JP7375684B2 - ねじ締め装置 - Google Patents

ねじ締め装置 Download PDF

Info

Publication number
JP7375684B2
JP7375684B2 JP2020107262A JP2020107262A JP7375684B2 JP 7375684 B2 JP7375684 B2 JP 7375684B2 JP 2020107262 A JP2020107262 A JP 2020107262A JP 2020107262 A JP2020107262 A JP 2020107262A JP 7375684 B2 JP7375684 B2 JP 7375684B2
Authority
JP
Japan
Prior art keywords
screw
motor
torque
control unit
axial force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020107262A
Other languages
English (en)
Other versions
JP2022001399A (ja
Inventor
真行 杉岡
正善 月川
幸太 宮本
健斗 土川
佑気 坂元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp filed Critical Omron Corp
Priority to JP2020107262A priority Critical patent/JP7375684B2/ja
Priority to CN202180032907.4A priority patent/CN115551672A/zh
Priority to PCT/JP2021/008424 priority patent/WO2021261021A1/ja
Priority to US17/925,309 priority patent/US20230234175A1/en
Priority to EP21828492.5A priority patent/EP4169668A1/en
Publication of JP2022001399A publication Critical patent/JP2022001399A/ja
Application granted granted Critical
Publication of JP7375684B2 publication Critical patent/JP7375684B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P19/00Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes
    • B23P19/04Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes for assembling or disassembling parts
    • B23P19/06Screw or nut setting or loosening machines
    • B23P19/065Arrangements for torque limiters or torque indicators in screw or nut setting machines
    • B23P19/066Arrangements for torque limiters or torque indicators in screw or nut setting machines by electrical means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B23/00Details of, or accessories for, spanners, wrenches, screwdrivers
    • B25B23/14Arrangement of torque limiters or torque indicators in wrenches or screwdrivers
    • B25B23/147Arrangement of torque limiters or torque indicators in wrenches or screwdrivers specially adapted for electrically operated wrenches or screwdrivers
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45203Screwing

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Details Of Spanners, Wrenches, And Screw Drivers And Accessories (AREA)
  • Control Of Position Or Direction (AREA)

Description

本発明は、ねじ締めによって発生するねじの軸力を推定するねじ締め装置に関する。
ねじ締めの不良を判定する技術として、下記の特許文献1および特許文献2に開示された発明がある。特許文献1は、ネジ締めにおける不良の発生および種類を判定するネジ締め不良判定装置に関し、ドライバーの回転運動を生じさせる第1モータおよびドライバーの軸方向への往復運動を生じさせる第2モータに関する2以上の変数に基づいて、ドライバーによるネジ締め動作における不良の発生および種類を判定する。
特許文献2は、ねじ締め装置に接続され、対象物に対するねじ締め不良を判定するねじ締め判定装置に関し、ねじ締め時のねじ締め装置における累積回転角度と電流値との関係を示す波形を生成し、ねじ締め完了する際の波形における累積回転角度および電流値の変化量に基づいてねじ締め付け不良を判定する。
特開2020-6452号公報(2020年1月16日公開) 特開2019-150922号公報(2019年9月12日公開)
しかしながら、上述の特許文献1および特許文献2は、ねじ締め不良の判定を行っているが、ねじの軸力を推定してねじ締め不良を判定する技術は開示していない。
本発明の一態様は、ねじ締めによって発生するねじの軸力を推定するねじ締め装置を実現することを目的とする。
本発明は、上述した課題を解決するために、以下の構成を採用する。本発明の一側面に係るねじ締め装置は、ねじを回転させる回転工具と、回転工具を回転駆動する第1モータと、第1モータを制御する制御部とを備える。制御部は、ねじを締める回転方向に、第1モータの発生する所定のトルクをねじに与えた後、トルクを解放するステップを実行する。トルクを解放するステップにおける、第1モータの回転位置の変動に基づいて、締結されたねじの軸力を推定する。
上記構成によれば、第1モータの回転位置の変動に基づいて、締結されたねじの軸力を推定するので、ねじの実際の軸力を計測する必要がなくなり、ねじ締めの良否判定が容易に行えるようになる。
上記一側面に係るねじ締め装置において、制御部に制御される、回転工具を軸方向に移動させる第2モータを更に備える。制御部は、第1モータを所定の回転速度とし、第2モータによる回転工具の移動を第1モータの発生するトルクが閾値トルクに達するまで行う、ねじをねじ穴にねじ込むための第1ステップと、次に、第1モータの発生するトルクを所定のトルクに達するまで増加させる、ねじの本締めを行うための第2ステップと、を実行する。
上記構成によれば、第1ステップにより、ねじが正しく着座できるようになる。また、第2ステップにより、ねじの本締めが正しく行えるようになる。
上記一側面に係るねじ締め装置において、制御部は、第1ステップにおける、第2モータのトルクのばらつきを反映して、軸力を推定する。
上記構成によれば、ねじの着座が成功しているか否かを考慮した軸力の推定が行えるようになる。したがって、第1モータの回転位置の変動のみで軸力を推定するよりも、さらに正確に軸力を推定することができる。
上記一側面に係るねじ締め装置において、制御部は、第1ステップにおける、第2モータによる回転工具の位置の平均、第1ステップの時間、第1モータの回転位置の平均、第1モータの回転位置の標準偏差、第1モータの回転速度の平均、および第1モータの回転速度の標準偏差のいずれかを反映して、軸力を推定する。
上記構成によれば、いずれかの変数を用いてねじの軸力を推定することができる。したがって、第2モータのトルクのばらつきよりも容易に取得できる変数を用いてねじの軸力を推定できるようになる。
上記一側面に係るねじ締め装置において、制御部は、第2ステップにおける第1モータの回転速度の平均値を反映して、軸力を推定する。
上記構成によれば、ねじの本締めが正常に行われているか否かを考慮した軸力の推定が行えるようになる。したがって、第1モータの回転位置の変動のみで軸力を推定するよりも、さらに正確に軸力を推定することができる。
上記一側面に係るねじ締め装置において、制御部は、第2ステップの時間、第2ステップにおける第1モータの回転位置の標準偏差、第1モータの回転速度の標準偏差、第1モータのトルクの平均、および第2モータによる回転工具の位置のレンジのいずれかを反映して、軸力を推定する。
上記構成によれば、いずれかの変数を用いてねじの軸力を推定できる。したがって、第1モータの回転速度の平均値よりも容易に取得できる変数を用いてねじの軸力を推定できるようになる。
上記一側面に係るねじ締め装置において、制御部は、第2ステップにおける、第2モータによる回転工具の位置の変動と、推定した軸力とに基づいて、ねじの締結の良否を判断する。
上記構成によれば、ねじの締結の良否判定を多元的に行えるようになる。
上記一側面に係るねじ締め装置において、制御部は、第2ステップにおける、第2モータによる回転工具の位置の変動と、推定した軸力とにアイソレーションフォレストを適用し、スコアに応じてねじの締結の良否を判断する。
上記構成によれば、アイソレーションフォレストを適用してねじの締結の良否を判定するので、数値によって客観的にねじの締結の良否を判定できるようになる。
上記一側面に係るねじ締め装置において、制御部は、トルクを解放するステップの直前に、所定のトルクを所定時間維持するステップを実行する。
上記構成によれば、所定のトルクを所定時間維持することにより、ねじの締め付けが行えるようになる。
本発明の一態様によれば、ねじ締めによって発生するねじの軸力を推定することができる。
本実施形態に係るねじ締め装置の概要を示す図である。 本実施形態に係るねじ締め装置の概略構成を示すブロック図である。 本実施形態に係るねじ締め装置のねじ締め動作の処理手順を表形式で記載した図である。 図3に示す各ステップにおける、回転軸サーボモータの回転軸トルク(R軸トルク)を示すグラフである。 ねじの締め付けによって発生する軸力を模式的に示す図である。 正常時における、ねじの回転位置の変動と軸力との関係を示すグラフである。 底付き時における、ねじの回転位置の変動と軸力との関係を示すグラフである。 実際に計測されたねじの軸力と式(1)を用いて算出した軸力予測値とを示すグラフである。 図8に示す各サンプルの軸力予測値対実測値をプロットしたグラフである。 図8に示す正常および異常2~5の底付きが発生した各サンプルのステップ2におけるZ軸位置レンジ対ステップ4におけるR軸位置レンジをプロットしたグラフである。
以下、本発明の一側面に係る実施の形態を、図面に基づいて説明する。
§1 適用例
図1は、本実施形態に係るねじ締め装置1の概要を示す図である。ねじ締め装置1は、回転軸サーボモータ(第1モータ)10と、回転軸サーボモータ10の回転を制御するサーボドライバ12と、昇降軸サーボモータ(第2モータ)20と、昇降軸サーボモータ20の回転を制御するサーボドライバ22と、ボールねじ30と、サーボドライバ12および22にトルク指令等の指示を送信する制御部31と、ドライバビット(回転工具)40とを備える。
また、図1には記載していないが、ねじ締め装置1はさらに、回転軸サーボモータ10に設けられたエンコーダ11と、昇降軸サーボモータ20に設けられたエンコーダ21とを備える。
ドライバビット40は、回転軸サーボモータ10の回転軸に取付けられており、回転軸サーボモータ10の回転に応じてR軸周りに回転する。このドライバビット40の回転によって、ねじ締めの対象となるねじを締結する。
また、回転軸サーボモータ10およびドライバビット40は、ボールねじ30を介して昇降軸サーボモータ20と接続されている。昇降軸サーボモータ20の回転動作がボールねじ30によってZ軸方向の直線動作に変換され、回転軸サーボモータ10およびドライバビット40が昇降する。
制御部31は、回転軸サーボモータ10および昇降軸サーボモータ20の回転軸の回転角度(回転位置)、回転速度およびトルクを制御しており、昇降軸サーボモータ20の回転によってドライバビット40の昇降が制御され、回転軸サーボモータ10の回転によってドライバビット40によるねじ締めが制御される。
制御部31は、昇降軸サーボモータ20の昇降を制御することによりドライバビット40の先端を雄ねじの頭部の溝に嵌合させ、ねじを締める回転方向に、回転軸サーボモータ10の発生する所定のトルクをねじに与えた後、トルクを解放するステップを開始する。トルクを解放するステップ開始時に、制御部31は、回転軸サーボモータ10の回転軸の第1の回転角度(回転位置)を取得する。
制御部31は、所定のトルクを解放し終わると、トルクを解放するステップを終了する。トルクを解放するステップ終了時に、制御部31は、回転軸サーボモータ10の回転軸の第2の回転角度(回転位置)を取得する。そして、制御部31は、第1の回転角度と第2の回転角度との差を求め、この回転角度の変動に基づいて、ねじの軸力を推定する。
制御部31は、第1モータの回転位置の変動に基づいて、締結されたねじの軸力を推定するので、ねじの実際の軸力を計測する必要がなくなり、ねじ締めの良否判定が容易に行えるようになる。
§2 構成例
図2は、本実施形態に係るねじ締め装置1の概略構成を示すブロック図である。ねじ締め装置1は、回転軸サーボモータ10と、回転軸サーボモータ10に設けられるエンコーダ11と、回転軸サーボモータ10の駆動を制御するサーボドライバ12と、昇降軸サーボモータ20と、昇降軸サーボモータ20に設けられるエンコーダ21と、昇降軸サーボモータ20の駆動を制御するサーボドライバ22と、ねじ締め装置1の全体的な制御を行う制御部31とを含む。
エンコーダ11および21は、それぞれ回転軸サーボモータ10および昇降軸サーボモータ20の回転軸の回転角度を求めると共に、フィードバック信号として、A相信号、B相信号およびZ相信号を生成して出力する。
回転軸サーボモータ10は、3相交流モータによって構成され、サーボドライバ12から出力される3相の駆動信号(U相信号、V相信号、W相信号)に応じて、回転軸サーボモータ10が駆動される。同様に、昇降軸サーボモータ20は、3相交流モータによって構成され、サーボドライバ22から出力される3相の駆動信号(U相信号、V相信号、W相信号)に応じて、昇降軸サーボモータ20が駆動される。
サーボドライバ12は、インバータ部121と、エンコーダ122と、通信部123とを含む。また、サーボドライバ22は、インバータ部221と、エンコーダ222と、通信部223とを含む。なお、インバータ部121とインバータ部221とは同様の構成および機能を有し、エンコーダ122とエンコーダ222とは同様の構成および機能を有し、通信部123と通信部223とは同様の構成および機能を有する。従って、サーボドライバ12の詳細のみを説明することにし、サーボドライバ22の詳細な説明は繰り返さない。
インバータ部121は、通信部123を介して、制御部31から回転角度(回転位置)、回転速度およびトルクの指令を受けると、その指令に応じて回転軸サーボモータ10を制御する。具体的には、インバータ部121は、制御部31からの指令およびエンコーダ11からのフィードバック信号に応じてPWM(Pulse Width modulation)波形を生成し、直流電流から必要な周波数の交流電流を生成する。このとき、位相が異なる3つの駆動信号である、U相信号、V相信号およびW相信号を生成して回転軸サーボモータ10に供給する。
また、インバータ部121は、回転軸サーボモータ10に設けられたエンコーダ11からのフィードバック信号を受け、回転軸サーボモータ10の実際の回転角度、回転速度および駆動トルクを求め、制御部31からの指令と比較することにより両者の誤差を検出する。そして、この誤差情報を用いて回転軸サーボモータ10の動作をリアルタイムで修正する。インバータ部121は、通信部123を介して、回転軸サーボモータ10の実際の回転速度および駆動トルクを制御部31にフィードバックする。
エンコーダ122は、エンコーダ11からのフィードバック信号に基づいて回転軸サーボモータ10の回転軸の実際の回転角度を求め、通信部123を介して制御部31にフィードバックする。
通信部123は、制御部31との間で、例えば、LAN(Local Area Network)により通信を行う。通信部123は、制御部31から回転角度(回転位置)、回転速度およびトルクの指令を受信し、インバータ部121に出力する。また、エンコーダ122から回転軸サーボモータ10の回転軸の実際の回転角度およびインバータ部121から回転軸サーボモータ10の実際の回転速度および駆動トルクを受けると、制御部31にこれらの情報を送信する。
制御部31は、通信部311を有しており、サーボドライバ12および22との間で、例えば、LANにより通信を行う。制御部31は、通信部311を介して、サーボドライバ12および13に回転角度、回転速度およびトルクの指令を送信する。また、制御部31は、通信部311を介して、サーボドライバ12および22から回転軸サーボモータ10および昇降軸サーボモータ20の回転軸の実際の回転角度、回転速度および駆動トルクに関するフィーバック情報を受信する。
§3 動作例
(実施形態1)
図3は、本実施形態に係るねじ締め装置1のねじ締め動作の処理手順を表形式で記載した図である。また、図4は、図3に示す各ステップにおける、回転軸サーボモータ10の回転軸トルク(R軸トルク)を示すグラフである。このグラフは、横軸が時間であり、縦軸がR軸トルクである。横軸の時間は、1インデックスが2msに相当する。また、縦軸のR軸トルクは、定格トルクを100%とし、その比率で表している。以下、図3および図4を適宜参照しながら、本実施形態に係るねじ締め装置1の動作を説明する。
まず、制御部31は、サーボドライバ22に、昇降軸サーボモータ20の回転角度、回転速度およびトルクの指令を送信する。サーボドライバ22は、制御部31からの指令に応じて駆動波形を生成し、昇降軸サーボモータ20に供給する(ステップ0開始)。このとき、ドライバビット40は原点位置にあり、駆動波形に応じて所定の移動速度(Vz)でZ軸に沿って下降する。
ドライバビット40の位置(z)および移動速度(Vz)は、昇降軸サーボモータ20の回転軸の回転角度や回転速度によって算出することができる。制御部31は、ドライバビット40を目標位置まで移動させる。
制御部31は、ドライバビット40のZ軸位置(z)が目標位置に到達したことを検出すると、サーボドライバ22に昇降軸サーボモータ20の駆動を停止するよう指令する(ステップ0終了)。図4に示すように、ステップ0の間、回転軸サーボモータ10に対する駆動は行われないので、R軸トルクは0のままである。
次に、制御部31は、サーボドライバ12に、回転軸サーボモータ10の回転速度の指令を送信する。サーボドライバ12は、制御部31からの指令に応じて駆動波形を生成し、回転軸サーボモータ10に供給する。このとき、ドライバビット40は、所定の回転速度(Vr)でR軸周りに回転し、ねじ締めが開始される(ステップ1(第1ステップ)開始)。
また、制御部31は、ねじの回転によってねじが下方に移動するため、その移動量に同期するように昇降軸サーボモータ20を回転させて、ドライバビット40をZ軸に沿って下方に移動させる。このとき、ドライバビット40の先端がねじの頭部の溝に嵌合していなければ、ドライバビット40のR軸周りの回転および下方への移動によってねじの頭部の溝に嵌合するようになる。
図4に示すように、回転軸サーボモータ10の回転軸が所定の回転速度(Vr)で回転するため、R軸トルクが増加するが、最初だけオーバーシュートが発生する。制御部31は、R軸トルクが閾値トルク(例えば、62%)に達したかによって仮着座(ねじの座面が被締結部に接触した)状態にあるか否かを判定するが、R軸トルクのオーバーシュートを除外する必要があるため、ステップ1の開始から1000msは仮着座状態にあるか否かの判定を行わない。
ねじが仮着座状態になると、サーボドライバ12は所定の回転速度(Vr)を維持しようとしてR軸トルクがさらに上昇する。制御部31は、サーボドライバ12から受信した駆動トルクが閾値トルクに到達したときに、ステップ2に移行する。このように、制御部31は、R軸トルクが閾値トルクに達するまで、回転軸サーボモータ10を所定の回転速度でR軸周りに回転させ、昇降軸サーボモータ20の回転によってドライバビット40をZ軸方向に沿って下方に移動させる(ステップ1終了)。
次に、制御部31は、ねじの本締めを行うため、サーボドライバ12に所定の回転速度(Vr)を維持させる。これにより、R軸トルクが増加してゆく。ここでは、締め付けトルクとして、約150%のR軸トルクが設定される(ステップ2(第2ステップ)開始)。
また、制御部31は、ねじの本締めによってねじが下方に移動するため、その移動量に同期するように昇降軸サーボモータ20を回転させて、ドライバビット40をZ軸に沿って下方に移動させる。図4に示すように、回転軸サーボモータ10のR軸トルク(Tr)が締め付けトルクに到達する(ステップ2終了)。
次に、制御部31は、回転軸サーボモータ10のR軸トルク(Tr)が締め付けトルクに到達したことを検出すると、サーボドライバ12に対するトルク指令を締め付けトルクに維持することにより、ねじの締め付けトルクがそのまま維持されて、締め付けが行われる。図4に示すように、締め付けトルクが所定時間だけ維持される。この所定時間中に、ねじの回転が止まりそれ以上締め付けが行われなくなる。(ステップ3終了)。
また、制御部31は、ねじの締め付けによってねじが下方に移動するため、その移動量に同期するように昇降軸サーボモータ20を回転させて、ドライバビット40をZ軸に沿って下方に移動させる。
次に、制御部31は、サーボドライバ12にR軸トルク(Tr)減少の指令を送信する(ステップ4開始)。また、制御部31は、ステップ4開始時の回転軸サーボモータ10の回転軸の回転角度を第1の回転角度とする。そして、制御部31は、回転軸サーボモータ10のR軸トルク(Tr)が0になるまで減少させるようにサーボドライバ12に対する指令を送信する。このとき、R軸トルクの解放によって、ねじが締め付け方向とは逆方向に若干回転する。このときの回転軸サーボモータ10の回転軸の回転角度を第2の回転角度とする(ステップ4終了)。
最後に、制御部31は、サーボドライバ22に、昇降軸サーボモータ20の回転角度、回転速度およびトルクの指令を送信する。サーボドライバ22は、制御部31からの指令に応じて駆動波形を生成し、昇降軸サーボモータ20に供給する(ステップ5開始)。このとき、ドライバビット40は、所定の移動速度(Vz)でZ軸に沿って上昇する。
また、制御部31は、サーボドライバ12に、回転軸サーボモータ10の回転角度、回転速度およびトルクの指令を送信する。サーボドライバ12は、制御部31からの指令に応じて駆動波形を生成し、回転軸サーボモータ10に供給する。このとき、ドライバビット40は、所定の回転速度(Vr)でR軸周りに回転する。制御部31は、回転軸サーボモータ10の回転軸の回転角度(R軸位置(r))およびドライバビット40のZ軸位置(z)が原点位置に復帰したときに処理を終了する(ステップ5終了)。
図5は、ねじの締め付けによって発生する軸力を模式的に示す図である。雄ねじ41は、座面42によって被締結物43を挟むように締結物(雌ねじ)44に締め付けられる。このとき、雄ねじ41の座面42によって被締結物43を締め付ける力と同じ大きさの軸力Fが発生する。すなわち、雄ねじ41によって締め付ける力が大きい程、軸力Fが大きくなる。
図3を用いて説明したように、ステップ3においてねじの締め付けが完了したときの回転軸サーボモータ10の回転軸の回転角度を第1の回転角度とし、ステップ4においてねじの締め付けを解放したときの回転角度を第2の回転角度とすると、(第1の回転角度-第2の回転角度)だけねじの回転角度が戻ることになる。このねじ(回転軸サーボモータ10の回転軸)の回転角度の戻りを、回転位置の変動と呼ぶ。
軸力Fが小さい場合、座面42の面圧(ねじ接触面圧)が小さくなり、回転抵抗が小さくなる。その結果、ねじ(回転軸サーボモータ10の回転軸)の回転位置の変動が大きくなる。
また、軸力Fが大きい場合、座面42の面圧(ねじ接触面圧)が大きくなり、回転抵抗が大きくなる。その結果、ねじ(回転軸サーボモータ10の回転軸)の回転位置の変動が小さくなる。制御部31は、この回転位置の変動に応じて軸力Fを推定する。
図6は、正常時における、ねじの回転位置の変動と軸力Fとの関係を示すグラフである。図3および図4を用いて説明したように、ねじの締め付けトルクが所定時間だけ維持され(ステップ3)、締め付けトルクが解放されると(ステップ4)、回転位置の変動が発生する。図6においては、回転位置の変動が3.8°だけ発生している。このとき、軸力Fが約100kgfとなる。
なお、図6~図9においては、通常の工程ではねじの軸力を測定できないため、被締結物43と締結物44との間にロードセルを挟んだ状態でねじ締めを行い、ねじの軸力を実験的に測定したものである。
図7は、底付き時における、ねじの回転位置の変動と軸力Fとの関係を示すグラフである。底付きとは、雄ねじ41の先端が雌ねじ44の底部に接触している状態であり、正常なねじ締めが行えない状態である。底付きが発生した場合、本締めで雄ねじ41の先端または雌ねじ44の底部が潰れ、正常なねじ締めが行えなくなる。その結果、正常なねじ締めと比較して軸力Fが低下し、ねじの回転位置の変動量が大きくなる。
図7においては、回転位置の変動量が5.0°だけ発生している。このとき、軸力Fが約10kgfとなる。このように、ねじの回転位置の変動量と軸力Fとの間に相関があることが分かる。
以上説明したように、本実施形態に係るねじ締め装置によれば、軸力Fが小さい場合、座面42の面圧が小さくなり、回転抵抗が小さくなる。その結果、ねじの回転位置の変動が大きくなる。また、軸力Fが大きい場合、座面42の面圧が大きくなり、回転抵抗が大きくなる。その結果、ねじの回転位置の変動が小さくなる。制御部31は、この回転位置の変動に応じて軸力Fを推定することができる。
(実施形態2)
実施形態1においては、R軸位置レンジのみでねじの軸力を推定したが、さらに軸力の推定精度を向上できる変数がないかを検討した。本出願人は、実験の結果、軸力Fを推定するモデルとして以下の式を提案する。ここで、yを推定軸力、xをステップ1におけるZ軸トルクの標準偏差、xをステップ2におけるR軸速度の平均、xをステップ4におけるR軸位置の変動量(R軸位置の最大値-R軸位置の最小値(R軸位置レンジ))とする。また、a,b,c,dは、実験によって求められた定数である。
y=ax+bx+cx+d …(1)
ステップ1において、ねじが正しく着座できていないまま空回りすると、R軸トルクが閾値トルクに達しないまま一定のトルクが長時間発生する。このとき、Z軸トルクの標準偏差xが低下する。このことから、変数xは、ねじの仮着座が成功しているか(軸力が発生しているか)否かの判定に使用できる。
ステップ2において、ねじの締め付け不良によりR軸トルクが目標値に到達するまでの時間が長い場合、または目標値に到達しない場合、R軸速度がほぼ0の状態が長時間発生し、R軸速度の平均xが小さくなる。このことから、変数xは、ねじの本締めが正常に行えているか(軸力が発生しているか)否かの判定に使用できる。
ステップ4において、R軸トルクを解放するとねじを緩める方向に回転する力が発生する。ねじの締結状態によってねじが逆回転する量が変化し、しっかり締まっているほど回転量が小さくなる。すなわち、R軸位置レンジxが小さくなる。このことから、変数xは、本締め後にしっかり締まっているか(軸力が発生しているか)否かの判定に使用できる。この変数xと相関が高い(置き換え可能な)変数として、ステップ4のR軸速度レンジを挙げることができる。
図8は、実際に計測されたねじの軸力と式(1)を用いて算出した軸力予測値とを示すグラフである。このグラフは、横軸を試験(サンプル)番号とし、縦軸を軸力(kgf)としており、試験番号の約300までが正常な状態でねじ締めが行われたサンプルであり、それ以降が正常でない(異常な)状態でねじ締めが行われたサンプルである。なお、軸力の実測値が点で示されており、軸力の予測値が実線で示されている。軸力の実測値は、正常、および異常1~6のそれぞれで形の異なる点で記載している。
異常1のサンプルは、ねじ山不良のサンプルである。異常2~5は、底付きが発生したサンプルであり、底付きのレベルに応じて4つに分類されている。異常2が最も底付きの程度が軽いサンプルであり、異常5が最も底付きの程度が重いサンプルであり、異常3および異常4はその中間程度のサンプルである。異常6のサンプルは、雄ねじ41の座面42と被締結物43との間に異物が挟み込まれた場合のサンプルである。
図8に示すように、正常、および異常1~5においては、実際に計測されたねじの軸力と、軸力予測値とが概ね一致している。しかし、異常6(異物挟み込み)においては、実際に計測されたねじの軸力と、軸力予測値との差が大きく、予測の精度がそれほど良くないことが分かる。この異物挟み込みが発生しているサンプルについては、別の方法で検出して取り除き、正常、および異常1~5のサンプルのみに上記軸力の推定を用いるようにすれば、より高い精度で軸力の推定が行えるようになる。
図9は、図8に示す各サンプルの軸力予測値対実測値をプロットしたグラフである。このグラフは、横軸を軸力予測値(kgf)、縦軸を軸力の実測値(kgf)としており、各サンプルの点が図8に示す各サンプルの点に対応している。なお、図9においては、図8に示す異常6(異物挟み込み)のサンプルを除外している。
図9に示すように、正常、および異常1~5の各サンプルにおいて、軸力予測値と軸力の実測値とが概ね一致していることが分かる。また、軸力予測値によって、正常、および異常1~5のどの状態にあるのかが概ね判別できるようになる。
以上説明したように、制御部31は、式(1)を用いてねじの軸力を推定するようにしたので、ねじの回転位置の変動のみでねじの軸力を推定するよりも、さらに正確にねじの軸力を推定できるようになる。
(実施形態3)
上述の変数xと相関が高い(置き換え可能な)変数として、ステップ1におけるZ軸位置の平均(変数xとの相関係数0.97)、ステップ1の時間(同、0.99)、ステップ1におけるR軸位置の平均(同、0.99)、R軸位置の標準偏差(同、0.99)、R軸速度の平均(同、0.97)、R軸速度の平均(同、-0.96)等が挙げられる。これらいずれかの変数をxに替えて、あるいはxとともに適用することで推定精度が更に向上することが期待できる。
(実施形態4)
上述の変数xと相関が高い(置き換え可能な)変数として、ステップ2の時間(変数xとの相関係数-0.77)、ステップ2におけるR軸位置の標準偏差(同、-0.75)、R軸速度の標準偏差(同、0.94)、R軸トルクの平均(同、0.84)、Z軸位置レンジ(Z軸位置の最大値-Z軸位置の最小値)(同、-0.74)等が挙げられる。これらいずれかの変数をxに替えて、あるいはxとともに適用することで推定精度が更に向上することが期待できる。
(実施形態5)
図10は、図8に示す正常および異常2~5の底付きが発生した各サンプルのステップ2におけるZ軸位置レンジ対ステップ4におけるR軸位置レンジをプロットしたグラフである。図10は、上述のようにR軸位置レンジを用いてねじの軸力が推定できることを利用して、R軸位置レンジと他の変数とを用いた2次元プロットによって良否判定を行うと、判定制度が良好なことを示している。
このグラフは、横軸をステップ2におけるZ軸位置レンジ(mm)、縦軸をステップ4におけるR軸位置レンジ(°)としており、各サンプルの点が図8に示す正常および異常2~5の底付きが発生した各サンプルの点に対応している。
各サンプルのステップ2におけるZ軸位置レンジと、ステップ4におけるR軸位置レンジとに、機械学習の一手法であるアイソレーションフォレストを適用してスコアを算出したものである。図10において、等高線がスコアを示しており、正常状態であるサンプルがスコア0.55以下に集中しているのが分かる。このように、スコアが所定値以下のサンプルを、ねじ締めが正常に行われたものであると判定することができる。
以上説明したように、制御部31は、各サンプルのステップ2におけるZ軸位置レンジと、ステップ4におけるR軸位置レンジとにアイソレーションフォレストを適用してねじの軸力を推定するようにしたので、数値によってねじの締結の良否を容易に判定できるようになる。
§4 変形例
ねじ締め装置1の制御ブロック(特に制御部31)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、ソフトウェアによって実現してもよい。
後者の場合、ねじ締め装置1は、各機能を実現するソフトウェアであるプログラムの命令を実行するコンピュータを備えている。このコンピュータは、例えば1つ以上のプロセッサを備えていると共に、上記プログラムを記憶したコンピュータ読み取り可能な記録媒体を備えている。そして、上記コンピュータにおいて、上記プロセッサが上記プログラムを上記記録媒体から読み取って実行することにより、本発明の目的が達成される。上記プロセッサとしては、例えばCPU(Central Processing Unit)を用いることができる。上記記録媒体としては、「一時的でない有形の媒体」、例えば、ROM(Read Only Memory)等の他、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記プログラムを展開するRAM(Random Access Memory)などをさらに備えていてもよい。また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。なお、本発明の一態様は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。各実施形態において、ステップ3は必ずしも必要では無く、省略してもよい。
1 ねじ締め装置
10 回転軸サーボモータ(第1モータ)
11,21,122,222 エンコーダ
12,22 サーボドライバ
20 昇降軸サーボモータ(第2モータ)
30 ボールねじ
31 制御部
40 ドライバビット(回転工具)
41 雄ねじ
42 座面
43 被締結物
44 締結物
121,221 インバータ部
123,223,311 通信部

Claims (9)

  1. ねじを回転させる回転工具と、
    前記回転工具を回転駆動する第1モータと、
    前記第1モータを制御する制御部と、を備え、
    前記制御部は、
    前記ねじを締める回転方向に、前記第1モータの発生する所定のトルクを前記ねじに与えた後、前記トルクを解放するステップ、を実行し、
    前記トルクを解放するステップにおける、前記第1モータの回転位置の変動に基づいて、締結された前記ねじの軸力を推定する、ねじ締め装置。
  2. 前記制御部に制御される、前記回転工具を軸方向に移動させる第2モータを更に備え、
    前記制御部は、
    前記第1モータを所定の回転速度とし、前記第2モータによる前記回転工具の移動を、前記第1モータの発生するトルクが閾値トルクに達するまで行う、前記ねじをねじ穴にねじ込むための第1ステップと、次に、
    前記第1モータの発生するトルクを前記所定のトルクに達するまで増加させる、前記ねじの本締めを行うための第2ステップと、を実行する、請求項1に記載のねじ締め装置。
  3. 前記制御部は、
    前記第1ステップにおける、前記第2モータのトルクのばらつきを反映して、前記軸力を推定する、請求項2に記載のねじ締め装置。
  4. 前記制御部は、
    前記第1ステップにおける、前記第2モータによる前記回転工具の位置の平均、前記第1ステップの時間、前記第1モータの回転位置の平均、前記第1モータの回転位置の標準偏差、前記第1モータの回転速度の平均、および前記第1モータの回転速度の標準偏差のいずれかを反映して、前記軸力を推定する、請求項2に記載のねじ締め装置。
  5. 前記制御部は、
    前記第2ステップにおける前記第1モータの回転速度の平均値を反映して、前記軸力を推定する、請求項2から4のいずれか1項に記載のねじ締め装置。
  6. 前記制御部は、
    前記第2ステップの時間、前記第2ステップにおける前記第1モータの回転位置の標準偏差、前記第1モータの回転速度の標準偏差、前記第1モータのトルクの平均、および前記第2モータによる前記回転工具の位置のレンジのいずれかを反映して、前記軸力を推定する、請求項2から4のいずれか1項に記載のねじ締め装置。
  7. 前記制御部は、
    前記第2ステップにおける、前記第2モータによる前記回転工具の位置の変動と、前記推定した軸力と、に基づいて、前記ねじの締結の良否を判断する、請求項2から6のいずれか1項に記載のねじ締め装置。
  8. 前記制御部は、
    前記第2ステップにおける、前記第2モータによる前記回転工具の位置の変動と、前記推定した軸力とにアイソレーションフォレストを適用し、スコアに応じて前記ねじの締結の良否を判断する、請求項7に記載のねじ締め装置。
  9. 前記制御部は、
    前記トルクを解放するステップの直前に、
    前記所定のトルクを所定時間維持するステップを実行する、請求項1から8のいずれか1項に記載のねじ締め装置。
JP2020107262A 2020-06-22 2020-06-22 ねじ締め装置 Active JP7375684B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020107262A JP7375684B2 (ja) 2020-06-22 2020-06-22 ねじ締め装置
CN202180032907.4A CN115551672A (zh) 2020-06-22 2021-03-04 螺固装置
PCT/JP2021/008424 WO2021261021A1 (ja) 2020-06-22 2021-03-04 ねじ締め装置
US17/925,309 US20230234175A1 (en) 2020-06-22 2021-03-04 Screw driving device
EP21828492.5A EP4169668A1 (en) 2020-06-22 2021-03-04 Screw driving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020107262A JP7375684B2 (ja) 2020-06-22 2020-06-22 ねじ締め装置

Publications (2)

Publication Number Publication Date
JP2022001399A JP2022001399A (ja) 2022-01-06
JP7375684B2 true JP7375684B2 (ja) 2023-11-08

Family

ID=79244216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020107262A Active JP7375684B2 (ja) 2020-06-22 2020-06-22 ねじ締め装置

Country Status (5)

Country Link
US (1) US20230234175A1 (ja)
EP (1) EP4169668A1 (ja)
JP (1) JP7375684B2 (ja)
CN (1) CN115551672A (ja)
WO (1) WO2021261021A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023125498A (ja) * 2022-02-28 2023-09-07 オムロン株式会社 ねじ締めシステム、コントローラ、および制御プログラム
CN117464366B (zh) * 2023-12-27 2024-03-15 深圳市顶配自动化技术有限公司 全自动cpu支架锁螺丝机及cpu性能检测设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3107138B2 (ja) 1995-03-31 2000-11-06 東京瓦斯株式会社 ガス漏洩検知装置
US6144891A (en) 1997-10-30 2000-11-07 Central Motor Wheel Co., Ltd. Wrenching method and apparatus, wrenching attachment, and medium storing wrenching torque control program
JP2004291217A (ja) 2003-03-28 2004-10-21 Sensor System Kk 軸力計付きナットランナー
JP6039434B2 (ja) 2012-01-13 2016-12-07 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド ロボットが用いる把持パターンを生成する方法及び計算機プログラム製品
JP2020093319A (ja) 2018-12-11 2020-06-18 株式会社東日製作所 締付装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6039434U (ja) * 1983-08-24 1985-03-19 トヨタ自動車株式会社 定軸力ボルト締付装置
JPH03107138U (ja) * 1990-02-19 1991-11-05
JP2019150922A (ja) 2018-03-05 2019-09-12 富士電機株式会社 ねじ締め判定装置及びねじ締め判定システム
JP7035859B2 (ja) 2018-07-04 2022-03-15 オムロン株式会社 ネジ締め不良判定装置、ネジ締めシステムおよびプログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3107138B2 (ja) 1995-03-31 2000-11-06 東京瓦斯株式会社 ガス漏洩検知装置
US6144891A (en) 1997-10-30 2000-11-07 Central Motor Wheel Co., Ltd. Wrenching method and apparatus, wrenching attachment, and medium storing wrenching torque control program
JP2004291217A (ja) 2003-03-28 2004-10-21 Sensor System Kk 軸力計付きナットランナー
JP6039434B2 (ja) 2012-01-13 2016-12-07 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド ロボットが用いる把持パターンを生成する方法及び計算機プログラム製品
JP2020093319A (ja) 2018-12-11 2020-06-18 株式会社東日製作所 締付装置

Also Published As

Publication number Publication date
CN115551672A (zh) 2022-12-30
EP4169668A1 (en) 2023-04-26
US20230234175A1 (en) 2023-07-27
JP2022001399A (ja) 2022-01-06
WO2021261021A1 (ja) 2021-12-30

Similar Documents

Publication Publication Date Title
JP7375684B2 (ja) ねじ締め装置
JP2008097363A (ja) 異常診断方法及びその装置
US20180004186A1 (en) Machine tool controller
US4894767A (en) Method for yield tightening of screws
US6721622B2 (en) Method of compensating profile data, and numerical controller and machine tool for practicing the method
WO2020009159A1 (ja) ネジ締め不良判定装置、ネジ締めシステムおよびプログラム
JP2012171071A (ja) ロボットのねじ締め作業異常検知方法
KR101666143B1 (ko) 전동 공구의 제어 방법
KR101759302B1 (ko) 전동 공구의 제어 방법
JP6683748B2 (ja) 数値制御装置
US10639759B2 (en) Load state diagnosis device and load state diagnosis method for servomotor
US20220395941A1 (en) Automatic screw tightening method and automatic screw tightening apparatus
KR101759301B1 (ko) 전동 공구의 제어 방법
KR20220058898A (ko) 가공 시스템 및 가공물의 제조 방법
JP3197887B2 (ja) 自動ねじ締め機
WO2020195325A1 (ja) ねじ締め不良判定装置、ねじ締め装置、ねじ締め不良判定方法、および制御プログラム
JP4022164B2 (ja) 自動ねじ締め機およびねじ締め方法
JP2021169128A (ja) ねじ締付装置及びねじ締付方法
JP2023135018A (ja) ロボットシステム、制御方法および制御プログラム
Isshiki et al. Enhancement of Accuracy in Sensorless Cutting-Force Estimation by Mutual Compensation of Multi-integrated Cutting-Force Observers
JP7070467B2 (ja) ねじ締め不良判定装置、ねじ締め装置、ねじ締め不良判定方法、および制御プログラム
JP2001162548A (ja) ねじ締付装置及び該装置の異物噛み込み判定方法
JP7425614B2 (ja) 自動ねじ締め装置
JP7247807B2 (ja) ねじ締め不良判定装置、ねじ締め装置、ねじ締め不良判定方法、および制御プログラム
JP7431294B2 (ja) ロボットハンド及びロボットハンドの制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231009

R150 Certificate of patent or registration of utility model

Ref document number: 7375684

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150