JP7379606B2 - 光検出装置および光検出システム - Google Patents

光検出装置および光検出システム Download PDF

Info

Publication number
JP7379606B2
JP7379606B2 JP2022119420A JP2022119420A JP7379606B2 JP 7379606 B2 JP7379606 B2 JP 7379606B2 JP 2022119420 A JP2022119420 A JP 2022119420A JP 2022119420 A JP2022119420 A JP 2022119420A JP 7379606 B2 JP7379606 B2 JP 7379606B2
Authority
JP
Japan
Prior art keywords
semiconductor region
type semiconductor
region
photodetection
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022119420A
Other languages
English (en)
Other versions
JP2022161909A (ja
Inventor
和浩 森本
真人 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Publication of JP2022161909A publication Critical patent/JP2022161909A/ja
Priority to JP2023187257A priority Critical patent/JP2024012455A/ja
Application granted granted Critical
Publication of JP7379606B2 publication Critical patent/JP7379606B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/1461Pixel-elements with integrated switching, control, storage or amplification elements characterised by the photosensitive area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/1446Devices controlled by radiation in a repetitive configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • H01L27/14605Structural or functional details relating to the position of the pixel elements, e.g. smaller pixel elements in the center of the imager compared to pixel elements at the periphery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • H01L27/14607Geometry of the photosensitive area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02016Circuit arrangements of general character for the devices
    • H01L31/02019Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02027Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier for devices working in avalanche mode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02162Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo, light or radio wave sensitive means, e.g. infrared sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1463Pixel isolation structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1464Back illuminated imager structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Remote Sensing (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Optics & Photonics (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Studio Devices (AREA)

Description

本発明は、光電変換を行う光検出装置および光検出システムに関する。
従来、アバランシェ(電子なだれ)倍増を利用し、単一光子レベルの微弱光を検出可能な光検出装置が知られている。
特許文献1では、光電変換部を構成する半導体領域のPN接合領域において、単一光子に起因する光電荷がアバランシェ増幅を起こすSPAD(Single Photon Avalanche Diode)を開示している。
また、特許文献1のSPADは、半導体基板の表面に高い不純物濃度のP型半導体領域が配され、P型半導体領域の下部にはN型半導体領域が配されている。N型半導体領域はN型のエピタキシャル層に含まれるように配される。P型半導体領域とN型半導体領域とはPN接合を構成し、PN接合には高い逆バイアス電圧が印加されている。
米国特許第9209336号明細書
特許文献1に記載のSPADにおいて、電荷を検出する領域はPN接合領域となる。電荷を検出する領域には、強電界が生じているため、強電界によってPN接合間にトンネル効果が生じるおそれがある。トンネル効果によって生じた電荷は、電荷を検出する領域で偽信号として検出され、ノイズとなるおそれがある。このトンネル効果によって生じる電荷は、電荷を検出する領域の面積に比例して多くなる。
一方で、電荷を検出する領域の面積を小さくした場合には、トンネル効果によって生じる電荷を抑制することが可能である。しかし、電荷を検出する領域の面積を小さくすると、光検出効率が下がってしまうおそれがある。
そこで、本発明はノイズを抑制しつつ、光検出効率の低下を抑制することが可能な光検出装置を提供することを目的とする。
本発明は、第1面と、前記第1面と対向する第2面とを有する半導体基板と、前記半導体基板に複数のアバランシェダイオードが配された領域と、を有する光検出装置であって、前記アバランシェダイオードは、前記第1面に対して第1の深さに配された第1導電型の第1半導体領域と、前記第1の深さよりも前記第1面に対して深い第2の深さに配された前記第1導電型と反対導電型である第2導電型の第2半導体領域と、前記第2の深さよりも前記第1面に対して深い第3の深さに配された前記第1導電型の第3半導体領域と、前記複数の前記アバランシェダイオードの各々の前記第3半導体領域の間に設けられた前記第2導電型の第4半導体領域と、前記第1面に対して前記第3半導体領域よりも深い第4の深さに配された前記第2導電型の第5半導体領域と、を有し、前記第1半導体領域と前記第2半導体領域とによりアバランシェ増幅領域が構成され、平面視において、前記第1半導体領域と前記第2半導体領域とが重複する領域の面積は前記第3半導体領域の面積よりも小さく、前記第4半導体領域は、前記第2半導体領域と電気的に接続し、前記第4半導体領域は、前記第5半導体領域と接していることを特徴とする。
本発明によれば、ノイズを抑制しつつ、光検出効率の低下を抑制することが可能となる。
アバランシェダイオードの断面模式図 アバランシェダイオードの平面模式図 アバランシェダイオードのポテンシャル図 光検出装置のブロック図 等価回路を含む画素のブロック図 アバランシェダイオードの断面模式図 アバランシェダイオードの平面模式図 アバランシェダイオードの製造方法 等価回路図 アバランシェダイオードの断面模式図 アバランシェダイオードの断面模式図 アバランシェダイオードの断面模式図 アバランシェダイオードの平面模式図 アバランシェダイオードの断面模式図 アバランシェダイオードの平面模式図 アバランシェダイオードの断面模式図 光検出システムのブロック図 光検出システムのブロック図 光検出システムのブロック図 アバランシェダイオードの断面模式図
図1~図3を用いて本実施形態における光検出装置について説明する。本実施形態の光検出装置はアバランシェダイオードを含む画素を有する。アバランシェダイオードで生じる電荷対のうち信号電荷として用いられる電荷の導電型を第1導電型と呼ぶ。また、第1導電型と反対導電型を第2導電型と呼ぶ。
図1は、本実施形態におけるアバランシェダイオードの断面模式図である。本実施形態のアバランシェダイオードは、半導体基板15に配される。半導体基板15は第1面と、第1面に対向する第2面を有する。例えば、第1面は半導体基板15の表面であり、第2面は半導体基板15の裏面である。本実施形態では、第1面から第2面へ向かって深さ方向とする。半導体基板15の表面側には、トランジスタのゲート電極や多層配線構造が配される。
図1において、分離部16に挟まれた領域に、第1導電型の第1半導体領域71、第2半導体領域76、第3半導体領域74、第2導電型の第4半導体領域72、第5半導体領域75が配される。
第1の深さXには、第1半導体領域71および第2半導体領域76が配される。第1半導体領域71と第2半導体領域76は接している。第2半導体領域76は、第1半導体領域71と分離部16との間に配される。ここで、第1半導体領域71および第2半導体領域76が第1の深さXに配されるとは、例えば、インプラされた不純物濃度が最も高い領域(ピーク)が第1の深さXに配されることをいう。しかし、必ずしも、ピークが第1の深さXに配されている必要はなく、設計誤差や製造誤差も許容される。
第1面に対して第1の深さXよりも深い第2の深さYには、第3半導体領域74および第4半導体領域72が配される。第3半導体領域74と第4半導体領域72は接している。
第1半導体領域71は第3半導体領域74の少なくとも一部と重なり、第2半導体領域76は第4半導体領域72の少なくとも一部と重なる。第4半導体領域72は、第3半導体領域74と分離部16との間に配される。
第1面に対して第2の深さYよりも深い第3の深さZには、第5半導体領域75が配される。第3半導体領域74および第4半導体領域72は第5半導体領域75と重なる。
図2は平面模式図であり、図2(a)は第1の深さXにおける平面模式図、図2(b)は第2の深さYにおける平面模式図を示す。
図2(a)に示すように、第1の深さXにおいて、第1半導体領域71は第2半導体領域76に内包される。そして第2半導体領域76は分離部16に内包される。
図2(b)に示すように、第2の深さYにおいて、第3半導体領域74は第4半導体領域72に内包される。そして、第4半導体領域72は分離部16に内包される。図1、2から明らかなように、平面視において、第1半導体領域71は第3半導体領域74の少なくとも一部と重なり、第3半導体領域74および第4半導体領域72は第5半導体領域75と重なる。さらに、第2半導体領域76は第4半導体領域72の少なくとも一部と重なる。
図3にアバランシェダイオードのポテンシャル図を示す。図3は、図1に示される断面図の線分JKおよび線分GHのポテンシャル分布の一例を示す。点線20は、線分GHのポテンシャル分布を示し、実線21は、線分JKのポテンシャル分布を示す。ここでは、信号電荷である電子からみたポテンシャルを示す。なお、信号電荷が正孔である場合にはポテンシャルの高低の関係が逆になる。
また図3において、深さX、Y、Z、Wは図1に示した各深さに対応しており、深さWは深さYと深さZとの間の任意の深さである。
XHレベルのポテンシャルの高さは第4半導体領域72のポテンシャルの高さを示す。Hレベルのポテンシャルの高さは第3半導体領域74のポテンシャルの高さを示す。Mレベルのポテンシャルの高さは第2半導体領域76のポテンシャルの高さである。Lレベルのポテンシャルの高さは、第1半導体領域71のポテンシャルの高さを示す。なお、ここでは第3半導体領域74のポテンシャルの高さよりも第2半導体領域76のポテンシャルの高さの方が低いとしたが逆でもよい。
点線20は、深さZにおいてXHレベルとHレベルの間のポテンシャルの高さである。深さZから深さWに近づくと徐々にポテンシャルが下がる。そして、深さWから深さYに近づくと徐々にポテンシャルが上がり、深さYではXHレベルとなる。深さYから深さXに近づくと徐々にポテンシャルが下がる。深さXにおいて、Mレベルのポテンシャルとなる。
実線21は、深さZにおいてXHレベルとHレベルの間のポテンシャルの高さとなる。深さZから深さYに近づくまで徐々にポテンシャルが下がる。深さYに近づくと、ポテンシャルの高さが、急峻に下がり始め、深さYのときに、Hレベルのポテンシャルの高さとなる。深さYから深さXに近づくまで、ポテンシャルの高さは急峻に下がる。そして、深さXにおいてLレベルのポテンシャルの高さとなる。
深さZにおいて、点線20と実線21のポテンシャルはほぼ同じ高さとなっており、線分GHおよび線分JKで示す領域において半導体基板15の第1面の側に向かって緩やかに低くなるポテンシャル勾配をもつ。そのため光検出装置において生じた電荷は、緩やかなポテンシャル勾配によって第1面の側に移動する。
深さWから深さYに近づくにつれて、実線21では、緩やかに低くなるポテンシャル勾配をもち、電荷が第1面の側に移動する。一方で点線20では、第1面に向かう電荷に対して、ポテンシャル障壁となるポテンシャル勾配が形成されている。このポテンシャル障壁(第4半導体領域72)が、第5半導体領域75から第2半導体領域76に電荷が移動することを抑制する。このポテンシャル障壁に対して、線分GHから線分JKに移動する方向のポテンシャルが低いため、深さWから深さYにおいて、線分GHに存在する電荷は、第1面に移動する過程で線分JKの付近に移動しやすくなる。
線分JKで示した領域付近に移動した電荷は、深さYから深さXにかけて、急峻なポテンシャル勾配、すなわち強電界によって加速され、加速された電荷が第1半導体領域71に到達する。深さYからXの領域においてアバランシェ増幅が生じる。これに対し、線分GHで示した領域においては、アバランシェ降伏を起こさない、もしくは線分JKで示した領域、特に線分JKの深さYからXの領域よりもアバランシェ降伏が起きにくいポテンシャル分布となっている。このような構造を実現する一例としては、第1半導体領域71のポテンシャルの高さと第3半導体領域74のポテンシャルの高さの差が、第2半導体領域76のポテンシャルの高さと第4半導体領域72のポテンシャルの高さの差よりも大きい構成とするのがよい。
このようなポテンシャル構造とすることにより、従来アバランシェダイオード全体においてアバランシェ降伏が起こる構成に比べて、上述したトンネル効果により生じるノイズ電荷を低減させることが可能となる。加えて本実施形態のアバランシェダイオードによれば感度の低下を招くこともない。それは、第5半導体領域75のうち第4半導体領域72に重なる領域に存在する信号電荷が、第3半導体領域74を介して第1半導体領域に移動しやすいポテンシャル構造となっているためである。
具体的には第3半導体領域74のポテンシャルの高さが、第4半導体領域72のポテンシャルの高さよりも低いためである。つまり、第4半導体領域72が第5半導体領域75に存在する信号電荷に対するポテンシャルバリアとして機能し、結果として、第3半導体領域74を介して、第1半導体領域71に電荷が移動しやすくなるのである。
図3では、第3半導体領域74がP型半導体領域である場合のポテンシャル構造を示したが、第3半導体領域74がN型半導体領域である場合でも、位置Yにおけるポテンシャルの高さは、点線20は実線21よりも高くなる。また、第2半導体領域76がN型半導体領域である場合のポテンシャル構造を示したが、第2半導体領域76がP型半導体領域である場合でも、位置Yにおけるポテンシャルの高さは、点線20は実線21よりも高くなる。
なお、平面視において第1半導体領域71のすべての領域が、第3半導体領域74に重なる方がよい。このような構成によれば、第1半導体領域71と第4半導体領域72とのPN接合が形成されない。そのため、第1半導体領域71と第4半導体領域72とのPN接合においてアバランシェ増幅が生じ、トンネル効果によるノイズが生じることを抑制することが可能となる。
以下、本発明の実施形態を具体的な実施例を用いて説明する。各実施例では、信号電荷が電子である構成について説明するが、信号電荷が正孔である場合にも適用可能である。その場合には、各半導体領域およびポテンシャル関係が逆になる。
(実施例1)
図4から図9を用いて、本発明に適用可能な光検出装置の実施例を説明する。また、図1~図3と同様の機能を有する部分には同様の符号を付し、詳細な説明を省略する。
図4は、本実施例の光検出装置1010のブロック図である。光検出装置1010は、画素部106、制御パルス生成部109、水平走査回路部104、列回路105、信号線107、垂直走査回路部103を有している。
画素部106には、画素100が行列状に複数配されている。一つの画素100は、光電変換素子101および画素信号処理部102から構成される。光電変換素子101は光を電気信号へ変換する。画素信号処理部102は、変換した電気信号を列回路105に出力する。
垂直走査回路部103は、制御パルス生成部109から供給された制御パルスを受け、各画素100に制御パルスを供給する。垂直走査回路部103にはシフトレジスタやアドレスデコーダといった論理回路が用いられる。
信号線107は、垂直走査回路部103により選択された画素100から出力された信号を電位信号として画素100の後段の回路に供給する。
列回路105は、信号線107を介して各画素100の信号が入力され、所定の処理を行う。所定の処理とは入力された信号のノイズ除去や増幅などを行い、センサ外部に出力する形に変換する処理である。例えば列回路には、パラレル-シリアル変換回路を有する。
水平走査回路部104は、列回路105で処理された後の信号を出力回路108へ順次出力するための制御パルスを列回路105に供給する。
出力回路108は、バッファアンプ、差動増幅器などから構成され、列回路105から出力された信号を光検出装置1010の外部の記録部または信号処理部に出力する。
図4において画素部106における画素100の配列は1次元状に配されていてもよいし、単一画素のみから構成されていてもよい。また、垂直走査回路部103、水平走査回路部104、列回路105は、画素部106を複数の画素列をブロックに分けて、ブロック毎に配置してもよい。また、各画素列に配してもよい。
画素信号処理部102の機能は、必ずしも全ての画素100に1つずつ設けられる必要はなく、例えば複数の画素100によって1つの画素信号処理部102が共有され、順次信号処理が行われてもよい。また、画素信号処理部102は、光電変換素子101の開口率を高めるために、光電変換素子101と異なる半導体基板に設けられていてもよい。この場合、光電変換素子101と画素信号処理部102は、画素毎に設けられた接続配線を介して電気的に接続される。垂直走査回路部103、水平走査回路部104、信号線107および列回路105も上記のように異なる半導体基板に設けられていてもよい。
図5に本実施例における等価回路を含む画素100のブロック図の一例を示す。図5において、一つの画素100は光電変換素子101および画素信号処理部102を有する。
光電変換素子101は、光電変換部201と制御部202を有する。
光電変換部201は、光電変換により入射光に応じた電荷対を生成する。光電変換部201には、アバランシェダイオードが用いられる。
光電変換部201のカソードにはアノードに供給される電位VLよりも高い電位VHに基づく電位が供給される。そして光電変換部201のアノードとカソードには、光電変換部201がアバランシェダイオードとなるような逆バイアスがかかるように電位が供給される。このような逆バイアスの電位を供給した状態で光電変換することで、入射光によって生じた電荷がアバランシェ増幅を起こしアバランシェ電流が発生する。
なお、逆バイアスの電位が供給される場合において、アノードおよびカソードの電位差が降伏電圧より大きいときには、アバランシェダイオードはガイガーモード動作となる。ガイガーモード動作を用いて単一光子レベルの微弱信号を高速検出するフォトダイオードがSPADである。
また、光電変換部201のアノードおよびカソードの電位差が、光電変換部201に生じた電荷がアバランシェ増幅を起こす電位差以上であって降伏電圧以下の電位差である場合には、アバランシェダイオードは線形モードになる。線形モードにおいて光検出を行うアバランシェダイオードをアバランシェフォトダイオード(APD)と呼ぶ。本実施例において、光電変換部201はどちらのアバランシェダイオードとして動作してもよい。なお、アバランシェ増幅を起こす電位差については後述する。
制御部202は、高い電位VHを供給する電源電圧と光電変換部201に接続される。制御部202は、光電変換部201で生じたアバランシェ電流の変化を電圧信号に置き換える機能を有する。さらに制御部202は、アバランシェ増幅による信号増幅時に負荷回路(クエンチ回路)として機能し、光電変換部201に供給する電圧を抑制して、アバランシェ増幅を抑制する働きを持つ(クエンチ動作)。制御部202としては、例えば抵抗素子や、アバランシェ電流の増加を検出してフィードバック制御を行うことによりアバランシェ増幅を能動的に抑制する能動クエンチ回路を用いる。
画素信号処理部102は、波形整形部203、カウンタ回路209、選択回路206を有する。波形整形部203は、光子レベルの信号の検出時に得られる電圧変化を整形して、パルス信号を出力する。波形整形部203としては、例えばインバータ回路が用いられる。また、波形整形部203として、インバータを一つ用いた例を示したが、複数のインバータを直列接続した回路を用いてもよいし、波形整形効果があるその他の回路を用いてもよい。
波形整形部203から出力されたパルス信号は、カウンタ回路209によってカウントされる。カウンタ回路209には、例えばN-bitカウンタ(N:正の整数)の場合、単一光子によるパルス信号を最大で約2のN乗個までカウントすることが可能である。カウントした信号は、検出した信号として保持される。また、駆動線207を介して制御パルスpRESが供給されたとき、カウンタ回路209に保持された検出した信号がリセットされる。
選択回路206には、図4の垂直走査回路部103から駆動線208を介して制御パルスpSELが供給され、カウンタ回路209と信号線107との電気的な接続、非接続を切り替える。選択回路206には、例えばトランジスタや、画素外に信号を出力するためのバッファ回路などを用いる。
なお、制御部202と光電変換部201との間や、光電変換素子101と画素信号処理部102との間にトランジスタ等のスイッチを配して、電気的な接続を切り替えてもよい。同様に、制御部202に供給される高い電位VHまたは光電変換素子101に供給される低い電位VLの電位の供給をトランジスタ等のスイッチを用いて電気的に切り替えてもよい。
複数の画素100が行列状に配された画素部106において、カウンタ回路209のカウントを行ごとに順次リセットし、カウンタ回路209に保持された検出した信号を行ごとに順次出力するローリングシャッタ動作によって撮像画像を取得してもよい。
または、全画素行のカウンタ回路209のカウントを同時にリセットし、カウンタ回路209に保持された検出した信号を行ごとに順次出力するグローバル電子シャッタ動作によって撮像画像を取得してもよい。なお、グローバル電子シャッタ動作を行う場合には、カウンタ回路209のカウントを行う場合と、行わない場合を切り替える手段を設けたほうがよい。切り替える手段とは、例えば前述したスイッチである。
本実施例では、カウンタ回路209を用いて撮像画像を取得する構成を示した。しかし、カウンタ回路209の代わりに、時間・デジタル変換回路(Time to Digital Converter:以下、TDC)、メモリを用いて、パルス検出タイミングを取得する光検出装置1010としてもよい。
このとき、波形整形部203から出力されたパルス信号の発生タイミングは、TDCによってデジタル信号に変換される。TDCには、パルス信号のタイミングの測定に、図4の垂直走査回路部103から駆動線を介して、制御パルスpREF(参照信号)が供給される。TDCは、制御パルスpREFを基準として、波形整形部203を介して各画素から出力された信号の入力タイミングを相対的な時間としたときの信号をデジタル信号として取得する。
TDCの回路には、例えばバッファ回路を直列接続して遅延をつくるDelay Line方式、Delay Lineをループ状につないだLooped TDC方式などを用いる。その他の方式を用いてもよいが、光電変換部201の時間分解能と同等以上の時間分解能を達成できる回路方式である方がよい。
TDCで得られたパルス検出タイミングを表すデジタル信号は、1つまたは複数のメモリに保持される。メモリが複数配された場合には、選択回路206に複数の信号を供給することで、メモリにおいて保持したデジタル信号を信号線107に出力する際に、メモリ毎に信号線107への出力を制御することが可能である。
図6、図7を用いて本実施例のアバランシェダイオードの断面模式図および平面模式図を説明する。なお、図6において、図1の第1半導体領域71が配される領域には、N型半導体領域1が配され、図1の第2半導体領域76が配される領域には、N型半導体領域6が配される。図6において、図1の第3半導体領域74が配される領域には、N型半導体領域4が配され、図1の第4半導体領域72が配される領域には、P型半導体領域2が配される。図6において、図1の第5半導体領域75が配される領域には、N型半導体領域5が配される。
まず図6を用いて、分離部16および分離部16に挟まれた光電変換領域の断面構造について説明する。
複数の画素100が配された半導体基板15には、複数の画素100の各々を分離する分離部16が配されている。
分離部16は第1面から深さ方向に向かって配されたP型の半導体領域によって構成されている。具体的には、分離部16として、P型半導体領域3と、P型半導体領域7と、が、第1面から深さ方向にこの順に配され、接している。なお、P型半導体領域3は、P型半導体領域7と後述のP型半導体領域8と後述のP型半導体領域2と電気的に接続されている。
P型半導体領域3の不純物濃度は、P型半導体領域7とP型半導体領域8とP型半導体領域2の各々の不純物濃度よりも高い。これにより、例えばP型半導体領域7とコンタクトプラグ17を接続するよりも、P型半導体領域3とコンタクトプラグ17を接続する方が接触抵抗を低くすることが可能となる。
N型半導体領域1は、N型半導体領域6、N型半導体領域4、後述のN型半導体領域5よりも不純物濃度の高い領域である。このような不純物濃度にすることでN型半導体領域1に生じる空乏層の電界を強くすることが可能である。なお、N型半導体領域1には、分離部16に対して逆バイアスとなる電位が供給される。
N型半導体領域4の不純物濃度は、N型半導体領域1の不純物濃度よりも低くする。これにより、N型半導体領域4の付近の電荷をN型半導体領域1に移動しやすくする。
N型半導体領域6の不純物濃度は、N型半導体領域1の不純物濃度よりも低くする。例えば、N型半導体領域1の不純物濃度は6.0×1018[atms/cm]以上の時にN型半導体領域6の不純物濃度は1.0×1016[atms/cm]以上、1.0×1018[atms/cm]以下とする。
なお、図6では、図1の第2半導体領域76において、不純物濃度勾配を持たないN型半導体領域6が配される構成を示したが、図1において第2半導体領域76が配される領域に配される半導体領域は不純物濃度勾配を有する領域であるほうがよい。N型半導体領域1とP型半導体領域3との間の領域を不純物濃度の勾配を有する構成にすることで、N型半導体領域6に不純物濃度の勾配を有さない場合に比して、N型半導体領域1とP型半導体領域3との間に生じ得る強電界が緩和される。
不純物濃度の勾配を有する領域について二つの例を説明する。一つ目の例は、N型半導体領域1から近い領域にN型半導体領域1の不純物濃度よりも低いN型半導体領域が配され、このN型半導体領域の不純物濃度よりも不純物濃度が低いN型半導体領域が、分離部16から近い領域に配される場合である。二つ目の例は、N型半導体領域1から近い領域にN型半導体領域1の不純物濃度よりも低いN型半導体領域が配され、分離部16から近い領域にP型半導体領域3よりも不純物濃度の低いP型半導体領域が配される場合である。具体的には、図20に示すように、P型半導体領域3よりも不純物濃度の低いP型半導体領域2000をP型半導体領域3とN型半導体領域6との間に設ける。
このように、N型半導体領域1とP型半導体領域3との間の領域を不純物濃度の勾配を有する構成にすることで、N型半導体領域6に不純物濃度の勾配を有さない場合に比して、N型半導体領域1とP型半導体領域3との間に生じ得る強電界が緩和される。
次に、P型半導体領域2の不純物濃度は、P型半導体領域7以下の不純物濃度とする。P型半導体領域2とN型半導体領域4とは、PN接合を形成する。このPN接合によって、N型半導体領域4のすべての領域が空乏層領域となる。さらに、この空乏層領域がN型半導体領域1の一部の領域まで延在する。延在した空乏層領域に強電界が誘起される。この強電界により、N型半導体領域1の一部の領域まで延びた空乏層領域においてアバランシェ増幅が生じ、増幅された電荷に基づく電流が配線9から出力される。つまり、本実施例において光検出領域は、N型半導体領域1の一部の領域における空乏層領域となる。
なお、本実施例において、N型半導体領域4をP型領域ではなく、N型領域で構成しているのは、空乏層をよりN型半導体領域5の深部までより深く広げることにより、より深部からの電荷取得を可能とするためである。
また、仮にN型半導体領域6がP型半導体領域だとすると、このP型半導体領域とN型半導体領域1との間で空乏層領域が形成され、P型半導体領域とN型半導体領域1との間でアバランシェ増幅が生じる可能性がある。P半導体基板15の第1面に接するほど空乏層領域が広がるとノイズが増加するため、本実施例ではN型半導体領域1はN型で構成されている。
さらに、N型半導体領域1、N型半導体領域4、P型半導体領域2の不純物濃度は、N型半導体領域1の一部に生じる空乏層領域においてアバランシェ増幅を起こす電位差を供給した際にN型半導体領域1のすべての領域が空乏化しない不純物濃度に設定する。これは、半導体基板15の第1面に接するほど空乏層領域が広がると、半導体基板15の第1面にノイズが生じるおそれがあるからである。一方で、N型半導体領域4のすべての領域は空乏化するような不純物濃度に設定する。
N型半導体領域4のすべての領域が空乏化する条件を数式1に示す。ここでは、N型半導体領域4の不純物濃度を不純物濃度Ndとし、P型半導体領域2の不純物濃度を不純物濃度Naとし、電気素量を電気素量qとする。さらに、半導体の誘電率を誘電率εとし、N型半導体領域4とP型半導体領域2のPN接合間の電位差を電位差Vとし、P型半導体領域2に挟まれたN型半導体領域4の長さを長さDとする。
Figure 0007379606000001
N型半導体領域1のすべての領域が空乏化しない不純物濃度を例えばN型半導体領域1の不純物濃度は6.0×1018[atms/cm]以上とする。その場合に、これらの空乏化条件を満たすような不純物濃度とは、P型半導体領域2の不純物濃度は1.0×1016[atms/cm]以上である。また、N型半導体領域4の不純物濃度は、1.0×1017[atms/cm]以下である。ただし、これらの不純物濃度に限られない。
そして、延在した空乏層に誘起される深さ方向の電界が充分大きくなるように、N型半導体領域1および分離部16の電位差を設定する。ここで、充分大きくなる電位差とは、電界の影響を受けた電荷がアバランシェ増幅を起こす電位差である。つまり光電変換部201がアバランシェダイオード(APDまたはSPAD)としての動作を実現するN型半導体領域1およびP型半導体領域3の電位差である。
具体的には、N型半導体領域1およびP型半導体領域2の電位差は6V以上である。このとき、上述したようにN型半導体領域1と電気的に接続されたN型半導体領域4のすべての領域が、空乏層領域となり、且つN型半導体領域1の一部の領域まで延在した空乏層領域に、アバランシェ増幅が生じるような強電界が生じる。
なお、上述した空乏化条件を満たすような不純物濃度を考慮すると、より好ましくは、N型半導体領域1およびP型半導体領域3の電位差は10V以上であり、30V以下である。このとき、例えば、N型半導体領域1には、10V以上の電位が供給され、P型半導体領域3には0V以下の電位が供給される。ただし、電位差が6V以上となれば、これらの電位の値には限られない。
また、P型半導体領域2とN型半導体領域6との間に形成された空乏層が、N型半導体領域1まで広がり、アバランシェ増幅を生じさせる可能性もある。この場合、N型半導体領域1のすべての領域を空乏化させてしまうと、ノイズを発生させる可能性がある。そのため、N型半導体領域1のすべての領域を空乏化させないように、N型半導体領域1の不純物濃度を設定するのがよい。
ところで、本実施例は、電荷をN型半導体領域5で発生させ、N型半導体領域1で収集して読み出す。すなわち、第1導電型の半導体領域で発生した電荷を、第1導電型の半導体領域から読みだしている。
これに対して、米国特許第9209336号明細書に記載のデバイスは、N型のエピタキシャル層2で発生した電荷をN型のエピタキシャル層2とp型のアノード領域14との界面でアバランシェ増幅させ、p型のアノード領域14から電荷を読み出している。すなわち、第1導電型の半導体領域で発生した電荷を、第2導電型の半導体領域から読み出している。この点においても、本実施形態は米国特許第9209336号明細書に記載されたデバイスとは異なる。
図6において、P型半導体領域2とN型半導体領域4を設けずに、不純物濃度が濃いN型半導体領域1のすぐ下部に、N型半導体領域1よりも不純物濃度の低いN型半導体領域5を配することを想定する。この場合、N型半導体領域5で電荷を発生させ、N型半導体領域1から電荷を読み出すことは可能であるが、本実施例と同等の電圧条件下でアバランシェ増幅させることは難しい。これは、N型半導体領域1およびP型半導体領域3の間に印加した電位差の大部分がN型半導体領域5の空乏層領域にかかることにより、N型半導体領域1近傍のアバランシェ増幅領域にかかる電位差が小さくなってしまうためである。他方、本実施例では、N型半導体領域5はN型半導体領域4と接する箇所を除いた各方位でP型半導体領域に囲まれるため、N型半導体領域5のポテンシャルはN型半導体領域1よりも、周囲のP型半導体領域に近いレベルとなる。すなわち、P型半導体領域2で基板深部への空乏層の過度な広がりを抑制することで、上記の印加する電位差の大部分をN型半導体領域1近傍のアバランシェ増幅領域に集中させることが可能となる。この結果、より低電圧で光電荷をアバランシェ増幅させることができる。
次に、N型半導体領域5の不純物濃度は、N型半導体領域4の不純物濃度以下の不純物濃度である。例えば、N型半導体領域5の不純物濃度は1.0×1017[atms/cm]以下である。「以下」であるため、N型半導体領域5の不純物濃度とN型半導体領域4の不純物濃度は同じであってもよい。また、少なくとも、N型半導体領域5の不純物濃度はN型半導体領域1の不純物濃度よりも少なければよい。
図6では、N型半導体領域5は一例として同一の不純物濃度からなる領域を示した。しかしN型半導体領域5は、半導体基板15の第1面の側に電荷が移動するようなポテンシャル構造になるように不純物濃度の勾配を有していた方がよい。そのような不純物濃度の勾配とすることで、N型半導体領域1に電荷を移動しやすくすることが可能である。
また、半導体基板15の第1面の側に電荷が移動するようなポテンシャル構造になるように不純物濃度の勾配を有する場合に、N型半導体領域5が配された領域において第1面の側がN型半導体領域であり、第2面の側がP型半導体領域となってもよい。
もしくは、P型半導体領域2の不純物濃度よりも不純物濃度が低いP型半導体領域が、N型半導体領域5の代わりに配されてもよい。その場合においても半導体基板15の第1面の側に電荷が移動するようなポテンシャル構造になるように不純物濃度の勾配を有していた方がよい。
例えば、このP型半導体領域は、第1領域と、第1面に対して第1領域よりも深い位置に配された第2領域と、第1面に対して第2領域よりも深い位置に配された第3領域とを有する。そして、第1領域を第1不純物濃度、第2領域を第2不純物濃度、第3領域を第3不純物濃度とした時に、第1不純物濃度<第2不純物濃度<第3不純物濃度としてもよい。なお、第1不純物濃度は、P型半導体領域2の不純物濃度よりも低くなる。ここでは、N型半導体領域5の代わりに配したP型半導体領域を3つの領域に分けたが、この限りではない。
P型半導体領域8は、N型半導体領域5よりも深い位置に配されており、光電変換領域の深さを定義する。N型半導体領域5は、P型半導体領域2とP型半導体領域7とP型半導体領域8との各々とPN接合を形成する。P型半導体領域8の不純物濃度は、P型半導体領域2の不純物濃度よりも高くする。これにより、P型半導体領域8の付近で生じた電荷は、第1面方向に移動しやすくなる。
N型半導体領域1にはコンタクトプラグ18が接続され、コンタクトプラグ18には配線9が接続される。またP型半導体領域3にはコンタクトプラグ17が接続され、コンタクトプラグ17には配線10が接続される。そして、配線9または配線10は、クエンチ動作を行うための抵抗素子などの制御部202に接続される。以下では、制御部202が配線9に接続されるものとして説明する。
図6では、コンタクトプラグ17および配線10が第1面の側に配されるものとして説明した。しかし、コンタクトプラグ17および配線10が第2面の側に配されてもよい。
コンタクトプラグ17および配線10が第2面の側に配される場合において、P型半導体領域8のうちコンタクトプラグ17が配される領域の不純物濃度は、P型半導体領域7の不純物濃度よりも高い方がよい。つまりP型半導体領域3となる。このとき、第1面側に配されていたP型半導体領域3には、コンタクトプラグ17が接続されなくなるため、不純物濃度をP型半導体領域7と同程度としたほうがよい。これにより、P型半導体領域3とN型半導体領域1との間に生じる電界を緩和することが可能となる。
また、分離部16が第1面側に絶縁分離部を有する場合においても、コンタクトプラグ17および10は、第2面側に配される。このとき、分離部16は、第1面から深さ方向に絶縁分離部、P型半導体領域7、P型半導体領域3の順に重なるように接して配される。
次に図7を用いて、図6の断面構造の任意の深さにおける分離部16および分離部16に挟まれた光電変換領域の平面構造について説明する。図7では各半導体領域の境界を円形で描いているが、これに限られない。
図7(a)は、図6の深さXにおける線分ABの平面模式図を示す。N型半導体領域1は、N型半導体領域6に内包される。N型半導体領域6は、P型半導体領域3に内包される。また、N型半導体領域6の面積は、N型半導体領域1の面積よりも大きい。
図7(b)は、図6の深さYにおける線分CDの平面模式図を示す。N型半導体領域4は、P型半導体領域2に内包される。P型半導体領域2は、P型半導体領域3に内包される。
図7(c)は、図6の深さZにおける線分EFの平面模式図を示す。N型半導体領域5は、P型半導体領域7に内包される。
なお、図7(b)と図7(c)を重ねたとき、平面視においてN型半導体領域4およびP型半導体領域2は、N型半導体領域5と重なる。
また、図7(a)と図7(b)を重ねたとき、平面視においてN型半導体領域1は、N型半導体領域4の少なくとも一部の領域と重なり、N型半導体領域6はP型半導体領域2の少なくとも一部と重なる。
次に図8を用いて、図6に示した断面模式図における、アバランシェダイオードの製造方法を説明する。特に順番に関して説明のない工程に関しては適宜順序を入れ替えてもよい。また図8にて説明を省略する工程に関しては周知の製造方法を適用することが可能である。
図8(a)に示すように、半導体基板15の第1面に対する法線方向から、N型半導体領域5となる領域にP型の不純物イオン注入(以下、イオン注入)を行う。これにより、半導体基板15の第1面に対して深い位置にP型半導体領域8を形成する。
次に図8(b)に示すように、半導体基板15の第1面にマスク77を形成する。マスク77には、開口部30を有する。そして、半導体基板15の第1面に対して法線方向から、P型のイオン注入を行うことでP型半導体領域3およびP型半導体領域7を、第1面からこの順に配されるように形成する。このとき、P型半導体領域7とP型半導体領域8の一部が接続する。また、P型半導体領域7の不純物濃度よりもP型半導体領域3の不純物濃度が高くなるようにする。具体的には例えば、異なるイオン注入エネルギーで複数回イオン注入を行うなどの方法がある。
次にマスク77を除去し、マスク78を配する。マスク78は、開口部32を有する。そして、図8(c)に示すように、半導体基板15の第1面に対して法線方向に平行な方向から、P型のイオン注入を行うことでP型半導体領域2となる領域を形成する。その後、P型半導体領域2となる領域を形成するために行ったP型のイオン注入を行った位置よりも第1面に対して浅い位置にN型のイオン注入を行いN型半導体領域6となる領域を形成する。ここでは、P型半導体領域2となる領域を形成した後に、N型半導体領域6となる領域を形成したが逆でもよい。
次にマスク78を除去し、マスク73を配する。マスク73は開口部33を有する。図8(d)に示すように、半導体基板15の第1面に対する法線方向に平行な方向から、P型半導体領域2となる領域が配される深さにN型のイオン注入を行うことで、P型半導体領域2となる領域の一部にN型半導体領域4を形成する。
この後、半導体基板15の第1面に対して法線方向に平行な方向から、半導体基板15の第1面の側にN型のイオン注入を行うことでN型半導体領域1を形成する。ここでは、N型半導体領域4を先に形成したが、N型半導体領域1を先に形成してもよい。
このように、同じ導電型の不純物イオンを用いてイオン注入を行った場合には、入射面である第1面に対して浅い位置へのイオン注入時よりも、第1面に対して深い位置へのイオン注入時の方が、第1面に対する平行な方向への不純物イオンの拡散が大きくなる。つまり、同一マスクを用いてイオン注入を行った場合に、N型半導体領域1は、平面視でN型半導体領域4に内包される。
なお、N型半導体領域1とN型半導体領域4とを形成するために注入する不純物イオンとして、異なる熱拡散係数を有する不純物イオンを用いてもよい。このような構成によれば、N型半導体領域1およびN型半導体領域4が配される領域における、ポテンシャル設計の自由度が向上する。
図8(d)において、N型半導体領域1およびN型半導体領域4を形成する際に、異なるマスクを用いてイオン注入した場合には、位置ズレが生じ、非対称な電界分布が生じることでトンネル効果が生じるおそれがある。一方で本実施例の製造方法によれば、同一マスクを用いてN型半導体領域1およびN型半導体領域4を形成するため、両半導体領域の位置ズレを抑制することが可能であり、位置ズレにより生じ得るトンネル効果を抑制することが可能となる。
次に図9を用いて、本実施例の制御部202について説明する。本実施例において制御部202は、二つの構成を有する。一つ目の構成は図9(a)に示すように光電変換部201の高い電位VHが供給されるカソードの側に制御部202が配される構成である。二つ目の構成は、図9(b)に示すように光電変換部201の低い電位VLが供給されるアノードの側に制御部202が配される構成である。
図9(a)および図9(b)の構成において、アバランシェ電流により波形整形部203の入力電位が変化してから、制御部202による電圧降下によって光電変換部201の初期状態のバイアスに復帰するまでには一定の時間が必要である。このように、一度電荷を検出してから、次に電荷を検出することが可能なバイアス状態に戻るまでの期間をDead timeという。このDead timeが短いほど、時間あたりにカウントできる電荷の数が増加し、光検出装置としてのダイナミックレンジが大きくなる。
例として、制御部202が抵抗素子である場合には、本実施例のアバランシェダイオードのDead time(τd[s])は抵抗(R[Ω])と、入力端子の容量(C[F])、の積で決まる。以下の数式で、光電変換部201のPN接合容量はCpd、光電変換部201のウエルの容量はCw、配線・拡散層の寄生容量はCで示す。
図9(a)の場合には、Dead timeは、数式2で求められる。
τd=R(Cpd+C) …(数式2)
図9(b)の場合には、Dead timeは、数式3で求められる。
τd=R(Cpd+Cw+C) …(数式3)
光電変換部201のPN接合容量Cpdは、アバランシェ増幅を生じさせるために強電界を誘起する光検出領域のPN接合容量である。そのため、PN接合容量Cpdは、光検出領域の面積に比例して変化する。つまり、光検出効率をあげるために光検出領域の面積が大きくなると、PN接合容量Cpdが大きくなり、Dead timeが増加する。その結果、ダイナミックレンジが低下してしまう。
すなわち、光検出効率とダイナミックレンジはトレードオフ関係となっている。一方、本実施例の画素構造によれば、光電変換領域の面積を大きく確保しながら、光検出領域の面積を小さくすることができる。そのため、Cpdを低減し、Dead timeを低減することができる。結果として、高い光検出効率と高いダイナミックレンジを両立することが可能である。
本実施例の画素構造によるダイナミックレンジの向上効果は、図9の(b)よりも図9(a)の構成の方が顕著にあらわれる。例えば、従来のSPAD構造に対する本実施例のSPAD構造のCpdの比をA(0<A<1)とすると、図9(a)と図9(b)のそれぞれの回路方式におけるダイナミックレンジの向上率Δはそれぞれ数式4、数式5で表される。
Δ1=(1-A)Cpd/(ACpd+C) …(数式4)
Δ2=(1-A)Cpd/(ACpd+Cw+C) …(数式5)
数式4および数式5において、ダイナミックレンジがDead timeに反比例することを利用して計算した。上式から、常にΔ1>Δ2が満たされることがわかる。
以上のことから、本実施例の構成において図9(a)、図9(b)を適応した際にダイナミックレンジの向上率は、図9(a)の方が図9(b)より原理的に高くなる。
ここまでは制御部202を抵抗素子として説明したが、能動クエンチ回路の場合でも、同様である。
以上から、本実施例の画素に対する制御部202は、光電変換部201のアノードの側に配する場合よりもカソードの側に配する場合の方がダイナミックレンジの向上効果を大きくすることが可能である。
本実施例の構成によれば、電荷が移動する経路を形成することで光検出効率の低下を抑制することが可能となる。つまり、光検出効率の低下を抑制しながら、ノイズを低減することが可能となる。
(実施例2)
図10は、本実施例におけるアバランシェダイオードの断面模式図である。図4、図5、図8、図9は、実施例1と同様である。また、図1~図9と同様の機能を有する部分には同様の符号を付し、詳細な説明を省略する。図10は、図6においてN型半導体領域4が配された領域にP型半導体領域24が配されている点で異なる。
図10において、N型半導体領域1とP型半導体領域24とはPN接合を構成する。また、P型半導体領域24には、P型半導体領域2を介してP型半導体領域3に電気的に接続されている。そのため、P型半導体領域24の電位は、N型半導体領域1と逆バイアスの電位となる。そして、N型半導体領域1とP型半導体領域24とのPN接合領域には強電界誘起される。この強電界によりPN接合領域においてアバランシェ増幅が生じ、増幅した電荷に基づく電流が配線9または10から出力される。つまり、本実施例において光検出領域は、N型半導体領域1とP型半導体領域24とのPN接合領域となる。このように構成すれば、実施例1よりも、アバランシェ増幅を生じさせるために必要な電位差を小さくすることができる。すなわち、実施例1におけるN型半導体領域1とP型半導体領域3との電位差よりも、本実施例におけるN型半導体領域1とP型半導体領域3との電位差を小さくすることができる。
図10において、P型半導体領域24の不純物濃度は、P型半導体領域2の不純物濃度およびP型半導体領域7の不純物濃度よりも低い。そのため、本実施例においても前述した図3のようなポテンシャル関係が成り立つ。
N型半導体領域1の不純物濃度は、PN接合間にアバランシェ増幅を起こす電位を供給した際に、前述したようにN型半導体領域1のすべての領域が空乏化しない不純物濃度に設定する。
本実施例において、N型半導体領域1のすべての領域が空乏化しない不純物濃度とは、例えば、N型半導体領域1の不純物濃度は6.0×1018[atms/cm]以上である。そして、P型半導体領域24の不純物濃度は1.0×1017[atms/cm]以下である。これは、半導体基板15の第1面に接するほど空乏層領域が広がると、半導体基板15の第1面にノイズが生じるおそれがあるからである。ただし、これらの不純物濃度に限られない。
なお、上述の光電変換部201がアバランシェダイオード(APDまたはSPAD)としての動作を実現する際のN型半導体領域1およびP型半導体領域24の電位差は、具体的には、6V以上である。
上述した不純物濃度関係を考慮すると、より好ましくは、N型半導体領域1およびP型半導体領域24の電位差が10V以上である。このとき、例えば、N型半導体領域1には、10V以上の電位が供給され、P型半導体領域24にはP型半導体領域2を介して0V以下の電位が供給される。ただし、電位差が6V以上であれば、これらの電位には限られない。
なお、本実施例において、図8に示した製造方法を適応する際には、図8(d)において、P型半導体領域2となる領域の一部の領域の不純物濃度を局所的に低下させる程度のN型のイオン注入を行うことで、P型半導体領域24を形成する。
本実施例においても、実施例1と同様の効果を有する。
(実施例3)
図11は、本実施例におけるアバランシェダイオードの断面模式図である。図1~図10と同様の機能を有する部分には同様の符号を付し、詳細な説明を省略する。
図11は、第1面に対して平行な方向に、分離部16から近い領域のポテンシャルの高さよりも、分離部16から遠い領域のポテンシャルの高さの方が低くなる点で、図6のN型半導体領域5が配された領域のポテンシャルと異なる。
図11において、第1面に対して平行な方向において、分離部16に近い領域にはN型半導体領域28が配され、分離部16に遠い領域にはN型半導体領域27が配されている。
本実施例では、N型半導体領域28のポテンシャルの高さよりもN型半導体領域27のポテンシャルの高さの方が低くなるような不純物濃度関係にすることで、N型半導体領域28からN型半導体領域27に電荷が移動しやすくしている。
つまり、第1面に対して平行な方向において、分離部16に対して近い領域(N型半導体領域28)のポテンシャルの高さよりも、前記分離部に対して遠い領域(N型半導体領域27)のポテンシャルの高さの方が低い。
そのため、N型半導体領域28の不純物濃度は、N型半導体領域27の不純物濃度よりも低いほうがよい。そして、光検出領域へのポテンシャルの勾配を形成するためにN型半導体領域27の不純物濃度は、N型半導体領域4の不純物濃度よりも低くする。
なお、N型半導体領域27の代わりにP型半導体領域を配した場合には、代わりに配されたP型半導体領域の不純物濃度よりも不純物濃度が高いP型半導体領域をN型半導体領域28の代わりに配する。
このような構成によれば、分離部16が配されている位置からN型半導体領域27が配されている位置へ向かう方向を面内方向とした時に、面内方向に電荷が移動するような不純物分布とすることで、面内方向の電界が誘起される。この電界により、半導体基板15の深部で生じた電荷が、面内方向に移動する。
このような構成によれば、例えば、半導体基板15の深い位置で生じた電荷の光検出領域に移動するまでにかかる時間を短くすることが可能となる。
さらに、前述したように半導体基板15の第1面の深い位置から浅い位置に電荷が移動しやすいポテンシャルにした方がよい。そのようなポテンシャル関係とすることで、さらに光検出領域への電荷の移動にかかる時間を減らすことが可能である。
本実施例は、すべての実施例に適用可能である。
(実施例4)
図12は、本実施例におけるアバランシェダイオードの断面模式図である。図1~図11と同様の機能を有する部分には同様の符号を付し、詳細な説明を省略する。
図12は、深さの異なるP型半導体領域2BおよびP型半導体領域2Aによって構成されている点で図6のP型半導体領域2と異なる。
図12において、P型半導体領域2は、P型半導体領域2AとP型半導体領域2Bを有する。P型半導体領域2Aは、第1の深さXにおいてN型半導体領域6と、分離部16を構成するP型半導体領域3との間に配される。P型半導体領域2Bは、第2の深さYにおいてN型半導体領域5とN型半導体領域4との間に配される。P型半導体領域2Aの一部の領域は、N型半導体領域5と接し、P型半導体領域2Aの他の領域はP型半導体領域2Bと接する。
次に図13を用いて、図12の断面構造の任意の深さにおける分離部16および分離部16に挟まれた光電変換領域の平面構造について説明する。図13では各半導体領域の境界を円形で描いているが、これに限られない。なお、深さZにおける線分EFの平面模式図は、図7(c)と同様であるため省略する。
図13(a)は、図12の第1の深さXにおける線分ABの平面模式図を示す。N型半導体領域1は、N型半導体領域6に内包される。N型半導体領域6は、P型半導体領域2Aに内包される。P型半導体領域2AはP型半導体領域3に内包される。
図13(b)は、図12の第2の深さYにおける線分CDの平面模式図を示す。N型半導体領域4は、P型半導体領域2Bに内包される。P型半導体領域2Bは、N型半導体領域5に内包される。N型半導体領域5はP型半導体領域3に内包される。
図13(a)と図13(b)とを重ねたとき、P型半導体領域2Aは、P型半導体領域2BおよびN型半導体領域5と重なる。
本実施例の構成によれば、図6の第2の深さYにおいてP型半導体領域2が配された領域の一部の領域をN型半導体領域5にすることが可能である。これにより、特に表面照射型とした時に短波長の光検出効率を高くすることが可能である。
本実施例は、すべての実施例に適用可能である。
(実施例5)
図14は、本実施例におけるフォトダイオードの断面模式図である。図1~図13と同様の機能を有する部分には同様の符号を付し、詳細な説明を省略する。図14は、図6に対してN型半導体領域1およびN型半導体領域4が複数配されている点で異なる。
図14では、N型半導体領域1およびN型半導体領域4がそれぞれ二つずつ配される構成を示すが、それぞれ複数配されていれば二つに限られない。
N型半導体領域1Aは、N型半導体領域6に挟まれている。同様にN型半導体領域1Bは、N型半導体領域6に挟まれている。
N型半導体領域4Aは、P型半導体領域2に挟まれている。同様にN型半導体領域4BはP型半導体領域2に挟まれている。
次に図15を用いて、図14の断面構造の任意の深さにおける分離部16および分離部16に挟まれた光電変換領域の平面構造について説明する。図15では各半導体領域の境界を円形で描いているが、これに限られない。なお、深さZにおける線分EFの平面模式図は、図7(c)と同様であるため省略する。
図15(a)は、図14の深さXにおける線分ABの平面模式図を示す。N型半導体領域1AおよびN型半導体領域1Bは、それぞれN型半導体領域6に内包される。N型半導体領域6は、P型半導体領域3に内包される。N型半導体領域6の面積は、N型半導体領域1AおよびN型半導体領域1Bの面積よりも大きい。
図15(b)は、図14の深さYにおける線分CDの平面模式図を示す。N型半導体領域4AおよびN型半導体領域4Bは、それぞれP型半導体領域2に内包される。P型半導体領域2は、P型半導体領域7に内包される。
なお、図15(b)と図7(c)を重ねたとき、N型半導体領域4A、N型半導体領域4BおよびP型半導体領域2は、N型半導体領域5と重なる。
また、図15(a)と図15(b)を重ねたとき、平面視においてN型半導体領域1Aは、N型半導体領域4Aの少なくとも一部の領域と重なる。平面視においてN型半導体領域1Bは、N型半導体領域4Bの少なくとも一部の領域と重なる。前述したように、平面視において、N型半導体領域1のすべての領域が、平面視でN型半導体領域4に内包されるように重なる方がよい。
なお、図15(a)と図15(b)を重ねた時、N型半導体領域6は、P型半導体領域2の少なくとも一部と重なる。
本実施例の構成によれば、複数の箇所に配されたN型半導体領域1とN型半導体領域4によって、光電変換領域中で発生した電荷の光検出領域までの平均移動距離を短縮することが可能となる。そのため、光電変換領域の深い位置で生じた電荷の電荷検出までにかかる時間を短縮することが可能となる。
本実施例は、すべての実施例に適用可能である。
(実施例6)
図16は、本実施例におけるアバランシェダイオードおよび制御部の断面模式図である。図1~図15と同様の機能を有する部分には同様の符号を付し、詳細な説明を省略する。
図16では、光電変換部201と制御部202とが異なる半導体基板に配されている。光電変換部201を構成するアバランシェダイオードの構成は実施例1と同様である。半導体基板15には、光電変換部201が複数配され、ここでは例として2つのアバランシェダイオードが配された構成を示す。半導体基板1102には、制御部202と、制御部202に接続された配線1107が配される。ここでは、半導体基板1102に、制御部202および配線1107が配される構成を示したが、その他の回路が配されていてもよい。
本実施例のアバランシェダイオードは、裏面照射型の構成である。また、光はN型半導体領域5からN型半導体領域1に向かう方向に入射される。このとき、光はマイクロレンズ1103、カラーフィルタ1104を通ってN型半導体領域5に入射される。
前述したようにN型半導体領域5で光電変換され、生じた電荷は、N型半導体領域4を通り、N型半導体領域1に移動する。N型半導体領域1と、P型半導体領域2とN型半導体領域4との間に生じる空乏層と、の間の電界によって、アバランシェ増幅が生じ、配線9に電流が流れる。
配線9は、接続部1105を介して、別途作成した半導体基板1102に設けられた制御部202に接続される。
アバランシェダイオードごとに検出した信号は、半導体基板1102の画素領域の周辺に設けられた走査回路などによって信号の処理が行われる。なお、走査回路は、半導体基板15および半導体基板1102と異なる半導体基板に配されてもよい。
本実施例の構成によれば、アバランシェダイオードが配された半導体基板15に対して異なる半導体基板1102を積層している。そして積層した半導体基板1102に、制御部202などの処理回路を配することによって、アバランシェダイオードの開口率を高め、光検出効率を向上することが可能となる。
なお、本実施例において、各アバランシェダイオードにマイクロレンズ1103を配する場合、マイクロレンズ1103の光軸が、平面視でN型半導体領域4に内包されるような位置関係とするほうがよい。例えば光電変換素子101の中央部において垂直光が入射する場合、N型半導体領域5の内部での信号電荷の発生確率の分布は、マイクロレンズ1103の光軸付近で最大となる。ここで、マイクロレンズの光軸とは、平面視でマイクロレンズの中心を通る、半導体基板15に垂直な軸である。
本実施例の構成にように、マイクロレンズ1103の光軸がN型半導体領域4に平面的に内包されていれば、N型半導体領域5において、平面視でN型半導体領域4に近い位置で電荷が生じやすくなる。そして、平面的に遠い位置で生じる電荷の発生確率を低減することが可能となり、半導体基板15の第1面に対して浅い位置で生じた電荷と、深い位置で生じた電荷とで、光検出領域で電荷検出するまでの時間分解能の低下を抑制することが可能となる。
なお、本実施例では裏面照射型のフォトダイオード構成をとるが、表面照射型であっても本実施例による効果、すなわち高光検出効率と低DCRの両立を実現することができる。ただし、本実施例では、光電変換部を裏面の側に形成する構成をとるため、表面照射型の場合と比べ裏面照射型の場合の方が、基板の最表面付近(光入射の側)で発生した電荷を高効率で検出できる。すなわち、短波長から長波長までブロードな波長帯で高い光検出効率を実現できるという点から、本実施例の光電変換部201は裏面照射型とする方が好ましい。
本実施例は、すべての実施例に適用可能である。
(実施例7)
本実施例では、各実施例の光検出装置1010を用いた光検出システムの一例を説明する。図17を用いて光検出システムの一例である不可視光検出システムおよびPET等の医療診断システムについて説明する。図1~図16と同様の機能を有する部分には同様の符号を付し、詳細な説明を省略する。なお、本実施例の画素100は、図5のカウンタ回路209の代わりにTDCとメモリを有する。ここでは、TDCをTDC204とし、メモリをメモリ205として説明する。
図17は、不可視光検出システムの構成を説明するブロック図である。不可視光検出システムは、波長変換部1201、データ処理部1207を有し、光検出装置1010を複数有する。
照射物1200は、不可視光となる波長帯の光を照射する。波長変換部1201は、照射物1200から照射された不可視光となる波長帯の光を受光し、可視光を照射する。
波長変換部1201から照射された可視光が入射された光電変換部201は光電変換し、制御部202、波形整形部203、TDC204を介して、光検出装置1010は光電変換した電荷に基づく信号に基づくデジタル信号をメモリ205に保持する。複数の光検出装置1010は、一つの装置として形成されていてもよいし複数の装置が配列することで形成されてもよい。
複数の光検出装置1010のメモリ205で保持された複数のデジタル信号は、データ処理部1207によって信号処理が行われる。ここでは、信号処理手段として複数のデジタル信号から得られる複数の画像の合成処理を行う。
次に不可視光検出システムの具体的な例としてPET等の医療診断システムの構成について説明する。
照射物1200である被験者は、生体内から放射線対を放出する。波長変換部1201は、シンチレータを構成し、シンチレータは、被験者から放出された放射線対が入射すると可視光を照射する。
シンチレータから照射された可視光が入射された光電変換部201は光電変換し、制御部202、波形整形部203、TDC204を介して、光検出装置1010は光電変換した電荷に基づく信号に基づくデジタル信号をメモリ205に保持する。つまり、光検出装置1010は、被験者から放出された放射線対の到達時間を検出するために配され、シンチレータから照射された可視光を検出し、デジタル信号をメモリ205に保持する。
複数の光検出装置1010のメモリ205で保持されたデジタル信号は、データ処理部1207において信号処理される。ここでは、信号処理手段として複数のデジタル信号から得られる複数の画像を用いて画像再構成などの合成処理を行い、被験者の生体内の画像の形成を行う。
(実施例8)
本実施例では、各実施例の光検出装置1010を用いた光検出システムの一例を説明する。図1~図16と同様の機能を有する部分には同様の符号を付し、詳細な説明を省略する。
図18では、光検出システムの一例である距離検出システムついて説明する。なお、本実施例の画素100は、図5のカウンタ回路209の代わりにTDCとメモリを有する。ここでは、TDCをTDC204とし、メモリをメモリ205として説明する。
図18を用いて、本実施例の距離検出システムのブロック図の一例を説明する。距離検出システムは、光源制御部1301、発光部1302、光学部材1303、光検出装置1010、距離算出部1309を有している。
光源制御部1301は発光部1302の駆動を制御する。発光部1302は、光源制御部1301から信号を受けた際に、撮影方向に対して短パルス(列)の光を照射する。
発光部1302から照射された光は、被写体1304に反射する。反射光は光学部材1303を通して、光検出装置1010の光電変換部201で受光し、光電変換された電荷に基づく信号が波形整形部203を介してTDC204に入力される。
TDC204は、光源制御部1301から得られる信号と、波形整形部203から入力された信号とを比較する。そして、発光部1302がパルス光を発光してから被写体1304を反射した反射光を受光するまでの時間を高精度にデジタル変換する。TDC204から出力されたデジタル信号は、メモリ205に保持される。
距離算出部1309は、メモリ205に保持された複数回測定分のデジタル信号を元に、光検出装置から被写体までの距離を算出する。この距離検出システムは例えば車載に適用することができる。
次に、図5のカウンタ回路209を用いた場合の光検出システムの一例を図19に示す。図19では、光検出システムの一例である車載カメラに関する光検出システムについて説明する。
光検出システム1000は、本発明に係る測距画素および撮像画素を含む光検出システムである。光検出システム1000は、光検出装置1010により取得した複数のデジタル信号に対し、画像処理を行う画像処理部1030を有する。さらに、光検出システム1000は、画像処理部1030により取得した複数の画像データから視差(視差画像の位相差)の算出を行う視差算出部1040を有する。
また、光検出システム1000は、算出された視差に基づいて対象物までの距離を算出する距離計測部1050と、算出された距離に基づいて衝突可能性があるか否かを判定する衝突判定部1060と、を有する。ここで、視差算出部1040や距離計測部1050は、対象物までの距離情報を取得する距離情報取得手段の一例である。すなわち、距離情報とは、視差、デフォーカス量、対象物までの距離等に関する情報である。
衝突判定部1060はこれらの距離情報のいずれかを用いて、衝突可能性を判定してもよい。距離情報取得手段は、専用に設計されたハードウェアによって実現されてもよいし、ソフトウェアモジュールによって実現されてもよいし、これらの組合せによって実現されてもよい。また、FPGA(Field Programmable Gate Array)やASIC(Application Specific Integrated Circuit)などによって実現されてもよい。さらに、これらの組合せによって実現されてもよい。
光検出システム1000は車両情報取得装置1310と接続されており、車速、ヨーレート、舵角などの車両情報を取得することができる。また、光検出システム1000は、衝突判定部1060での判定結果に基づいて、車両に対して制動力を発生させる制御信号を出力する制御装置である制御ECU1410と接続されている。
また、光検出システム1000は、衝突判定部1060での判定結果に基づいて、ドライバーへ警報を発する警報装置1420とも接続されている。例えば、衝突判定部1060の判定結果として衝突可能性が高い場合、制御ECU1410はブレーキをかける、アクセルを戻す、エンジン出力を抑制するなどして衝突を回避、被害を軽減する車両制御を行う。警報装置1420は音等の警報を鳴らす、カーナビゲーションシステムなどの画面に警報情報を表示する、シートベルトやステアリングに振動を与えるなどしてユーザに警告を行う。
本実施例では車両の周囲、例えば前方または後方を光検出システム1000で撮像する。図19(B)に、車両前方を撮像する場合の光検出システムを示した。また、上記では、他の車両と衝突しない制御を説明したが、他の車両に追従して自動運転する制御や、車線からはみ出さないように自動運転する制御などにも適用可能である。さらに、光検出システムは、自車両等の車両に限らず、例えば、船舶、航空機あるいは産業用ロボットなどの移動体(移動装置)に適用することができる。加えて、移動体に限らず、高度道路交通システム(ITS)等、広く物体認識を利用する機器に適用することができる。
1 N型半導体領域
2 P型半導体領域
4 N型半導体領域
5 N型半導体領域
6 N型半導体領域
15 半導体基板
16 分離部

Claims (14)

  1. 第1面と、前記第1面と対向する第2面とを有する半導体基板と、
    前記半導体基板に複数のアバランシェダイオードが配された領域と、を有する光検出装置であって、
    前記アバランシェダイオードは、
    前記第1面に対して第1の深さに配された第1導電型の第1半導体領域と、
    前記第1の深さよりも前記第1面に対して深い第2の深さに配された前記第1導電型と反対導電型である第2導電型の第2半導体領域と、
    前記第2の深さよりも前記第1面に対して深い第3の深さに配された前記第1導電型の第3半導体領域と、
    前記複数の前記アバランシェダイオードの各々の前記第3半導体領域の間に設けられた前記第2導電型の第4半導体領域と、
    前記第1面に対して前記第3半導体領域よりも深い第4の深さに配された前記第2導電型の第5半導体領域と、を有し、
    前記第1半導体領域と前記第2半導体領域とによりアバランシェ増幅領域が構成され、
    平面視において、前記第1半導体領域と前記第2半導体領域とが重複する領域の面積は前記第3半導体領域の面積よりも小さく、
    前記第4半導体領域は、前記第2半導体領域と電気的に接続し、
    前記第4半導体領域は、前記第5半導体領域と接していることを特徴とする光検出装置。
  2. 前記第3半導体領域で生成された電荷は前記アバランシェ増幅領域へと収集されることを特徴とする請求項1に記載の光検出装置。
  3. 平面視において、前記第1半導体領域のすべての領域が、前記第2半導体領域に重なることを特徴とする請求項1または2に記載の光検出装置。
  4. 前記第1半導体領域の不純物濃度は、6.0×1018[atms/cm]以上であり、
    前記第2半導体領域の不純物濃度は、1.0×1017[atms/cm]以下であることを特徴とする請求項1乃至3のいずれか1項に記載の光検出装置。
  5. 前記第3半導体領域は、前記第1半導体領域よりも不純物濃度が低いことを特徴とする請求項1乃至4のいずれか1項に記載の光検出装置。
  6. 前記第3半導体領域は、前記第1面に対して深い位置よりも前記第1面に対して浅い位置の方が、前記第1導電型の電荷に対するポテンシャルの高さが低いことを特徴とする請求項1乃至5のいずれか1項に記載の光検出装置。
  7. 前記第3半導体領域は、前記第1面に対して平行な方向において、前記第4半導体領域に近い領域のポテンシャルの高さよりも、前記第4半導体領域から遠い領域のポテンシャルの高さの方が低いことを特徴とする請求項1乃至6のいずれか1項に記載の光検出装置。
  8. 平面視において、前記第1半導体領域と前記第2半導体領域とが重複する領域の面積は、前記第2半導体領域の面積よりも小さいことを特徴とする請求項1乃至7のいずれか1項に記載の光検出装置。
  9. 前記第1導電型はN型であり、前記第2導電型はP型であることを特徴とする請求項1乃至のいずれか1項に記載の光検出装置。
  10. 前記半導体基板と異なる半導体基板を有し、
    前記異なる半導体基板には、前記第1半導体領域に供給される電位を制御する制御部が配され、
    前記半導体基板と、前記異なる半導体基板とが積層され、
    前記第1半導体領域と、前記制御部とが、配線を介して電気的に接続されていることを特徴とする請求項1乃至のいずれか1項に記載の光検出装置。
  11. マイクロレンズを有し、
    平面視で、前記マイクロレンズの光軸が、前記第2半導体領域と重なるように前記マイクロレンズが配されることを特徴とする請求項1乃至10のいずれか1項に記載の光検出装置。
  12. 請求項1乃至11のいずれか1項に記載の光検出装置を有する光検出システムであって、
    第1波長帯の光を前記第1波長帯と異なる第2波長帯の光に変換する波長変換部と、
    前記波長変換部から出力された前記第2波長帯の光が入射する前記光検出装置と、
    前記光検出装置からの前記第2波長帯の光に対応するデジタル信号の処理を行う信号処理手段と、を有することを特徴とする光検出システム。
  13. 請求項1乃至11のいずれか1項に記載の光検出装置を有する光検出システムであって、
    前記光検出装置によって検出される光を発光する発光部と、
    前記光検出装置からの前記検出される光に対応するデジタル信号を用いて距離算出を行う距離算出手段と、を有することを特徴とする光検出システム。
  14. 移動体であって、
    請求項1乃至11のいずれか1項に記載の光検出装置と、
    前記光検出装置からの信号に基づき、対象物までの距離情報を取得する距離情報取得手段と、
    前記距離情報に基づいて前記移動体を制御する制御手段と、を有することを特徴とする移動体。
JP2022119420A 2016-10-13 2022-07-27 光検出装置および光検出システム Active JP7379606B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023187257A JP2024012455A (ja) 2016-10-13 2023-10-31 光検出装置および光検出システム

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016202052 2016-10-13
JP2016202052 2016-10-13
JP2020068364A JP7114647B2 (ja) 2016-10-13 2020-04-06 光検出装置および光検出システム

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020068364A Division JP7114647B2 (ja) 2016-10-13 2020-04-06 光検出装置および光検出システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023187257A Division JP2024012455A (ja) 2016-10-13 2023-10-31 光検出装置および光検出システム

Publications (2)

Publication Number Publication Date
JP2022161909A JP2022161909A (ja) 2022-10-21
JP7379606B2 true JP7379606B2 (ja) 2023-11-14

Family

ID=61967981

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2017146724A Active JP6701135B2 (ja) 2016-10-13 2017-07-28 光検出装置および光検出システム
JP2020068364A Active JP7114647B2 (ja) 2016-10-13 2020-04-06 光検出装置および光検出システム
JP2022119420A Active JP7379606B2 (ja) 2016-10-13 2022-07-27 光検出装置および光検出システム
JP2023187257A Pending JP2024012455A (ja) 2016-10-13 2023-10-31 光検出装置および光検出システム

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2017146724A Active JP6701135B2 (ja) 2016-10-13 2017-07-28 光検出装置および光検出システム
JP2020068364A Active JP7114647B2 (ja) 2016-10-13 2020-04-06 光検出装置および光検出システム

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023187257A Pending JP2024012455A (ja) 2016-10-13 2023-10-31 光検出装置および光検出システム

Country Status (5)

Country Link
US (2) US11984525B2 (ja)
JP (4) JP6701135B2 (ja)
CN (2) CN114649430A (ja)
BR (1) BR102017020861B1 (ja)
RU (1) RU2686396C2 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3309847B1 (en) 2016-10-13 2024-06-05 Canon Kabushiki Kaisha Photo-detection apparatus and photo-detection system
JP6701135B2 (ja) 2016-10-13 2020-05-27 キヤノン株式会社 光検出装置および光検出システム
JP7353765B2 (ja) * 2018-04-24 2023-10-02 キヤノン株式会社 光検出装置、光検出システム及び移動体
JP7224823B2 (ja) * 2018-09-19 2023-02-20 キヤノン株式会社 光検出装置
JP7182978B2 (ja) * 2018-09-28 2022-12-05 キヤノン株式会社 光検出装置、光検出システム
JP7242234B2 (ja) * 2018-09-28 2023-03-20 キヤノン株式会社 光検出装置、光検出システム
JP7438730B2 (ja) * 2018-12-18 2024-02-27 キヤノン株式会社 光電変換装置、撮像システム及び移動体
US11393870B2 (en) 2018-12-18 2022-07-19 Canon Kabushiki Kaisha Photoelectric conversion device, imaging system, and mobile apparatus
JP2020141122A (ja) * 2019-02-25 2020-09-03 キヤノン株式会社 光電変換装置、撮像システム及び移動体
US11056519B2 (en) * 2019-02-25 2021-07-06 Canon Kabushiki Kaisha Photoelectric conversion device, imaging system, and mobile apparatus
US11503234B2 (en) 2019-02-27 2022-11-15 Canon Kabushiki Kaisha Photoelectric conversion device, imaging system, radioactive ray imaging system, and movable object
JP7327949B2 (ja) * 2019-02-27 2023-08-16 キヤノン株式会社 光電変換装置、光電変換システム、及び移動体
JP6972068B2 (ja) * 2019-02-27 2021-11-24 キヤノン株式会社 光電変換装置
JP2020155514A (ja) * 2019-03-19 2020-09-24 ソニーセミコンダクタソリューションズ株式会社 センサチップ及び電子機器
US20230011366A1 (en) * 2019-12-16 2023-01-12 Sony Semiconductor Solutions Corporation Semiconductor device and electronic apparatus
JP2022074328A (ja) 2020-11-04 2022-05-18 浜松ホトニクス株式会社 光検出器、放射線検出器及びpet装置
CN116438644A (zh) * 2020-11-17 2023-07-14 索尼半导体解决方案公司 光接收装置及距离测量装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179828A (ja) 2004-12-24 2006-07-06 Hamamatsu Photonics Kk ホトダイオードアレイ
US20100271108A1 (en) 2009-04-23 2010-10-28 Stmicroelectronics S.R.L. Geiger-mode photodiode with integrated and jfet-effect-adjustable quenching resistor, photodiode array, and corresponding manufacturing method
JP2011071455A (ja) 2009-09-28 2011-04-07 Samsung Electro-Mechanics Co Ltd シリコン光電子増倍管
JP2015041746A (ja) 2013-08-23 2015-03-02 株式会社豊田中央研究所 シングルフォトンアバランシェダイオード

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2620628B2 (ja) 1987-11-30 1997-06-18 タキロン株式会社 ヘドロ層による基礎地盤形成方法
JPH1146010A (ja) * 1997-05-27 1999-02-16 Hamamatsu Photonics Kk アバランシェフォトダイオード
JP4077063B2 (ja) * 1997-05-27 2008-04-16 浜松ホトニクス株式会社 BiCMOS内蔵受光半導体装置
AU2185499A (en) * 1998-01-30 1999-08-16 Hamamatsu Photonics K.K. Light-receiving semiconductor device with buit-in bicmos and avalanche photodiode
JP2000252507A (ja) * 1999-02-26 2000-09-14 Hamamatsu Photonics Kk 光ピックアップ用半導体受光素子
US6541836B2 (en) 2001-02-21 2003-04-01 Photon Imaging, Inc. Semiconductor radiation detector with internal gain
RU2240631C1 (ru) * 2003-06-27 2004-11-20 Московский государственный институт электронной техники (технический университет) Фотодетектор
DE102004022948B4 (de) 2004-05-10 2006-06-01 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Avalanche-Strahlungsdetektor
ITTO20080046A1 (it) * 2008-01-18 2009-07-19 St Microelectronics Srl Schiera di fotodiodi operanti in modalita' geiger reciprocamente isolati e relativo procedimento di fabbricazione
DE102009049793B3 (de) * 2009-10-16 2011-04-07 Silicon Sensor International Ag Halbleiter-Photodetektor und Strahlungsdetektorsystem
US8779543B2 (en) * 2011-09-19 2014-07-15 Technion Research And Development Foundation Ltd. Device having an avalanche photo diode and a method for sensing photons
JP5926921B2 (ja) 2011-10-21 2016-05-25 浜松ホトニクス株式会社 光検出装置
JP6879919B2 (ja) * 2015-09-17 2021-06-02 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子、電子機器、及び、固体撮像素子の製造方法
JP6701135B2 (ja) * 2016-10-13 2020-05-27 キヤノン株式会社 光検出装置および光検出システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179828A (ja) 2004-12-24 2006-07-06 Hamamatsu Photonics Kk ホトダイオードアレイ
US20100271108A1 (en) 2009-04-23 2010-10-28 Stmicroelectronics S.R.L. Geiger-mode photodiode with integrated and jfet-effect-adjustable quenching resistor, photodiode array, and corresponding manufacturing method
JP2011071455A (ja) 2009-09-28 2011-04-07 Samsung Electro-Mechanics Co Ltd シリコン光電子増倍管
JP2015041746A (ja) 2013-08-23 2015-03-02 株式会社豊田中央研究所 シングルフォトンアバランシェダイオード

Also Published As

Publication number Publication date
RU2017134787A3 (ja) 2019-04-04
CN114649430A (zh) 2022-06-21
US20220085227A1 (en) 2022-03-17
JP2022161909A (ja) 2022-10-21
JP7114647B2 (ja) 2022-08-08
JP6701135B2 (ja) 2020-05-27
CN114649431A (zh) 2022-06-21
BR102017020861B1 (pt) 2023-12-26
JP2018064086A (ja) 2018-04-19
RU2686396C2 (ru) 2019-04-25
JP2024012455A (ja) 2024-01-30
JP2020115575A (ja) 2020-07-30
US11984525B2 (en) 2024-05-14
BR102017020861A2 (pt) 2018-06-12
RU2017134787A (ru) 2019-04-04
US20240072193A1 (en) 2024-02-29

Similar Documents

Publication Publication Date Title
JP7379606B2 (ja) 光検出装置および光検出システム
CN107946326B (zh) 光检测装置及光检测系统
JP7242234B2 (ja) 光検出装置、光検出システム
JP6921508B2 (ja) 光検出装置および光検出システム
JP7114244B2 (ja) 光検出装置、光検出システム、及び移動体
US11189742B2 (en) Photo-detection device, photo-detection system, and mobile apparatus
JP7362352B2 (ja) 光電変換装置、光電変換システム、および移動体
US20220181362A1 (en) Light detection device and light detection system
JP7379117B2 (ja) 光電変換装置及び光電変換システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231101

R151 Written notification of patent or utility model registration

Ref document number: 7379606

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151