF SILICA PARTICLES FROM SODIΜM SILICATE USING ZnO INORGANIC TEMPLATE PARTICLES
CN108483451A (en) * 2018-05-25 2018-09-04 苏州大学 The preparation method of hollow-core construction micro/nano material
JP2019183005A (en) * 2018-04-11 2019-10-24 Agc株式会社 Fluorine resin sheet, laminate, and manufacturing method therefor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4857801B2 (en) 2005-02-16 2012-01-18 コニカミノルタオプト株式会社 Antireflection film, method for producing antireflection film, polarizing plate and display device
JP2007025329A (en) 2005-07-19 2007-02-01 Konica Minolta Opto Inc Antireflection film, method for producing same, polarizing plate, and display device
JP2007056158A (en) 2005-08-25 2007-03-08 Nagoya Institute Of Technology Resin composition and wiring circuit board using the same
EP2455428B1 (en) * 2009-07-14 2019-09-04 Kao Corporation Low-permittivity resin composition
WO2019230661A1 (en) * 2018-05-28 2019-12-05 三菱瓦斯化学株式会社 Resin composition, prepreg, metal foil-clad laminate board, resin composite sheet, and, printed circuit board

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006143487A (en) * 2004-11-16 2006-06-08 Nissan Motor Co Ltd Platy alumina particles, method for manufacturing platy alumina particles, resin composition and method for manufacturing resin composition
KR20180086616A (en) * 2017-01-23 2018-08-01 한국산업기술대학교산학협력단 METHOD OF SILICA PARTICLES FROM SODIΜM SILICATE USING ZnO INORGANIC TEMPLATE PARTICLES
JP2019183005A (en) * 2018-04-11 2019-10-24 Agc株式会社 Fluorine resin sheet, laminate, and manufacturing method therefor
CN108483451A (en) * 2018-05-25 2018-09-04 苏州大学 The preparation method of hollow-core construction micro/nano material

Also Published As

Publication number Publication date
CN115175873A (en) 2022-10-11
JP7385734B2 (en) 2023-11-22
TW202200500A (en) 2022-01-01
JPWO2021171858A1 (en) 2021-09-02
KR20220132584A (en) 2022-09-30

Similar Documents

Publication Publication Date Title
KR101439216B1 (en) Method for producing fine mesoporous silica particles, fine mesoporous silica particles, liquid dispersion of fine mesoporous silica particles, composition containing fine mesoporous silica particles, and molded article containing fine mesoporous silica particles
KR101790553B1 (en) Process for production of hollow silica particles, hollow silica particles, and composition and insulation sheet which contain same
CN115190867A (en) Hollow silica particles and method for producing same
JP2007056158A (en) Resin composition and wiring circuit board using the same
JP2007161518A (en) Low permittivity filler, and low permittivity composition and low permittivity film using this
JP2023138688A (en) Hollow particle, method for producing hollow particle, resin composition, and resin molded body and laminated body using resin composition
JP2009107863A (en) Surface-modified mesoporous silica, slurry composition for addition to resin using the same, filler for resin, resin composition, electronic component for high frequency and substrate for high frequency circuit
JP2023158027A (en) Hollow particle, method for producing hollow particle, resin composition, and resin molding and laminate using resin composition
JP5480497B2 (en) Method for producing surface-encapsulated silica-based particles, surface-encapsulated silica-based particles, and a resin composition for semiconductor encapsulation obtained by mixing the particles
WO2021171858A1 (en) Hollow particle, resin composition, and resin molded article and laminate each using said resin composition
JP2010120812A (en) Method for producing mesoporous silica particles, mesoporous silica particle dispersion, mesoporous silica particle-containing composition, and mesoporous silica particle-containing molding
WO2023100676A1 (en) Hollow silica particles and method for producing same
JP2009073681A (en) Porous silica aggregate particles
JP2011046888A (en) Method for preparing resin composition and metal resin laminate
JP6028420B2 (en) Hollow particles and method for producing the same
WO2023008290A1 (en) Spherical silica powder and method for producing spherical silica powder
WO2024004738A1 (en) Magnesium oxide powder and resin composition using same
TW202406842A (en) Hollow particle and method for manufacturing same
WO2023243572A1 (en) Method for producing spherical silica powder
WO2024004736A1 (en) Magnesium oxide powder and resin composition which uses same
JP2023181993A (en) Method for producing spherical silica powder
WO2022019223A1 (en) Dispersion, composite particles, and method for producing composite particles
JP2023181991A (en) Method for producing spherical silica powder
WO2023218949A1 (en) Silica particle dispersion liquid
JP2024033644A (en) Method of producing hollow silica particle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21760284

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022503168

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227029228

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21760284

Country of ref document: EP

Kind code of ref document: A1