JP7372699B1 - Shiitake container cultivation method - Google Patents

Shiitake container cultivation method Download PDF

Info

Publication number
JP7372699B1
JP7372699B1 JP2022136425A JP2022136425A JP7372699B1 JP 7372699 B1 JP7372699 B1 JP 7372699B1 JP 2022136425 A JP2022136425 A JP 2022136425A JP 2022136425 A JP2022136425 A JP 2022136425A JP 7372699 B1 JP7372699 B1 JP 7372699B1
Authority
JP
Japan
Prior art keywords
container
medium
cultivation
lid
mushrooms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022136425A
Other languages
Japanese (ja)
Other versions
JP2024033052A (en
Inventor
信 高橋
隆弘 山内
Original Assignee
株式会社北研
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社北研 filed Critical 株式会社北研
Priority to JP2022136425A priority Critical patent/JP7372699B1/en
Application granted granted Critical
Publication of JP7372699B1 publication Critical patent/JP7372699B1/en
Publication of JP2024033052A publication Critical patent/JP2024033052A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Mushroom Cultivation (AREA)

Abstract

【課題】筒状の栽培容器によるシイタケ等のきのこ栽培において、生産効率や発生率(収量)の向上を実現し、且つ、商品規格をも満たす栽培方法を実現する。【解決手段】透光性と保形性を備え、上面に開口部を配して一定量の培地が充填可能な筒状の容器本体と、透光性、通気性、保形性を備えた蓋体とを備えた栽培容器を用い、a)殺菌処理した培地を充填、又は、培地を充填した後に封して殺菌処理する、培地製造工程と、b)蓋体を外し、該培地表面にシイタケ種菌を散布した後に、容器本体を再び蓋体で封する種菌接種工程と、c)酸素を供給し、かつ、暗条件の環境下で、接種した菌糸を培地に蔓延させる菌糸培養前期工程と、d)酸素を供給し、かつ、明条件の環境下で、原基形成を促す菌糸培養後期工程と、e)原基形成が完了したら、容器本体から蓋体を外し、子実体の成長を促す子実体生育工程と、f)成熟した子実体を採取する採取工程と、で構成される。【選択図】図1[Problem] To realize a cultivation method that improves production efficiency and incidence (yield) in the cultivation of mushrooms such as shiitake in a cylindrical cultivation container, and also satisfies product standards. [Solution] A cylindrical container body that has translucency and shape retention, has an opening on the top surface and can be filled with a certain amount of culture medium, and has translucency, air permeability, and shape retention. Using a cultivation container equipped with a lid, a) a culture medium manufacturing process in which a sterilized culture medium is filled, or the culture medium is filled and then sealed and sterilized, and b) the lid is removed and the cultivation container is placed on the surface of the culture medium. c) An inoculum inoculation step in which the container body is sealed again with a lid after dispersing the shiitake inoculum, and c) an early mycelium cultivation step in which the inoculated mycelia are spread in the medium under a dark environment while supplying oxygen. d) late step of culturing mycelia that supplies oxygen and promotes primordium formation under light conditions; and e) once primordium formation is completed, remove the lid from the container body and allow the growth of fruiting bodies. f) a collection step of collecting the mature fruiting body. [Selection diagram] Figure 1

Description

本発明は、主としてシイタケを対象とし、栽培室空間を効率よく活用でき、かつ菌床1世代に対し1回の発生を促して収穫する、自動化や機械化が容易な容器栽培方法に関する。 The present invention mainly targets shiitake mushrooms, and relates to a container cultivation method that is easy to automate and mechanize, which allows for efficient use of cultivation room space, and allows harvesting by encouraging one generation of mushroom beds.

一般に、食用きのこの栽培は、ポリプロピレンやポリエチレン製の袋によるものと、ポリプロピレン製ビン等の容器によるものの2つに大別される。エノキタケ、ブナシメジ、ナメコ等、多くの食用きのこ類は、設備等に必要な初期投資額は大きいが作業性・効率性が非常に高い特徴を有する容器栽培(ビン栽培)によって行なわれている。
一方、日本を代表する食用きのこであるシイタケは、過去に専用容器の開発やそれを用いた栽培が試行されたが、培養中に子実体の元となる「原基」が培地全体に形成されること、培地の全体から子実体が発生すること(子実体発生部位やタイミングのコントロールが技術的に難しい)などから、培養完了時点までの使用に限られている。また、様々な試行により容器栽培開発は進められており、条件によっては容器内の培地上部から発生させることは実現できているが、常時安定的かつ斉一に子実体を発生させる水準には達していない。これらから、現在においても培地製造、培養、発生、収穫までの全工程を一貫して行なうことができる商業的な容器栽培は実現しておらず、依然として袋栽培が主流となっている。
袋栽培では、上部に原基形成および子実体の成長を促す空間を設けることができ、良好な発生条件を備えるが、一方で、その袋の上部に配する発生用の空間が室内(栽培棚)収容の妨げとなり、作業性や収容密度の低下等が欠点となっている。
In general, cultivation of edible mushrooms can be roughly divided into two types: cultivation using bags made of polypropylene or polyethylene, and cultivation using containers such as polypropylene bottles. Many edible mushrooms, such as enokitake, bunashimeji, nameko, etc., are grown using container cultivation (bottle cultivation), which requires a large initial investment for equipment, but is characterized by extremely high workability and efficiency.
On the other hand, for shiitake mushrooms, one of Japan's most representative edible mushrooms, special containers have been developed and attempts have been made to cultivate them using such containers in the past, but during cultivation, the "primordia" that form the fruiting bodies were formed throughout the medium. Due to the fact that fruiting bodies are generated from the entire medium (it is technically difficult to control the location and timing of fruiting body generation), their use is limited to the point at which culture is completed. In addition, development of container cultivation is progressing through various trials, and although it has been possible to produce fruiting bodies from the top of the medium inside the container depending on the conditions, the level of producing fruiting bodies consistently and uniformly has not been reached. do not have. For these reasons, even today, commercial container cultivation that can consistently perform all processes from culture medium production, cultivation, generation, and harvesting has not been realized, and bag cultivation remains the mainstream.
In bag cultivation, a space can be provided in the upper part to encourage the formation of primordia and the growth of fruiting bodies, providing favorable conditions for germination. ) Disadvantages such as hindering storage and reducing workability and storage density.

また、袋栽培では、菌床1世代に対して3~10回程度の複数回発生を行なって菌床重量の20~30%程度のきのこを収穫することが一般的であった。それは、培養完了時で菌床全体がある程度熟成している必要があり、その菌床から一定量のシイタケを収穫するためには、1回ではなく複数回収穫することが、より効率的な栽培方法と判断していたことによる。しかしながら、このことは子実体が得られるまでに長時間を要すること、栽培管理に多大な労力が掛かること、施設回転効率が低いこと等が欠点となっていた。 In addition, in bag cultivation, it was common to generate mushrooms multiple times, about 3 to 10 times per generation of the fungal bed, to harvest mushrooms that accounted for about 20 to 30% of the weight of the fungal bed. The entire fungal bed must have matured to a certain extent by the time culture is completed, and in order to harvest a certain amount of shiitake mushrooms from the fungal bed, harvesting multiple times rather than once is a more efficient cultivation method. It depends on what I thought was the method. However, this method has drawbacks such as a long time required until fruiting bodies are obtained, a great deal of labor required for cultivation management, and low facility turnover efficiency.

このような問題に対して、従来からも様々な技術が提案されている。例えば、茸類の栽培容器およびそれを用いる栽培方法(特許文献1参照)が提案され、公知技術となっている。より詳しくは、きのこ培養基をビン容器内において培養して菌糸を蔓延させるきのこ培養方法とこれに用いるきのこ培養容器について記載されている。
しかしながら、培養中からきのこの原基形成がなされ、培地全面から子実体が発生するシイタケ菌の特徴から、培養完了後はビンから培地を取り出す必要があるため、ビンによる省力化のメリットが培養段階までに留まっており、上記問題の解決には至っていない。
Various techniques have been proposed in the past to address such problems. For example, a cultivation container for mushrooms and a cultivation method using the same (see Patent Document 1) have been proposed and have become known techniques. More specifically, it describes a mushroom culture method in which a mushroom culture medium is cultured in a bottle container to spread mycelia, and a mushroom culture container used for this method.
However, due to the characteristic of Shiitake mushrooms that mushroom primordia are formed during cultivation and fruiting bodies are generated from the entire surface of the medium, it is necessary to remove the medium from the bottle after cultivation is completed, so the labor-saving advantage of using bottles is limited to the cultivation stage. However, the above problem has not been solved yet.

また、既存の栽培施設を活用した菌床シイタケビン栽培技術の開発(非特許文献1参照)について提案され、公知技術となっている。より詳しくは、既存の栽培施設や資材を利活用した菌床シイタケビン栽培技術の開発に言及しており、本発明と類似の条件等も散見されるが、従来の袋栽培比較で未収穫培地割合(不発生率)が高いことや収率(ビンあたり発生重量)が低いことから発生安定度が低いことが大きな課題であることを指摘している。
結果的に、前述した特許文献1の培養工程までに限られたビン利用技術(特許文献1)同様、菌床シイタケの商業的なビン栽培化は現在においても成功には至っておらず、上記問題の解決には至っていない。
本発明は、培地充填以降子実体育成に至るまでの工程についての条件を最適化した結果、発生率と収率等の生産効率が高く商業的なビン栽培化が可能な水準に達している点で異なる。
In addition, the development of a fungal bed cultivation technique using existing cultivation facilities (see Non-Patent Document 1) has been proposed and has become a publicly known technique. In more detail, it mentions the development of a fungal bed cultivation technique that utilizes existing cultivation facilities and materials, and although conditions similar to those of the present invention are occasionally found, a comparison of conventional bag cultivation shows that the unharvested medium It is pointed out that low stability of generation is a major issue due to the high proportion (non-generation rate) and low yield (weight of generation per bottle).
As a result, similar to the bottle usage technology (Patent Document 1) that is limited to the cultivation process in Patent Document 1 mentioned above, commercial cultivation of shiitake mushrooms in bottles has not been successful to date, and the above-mentioned problems have not been achieved. has not yet been resolved.
As a result of optimizing the conditions for the process from filling the medium to fruiting body growth, the present invention has achieved high production efficiency in terms of incidence and yield, reaching a level that enables commercial bottle cultivation. It's different.

特開平06-205611号公報Japanese Patent Application Publication No. 06-205611

長野県林試報第33号(2019)Nagano Prefecture Forestry Report No. 33 (2019)

本発明は、上記問題に鑑みてなされたもので、シイタケ等のきのこ栽培の効率化を実現するにあたって、一貫して保形性、透光性、通気性のある栽培容器を用いることで収容密度の向上、機械化・自動化による生産効率の向上や発生率(収量)の向上を具現化するとともに、菌床1世代に対して1回の収穫とし、発生面を培地底面や側面を閉ざした上面のみ開放とすることで、短縮された期間内に十分な菌床の熟成と子実体の発生が見込め、求める商品規格を満たすことができる栽培方法を具現化することを課題とするものである。 The present invention was made in view of the above problems, and in order to improve the efficiency of cultivating mushrooms such as shiitake mushrooms, it is possible to increase the storage density by consistently using cultivation containers that have shape retention, light transmission, and air permeability. In addition to realizing improvements in production efficiency and generation rate (yield) through mechanization and automation, harvesting is performed once per generation of fungal beds, and the growth surface is limited to the bottom of the medium or the top surface with closed sides. The objective of this project is to create a cultivation method that allows for sufficient maturation of the fungal bed and the generation of fruit bodies within a shortened period of time, and that satisfies desired product standards.

上記課題を達成するため、本発明に係るシイタケ栽培方法は、透光性と保形性を備え、上面に開口部を配して一定量の培地が充填可能な筒状の容器本体と、該容器本体上面の開口部を封する透光性、通気性、保形性を備えた蓋体とを備えた栽培容器を用い、
a)殺菌処理した培地を容器本体に充填し、蓋体で封する、又は、培地を充填した後に容器本体を蓋体で封して殺菌処理する、培地製造工程と、
b)蓋体を外し、該培地表面にシイタケ種菌を散布した後に、容器本体を再び蓋体で封する種菌接種工程と、
c)酸素透過性があり、かつ、暗条件の環境下で、接種した菌糸を培地に蔓延させる菌糸培養前期工程と、
d)酸素透過性があり、かつ、明条件の環境下で、原基形成を促す菌糸培養後期工程と、
e)原基形成が完了したら、容器本体から蓋体を外し、子実体の成長を促す子実体生育工程と、
f)成熟した子実体を採取する採取工程と、
から構成される手段を採る。
In order to achieve the above-mentioned problems, the shiitake mushroom cultivation method according to the present invention includes a cylindrical container main body that has translucency and shape retention, has an opening on the top surface, and can be filled with a certain amount of culture medium; Using a cultivation container equipped with a lid that seals the opening on the top of the container body and has translucency, air permeability, and shape retention,
a) A culture medium manufacturing process in which a sterilized culture medium is filled into a container body and the container body is sealed with a lid, or after the culture medium is filled, the container body is sealed with a lid and sterilized;
b) a seed inoculation step of removing the lid and scattering the shiitake mushroom seed on the surface of the medium, and then sealing the container body with the lid again;
c) an early step of culturing mycelia in which the inoculated mycelium is spread in the medium in an oxygen permeable and dark environment;
d) a late step of culturing mycelia that promotes primordium formation in an environment with oxygen permeability and light conditions;
e) Once the primordium formation is completed, the lid is removed from the container body, and the fruiting body growth step is to promote the growth of the fruiting body;
f) a collection step of collecting mature fruiting bodies;
Adopt measures consisting of:

また、本発明は、前記容器本体が、円筒状、四角筒状、多角筒状のいずれかで、開口部の胴部に対する径率が、70%以上であり、開口部直径の容器の高さに対する比率が50%以上とした手段を採る。 Further, the present invention provides that the container body has a cylindrical shape, a rectangular cylindrical shape, or a polygonal cylindrical shape, and the diameter ratio of the opening to the body is 70% or more, and the height of the container is equal to the diameter of the opening. Measures will be taken to ensure that the ratio is at least 50%.

さらに、本発明は、前記容器蓋体が、フィルタを用いず、嵌合部の隙間を通してのみ酸素供給および二酸化炭素排出が行なわれる手段を採る。 Furthermore, the present invention employs a means in which the container lid body supplies oxygen and discharges carbon dioxide only through the gap in the fitting portion without using a filter.

またさらに、本発明は、前記培地製造工程において、前記培地を、培地頂点と容器天端の距離が5~20mmになるように充填した手段を採る。 Furthermore, the present invention employs a method in which the culture medium is filled in the culture medium manufacturing process such that the distance between the top of the culture medium and the top of the container is 5 to 20 mm.

さらにまた、本発明は、前記培地製造工程において、前記培地の上面の形状を平型、台形型、饅頭型、円錐形、すり鉢型のいずれかとし、その高低差が20mm以内である手段を採る。 Furthermore, in the medium manufacturing process, the present invention adopts a method in which the shape of the top surface of the medium is flat, trapezoidal, bun-shaped, conical, or mortar-shaped, and the difference in height is within 20 mm. .

さらにまた、本発明は、前記培地製造工程において、接種孔が
a)前記培地上面の中央部の一箇所
b)前記培地上面の外縁部の複数箇所
c)前記培地上面の中央部から略等距離の位置の複数箇所
の少なくとも1つに当てはまる位置に開けられている手段を採る。
Furthermore, the present invention provides that, in the culture medium manufacturing process, the inoculation hole is a) at one location in the center of the top surface of the culture medium, b) at multiple locations on the outer edge of the top surface of the culture medium, and c) approximately equidistant from the center of the top surface of the culture medium. A means is adopted in which the hole is opened at a position corresponding to at least one of the plurality of positions.

またさらに、本発明は、前記菌糸培養前期工程が、0.5ルクス未満の暗条件とした手段を採る。 Furthermore, the present invention employs a method in which the mycelial culture early step is performed under dark conditions of less than 0.5 lux.

さらにまた、本発明は、前記菌糸培養後期工程が、100ルクス以上の明るさで、常時点灯もしくは間欠点灯とした手段を採る。 Furthermore, in the present invention, in the latter stage of mycelium cultivation, the light is constantly lit or lit intermittently at a brightness of 100 lux or more.

またさらに、本発明は、前記種菌接種工程で用いる菌株が、子実体発生面に菌糸塊を形成する菌糸培養後期工程において褐変被膜が形成しにくい菌株である手段を採る。 Furthermore, the present invention employs a method in which the strain used in the inoculum inoculation step is a strain that is unlikely to form a brown coating during the late stage of mycelial culture in which a mycelial mass is formed on the surface where fruiting bodies develop.

さらにまた、本発明は、前記子実体生育工程において、培養完了し蓋体を除去したタイミングで、
a)前記培地上面部に少なくとも一箇所の穴あけを行なう
b)前記培地上面部の一部を菌糸ごと除去する
c)前記栽培容器に刺激を加える
のうち、少なくとも1つを行う手段を採る。
Furthermore, in the present invention, in the fruiting body growth step, at the timing when the culture is completed and the lid body is removed,
At least one of the following methods is adopted: a) making at least one hole in the top surface of the medium, b) removing a portion of the top surface of the medium together with mycelia, and c) applying stimulation to the cultivation container.

そしてまた、本発明は、前記蓋体が、嵌込式であり、前記嵌合部の隙間は、前記蓋体の内周の軸方向に形成された溝と、前記容器の首部とによって、形成されている手段を採る。 Further, in the present invention, the lid is a fitting type, and the gap in the fitting portion is formed by a groove formed in an axial direction on an inner circumference of the lid and a neck of the container. Take the appropriate measures.

本発明に係るシイタケ容器栽培方法によれば、透光性、保形性を有する容器本体と、透光性、保形性、通気性を有する蓋体を用いることで、菌糸培養工程で必要な酸素と光を適切に供給することができ、培地開口部から高品質のきのこを安定的に発生させることが可能で、1回発生のみで一定量の子実体を短期間で得ることができ、きのこ栽培の効率化を図ることが可能となる。 According to the method for cultivating shiitake mushrooms in containers according to the present invention, by using a container body that has translucency and shape retention, and a lid that has translucency, shape retention and air permeability, it is possible to It is possible to supply oxygen and light appropriately, it is possible to stably generate high-quality mushrooms from the opening of the medium, and it is possible to obtain a certain amount of fruiting bodies in a short period of time with only one generation. It becomes possible to improve the efficiency of mushroom cultivation.

また、本発明に係るシイタケ容器栽培方法によれば、保形性のある容器本体を用いることによって、容器を栽培室の専用棚に重ねて積む、または、棚の高さを短寸とすることができ、栽培室内に多くの数を設置して収容密度を高めることが可能となる。さらに、容器を用いて、栽培全工程を行なうため、専用機械導入による自動化が可能となり、労力、コスト等を削減でき、シイタケ生産原価が安定することで消費者に適正価格で供給することができる。
また、従来3~10回程度収穫を繰り返すシイタケ生産を1回とすることで、施設等の回転効率を著しく向上させることができる。
Furthermore, according to the method for cultivating shiitake mushrooms in containers according to the present invention, by using a shape-retaining container body, the containers can be stacked on top of each other on a dedicated shelf in the cultivation room, or the height of the shelf can be shortened. This makes it possible to increase the storage density by installing a large number of plants in a cultivation room. Furthermore, since the entire cultivation process is carried out using containers, it is possible to automate the cultivation process by introducing specialized machinery, reducing labor and costs, and by stabilizing shiitake production costs, it is possible to supply consumers at a reasonable price. .
Furthermore, by reducing shiitake production, which is conventionally repeated 3 to 10 times, to one harvest, the turnover efficiency of facilities, etc. can be significantly improved.

さらに、本発明に係るシイタケ容器栽培方法によれば、本容器本体及び蓋体を用いることで、培養前期工程ならびに培養後期工程において、必要量の酸素を供給することができ、また、培養後期工程において、必要量の光を必要な部位に照射することができる。 Furthermore, according to the method for cultivating shiitake mushrooms in containers according to the present invention, by using the container main body and the lid, the required amount of oxygen can be supplied in the early cultivation step and the late cultivation step, and the required amount of oxygen can be supplied in the latter cultivation step. In this case, the required amount of light can be irradiated to the required area.

さらに、本発明に係るシイタケ容器栽培方法によれば、栽培容器における発生面積はできるだけ広くとることができ、栽培に必要な量の酸素ならびに光の供給のバランスが取れ、また、容器上端から5~20mmの空間を設けることで、「光」と「酸素」を培地上面部に対して効果的に供給できる。 Furthermore, according to the method for cultivating shiitake mushrooms in containers according to the present invention, the growing area in the cultivation container can be made as large as possible, and the supply of oxygen and light necessary for cultivation can be balanced. By providing a space of 20 mm, "light" and "oxygen" can be effectively supplied to the upper surface of the culture medium.

さらに、本発明に係るシイタケ容器栽培方法によれば、培地上面部を、平型、台形型、饅頭(山)型、円錐型、すり鉢型にすることで、特に培地水分量に相違が生じた場合、子実体育成工程において発生するシイタケ子実体の個数や発生するタイミングを調整することができる。 Furthermore, according to the method for cultivating shiitake mushrooms in containers according to the present invention, by making the top surface of the medium into a flat shape, a trapezoid shape, a manju (mountain) shape, a conical shape, or a mortar shape, differences in the moisture content of the medium occur. In this case, the number of shiitake mushroom fruiting bodies generated in the fruiting body growing process and the timing of their generation can be adjusted.

また、本発明に係るシイタケ容器栽培方法によれば、容器ならびに蓋体が透光性を持っており、かつ培地面を容器天端から5~20mmとすることで、菌糸伸長に必要な酸素を効率的に供給すると同時に、原基形成が行なわれる培地上面部に対して必要な光と酸素を効率的に供給できる。 In addition, according to the method for cultivating shiitake mushrooms in containers according to the present invention, the container and the lid have translucency, and the culture medium surface is set at a distance of 5 to 20 mm from the top of the container, thereby absorbing the oxygen necessary for mycelial elongation. At the same time, the necessary light and oxygen can be efficiently supplied to the upper surface of the medium where primordium formation takes place.

さらに、本発明に係るシイタケ容器栽培方法によれば、供試菌株にあって、これを本願明細書記載の各種条件下において環境を整えることによって、培地の該部位から斉一かつ安定的に子実体を発生することができる。 Furthermore, according to the method for cultivating shiitake mushrooms in containers according to the present invention, by preparing the environment under the various conditions described in the specification of the present specification, fruiting bodies can be uniformly and stably grown from the relevant part of the culture medium. can occur.

本発明に係るシイタケ容器栽培方法で用いられる栽培容器の実施形態を示す正面図である。1 is a front view showing an embodiment of a cultivation container used in a shiitake container cultivation method according to the present invention. 本発明に係るシイタケ容器栽培方法で用いられる栽培容器の容器本体と蓋体の嵌合を示す説明図である。It is an explanatory view showing fitting of the container body and lid of the cultivation container used in the shiitake container cultivation method according to the present invention. 本発明に係るシイタケ容器栽培方法で用いられる栽培容器の蓋体の他の形状を示す説明図である。It is an explanatory view showing other shapes of the lid of the cultivation container used in the shiitake container cultivation method according to the present invention. 本発明に係るシイタケ容器栽培方法での接種孔の配置についての説明図である。FIG. 3 is an explanatory diagram of the arrangement of inoculation holes in the method for cultivating shiitake mushrooms in containers according to the present invention.

本発明に係るシイタケ容器栽培方法は、保形性の容器で一貫して、シイタケを栽培できることを最大の特徴とする。
以下、本発明に係るシイタケ容器栽培方法の実施形態を、図面に基づいて説明する。
なお、以下に示されるシイタケ容器栽培方法の全体態様及び各部の態様は、下記に述べる実施形態に限定されるものではなく、本発明の技術的思想の範囲内、即ち、同一の作用効果を発揮できる形状や寸法、構造等の範囲内で変更することができるものである。
また、本発明における透光性とは、半透光性を含む光の全部若しくは一部を透過する性質のことであって、光を量的に透過する場合のほか、光を波長成分的に透過する場合を含む概念である。
The greatest feature of the container cultivation method for shiitake mushrooms according to the present invention is that shiitake mushrooms can be consistently grown in shape-retaining containers.
EMBODIMENT OF THE INVENTION Hereinafter, embodiment of the shiitake container cultivation method based on this invention is described based on drawings.
Note that the overall aspect and aspects of each part of the shiitake container cultivation method shown below are not limited to the embodiments described below, and are within the scope of the technical idea of the present invention, that is, exhibiting the same effects. It is possible to change the shape, size, structure, etc. within the range that is possible.
In addition, the term "transparent property" in the present invention refers to the property of transmitting all or part of light, including semi-transparent property, and in addition to transmitting light quantitatively, it also refers to the property of transmitting light in terms of wavelength components. This is a concept that includes cases where it is transparent.

図1から図3にて、栽培容器の形状を示しつつ、本発明を説明する。
図1(a)は、栽培容器の正面の外観を示す図である。図1(b)は、容器本体に蓋体を嵌め込んだ状態での正面の外観を示す図である。図2(a)は、蓋体を下方から見た斜視図であり、図2(b)は、蓋体の底面図である。図2(c)は、栽培容器を上面から見た図であり、断面図のための切断線A-Aを含む。図2(d)は、切断線A-Aによる栽培容器、蓋体の断面図である。図3は、蓋体の他の形状を示す説明図である。図4は、栽培容器を上部から見た形であり、接種孔の配置についての説明図であり、図4(a)から(e)は、そのバリエーションである。
The present invention will be explained while showing the shape of the cultivation container with reference to FIGS. 1 to 3.
FIG. 1(a) is a diagram showing the front appearance of the cultivation container. FIG. 1(b) is a diagram showing the front appearance of the container body with the lid fitted into the container body. FIG. 2(a) is a perspective view of the lid viewed from below, and FIG. 2(b) is a bottom view of the lid. FIG. 2(c) is a top view of the cultivation container, including the cutting line AA for the cross-sectional view. FIG. 2(d) is a cross-sectional view of the cultivation container and the lid taken along cutting line AA. FIG. 3 is an explanatory diagram showing another shape of the lid body. FIG. 4 shows the cultivation container viewed from above and is an explanatory diagram of the arrangement of inoculation holes, and FIGS. 4(a) to 4(e) are variations thereof.

本シイタケ容器栽培方法は、シイタケの収穫まで一貫して、保形性のある容器を用いるシイタケ栽培方法である。
シイタケ容器栽培方法は、大まかには、広口の容器に培地を充填し、培地に種菌を接種し、培地に菌糸を蔓延させ、原基を形成し、子実体を成長させ、成熟した子実体であるシイタケを収穫するものである。
The present method for cultivating shiitake mushrooms in containers uses a shape-retaining container throughout the process up to harvesting of shiitake mushrooms.
The shiitake container cultivation method generally involves filling a wide-mouthed container with a medium, inoculating the medium with inoculum, spreading mycelia in the medium, forming primordia, growing fruiting bodies, and producing mature fruiting bodies. It is about harvesting a certain shiitake mushroom.

(培地)
培地30は、広葉樹オガコ(コナラ、シイ)に栄養体(株式会社北研製「シイタケ短期栽培用ニューバイデル」)を最終濃度8%(重量比)になるよう添加して混合した後に、水を加えて含水率を58%(重量比)程度に調整したものである。
なお、培地基材は、広葉樹オガコのほか、コーンコブ、綿実カス、針葉樹、きのこ栽培廃菌床が使用できる。また、栄養体は、ふすま、米ぬか等一般的な飼料や農産物残渣が使用できる。
(Culture medium)
Culture medium 30 was prepared by adding and mixing nutrient bodies (“New Beidel for short-term cultivation of shiitake mushrooms” manufactured by Kitaken Co., Ltd.) to broad-leaved wood sawdust (Quercus serrata, Chinese oak) to a final concentration of 8% (weight ratio), and then adding water. In addition, the water content was adjusted to about 58% (weight ratio).
In addition to broad-leaved sawdust, corn cob, cotton seed scum, coniferous wood, and waste mushroom beds can be used as the culture medium base material. Furthermore, common feeds such as bran and rice bran, and agricultural residues can be used as the trophozoites.

(栽培容器)
栽培容器1は、容器本体10と蓋体20から成る。
容器本体10は、保形性を備えると共に、首部13及び胴部11に透光性を備え、上面に開口部12を配した筒状であり、一定量の培地30が充填可能な容器である(図1、図2(d))。
容器の形状は、円筒状、四角筒状、多角筒状のいずれでも良い、
容器本体10は、首部13及び胴部11に透光性を持つので、きのこの栽培時に光量が必要な際に、十分な光量を与えることができる。
容器本体10は、保形性を持つ筒状の容器であることから、容器を栽培室の専用棚に重ねて積む、または、棚の高さを短寸とすることができ、栽培室内に多くの数を設置して収容密度を高めることができる。
このような特性が必要であることから、容器本体10の素材は、ある程度の硬度があり、透明または半透明など透光性を有することが望ましく、樹脂製が適当であり、例えばポリプロピレンが好適である。
(Cultivation container)
The cultivation container 1 consists of a container body 10 and a lid 20.
The container main body 10 is a cylindrical container that has shape retention properties, has translucency in the neck 13 and body 11, and has an opening 12 on the top surface, and can be filled with a certain amount of culture medium 30. (Figure 1, Figure 2(d)).
The shape of the container may be cylindrical, square, or polygonal.
Since the container body 10 has translucency in the neck 13 and body 11, it can provide a sufficient amount of light when a sufficient amount of light is required for mushroom cultivation.
Since the container main body 10 is a cylindrical container that retains its shape, the containers can be stacked on top of each other on a special shelf in the cultivation room, or the height of the shelf can be shortened, so that there are many containers in the cultivation room. It is possible to increase the storage density by installing a number of
Since such characteristics are necessary, the material of the container body 10 should preferably have a certain degree of hardness and be transparent or translucent, and should preferably be made of resin, such as polypropylene. be.

容器本体10の寸法は、開口部12の径が胴部11の径に対して70%以上85%以下が適当である。開口部の面積が胴部の面積の50%以上70%以下であることが望ましい。このような比率とすることにより、きのこ原基形成部位、すなわち培地上面部に菌糸伸長やきのこ原基形成のために、必要な酸素と光の供給と、二酸化炭素の排出を行うことができるからである。
形状的には、胴部11の寸法と開口部12の径の寸法が近いので、広口のビン構造である。
また、開口部の径の寸法が、容器の高さの寸法に対して、50%以上が好適ある。50%以上することで、培地上面部31の面積に対する培土の厚さを薄くすることができるので、培地全体に酸素を供給しやすくなる。従って、高品質のきのこを斉一かつ安定的に発生させることができる。
Appropriate dimensions of the container body 10 are such that the diameter of the opening 12 is 70% or more and 85% or less of the diameter of the body 11. It is desirable that the area of the opening is 50% or more and 70% or less of the area of the body. By setting such a ratio, it is possible to supply the necessary oxygen and light and discharge carbon dioxide to the mushroom primordium formation site, that is, the upper surface of the medium, for hyphal elongation and mushroom primordium formation. It is.
In terms of shape, since the dimensions of the body 11 and the diameter of the opening 12 are close, it has a wide-mouthed bottle structure.
Further, it is preferable that the diameter of the opening is 50% or more of the height of the container. By setting the ratio to 50% or more, the thickness of the soil relative to the area of the top surface portion 31 of the culture medium can be reduced, making it easier to supply oxygen to the entire culture medium. Therefore, high quality mushrooms can be produced simultaneously and stably.

容器本体10としては、広口ビンが有効であり、例えば、ナメコ用800cc広口ビン(信越農材製800SB)を用いることができる。容器本体10は、これに限定されず、上述の条件にあるものであれば、さまざまな大きさや形態のものを用いることができる。 A wide-mouth bottle is effective as the container body 10, and for example, an 800 cc wide-mouth bottle for Nameko (800SB manufactured by Shin-Etsu Agricultural Products Co., Ltd.) can be used. The container body 10 is not limited to this, and can be of various sizes and shapes as long as it meets the above conditions.

接種した菌糸を培地に蔓延させる培養前期工程ならびに原基形成が進む培養後期工程において酸素の供給が必要となるが、胴部と口部に寸法の差を作ることによって空気が通る空間を設けることができるため、必要量の酸素の供給と、適切な二酸化炭素の排出がなされる。また、培養後期工程において原基形成のための光照射が必要になるが、同様に光が通る空間を設けることができるため、必要量の光を必要な部位に照射することができる。一方で、シイタケは、その他のきのこ類に多い「群生」ではなく「単生」のきのこ種であり、生産者ならびに消費者も個々の子実体を商品として認識していることや、限られた発生面積に適当な間隔で生育しないと、きのこ同士の干渉(ぶつかり)が起きやすく商品価値が下がることから、栽培容器の発生面積はできるだけ広いことが求められるが、それと前述したような栽培に必要な量の酸素ならびに光の供給のバランスが取れることが重要な要件となる。 Oxygen supply is required during the early culture process in which the inoculated mycelium spreads in the medium and in the late culture process when primordium formation progresses, but it is necessary to provide a space for air to pass through by creating a dimensional difference between the body and mouth. This allows the necessary amount of oxygen to be supplied and appropriate carbon dioxide to be discharged. Furthermore, although light irradiation is required for primordium formation in the latter stage of the culture, a space through which light can pass can be provided in the same way, so that the required amount of light can be irradiated to the required site. On the other hand, shiitake is a ``single'' mushroom rather than the ``clump'' that is common among other mushrooms, and producers and consumers alike recognize individual fruiting bodies as products, and there are limited If the mushrooms do not grow at appropriate intervals for the growing area, interference (collision) between mushrooms is likely to occur and the product value will decrease, so the growing area of the cultivation container must be as wide as possible, and in addition to the above-mentioned requirements for cultivation. Balancing the supply of sufficient amounts of oxygen and light is an important requirement.

(蓋体)
蓋体20は、容器本体10上面の開口部12を封するものである。嵌込み式であり、透光性、通気性、保形性を備えており、全体として、容器本体10の首部13を覆う形である。円筒状の枠部21と、円盤状の天面部22から成る(図1、図2)。
枠部21の内周の軸方向に形成された通気用窪み23を複数持つ。通気用窪み23は、例えば、周方向に10mm、軸方向に10mm、径方向に0.2mm程度であり、少量の空気を流通させるのに適当な大きさである。
天面部22の内側には、十字の形の突起24が配置されている。突起24の高さは、例えば、0.9mm程度である。蓋体20を容器本体10に固定する際、容器本体10の天端部14(以下容器上端部とも言う)の一部が、突起24と当接する構造である。突起24と当接することにより、突起24以外の位置で、容器本体10の天端部14と蓋体20の天面部の内側との間に隙間を設けることができる。尚、突起24の配置形状については、容器本体10の天端部14と蓋体20の天面部の内側との間で隙間を形成し得るものであれば、特に十字の形に限定するものではない。
(lid body)
The lid 20 seals the opening 12 on the top surface of the container body 10. It is a fitting type, has translucency, air permeability, and shape retention, and is shaped to cover the neck 13 of the container body 10 as a whole. It consists of a cylindrical frame part 21 and a disc-shaped top part 22 (FIGS. 1 and 2).
A plurality of ventilation depressions 23 are formed in the axial direction of the inner circumference of the frame part 21. The ventilation recess 23 is, for example, approximately 10 mm in the circumferential direction, 10 mm in the axial direction, and 0.2 mm in the radial direction, which are appropriate sizes to allow a small amount of air to flow.
A cross-shaped protrusion 24 is arranged inside the top section 22. The height of the protrusion 24 is, for example, about 0.9 mm. When fixing the lid body 20 to the container body 10, a part of the top end 14 (hereinafter also referred to as the container upper end) of the container body 10 comes into contact with the protrusion 24. By coming into contact with the protrusion 24, a gap can be provided between the top end 14 of the container body 10 and the inside of the top surface of the lid 20 at a position other than the protrusion 24. Note that the arrangement shape of the protrusions 24 is not particularly limited to the shape of a cross, as long as it can form a gap between the top end 14 of the container body 10 and the inside of the top surface of the lid body 20. do not have.

図2(d)に示すように、容器本体10と蓋体20は、枠部21の通気用窪み23と首部外周とによって、側面に隙間が形成される。通気用窪み23以外の部分は、枠部21と首部外周が密着し、通気性は無い。
また、天面部22において、天端部14と突起24によって上面に隙間が形成される。側面の隙間と上面の隙間によって、外部と容器内との間で、空気が流通する。また、空気の流通量は、開口部の面積に比べて、小さいため、空気の流通量を制限することができる。
このように、容器本体10に蓋体20を封しても、容器本体10と蓋体20とによる嵌合部における隙間を通してのみ、酸素供給および二酸化炭素排出が行われ、一定の制限量の通気性が保たれる。
As shown in FIG. 2(d), a gap is formed on the side surface of the container body 10 and the lid 20 by the ventilation recess 23 of the frame 21 and the outer periphery of the neck. In a portion other than the ventilation recess 23, the frame portion 21 and the outer periphery of the neck portion are in close contact with each other, and there is no ventilation.
Further, in the top surface portion 22, a gap is formed on the top surface by the top end portion 14 and the protrusion 24. Air circulates between the outside and the inside of the container through the side gaps and the top gap. Furthermore, since the amount of air flowing through the opening is smaller than the area of the opening, it is possible to limit the amount of air flowing through the opening.
In this way, even if the lid body 20 is sealed on the container body 10, oxygen supply and carbon dioxide discharge are performed only through the gap at the fitting part between the container body 10 and the lid body 20, and a certain limited amount of ventilation is carried out. Maintains sexuality.

また、図3(a),(b),(c)に示すように、嵌込用溝の数、大きさを変えることで、空気の流通量を調整することができる。菌糸の培養においては、酸素の供給量及び二酸化炭素の排出量を制御することが重要である。嵌込用溝の数、大きさを変えることで酸素の供給量及び二酸化炭素の排出量を制御することができる。
また、図3(d)に示すように、スペーサ(突起24)の形状を変えることで、流通する空気に対するスペーサの影響を少なくすることもできる。
Moreover, as shown in FIGS. 3(a), (b), and (c), the amount of air flowing can be adjusted by changing the number and size of the fitting grooves. In culturing mycelia, it is important to control the amount of oxygen supplied and the amount of carbon dioxide discharged. By changing the number and size of the fitting grooves, the amount of oxygen supplied and the amount of carbon dioxide discharged can be controlled.
Further, as shown in FIG. 3(d), by changing the shape of the spacer (protrusion 24), the influence of the spacer on the circulating air can be reduced.

透光性、保形性については、容器本体10と同様の素材を用いると好適である。従って、透明または半透明など透光性を有する樹脂製が適当であり、例えばポリプロピレンが好適である。 Regarding translucency and shape retention, it is preferable to use the same material as the container body 10. Therefore, a material made of transparent or translucent resin having light-transmitting properties is suitable, and polypropylene, for example, is suitable.

また、通気性を得るために、不織布やウレタン等のフィルタを備えた蓋を用いることも考えられる。フィルタを用いた蓋体の一例としては、蓋体内外に開けられた通気孔(外側:9.5mm×2.4mmのスリット×4ヶ所,内側:3mm口径の穴×4ヶ所)から出入した空気が蓋体内蔵のフィルタを介して通気が行なわれる形状がある。
しかし、内蔵されたフィルタ部分の透光性が低下してしまい、蓋体全体として十分な透光性を得ることができないので、本願発明のための蓋としては適していない。
また、フィルタ形状によっては、通気量を調整できず、必要以上に酸素が供給されてしまい、キノコの品質を低下させることも考えられ、適当でない。
Further, in order to obtain breathability, it is also possible to use a lid equipped with a filter made of nonwoven fabric, urethane, or the like. As an example of a lid body using a filter, air enters and exits through ventilation holes opened inside and outside the lid body (outside: 9.5 mm x 2.4 mm slits x 4 places, inside: 3 mm diameter holes x 4 places). However, there is a shape in which ventilation is performed through a filter built into the lid.
However, the light transmittance of the built-in filter portion decreases, making it impossible to obtain sufficient light transmittance for the lid as a whole, and therefore it is not suitable as a lid for the present invention.
Furthermore, depending on the shape of the filter, the amount of ventilation cannot be adjusted, and more oxygen than necessary may be supplied, which may reduce the quality of the mushrooms, which is not appropriate.

本シイタケ容器栽培方法の各工程について説明する。工程は、培地製造工程と、種菌接種工程と、菌糸培養前期工程と、菌糸培養後期工程と、子実体生育工程と、採取工程と、から成る。
全体として、培地の生成からシイタケの収穫までの工程である。
Each step of the present container cultivation method for shiitake mushrooms will be explained. The process consists of a medium production process, a seed inoculation process, an early mycelium culture process, a late mycelium culture process, a fruiting body growth process, and a collection process.
The overall process is from the production of the culture medium to the harvesting of the shiitake mushrooms.

(培地製造工程)
培地製造工程では、栽培容器1に、調整された培地30を適量充填する。
培地充填の際の培地上面部31の形状は、平型のほか、台形型、山(饅頭)型、すり鉢型、円錐型のいずれでも良い。また、平型については、全体として、多少の高低差があった方が良い。
このような形状をとることで、シイタケ菌糸蔓延後の培地上面部31の環境、特に培地水分量に相違が生じた結果、子実体育成工程において発生するシイタケ子実体の個数や発生するタイミングを調整することができる。
(Medium manufacturing process)
In the culture medium manufacturing process, the cultivation container 1 is filled with an appropriate amount of the adjusted culture medium 30.
The shape of the medium upper surface part 31 during filling of the medium may be flat, trapezoidal, mountain (manju), mortar, or conical. Also, for a flat type, it is better to have some height difference as a whole.
By adopting such a shape, the environment of the upper surface part 31 of the medium after the spread of shiitake mycelium, especially the difference in the moisture content of the medium, results in adjusting the number and timing of the generation of shiitake fruiting bodies in the fruiting body growing process. can do.

培地上面部31の上端部と下端部の高低差は20mm以内であると、好適である。
また、容器上端部(容器天端)と、きのこの発生面である培地頂点との距離は、5~20mmの範囲であると、シイタケの収穫の際、培地が深くならず、好適である。
また、このような範囲を取ることで、シイタケ菌糸蔓延後のきのこの原基形成に不可欠な「光」と「酸素」を培地上面部に対して効果的に供給できる。また、シイタケは培養中にきのこ原基形成を行うという特性を持っているが、空間を設けることで原基形成の場所を確保でき、それが物理的圧迫によって妨げられることを防止できる。
It is preferable that the difference in height between the upper end and the lower end of the medium upper surface portion 31 is within 20 mm.
Further, it is preferable that the distance between the upper end of the container (container top end) and the top of the medium, which is the mushroom growth surface, be in the range of 5 to 20 mm, since the medium will not become deep when harvesting shiitake mushrooms.
Moreover, by taking such a range, it is possible to effectively supply "light" and "oxygen", which are essential for the formation of mushroom primordia after the spread of shiitake mycelium, to the upper surface of the medium. In addition, shiitake mushrooms have the characteristic of forming mushroom primordia during cultivation, and by providing space, a place for primordium formation can be secured and this can be prevented from being disturbed by physical pressure.

殺菌処理は、常圧殺菌でも可能であるが、効率性と確実性を向上させるために高圧殺菌で行うことが望ましい。培地温度118~120℃で40~50分程の殺菌処理である。
工程としては、培地を容器本体に充填し、その後、容器本体10を蓋体20で封して、殺菌処理を行う方法でもいいし、予め、殺菌処理を行った培地を容器本体10に充填し、蓋体20で封する方法でもよい。
蓋体20で封することで、培地の殺菌状態を保つことができる。
封した後、冷却し、保管される。
Although sterilization can be carried out by normal pressure sterilization, it is preferable to use high pressure sterilization to improve efficiency and reliability. The sterilization process takes about 40 to 50 minutes at a culture medium temperature of 118 to 120°C.
The process may include filling the container body with a medium, then sealing the container body 10 with the lid 20, and performing sterilization treatment, or filling the container body 10 with a sterilized medium in advance. , a method of sealing with a lid 20 may also be used.
By sealing with the lid 20, the sterilized state of the culture medium can be maintained.
After sealing, it is cooled and stored.

(種菌接種工程)
種菌接種工程では、培地製造工程にて殺菌し、冷却された後の栽培容器1について、蓋体20を外し、培地上面部31にシイタケ種菌を散布し接種した後、容器本体10を再び蓋体20で封する。
種菌は一般的なオガコ培地に菌糸を蔓延させたもの(オガコ種菌)のほか、液体培地での培養菌体や前述のオガコ種菌を無菌水等で希釈したもの(希釈種菌)等が使用できる。
ただし、オガコ種菌の場合は、該種菌接種によりきのこ原基形成空間が狭くなったり、発酵熱発生が顕著であったり、通気および光供給を減少させたりといったことが起こりやすく、きのこ発生には注意が必要である。したがって、液体培地での培養菌体もしくはオガコ種菌を無菌水で希釈した希釈種菌を使用することが望ましい。このことにより、きのこ原基形成部位、すなわち培地上面部の菌糸皮膜形成の抑制や接種面の菌糸熟度が優先的に高まり、きのこ原基形成を促進することができる。
(Start inoculation process)
In the inoculum inoculation process, the lid 20 of the cultivation container 1 that has been sterilized and cooled in the culture medium production process is removed, and the shiitake inoculation is sprayed and inoculated on the top surface 31 of the medium, and then the container body 10 is replaced with the lid again. Seal with 20.
In addition to a general sawdust culture medium in which mycelia are spread, the seed fungus can be cultured in a liquid medium, or the aforementioned sawdust seed culture diluted with sterile water (diluted seed fungus) can be used.
However, in the case of sawdust inoculum, the space for mushroom primordium formation is likely to be narrowed, the fermentation heat generation is significant, and ventilation and light supply are likely to be reduced, so be careful about mushroom growth. is necessary. Therefore, it is desirable to use a diluted seed culture obtained by diluting bacterial cells cultured in a liquid medium or sawdust seed culture with sterile water. This can suppress the formation of a mycelial film at the mushroom primordium formation site, that is, the upper surface of the medium, and preferentially increase the mycelial maturity of the inoculated surface, thereby promoting mushroom primordium formation.

また、シイタケ種菌を培地表面にのみ散布するのではなく、種菌を接種する場所として、接種孔32を設けることもできる。
実施例5に示すように、接種孔32を開けることで、種菌接種後の菌糸伸長や培地分解腐朽に伴う子実体原基形成を効率的に行なうことができる。接種孔32は培地上面中央部に一箇所あけることが通常であるが、それに加えて培地上面外縁部に複数箇所あけることで、隣り合う接種孔の子実体との接触を最小限にすることが出来、さらに菌糸伸長や分解腐朽を促進できるとともに子実体生育工程において発生個数や発生部位を調整することができる。
また、培地上面の中央部から略等距離の位置の複数箇所に接種孔32を開けることで、隣り合う接種孔32の子実体との接触を最小限にすることが出来、発生個数や発生部位を調整することができる。
各接種孔32は、子実体が生育する過程で、隣接する接種孔の子実体や容器の開口部12と接触しない程度の間隔があると好適である。
尚、接種孔32の形状については、常法に従えば足り、特に限定するものではないが、例えば穴径が20mm程度で、深さが培地底より0~30mm程度の上方高さ位置まで掘り進めた形状が想定し得る。
Moreover, instead of dispersing the shiitake mushroom seed only onto the surface of the medium, an inoculation hole 32 can be provided as a place for inoculating the seed.
As shown in Example 5, by opening the inoculation hole 32, it is possible to efficiently perform hyphal elongation after seed inoculation and fruiting body primordium formation as the medium decomposes and decays. Normally, the inoculation hole 32 is made in one place in the center of the top surface of the medium, but in addition, by making multiple holes in the outer edge of the top surface of the medium, it is possible to minimize contact between fruit bodies in adjacent inoculation holes. Furthermore, it is possible to promote mycelial elongation and decomposition and decay, and it is also possible to adjust the number and site of occurrence during the fruiting body growth process.
In addition, by opening multiple inoculation holes 32 at positions approximately equidistant from the center of the top surface of the culture medium, contact between fruiting bodies in adjacent inoculation holes 32 can be minimized, and the number and location of occurrence can be minimized. can be adjusted.
It is preferable that each inoculation hole 32 is spaced at such an interval that the fruiting body of an adjacent inoculation hole or the opening 12 of the container does not come into contact with the fruiting body of an adjacent inoculating hole during the growth process of the fruiting body.
Regarding the shape of the inoculation hole 32, it is sufficient to follow a conventional method and there is no particular limitation. An advanced shape can be assumed.

また、本工程で用いる種菌は、子実体発生面に菌糸塊を形成する前記菌糸培養後期工程において、褐変被膜が形成しにくいシイタケ菌株を用いると好適である。培養完了時に発生面の褐変化が多い品種は、発生率が低いことが確認されている。 Furthermore, as the inoculum used in this step, it is preferable to use a Shiitake strain that is less likely to form a brown coating in the latter stage of mycelial culture in which a mycelium mass is formed on the surface where the fruiting body occurs. It has been confirmed that varieties with a lot of browning on the developing surface upon completion of cultivation have a low incidence of developing.

(菌糸培養前期工程)
菌糸培養前期工程は、概要としては、酸素透過性があり、0.5ルックス未満の暗条件の環境下で、接種した菌糸を培地に蔓延させる工程である。酸素の供給は、容器本体10と蓋体20との嵌合部の隙間によって行われる。二酸化炭素の排出も嵌合部の隙間によって行われる。
種菌接種工程で接種した後、容器本体10の開口部12を蓋体20で封じ、20~25℃程度で所定期間培養する。望ましくは、暗黒下、0.1ルクス以下で管理する。なお、暗条件にすることが難しい場合は適時遮光する、あるいは、培地表面が0.5ルクス未満となるような遮光性、透光性を有する蓋体を適時使用することも効果的である。
この環境で、菌糸を培地全体に蔓延させる。
(Early stage process of mycelial culture)
The initial stage of culturing mycelia is generally a process of spreading inoculated mycelia in a medium under a dark environment with oxygen permeability and less than 0.5 lux. Oxygen is supplied through a gap between the fitting portion of the container body 10 and the lid 20. Carbon dioxide is also discharged through the gap between the fitting parts.
After inoculation in the inoculum inoculation step, the opening 12 of the container body 10 is sealed with the lid 20 and cultured at about 20 to 25° C. for a predetermined period of time. Preferably, it is controlled in the dark under 0.1 lux or less. If it is difficult to maintain dark conditions, it is also effective to block light from time to time, or to use a lid that has light-shielding and light-transmitting properties so that the surface of the medium is less than 0.5 lux.
In this environment, the mycelium is spread throughout the medium.

(菌糸培養後期工程)
菌糸培養後期工程は、酸素透過性があり、明条件の環境下で、原基形成を促す工程である。酸素の供給は、容器本体10と蓋体20との嵌合部の隙間によって行われる。二酸化炭素の排出も嵌合部の隙間によって行われる。
容器本体10及び蓋体20が透光性を持っており、かつ、培地面を容器の天端部14から5~20mmとすることで、菌糸伸長に必要な酸素を効率的に供給すると同時に、原基形成が行なわれる培地上面部に対して必要な光と酸素を効率的に供給できる。
前工程で、菌糸が培地全体に活着伸長しているので、照明を点灯させる。この際の光照射は、常時点灯でもいいし、間欠点灯でもいい。100ルクス以上が望ましいが、光量が多すぎると発生成績(発生率等)が低下する傾向があるので、大幅に光量を上げる必要は無い。
間欠点灯の場合は、例えば、2時間に15分程度の点灯や、1日のうち、午前8時~午後6時の点灯でも良い。点灯する際は、可能な限り斉一でばらつきなく点灯させる。均一な点灯とすることで、きのこ発生を斉一かつ安定的に行うことができる。均一な点灯の方法としては、LEDを用いることが有効である。例えば、LED(青色、白色等)等の照明を適時設定してもいいし、容器を棒積で培養する場合は、間にスペーサを設置したりしても良い。
(Late stage of mycelial culture)
The latter stage of mycelial culture is a process that promotes primordium formation in an environment with oxygen permeability and light conditions. Oxygen is supplied through a gap between the fitting portion of the container body 10 and the lid 20. Carbon dioxide is also discharged through the gap between the fitting parts.
The container body 10 and lid 20 are translucent, and the culture medium surface is set at a distance of 5 to 20 mm from the top end 14 of the container, thereby efficiently supplying the oxygen necessary for mycelial elongation. Necessary light and oxygen can be efficiently supplied to the upper surface of the medium where primordium formation takes place.
In the previous step, the hyphae had settled and extended throughout the medium, so the lights were turned on. The light irradiation at this time may be constant lighting or intermittent lighting. It is desirable that the amount of light be 100 lux or more, but if the amount of light is too large, the generation results (incidence rate, etc.) tend to decrease, so there is no need to significantly increase the amount of light.
In the case of intermittent lighting, for example, it may be turned on for about 15 minutes every two hours, or it may be turned on from 8 a.m. to 6 p.m. during the day. When turning on the lights, do so as uniformly and without variation as possible. By providing uniform lighting, mushrooms can be generated uniformly and stably. As a method for uniform lighting, it is effective to use LEDs. For example, lighting such as an LED (blue, white, etc.) may be set at appropriate times, or when culturing is carried out in a container in a stack, a spacer may be installed between the containers.

容器本体10の透光性について実施例2に沿って、説明する。
培養完了後、蓋体20除去によりビン開口部12の培地上面部から子実体発生を誘導するためには、原理的には、培養工程で該部位のみに光照射があれば、原基形成から発芽至る際に光照射されることで、事足りると思われる。そうであれば、容器本体10のうち首部13を除いた胴11部は透光性が無くても良い。例として、胴部11を黒色のビンとする、あるいは胴部を黒色基材被覆で遮光することが考えられる。
しかし、実際には子実体発生部位ではない部分にも光照射を行なうことで、菌糸活力増大、培地分解腐朽、子実体発生部位への原基形成~発芽~生育誘導がより効率的に進むことが実施例2によって、裏付けられている。
従って、容器本体10の首部13及び胴部11の透光性が必要である。
The translucency of the container body 10 will be explained in accordance with Example 2.
In principle, in order to induce fruiting body development from the upper surface of the medium in the bottle opening 12 by removing the lid 20 after culturing is completed, if only this area is irradiated with light during the culturing process, it is possible to Irradiation with light during germination seems to be sufficient. If so, the body 11 of the container body 10 excluding the neck 13 may not be translucent. For example, the body 11 may be a black bottle, or the body may be covered with a black base material to shield light.
However, by irradiating light to areas that are not actually the fruiting body generation site, increased mycelial vitality, medium decomposition and decay, and primordium formation, germination, and growth guidance at the fruiting body generation site can proceed more efficiently. is supported by Example 2.
Therefore, the neck 13 and body 11 of the container body 10 need to be translucent.

(子実体生育工程)
子実体生育工程は、容器本体10から蓋体20を外し、子実体を発生させたい部位を開放し、特別の処理なく該部位から子実体の成長を促す工程である。
培養工程完了後、使用している品種に適した温度にした状態で、蓋体を除去する。適した温度とは、多くの場合、16~18℃である。
このとき、一般的な容器栽培きのこでは、何らかの発茸処理(例:菌掻きや覆土等)を行う。きのこ原基形成を誘導する必要があるためである。
(Fruit body growth process)
The fruiting body growth step is a step in which the lid 20 is removed from the container body 10, the region where the fruiting body is desired to be generated is opened, and the growth of the fruiting body is encouraged from the region without any special treatment.
After the cultivation process is completed, the lid is removed while the temperature is appropriate for the variety being used. A suitable temperature is often 16-18°C.
At this time, for general container-grown mushrooms, some kind of mushroom-incubating treatment (e.g., scraping the mushrooms, covering with soil, etc.) is performed. This is because it is necessary to induce the formation of mushroom primordia.

子実体生育調整(発生個数、発生部位)、あるいは不定形子実体発生抑制のため、培養完了し、蓋体20を除去したタイミングで、
a)前記培地上面部に少なくとも一箇所の穴あけ処理を行なう。
b)前記培地上面部の一部を菌糸ごと除去する。
c)前記栽培容器に刺激を加える。
のうち少なくとも1つを行うことが考えられる。
穴あけ処理にあっては、培養工程完了後に子実体原基が形成されている培地上面部31のうち、商品価値が低い不定形子実体につながる接種孔およびその周辺あるいは容器口部周辺部に対して穴をあけることによって原基を減失させることができ、結果的に不定形子実体を除去したり子実体本数を調整したりすることができる。また、培地上面部31の菌糸の一部を除去する菌掻き処理も同様の理由で有効である。
さらに、刺激処理にあっては、栽培容器に打撃や振動等の刺激を加えることによって、培養工程完了後に形成されている子実体原基の子実体への分化を促すことができ、結果的に子実体本数を調整することができる。
In order to adjust the growth of fruiting bodies (number of fruiting bodies, site of occurrence) or suppress the development of amorphous fruiting bodies, at the timing when culturing is completed and the lid body 20 is removed,
a) Drilling at least one hole on the top surface of the medium.
b) A part of the upper surface of the medium is removed together with the hyphae.
c) Applying a stimulus to the cultivation container.
It is conceivable to do at least one of these.
In the hole-drilling process, the inoculation hole and its surroundings that lead to amorphous fruiting bodies with low commercial value, or the area around the container mouth, in the upper surface 31 of the medium where fruiting body primordia are formed after the completion of the culturing process. By making holes, the primordia can be reduced, and as a result, amorphous fruiting bodies can be removed and the number of fruiting bodies can be adjusted. In addition, a fungal scraping process that removes a portion of the mycelium on the top surface portion 31 of the medium is also effective for the same reason.
Furthermore, in the stimulation treatment, by applying stimuli such as blows or vibrations to the cultivation container, it is possible to promote the differentiation of the fruiting body primordia formed after the completion of the cultivation process into fruiting bodies, and as a result, The number of fruiting bodies can be adjusted.

きのこ生育まで数週間を要するが、シイタケの場合は培養完了時点で培地上面部にはきのこ発生のための原基がすでに準備されていることから、蓋体20を除去することによりきのこ生育が始まる。 It takes several weeks for mushrooms to grow, but in the case of shiitake mushrooms, the primordium for mushroom development is already prepared on the top surface of the medium when culture is completed, so mushroom growth begins by removing the lid 20. .

(採取工程)
採取工程は、成熟した子実体を採取する工程である。子実体生育工程が、7~10日程度経過することで、きのこが成長し収穫できるようになる。
収穫は、栽培容器単位で行うことができるので、収穫作業を規格化しやすく、自動機の採用も容易に行うことができる。
(Collection process)
The collection process is a process of collecting mature fruit bodies. After about 7 to 10 days have elapsed during the fruiting body growth process, the mushrooms will grow and can be harvested.
Harvesting can be done in units of cultivation containers, making it easy to standardize the harvesting process and easily employing automatic machines.

以上、本発明に係るシイタケ容器栽培方法の各工程における基本的構成態様について説明したが、本発明は、上記構成態様に限定するものではない。
例えば、培地製造工程において、透光性を有する遮蔽物によって培地上面部31の任意の部分を覆うと共に、子実体生育工程における蓋体20を外したタイミングで、培地上面部31から該遮蔽物を除去する手段を採用することも可能であって、かかる構成態様を採用することで、子実体発芽を積極的に誘導することができる。
Although the basic structural aspects of each step of the method for cultivating shiitake mushrooms in containers according to the present invention have been described above, the present invention is not limited to the above-mentioned structural aspects.
For example, in the culture medium production process, an arbitrary part of the medium top surface 31 is covered with a light-transmitting shield, and at the same time as the lid 20 is removed in the fruiting body growth process, the shield is removed from the medium top surface 31. It is also possible to employ means for removing the fruit, and by employing such a configuration, fruiting body germination can be actively induced.

(実施例1)
本実施例では、栽培に適した容器の種類を確認した。
培地組成は、広葉樹オガコとチップを容量比1:1で混合したものに栄養体としてシイタケ短期栽培用ニューバイデル(株式会社北研)を培地仕上がり重量比8%添加、含水率を60%に調整後、栽培容器に規定量充填して高圧殺菌(118℃・60分)を行なった。放冷後、種菌としてHS911(株式会社北研)の液体培養菌体を接種して、20℃・100日間培養した。発生は、蓋体を除去して17℃で行なった。
上記条件の下、実際にビン栽培きのこで広く用いられている、なめこ用広口ビン(信越農材製800SB)、ぶなしめじ用ブロービン(同850)、エノキタケ用ブロービン2種類(同850SI-65と1100-70L)の試験区を設定し、発生率(発生容器数/全容器数)、きのこ発生個数・生重量・一個重を測定した(個数と生重量は発生容器のみで算出した)。
その結果を表1に示す。
(Example 1)
In this example, the types of containers suitable for cultivation were confirmed.
The composition of the medium is a mixture of broad-leaved sawdust and chips in a volume ratio of 1:1, with the addition of New Weidel for short-term cultivation of shiitake mushrooms (Kitaken Co., Ltd.) as a nutrient at 8% of the finished medium weight, and the moisture content is 60%. After adjustment, the specified amount was filled into a cultivation container and high-pressure sterilization (118° C., 60 minutes) was performed. After cooling, a liquid culture of HS911 (Kitaken Co., Ltd.) was inoculated as a seed and cultured at 20°C for 100 days. Generation was performed at 17°C with the lid removed.
Under the above conditions, the wide-mouthed nameko bottles (Shin-Etsu Nozai 800SB), the blowbins for bunshimeji mushrooms (850), and the two types of blowbins for enoki mushrooms (850SI-65 and 1100) are widely used for mushroom cultivation under the above conditions. -70L) test plots were set up, and the incidence rate (number of containers in which mushrooms emerged/total number of containers), number of mushrooms, fresh weight, and weight of each mushroom were measured (the number and fresh weight were calculated using only the containers in which mushrooms grew).
The results are shown in Table 1.

蓋体の通気は、なめこ用容器では、蓋と容器本体嵌合部隙間の出入で行い、ぶなしめじ用とエノキタケ用容器では、蓋体内蔵の不織布フィルタを通じた出入で行った。
きのこ発生率(%)(発生容器数/供試容器数)、容器当たりのきのこ発生個数と生重は、エノキタケ用ブロービン2種類とぶなしめじ用ブロービンと比較して、なめこ用広口ビンで高値となった。
本願明細書記載のしいたけの容器栽培において、きのこを斉一かつ効率的に発生させるためには、第一にきのこが発生する面すなわち容器口部径が大きいことが必要である。また、容器に充填されている培地をしいたけ菌が効率的に利用するためには、第二に容器口部径と胴部径の差が小さいこと、すなわち容器口部径/容器胴部径率(%)が大きいことが必要である。さらに、培地内のしいたけ菌糸の伸長と原基形成に必要な酸素を効率的に供給できるように、酸素が供給される容器口部径が大きいとともに培地量が過剰ではない(培地高さが高くない)、すなわち容器口部径/容器高さ率(%)が大きいことが必要である。
以上の結果から、以降の実施例では容器標準系として、上記3要件を満たすことのできるなめこ広口ビンを用いることとした。なお、本願明細書記載のしいたけの容器栽培に用いる系は、この3要件を満たしていれば、なめこ広口ビンに限られるわけではない。
Ventilation of the lid was performed in the nameko container by entering and exiting the gap between the lid and the container body, and in the case of the shimeji mushroom and enoki mushroom containers, ventilation was performed through a nonwoven fabric filter built into the lid.
Mushroom generation rate (%) (number of containers generated/number of test containers), number of mushrooms generated per container, and fresh weight were higher in the wide-mouth bottle for nameko mushrooms compared to the two types of blowbins for enokitake mushrooms and the blowbins for shimeji mushrooms. became.
In the container cultivation of shiitake mushrooms described in the present specification, in order to uniformly and efficiently generate mushrooms, it is first necessary that the surface on which mushrooms occur, that is, the diameter of the container opening, be large. In addition, in order for Shiitake bacteria to efficiently utilize the culture medium filled in the container, the second requirement is that the difference between the container mouth diameter and the body diameter be small, that is, the ratio of container mouth diameter/container body diameter. (%) is required to be large. Furthermore, in order to efficiently supply the oxygen necessary for the elongation and primordium formation of the shiitake hyphae in the medium, the diameter of the container opening to which oxygen is supplied is large, and the amount of the medium is not excessive (the height of the medium is high). In other words, it is necessary that the container mouth diameter/container height ratio (%) be large.
Based on the above results, it was decided to use a nameko wide-mouth bottle that can satisfy the above three requirements as a standard container system in the following examples. Note that the system used for container cultivation of shiitake mushrooms described in the present specification is not limited to the wide-mouth nameko mushroom bottle as long as it satisfies these three requirements.

(実施例2)
本実施例では、菌糸培養工程の光条件を確認した。
方法は実施例1と同様で、栽培容器はなめこ用広口ビンを用いた。
菌糸培養前期ならびに後期工程における光の影響を検討するために、光照射期間による発生率へ影響を調査した。暗培養条件は1ルクス未満、明培養条件は5~100ルクスの光量で8時間点灯とした。また、培地側面部である胴部10(すなわち子実体発生部位以外の部分)への光の影響を確認するためにビン側面に100%遮光のため黒フィルムを被覆した区も設定した。
(Example 2)
In this example, the light conditions for the mycelial culture process were confirmed.
The method was the same as in Example 1, and the cultivation container used was a wide mouth bottle for nameko mushrooms.
In order to examine the effect of light on the early and late stages of mycelial culture, we investigated the effect of the light irradiation period on the incidence. The dark culture condition was less than 1 lux, and the light culture condition was a light intensity of 5 to 100 lux for 8 hours. In addition, in order to confirm the influence of light on the body 10 (i.e., the part other than the fruiting body generation site), which is the side surface of the medium, a section was also set up on the side of the bottle covered with a black film for 100% light shielding.

その結果、光照射は必要であること、必要な期間は、培養中後期である菌糸培養後期であることが分かった。すなわち本実施例で使用した専用品種HS911では、容器全体に菌糸が蔓延するタイミング、具体的には種菌接種後、菌糸培養前期である3週間ないし4週間までは暗培養とし、それ以降の菌糸培養後期は光照射を行う明培養とすることが最も適していることが分かった。
光照射部位については、子実体発生部位である培地上面部31のみならず培地側面部である胴部11にも光照射を行なうことで発生率が高くなる傾向があった。このことは、子実体発生部位でない部分、すなわち培地側面分である胴部11にも光照射を行なうことで菌糸活力の増大、培地分解腐朽、子実体発生部位への原基形成が促進されていることを示唆している。
As a result, it was found that light irradiation is necessary and that the necessary period is the late stage of mycelial culture, which is the middle and late stage of culture. In other words, in the special variety HS911 used in this example, dark culture is carried out until 3 to 4 weeks after inoculation of the seed when the mycelium spreads throughout the container, which is the early stage of mycelial culture, and the subsequent mycelial culture is carried out in the dark. It was found that light culture with light irradiation is most suitable in the latter stage.
Regarding the light irradiation sites, the incidence rate tended to increase by irradiating not only the medium top surface 31, which is the fruiting body generation site, but also the body 11, which is the side surface of the medium. This means that by irradiating the trunk 11, which is not the area where the fruiting body occurs, in other words, the side part of the medium, the mycelial vitality increases, the medium decomposes and decays, and the formation of primordia at the area where the fruiting body occurs is promoted. It suggests that there is.

(実施例3)
本実施例では、培地製造工程における培地上面形状を確認した。
方法は実施例1と同様で、栽培容器はなめこ用広口ビンを用い、菌糸培養前期工程は遮光条件とした。
培地上面部形状は、対照区(平型)、山(饅頭)型、すり鉢型、円錐型の試験区を設定し、発生率(発生容器数/全容器数)、きのこ発生個数・生重量・一個重を測定した(個数と生重量は発生容器のみで算出した)。
その結果を表3に示す。
(Example 3)
In this example, the shape of the top surface of the culture medium in the culture medium manufacturing process was confirmed.
The method was the same as in Example 1, using a wide mouth bottle for nameko mushrooms as the cultivation container, and under light-shielding conditions during the early stage of culturing mycelium.
The shape of the top surface of the culture medium was set as a control area (flat type), a mountain (manju) type, a mortar type, and a conical type. The weight of each piece was measured (the number and fresh weight were calculated only from the generation container).
The results are shown in Table 3.

対照区(平型)と比較して、山(饅頭)型は、発生率の向上、きのこ発生個数の増加とそれに伴う生重と一個重の低下傾向が認められた。一方ですり鉢型と円錐型は発生率では大きな違いはなかったが、きのこ発生個数の減少傾向が認められた。以上から、培地上面部形状を変化させることで、きのこ発生状態が調整できることが分かった。このことから、実生産では目的に応じた培地形状を採用すれば良いと考えられる。 Compared to the control plot (flat type), the mountain (manju) type showed an improvement in the incidence, an increase in the number of mushrooms, and a corresponding decrease in fresh weight and individual weight. On the other hand, although there was no significant difference in the incidence of mushrooms between mortar and cone mushrooms, there was a tendency for the number of mushrooms to occur to decrease. From the above, it was found that the state of mushroom growth can be adjusted by changing the shape of the top surface of the medium. From this, it is considered that in actual production, it is sufficient to adopt a culture medium shape according to the purpose.

(実施例4)
本実施例では、容器高さによる発生へ及ぼす影響を確認した。
方法は実施例1と同様で、栽培容器はなめこ用広口ビンとそれに基づいた試作ビンを用いた。
容器高さは対照区(容器高さ140mm)、試験区(120mm、100mm、70mm)を設定し、発生率(発生容器数/全容器数)、きのこ発生個数・生重量・一個重を測定した(個数と生重量は発生容器のみで算出した)。
その結果を表4に示す。
(Example 4)
In this example, the influence of container height on generation was confirmed.
The method was the same as in Example 1, and the cultivation container used was a wide mouth bottle for nameko mushrooms and a prototype bottle based on it.
Container heights were set for the control area (container height 140 mm) and the test area (120 mm, 100 mm, 70 mm), and the incidence rate (number of containers in which mushrooms occurred/total number of containers), number of mushrooms, fresh weight, and individual weight were measured. (Piece counts and fresh weights were calculated for generation containers only).
The results are shown in Table 4.

試験区に関係なく、ビン口部、首長、胴部は同一であり、それぞれ72Φ、20mm、95Φである。
対照区と比較して、試験区1~3ではきのこ発生率で大きな違いは認められなかったが、高さに比例してきのこ発生個数、生重、一個重が増加した。以上の結果から、今回供試した容器高さの範囲で実用上問題は無いと考えられたが、培地利用率やコストの観点からは、試験区1~2が優れていると判断した。
Irrespective of the test area, the bottle mouth, head, and body were the same, and were 72 Φ, 20 mm, and 95 Φ, respectively.
Compared to the control plot, no major difference was observed in the mushroom incidence in test plots 1 to 3, but the number of mushrooms produced, fresh weight, and single mushroom weight increased in proportion to the height. From the above results, it was thought that there would be no practical problems within the range of container heights tested this time, but it was judged that Test Groups 1 and 2 were superior from the perspective of medium utilization rate and cost.

(実施例5)
本実施例では、接種孔32が発生に与える影響を確認した。
方法は実施例1と同様で、栽培容器はなめこ用広口ビンを用いた。
(Example 5)
In this example, the influence of the inoculation hole 32 on the development was confirmed.
The method was the same as in Example 1, and the cultivation container used was a wide mouth bottle for nameko mushrooms.

接種孔なしの場合は、菌糸伸長が遅くなるとともに発生率、子実体発生個数、生重が低下することが分かった。一方、接種孔あり(中央1箇所ならびに中央1箇所+外縁4箇所)は、菌糸伸長が接種孔なしと比較して早く、特に中央1箇所+外縁4箇所区は顕著に早かった。
この2区間では、発生率では違いが認められなかったが、中央1箇所+外縁4箇所区では顕著に芽数が多くきのこサイズが低下した。また、区に関係なく芽数が多くなると子実体間、接種孔や容器口部と物理的に干渉することによって商品価値の低い不定形子実体発生が認められた。以上のことから、接種孔有無は発生率に大きく影響すること、接種孔数と部位は子実体発生芽数やサイズに影響することが分かった。実栽培においては、希望するきのこの品質等を勘案して接種孔の数や部位を設定する必要がある。
It was found that when there was no inoculation hole, hyphal elongation slowed down, and the incidence, number of fruiting bodies, and fresh weight decreased. On the other hand, mycelial elongation was faster in plants with inoculation holes (one in the center and one in the center + four in the outer edge) than in the case without inoculation holes, especially in the one in the center and four in the outer edge.
No difference was observed in the incidence rate between these two sections, but the number of buds was significantly higher and the size of mushrooms decreased in the 1 center + 4 outer edge sections. In addition, regardless of the ward, when the number of buds increased, amorphous fruiting bodies with low commercial value were observed due to physical interference between fruiting bodies, inoculation holes, and container openings. From the above, it was found that the presence or absence of inoculation holes greatly affects the incidence, and that the number and location of inoculation holes affect the number and size of fruiting body buds. In actual cultivation, it is necessary to set the number and location of inoculation holes in consideration of the desired quality of mushrooms, etc.

(実施例6)
本実施例では、子実体生育工程において、培養工程完了時の物理的な発茸処理による影響を確認した。
栽培方法は、実施例1と同様で、栽培容器はなめこ用広口ビンを用い、培地成形は平型、培養前期工程は遮光条件とした。
物理的な発茸処理は、対照区として、なし(蓋体除去のみ)、あり(穴あけ)、あり(菌掻き)、あり(栽培容器に打撃一回)区を設定し、発生率(発生容器数/全容器数)、きのこ発生個数・生重量・一個重を測定した(個数と生重量は発生容器のみで算出した)。その結果を表6に示す。
(Example 6)
In this example, in the fruiting body growth process, the influence of physical mushroom sprouting treatment upon completion of the culture process was confirmed.
The cultivation method was the same as in Example 1, using a wide mouth bottle for nameko mushrooms as the cultivation container, forming the medium into a flat type, and using light-shielding conditions during the first stage of cultivation.
For physical treatment of mushrooms, control plots were set without (removal of lid only), with (drilling), with (bacteria scraping), and with (hitting the cultivation container once), and (number of mushrooms/total number of containers), number of mushrooms, fresh weight, and weight of each mushroom were measured (number of mushrooms and fresh weight were calculated using only the containers in which they occurred). The results are shown in Table 6.

対照区の処理なし(蓋体除去のみ)と比較して、あり(穴あけ)およびあり(菌掻き)区では子実体発生部位や子実体原基が減失したことに伴い、きのこ発生率の低下、きのこ発生個数および生重の減少、商品価値の低い不定形子実体発生個数の減少が認められ、子実体本数やきのこ品質が調整できることが確認された。
一方、栽培容器に打撃等の物理的処理を加えることで、きのこ発生率の向上、きのこ発生個数および生重の増加とそれに伴うきのこ一個重の低下傾向が認められた。
以上のことから、実栽培ではこれらの物理的処理に掛かる労力を勘案した上で希望するきのこ品質の誘導を行うことができる。
Compared to the control plot with no treatment (cap body removed only), the mushroom development rate decreased in the treated (drilling) and treated (bacteria scraping) plots due to the loss of fruiting body development sites and fruiting body primordia. , a decrease in the number of mushrooms generated and fresh weight, and a decrease in the number of amorphous fruiting bodies with low commercial value, confirming that the number of fruiting bodies and mushroom quality can be adjusted.
On the other hand, when the cultivation containers were subjected to physical treatments such as blowing, it was observed that the mushroom generation rate improved, the number of mushrooms generated and the fresh weight increased, and the weight of each mushroom decreased accordingly.
From the above, in actual cultivation, it is possible to induce the desired quality of mushrooms by taking into consideration the labor required for these physical treatments.

(実施例7)
本実施例では、品種による発生へ及ぼす影響を確認した。
方法は実施例1と同様で、品種別に発生率(発生容器数/全容器数)、きのこ発生個数・生重量・一個重を測定した(個数と生重量は発生容器のみで算出した)。
対照は、本発明の標準系として供試しているHS911(株式会社北研)とし、試験区に従来栽培系(栽培容器として袋体を使用)で多く用いられている、北研600号、HS607、HS705、HS715、CA901、CA902、HS903、HS905(いずれも株式会社北研)を供試した。なお、HS911は請求項8に示したとおり、菌糸培養後期工程で培地上面(発生時に露出される部位)に菌糸塊は形成されるが、褐変被膜は形成しにくい特徴を有している(試験区として供試した他の品種はいずれも菌糸塊ならびに褐変被膜を良好に形成する)。
その結果を表7に示す。
(Example 7)
In this example, the influence of variety on outbreak was confirmed.
The method was the same as in Example 1, and the incidence rate (number of containers in which mushrooms developed/total number of containers), number of mushrooms, fresh weight, and weight of each mushroom were measured for each variety (number of mushrooms and fresh weight were calculated using only containers in which mushrooms grew).
The control was HS911 (Kitaken Co., Ltd.), which is being used as a standard system for the present invention, and the test plots were Kitaken No. 600 and HS607, which are commonly used in conventional cultivation systems (using bags as cultivation containers). , HS705, HS715, CA901, CA902, HS903, and HS905 (all manufactured by Kitaken Co., Ltd.) were tested. In addition, as shown in claim 8, HS911 has the characteristic that a hyphal mass is formed on the upper surface of the medium (the part exposed at the time of generation) in the late stage of mycelial culture, but a brown coating is difficult to form (test All of the other varieties tested successfully form mycelial masses and brown coatings).
The results are shown in Table 7.

培養完了時に発生面の褐変化が弱い対照(HS911)では、発生率100%、子実体発生個数、生重、一個重の結果から商品価値がある子実体が斉一に発生したが、培養完了時に発生面の褐変化が良好である試験品種すべてで発生率が低水準であった。このことから、本願発明の栽培には、対照(HS911)が最も適合していると考えられた。 In the control (HS911), where the browning of the developing surface was weak at the time of completion of cultivation, fruiting bodies with commercial value were produced all at once, based on the results of 100% incidence, number of fruiting bodies, fresh weight, and individual weight; The incidence rate was low for all test varieties with good browning on the developing surface. From this, it was considered that the control (HS911) was most suitable for cultivation according to the present invention.

本発明により、全工程において容器を用いた栽培方法を提供できる。それによって、従来の袋栽培方法で掛かっていた多大な労力、コストを削減できるため生産者が適正な利益を確保できる。また、消費者も安定的かつ適正な価格でシイタケを購入できる。本発明栽培方法は、主としてシイタケに対する栽培を対象とする。 According to the present invention, a cultivation method using containers in all steps can be provided. This allows producers to secure appropriate profits by reducing the enormous amount of labor and cost required by conventional bag cultivation methods. Additionally, consumers can purchase shiitake mushrooms at stable and reasonable prices. The cultivation method of the present invention is mainly aimed at cultivation of shiitake mushrooms.

1 栽培容器
10 容器本体
11 胴部
12 開口部
13 首部
14 天端部(容器上端部)
20 蓋体
21 枠部
22 天面部
23 通気用窪み
24 突起
30 培地
31 培地上面部
32 接種孔

1 Cultivation container 10 Container main body 11 Body 12 Opening 13 Neck 14 Top end (upper end of container)
20 Lid body 21 Frame portion 22 Top surface portion 23 Vent recess 24 Protrusion 30 Medium 31 Medium top surface portion 32 Inoculation hole

Claims (11)

透光性と保形性を備え、上面に開口部を配して一定量の培地が充填可能な筒状の容器本体と、該容器本体上面の開口部を封する透光性、通気性、保形性を備えた蓋体とを備えた栽培容器を用い、
a)殺菌処理した培地を該容器本体に充填し、該蓋体で封する、又は、該培地を充填した後に該容器本体を該蓋体で封して殺菌処理する、培地製造工程と、
b)該蓋体を外し、該培地表面にシイタケ種菌を散布した後に、該容器本体を再び該蓋体で封する種菌接種工程と、
c)酸素透過性があり、かつ、暗条件の環境下で、接種した菌糸を培地に蔓延させる菌糸培養前期工程と、
d)酸素透過性があり、かつ、明条件の環境下で、原基形成を促す菌糸培養後期工程と、
e)該原基形成が完了したら、該容器本体から該蓋体を外し、子実体の成長を促す子実体生育工程と、
f)成熟した該子実体を採取する採取工程と、
から構成されることを特徴とするシイタケ容器栽培方法。
A cylindrical container body with translucency and shape retention, and an opening on the top surface that can be filled with a certain amount of culture medium, and a translucent and breathable container body that seals the opening on the top surface of the container body. Using a cultivation container equipped with a shape-retaining lid,
a) a culture medium manufacturing step of filling the container body with a sterilized culture medium and sealing it with the lid, or sealing the container body with the lid after filling the medium and performing sterilization;
b) a seed inoculation step of removing the lid and scattering the shiitake mushroom seed on the surface of the medium, and then sealing the container body with the lid again;
c) an early step of culturing mycelia in which the inoculated mycelium is spread in the medium in an oxygen permeable and dark environment;
d) a late step of culturing mycelia that promotes primordium formation in an environment with oxygen permeability and light conditions;
e) Once the formation of the primordium is completed, the lid is removed from the container body, and a fruiting body growth step is performed to promote the growth of the fruiting body;
f) a collection step of collecting the mature fruiting body;
A method for cultivating shiitake mushrooms in a container, characterized by comprising:
前記容器本体は、円筒状、四角筒状、多角筒状のいずれかであり、前記開口部の胴部に対する径率が、70%以上であり、前記開口部直径の前記容器本体の高さに対する比率が50%以上としたことを特徴とする請求項1に記載のシイタケ容器栽培方法。 The container body has a cylindrical shape, a square tube shape, or a polygonal tube shape, and the diameter ratio of the opening to the body is 70% or more, and the diameter of the opening to the height of the container body is 70% or more. The container cultivation method for shiitake mushrooms according to claim 1, characterized in that the ratio is 50% or more. 前記容器蓋体は、フィルタを用いず、嵌合部の隙間を通してのみ酸素供給および二酸化炭素排出が行なわれることを特徴とする請求項1に記載のシイタケ容器栽培方法。 2. The method for cultivating shiitake mushrooms in a container according to claim 1, wherein the container lid does not use a filter and oxygen is supplied and carbon dioxide is discharged only through a gap in a fitting part. 前記培地製造工程において、前記培地を、培地頂点と容器天端の距離が5~20mmになるように充填したことを特徴とする請求項1に記載のシイタケ容器栽培方法。 The method for cultivating shiitake mushrooms in a container according to claim 1, wherein in the medium manufacturing step, the medium is filled so that the distance between the top of the medium and the top of the container is 5 to 20 mm. 前記培地製造工程において、前記培地の上面の形状を平型、台形型、饅頭型、円錐形、すり鉢型のいずれかとし、その高低差が20mm以内であることを特徴とする請求項1に記載のシイタケ容器栽培方法。 2. In the medium manufacturing step, the top surface of the medium has a flat shape, a trapezoid shape, a bun shape, a conical shape, or a mortar shape, and the difference in height is within 20 mm. How to grow shiitake mushrooms in containers. 前記培地製造工程において、接種孔が
a)前記培地上面の中央部の一箇所
b)前記培地上面の外縁部の複数箇所
c)前記培地上面の中央部から略等距離の位置の複数箇所
の少なくとも1つに当てはまる位置に開けられていることを特徴とする請求項1に記載のシイタケ容器栽培方法。
In the medium manufacturing step, the inoculation hole is at least one of: a) one location in the center of the top surface of the medium, b) multiple locations on the outer edge of the top surface of the medium, and c) multiple locations approximately equidistant from the center of the top surface of the medium. The container cultivation method for shiitake mushrooms according to claim 1, characterized in that the container is opened at one position.
前記菌糸培養前期工程は、0.5ルクス未満の暗条件としたことを特徴とする請求項1に記載のシイタケ容器栽培方法。 2. The method for cultivating shiitake mushrooms in containers according to claim 1, wherein the early step of culturing mycelium is performed under dark conditions of less than 0.5 lux. 前記菌糸培養後期工程は、100ルクス以上の明るさで、常時点灯もしくは間欠点灯としたことを特徴とする請求項1に記載のシイタケ容器栽培方法。 2. The method for cultivating shiitake mushrooms in containers according to claim 1, wherein in the latter stage of culturing mycelium, the light is constantly on or intermittently at a brightness of 100 lux or more. 前記種菌接種工程で用いる前記シイタケ種菌は、子実体発生面に菌糸塊を形成する前記菌糸培養後期工程において褐変被膜が形成しにくいシイタケ菌株であることを特徴とする請求項1に記載のシイタケ容器栽培方法。 The shiitake mushroom container according to claim 1, wherein the shiitake mushroom seed used in the seed inoculation step is a shiitake mushroom strain that is difficult to form a brown coating in the latter stage of mycelial culture in which a mycelial mass is formed on the surface where fruiting bodies are generated. Cultivation method. 前記子実体生育工程において、培養完了し前記蓋体を除去したタイミングで、
a)前記培地上面部に少なくとも一箇所の穴あけを行なう
b)前記培地上面部の一部を菌糸ごと除去する
c)前記栽培容器に刺激を加える
のうち、少なくとも1つを行うことを特徴とする請求項1に記載のシイタケ容器栽培方法。
In the fruiting body growth step, at the timing when the culture is completed and the lid body is removed,
The method is characterized in that at least one of a) making at least one hole in the upper surface of the medium, b) removing a part of the upper surface of the medium together with mycelium, and c) applying stimulation to the cultivation container is performed. The method for cultivating shiitake mushrooms in containers according to claim 1.
前記蓋体は、嵌込み式であり、
前記嵌合部の隙間は、前記蓋体の内周の軸方向に形成された溝と、前記容器の首部とによって、形成されていることを特徴とする請求項3に記載のシイタケ容器栽培方法。

The lid body is a fitting type,
The method for cultivating shiitake mushrooms in a container according to claim 3, wherein the gap between the fitting portions is formed by a groove formed in an axial direction on an inner circumference of the lid and a neck of the container. .

JP2022136425A 2022-08-30 2022-08-30 Shiitake container cultivation method Active JP7372699B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022136425A JP7372699B1 (en) 2022-08-30 2022-08-30 Shiitake container cultivation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022136425A JP7372699B1 (en) 2022-08-30 2022-08-30 Shiitake container cultivation method

Publications (2)

Publication Number Publication Date
JP7372699B1 true JP7372699B1 (en) 2023-11-01
JP2024033052A JP2024033052A (en) 2024-03-13

Family

ID=88509975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022136425A Active JP7372699B1 (en) 2022-08-30 2022-08-30 Shiitake container cultivation method

Country Status (1)

Country Link
JP (1) JP7372699B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018102272A (en) 2016-12-28 2018-07-05 株式会社北研 Mushroom cultivation method by expanding film
JP7155058B2 (en) 2019-03-21 2022-10-18 株式会社Fuji career

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07155058A (en) * 1993-12-02 1995-06-20 Mori Sangyo Kk Mushroom bed for culturing lentinus edodes, production thereof and method for culturing lentinus edodes using the same
JP6548124B2 (en) * 2015-09-01 2019-07-24 学校法人甲南学園 A culture solution for mulberry cultivation, a culture medium for mulberry cultivation, a method for producing a culture liquid for mulberry cultivation, and a cultivation method for mulberry

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018102272A (en) 2016-12-28 2018-07-05 株式会社北研 Mushroom cultivation method by expanding film
JP7155058B2 (en) 2019-03-21 2022-10-18 株式会社Fuji career

Also Published As

Publication number Publication date
JP2024033052A (en) 2024-03-13

Similar Documents

Publication Publication Date Title
CN105684733B (en) Bag plants needle mushroom breeding method
CN106818207B (en) A kind of bag cultivation growing straight method of needle mushroom
KR101148759B1 (en) A method for cultivating mushrooms having uniformly grown fruiting-bodies
CN103004466A (en) Needle mushroom cultivating method
CN111066577A (en) Bottled industrialized cultivation method of high-quality pleurotus nebrodensis
CN112243796A (en) Culture medium for cultivating peanut meal edible fungi and industrial application thereof
CN104303840A (en) Cultivating method for tray-loaded flammulina velutipes
CN101690453A (en) Hon-shimeji mushroom-fungal bed culture
US20070101642A1 (en) Cultivation method of agaricus blazei murill mushroom
JP7372699B1 (en) Shiitake container cultivation method
KR20100061386A (en) Fungal bed cultivation method of hon-shimeji mushroom
JP3170940U (en) Cocoon cultivation container
JP2010029097A (en) Cultivation container and method for cultivating mushroom using the same
WO2010090448A2 (en) Container for mushroom cultivation
JP2005333983A (en) Cap for culturing mushroom and method for culturing mushroom
KR20200061556A (en) A Method for Cultivating a White Shiitake Mushroom Containing a Selenium
JP2007236318A (en) Cap for growing mushroom, and cultivation method for mushroom
CN103004459A (en) Grifola frondosa cultivation method
JP2010000058A (en) Culture medium cover sheet, cultivation container including the same, and mushroom cultivating method using culture medium cover sheet or cultivation container
KR101650873B1 (en) Method of cultivating mushrooms using bottle cap
KR100226632B1 (en) The method of cultivating pellinus linteus
KR20170062688A (en) Functional mushroom cultivation method using sawdust media
JPH03112417A (en) Method for cultivating shiitake in mushroom bed and container for cultivating the same
JP2001069850A (en) Cultivation of cordyceps sinensis sacc.
KR20170062687A (en) Sawdust badge unit for mushroom cultivation and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231013

R150 Certificate of patent or registration of utility model

Ref document number: 7372699

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150