JP7372108B2 - 傾斜検出装置及び測量装置 - Google Patents

傾斜検出装置及び測量装置 Download PDF

Info

Publication number
JP7372108B2
JP7372108B2 JP2019189590A JP2019189590A JP7372108B2 JP 7372108 B2 JP7372108 B2 JP 7372108B2 JP 2019189590 A JP2019189590 A JP 2019189590A JP 2019189590 A JP2019189590 A JP 2019189590A JP 7372108 B2 JP7372108 B2 JP 7372108B2
Authority
JP
Japan
Prior art keywords
axis
tilt
inclination
detection
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019189590A
Other languages
English (en)
Other versions
JP2021063761A (ja
Inventor
文夫 大友
信幸 西田
薫 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2019189590A priority Critical patent/JP7372108B2/ja
Priority to US17/070,966 priority patent/US11940274B2/en
Publication of JP2021063761A publication Critical patent/JP2021063761A/ja
Application granted granted Critical
Publication of JP7372108B2 publication Critical patent/JP7372108B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/002Active optical surveying means
    • G01C15/008Active optical surveying means combined with inclination sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • G01C9/02Details
    • G01C9/06Electric or photoelectric indication or reading means

Description

本発明は加速度センサを用いた傾斜検出装置、該傾斜検出装置を具備する測量装置に関するものである。
測定装置等、精密装置では装置の整準の為、或は装置の傾斜を測定する為に傾斜検出装置が設けられる。
高精度の水平、微小な傾斜を検出する傾斜検出装置として自由液面の傾斜、或は液体に封入した気泡の動きを利用したチルトセンサ、或は動的な傾斜を高応答性で検出する加速度センサ等がある。
チルトセンサは高精度の水平を検出するが応答性が悪く、動的な装置には使用することが難しかった。又、加速度センサは高応答性が保証されるが、環境変化(温度、気圧、湿度等)や経時変化によるドリフトが問題となり、安定性に欠けるという問題があった。
そこで本出願人は、特許第6541365号に於いて、チルトセンサと加速度センサを具備し、高応答性を保証しつつ、高精度に傾斜角を検出可能な姿勢検出装置を実現した。
該姿勢検出装置は真の水平又は鉛直を求めるのに工場内に於いて基準水平又は鉛直コリメータ等で確認していた。
特許第6541365号公報 特開2016-151423号公報 特開2017-90244号公報 特開2017-106813号公報 特開2018-28464号公報
本発明は、キャリブレーションを実行可能な傾斜検出装置及び該傾斜検出装置を備えた測量装置を提供するものである。
本発明は、外フレームの内部に内フレームが設けられ、該内フレームの内部に水平からの傾斜を検出する傾斜センサを有する傾斜検出ユニットが設けられ、前記内フレームは前記外フレームに第1軸を介して回転自在に支持され、前記傾斜検出ユニットは前記第1軸と直交する第2軸を介して前記内フレームに回転自在に支持され、前記第1軸に前記外フレームと前記内フレーム間の回転角を検出する第1エンコーダが設けられ、前記第2軸に前記内フレームと前記傾斜検出ユニット間の回転角を検出する第2エンコーダが設けられ、各軸をそれぞれ回転させる様、各軸にそれぞれ設けたモータと、前記傾斜センサからの検出結果に基づき前記各モータをそれぞれ駆動制御する演算処理部とを具備し、該演算処理部は、前記傾斜センサが傾斜を検出して発する信号に基づき該傾斜センサが水平を検出する様、前記各モータを駆動し、前記傾斜センサが水平を検出した時の前記第1、第2エンコーダの出力に基づき前記外フレームの傾斜を演算する様構成され、前記演算処理部は、傾斜検出装置の静止状態で前記第1軸、第2軸に関して、それぞれのエンコーダの出力に基づき前記傾斜検出ユニットを少なくとも一回180゜反転させ、反転前後の前記傾斜センサが出力する検出信号に基づき前記傾斜センサのキャリブレーションを実行する様構成された傾斜検出装置に係るものである。
又本発明は、前記傾斜センサは加速度センサである傾斜検出装置に係るものである。
又本発明は、前記演算処理部は、前記傾斜検出装置の静止状態で前記第1軸、第2軸の少なくとも一方の軸に関して、該一方の軸のエンコーダの出力に基づき前記傾斜検出ユニットを90゜回転させ、更に他方の軸に対して前記傾斜検出ユニットを180゜反転させ、反転前後の前記傾斜センサが出力する検出信号に基づき前記傾斜センサのキャリブレーションを実行する様構成された傾斜検出装置に係るものである。
又本発明は、前記演算処理部は、前記傾斜検出装置の静止状態で前記傾斜検出ユニットを、a)前記第1軸を中心に90゜回転し、b)次に第2軸を中心に90°回転し、c)次に第1軸を中心に90゜回転し、d)次に第2軸を中心に90゜回転し、e)次に第1軸を中心に90゜回転し、f)次に第2軸を中心に90°回転し、g)次に第1軸を中心に90°回転し、h)次に第2軸を中心に90°回転し、前記傾斜検出ユニットを各軸に関し同方向に90゜ずつ回転する過程で前記第1軸、第2軸について前記傾斜検出ユニットがそれぞれ180゜反転する前後の前記傾斜センサの検出信号に基づき前記第1軸、第2軸の前記傾斜センサのキャリブレーションを実行し、又前記第1軸、第2軸に直交する第3軸について180゜反転する前後の前記傾斜センサの検出信号に基づき前記第3軸についてのキャリブレーションを実行する様構成した傾斜検出装置に係るものである。
又本発明は、前記演算処理部は、前記傾斜検出ユニットを微動し、微動状態で得られる前記傾斜センサの検出結果と前記第1エンコーダ、前記第2エンコーダの検出結果に基づき前記傾斜センサの検出感度のキャリブレーションを行う様構成された傾斜検出装置に係るものである。
更に又本発明は、測量装置は光波距離測定を行う測距部と、測距光軸を偏向し、測距光を測定点に視準させる光軸偏向部と、測距光軸の視準方向を検出する測定方向検出部と、上記のいずれかの傾斜検出装置と、演算制御部とを具備し、該演算制御部は、前記測距部の測距結果と、前記測定方向検出部の検出結果に基づき測定点の3次元座標を取得し、又前記傾斜検出装置の検出結果に基づき水平に対する3次元座標に変換する様構成された測量装置に係るものである。
本発明によれば、外フレームの内部に内フレームが設けられ、該内フレームの内部に水平からの傾斜を検出する傾斜センサを有する傾斜検出ユニットが設けられ、前記内フレームは前記外フレームに第1軸を介して回転自在に支持され、前記傾斜検出ユニットは前記第1軸と直交する第2軸を介して前記内フレームに回転自在に支持され、前記第1軸に前記外フレームと前記内フレーム間の回転角を検出する第1エンコーダが設けられ、前記第2軸に前記内フレームと前記傾斜検出ユニット間の回転角を検出する第2エンコーダが設けられ、各軸をそれぞれ回転させる様、各軸にそれぞれ設けたモータと、前記傾斜センサからの検出結果に基づき前記各モータをそれぞれ駆動制御する演算処理部とを具備し、該演算処理部は、前記傾斜センサが傾斜を検出して発する信号に基づき該傾斜センサが水平を検出する様、前記各モータを駆動し、前記傾斜センサが水平を検出した時の前記第1、第2エンコーダの出力に基づき前記外フレームの傾斜を演算する様構成され、前記演算処理部は、傾斜検出装置の静止状態で前記第1軸、第2軸に関して、それぞれのエンコーダの出力に基づき前記傾斜検出ユニットを少なくとも一回180゜反転させ、反転前後の前記傾斜センサが出力する検出信号に基づき前記傾斜センサのキャリブレーションを実行する様構成されたので、簡単な工程を取入れることで容易に傾斜検出装置のキャリブレーションが行え、又測定途中でのキャリブレーションの実行を可能とする。
又本発明によれば、測量装置は光波距離測定を行う測距部と、測距光軸を偏向し、測距光を測定点に視準させる光軸偏向部と、測距光軸の視準方向を検出する測定方向検出部と、上記のいずれかの傾斜検出装置と、演算制御部とを具備し、該演算制御部は、前記測距部の測距結果と、前記測定方向検出部の検出結果に基づき測定点の3次元座標を取得し、又前記傾斜検出装置の検出結果に基づき水平に対する3次元座標に変換する様構成されたので、簡単な工程を取入れることで容易に傾斜検出装置のキャリブレーションが行え、又測定途中でのキャリブレーションの実行を可能とし、高精度の傾斜検出装置を備えた測量装置を提供するという優れた効果を発揮する。
本発明の実施例に係る傾斜検出装置を示す概略平面図である。 該傾斜検出装置の概略構成図である。 該傾斜検出装置に於ける傾斜センサの模式図である。 (A)(B)は傾斜センサのXYの2軸のキャリブレーションの説明図である。 該キャリブレーションの流れを示す線図である。 (A)(B)は傾斜センサのZ軸のキャリブレーションの説明図である。 (A)~(I)は、傾斜センサのXYZの3軸のキャリブレーションを一連の流れの過程で実視する場合の説明図である。 該キャリブレーションの流れを示す線図である。 本実施例に係る測量装置の全体斜視図である。 該測量装置の正面図である。 該測量装置の概略構成図である。
以下、図面を参照しつつ本発明の実施例を説明する。
図1、図2は、本発明の実施例に係る傾斜検出装置の概略図である。
図1は本発明の実施例に係る傾斜検出装置1を示す概略平面図であり、図2は該実施例に係る傾斜検出装置1の概略構成図である。尚、以下の説明では、便宜上傾斜検出装置1の上下、左右は図中での上下左右としている。
矩形枠形状の外フレーム2の内部に矩形枠形状の内フレーム3が設けられ、該内フレーム3の内部に傾斜検出ユニット4が設けられる。
又、前記傾斜検出装置1が傾斜を検出すべき装置に設けられる場合は、装置の傾斜を反映するフレーム等、構造部材に前記外フレーム2が取付けられる。
前記内フレーム3の上面、下面から第1軸5,5が突設され、該第1軸5,5は前記外フレーム2に設けられた軸受6,6を介して前記外フレーム2に回転自在に支持されている。前記第1軸5,5は第1軸心を有し、前記内フレーム3は前記第1軸5,5を中心に360゜回転自在となっている。
前記傾斜検出ユニット4には第2軸7が設けられ、該第2軸7の両端部は、前記内フレーム3に設けられた軸受8,8に回転自在に嵌合する。前記傾斜検出ユニット4は前記第2軸7を介して前記内フレーム3に回転自在に支持される。前記第2軸7は前記第1軸心と直交する第2軸心を有し、前記傾斜検出ユニット4は前記第2軸7を中心に360゜回転自在となっている。
而して、前記傾斜検出ユニット4は前記外フレーム2に対して2軸方向に回転自在に支持されており、前記内フレーム3を回転自在に支持する機構、前記傾斜検出ユニット4を回転自在に支持する機構はジンバル機構を構成する。而して、前記傾斜検出ユニット4は前記外フレーム2に対してジンバル機構を介して支持され、更に前記内フレーム3の回転を制約する機構は存在していないので、前記傾斜検出ユニット4は前記外フレーム2に対して全方向に自在に回転し得る様になっている。
前記第1軸5,5の一方、例えば下側の第1軸5には第1被動ギア9が嵌着され、該第1被動ギア9には第1駆動ギア10が噛合している。又、前記外フレーム2の下面には第1モータ11が設けられ、前記第1駆動ギア10は前記第1モータ11の出力軸に嵌着されている。
前記第1軸5,5の他方には第1エンコーダ12が設けられ、該第1エンコーダ12は前記内フレーム3の前記外フレーム2に対する横方向の回転角を検出する様に構成されている。
前記第2軸7の一端部には、第2被動ギア14が嵌着され、該第2被動ギア14には第2駆動ギア15が噛合している。又、前記内フレーム3の側面(図示では左側面)には第2モータ16が設けられ、前記第2駆動ギア15は前記第2モータ16の出力軸に嵌着されている。
前記第2軸7の他端部には第2エンコーダ17が設けられ、該第2エンコーダ17は前記内フレーム3に対する前記傾斜検出ユニット4の縦方向の回転角を検出する様に構成されている。
前記第1エンコーダ12、前記第2エンコーダ17は、演算処理部19に電気的に接続されている。
前記傾斜検出ユニット4は、傾斜センサ21を有しており、該傾斜センサ21は、前記演算処理部19に電気的に接続されている。
前記傾斜センサ21は傾斜を検出するものであり、例えば加速度センサである。又、加速度センサは直交する水平2軸の傾斜及び鉛直方向の1軸の傾斜、計3軸方向の傾斜を検出する様になっている。ここで、水平2軸とは、図1に於ける前記第1軸5と前記第2軸7であり、前記第1軸5を中心とする回転(傾斜)をピッチング、前記第2軸7を中心とする回転(傾斜)をローリングとする。
前記傾斜検出装置1について、図2により更に説明する。
前記傾斜検出装置1は、前記第1エンコーダ12、前記第2エンコーダ17、前記傾斜センサ21、前記演算処理部19、前記第1モータ11、前記第2モータ16の他に、更に記憶部23、入出力制御部24を具備している。
前記演算処理部19としては本実施例に特化されたCPU、或は汎用性CPU、埋込みCPU、マイクロプロセッサ等が用いられる。又、前記記憶部23としてはRAM、ROM、FlashROM、DRAM等の半導体メモリが用いられる。
前記記憶部23には、前記外フレーム2に対する前記傾斜検出ユニット4の傾斜を検出の為の演算プログラム、前記傾斜センサ21のドリフトを較正するドリフト較正プログラム、前記第1モータ11、前記第2モータ16を駆動制御する為のプログラム等のプログラムが格納され、又演算データ(即ち、検出した傾斜角データ)等のデータ類が格納される。
前記入出力制御部24は、前記演算処理部19から出力される制御指令に基づき前記第1モータ11、前記第2モータ16を駆動し、前記演算処理部19で演算した傾斜角データを出力する。
前記傾斜センサ21は、水平に対する傾斜、水平2軸に関する傾斜方向を検出すると共に、各軸5,7を中心とする回転方向(ピッチング、ローリング)の傾斜をそれぞれ検出する。又、ピッチングは前記第1エンコーダ12が検出する回転方向(傾斜方向)、ローリングは前記第2エンコーダ17が検出する回転方向(傾斜方向)となっている。
前記演算処理部19は、前記傾斜センサ21からの検出結果に基づき、傾斜角、傾斜方向を演算し、更に該傾斜角、傾斜方向に相当する前記第1エンコーダ12の回転角、前記第2エンコーダ17の回転角を演算する。
尚、前記傾斜検出装置1は、前記外フレーム2が水平に設置された場合に、前記傾斜センサ21が水平を検出する様に設定され、更に前記第1エンコーダ12の出力、前記第2エンコーダ17の出力が共に基準位置(回転角0゜)を示す様に設定される。
以下、前記傾斜検出装置1の作用について説明する。
前記第1エンコーダ12の出力、前記第2エンコーダ17の出力が共に基準位置(回転角0゜)を示す状態から、前記傾斜検出装置1(前記外フレーム2)が水平に対して傾斜すると、前記外フレーム2と前記内フレーム3とは前記第1モータ11、前記第1駆動ギア10と前記第1被動ギア9を介して連結され、前記内フレーム3と前記傾斜検出ユニット4とは前記第2モータ16、前記第2駆動ギア15、前記第2被動ギア14を介して連結状態、即ち回転が拘束された状態にあるので、前記傾斜検出ユニット4と前記外フレーム2とは一体に傾斜し、前記傾斜センサ21が傾斜に応じた信号を出力する。
前記演算処理部19は、前記傾斜センサ21からの信号に基づき、傾斜角、傾斜方向を演算し、更に演算結果に基づき傾斜角、傾斜方向を0にする為の、前記第1モータ11、前記第2モータ16の回転量を演算し、前記入出力制御部24を介して前記第1モータ11、前記第2モータ16をそれぞれ演算された回転量分だけ回転させる駆動指令を発する。
前記第1モータ11、前記第2モータ16の駆動により、演算された傾斜角、傾斜方向の逆に傾斜する様、前記第1モータ11、前記第2モータ16が駆動され、モータの駆動量(回転角)は前記第1エンコーダ12、前記第2エンコーダ17によって検出され、回転角が前記演算結果となったところで前記第1モータ11、前記第2モータ16の駆動が停止される。
更に、前記傾斜センサ21が水平を検出する様、前記第1モータ11、前記第2モータ16の回転が微調整される。
この状態では、前記外フレーム2が傾斜した状態で、前記傾斜検出ユニット4が水平に制御される。
従って、前記傾斜検出ユニット4を水平とする為に、前記第1モータ11、前記第2モータ16により、前記内フレーム3、前記傾斜検出ユニット4を傾斜させた傾斜角、傾斜方向は、前記第1エンコーダ12、前記第2エンコーダ17で検出した回転角に基づき求められる。
前記演算処理部19は、前記傾斜センサ21が水平を検出した時の、前記第1エンコーダ12、前記第2エンコーダ17の検出結果に基づき前記傾斜検出装置1の傾斜角、傾斜方向を演算する。この演算結果が、前記傾斜検出装置1の傾斜後の姿勢を示す。
而して、前記演算処理部19は水平に対する前記外フレーム2の傾斜角、傾斜方向を前記第1エンコーダ12、前記第2エンコーダ17の検出結果に基づき求めることができ、更に水平に対して前記外フレーム2を所定の傾斜角、傾斜方向に設定する場合は、前記第1エンコーダ12、前記第2エンコーダ17の検出結果に基づき実行することができる。
即ち、前記傾斜センサ21と前記外フレーム2との関係は、前記第1エンコーダ12、前記第2エンコーダ17の検出結果に基づき管理することができる。
前記演算処理部19は、前記第1エンコーダ12、前記第2エンコーダ17で検出した回転角に基づき演算した傾斜角、傾斜方向を前記傾斜検出装置1の検出信号(傾斜角データ)として外部に出力する。
更に、前記傾斜センサ21の検出信号をリアルタイムで前記演算処理部19にフィードバックし、前記傾斜センサ21の水平を維持する様に前記第1モータ11、前記第2モータ16を制御すれば、前記外フレーム2の動的な傾斜変化をリアルタイムで検出することができる。而して、該傾斜検出装置1が設けられた装置の傾斜が検出される。
更に、リアルタイムで傾斜変化を検出することで、前記傾斜センサ21は常時、水平(傾斜角0)近傍での使用となり、前記傾斜センサ21の検出感度の直線性の影響を無視でき、或は無視できる程度に軽減できる。又、前記演算処理部19が前記傾斜センサ21からの検出結果に基づき前記傾斜検出装置1の静止状態を判断し、後述するキャリブレーションを実行する様にすれば、前記傾斜センサ21の安定性も保証することができる。
上記した様に、前記傾斜センサ21は、環境変化(温度、気圧、湿度等)や経時変化によるドリフトが生じる。
本実施例では所定時間間隔で、ドリフト成分を補正或は除去するキャリブレーションを実行することで、傾斜センサの精度、安定性を向上させている。
ドリフト成分除去のキャリブレーションについて以下説明する。
図3は、図1に於ける前記傾斜検出ユニット4を抽出し、模式化した図である。
図3中、X軸は前記第1軸5に相当し、Y軸は前記第2軸7に相当し、X軸、Y軸を含む平面に対して垂直な軸をZ軸とする。又、X軸を中心とする回転はピッチングであり、Y軸を中心とする回転はローリングとする。又、前記傾斜センサ21中に示されるx,y,zの矢印は傾斜センサ21の向きを示す。
本実施例では、X軸、Y軸にそれぞれモータ及びエンコーダが連結されているので、傾斜検出ユニット4をX軸、Y軸に関してそれぞれ強制的に、且つ正確に180゜回転させることができる。
図4(A)は、キャリブレーション開始時を示し、その時の傾斜角を測定する。
次に、X軸を中心に180゜ピッチングし、更にY軸を中心に180゜ローリングすると、前記傾斜検出ユニット4の前後、左右が反転し、X軸、Y軸の方向もそれぞれ180゜反転する。以下、X軸、Y軸のいずれか一方の反転を一軸反転又はX軸反転、Y軸反転と称し、X軸、Y軸共に反転する場合を2軸反転と称する。
図4(A)の状態から、2軸反転した状態が図4(B)に示されている。
180゜ピッチングし、更に180゜ローリングすると2軸反転する。2軸反転させる前と後の傾斜角の差を取るとオフセット(長期ドリフト成分)が除去された傾斜角差が得られる。
この2軸反転前後の傾斜角差は実際の傾斜角の倍角となる。従って2軸反転して得られた傾斜角差の1/2が実際の傾斜角である。
更に、ピッチングとローリングをそれぞれ180°回転すると、元の姿勢に戻る(ピッチングとローリングがそれぞれ360°回転)。
従って、ピッチングとローリングの180°回転を繰返して行い、2軸反転前後の傾斜角差の1/2を求めることで、長期的なドリフト成分を常に除去でき、正確な傾斜角を求めることができる。
更に、傾斜角度の変化があった場合(前記外フレーム2の傾斜に変化があった場合)にも、常に傾斜センサがゼロ又は略ゼロになる様にモータ駆動されているので、傾斜角度の変化にも追従する。
図5は、ピッチングとローリングの180°回転を繰返す状態を示す線図である。
尚、ピッチングとローリングの周期Tは、使用される加速度センサが持つドリフト特性、及び前記傾斜検出装置1が設けられる装置が要求する精度によって決定される。例えば、加速度センサのドリフトが問題にならない時間、例えば10秒以内等である。
即ち、設定した周期Tで生じる傾斜センサ21のドリフト(誤差)が、装置が要求する許容誤差を超えない様に設定される。
又、キャリブレーションが実行される場合は、少なくとも1周期内で(好ましくは複数周期内で)は傾斜角の変動がない等、前記傾斜検出装置1は安定している状態が求められる。
キャリブレーションは、前記演算処理部19が前記傾斜センサ21からの信号に基づき前記傾斜検出装置1の静止状態を判断して実行してもよく、或は前記傾斜検出装置1の使用者の判断でキャリブレーションを実行してもよい。
又、キャリブレーションの他の方法として、反転測定の前後の角度の平均(AとBの平均値)を取ることで傾斜センサの0点オフセット値を求め、該オフセット値を記憶してもよい。記憶された0点オフセット値を用いて常に傾斜センサの出力に対して0点オフセット補正することで、傾斜測定の度に反転を行わなくても正確な傾斜角を測定することができる。
又、前記演算処理部19が前記第1モータ11、前記第2モータ16を介して前記傾斜検出ユニット4を微動し、前記傾斜センサ21(傾斜検出ユニット4)を微動し、微動状態を前記傾斜センサ21と前記第1エンコーダ12、前記第2エンコーダ17によって検出し、前記傾斜センサ21の出力を前記第1エンコーダ12、前記第2エンコーダ17の検出結果に基づき値付けすることで、前記傾斜センサ21の検出感度のキャリブレーションを行うこともできる。
上記実施例では、X軸、Y軸に関するキャリブレーションを説明したが、Z軸に関しても同様な方法でキャリブレーションを実施できる。又、X軸、Y軸についてそれぞれ個別に180゜反転させ、X軸、Y軸それぞれ個別にキャリブレーションしてもよい。
図6(A)、図6(B)はその一例を示している。
図6(A)は図3で示す状態から、Y軸を中心に90゜右回転した状態を示している。
この状態では、Z軸は水平となり、Z軸の水平状態を前記傾斜センサ21が検出可能となる。図6(B)は図6(A)で示す状態から、更にY軸を中心に180゜右回転した状態を示している。この180゜の回転でZ軸が反転するので、上述したと同様に前記傾斜センサ21のZ軸に関するキャリブレーションが行える。
尚、X軸を中心に90゜回転し、更にX軸を中心に180゜同方向に回転した場合も同様に前記傾斜センサ21のZ軸に関するキャリブレーションが行えることは言う迄もない。
又、X軸、Y軸とZ軸に関するキャリブレーションは同じ頻度で行う必要はなく、例えばX軸、Y軸について2回キャリブレーションを行い、Z軸については1回キャリブレーションを行う等キャリブレーションの頻度を変えてもよい。頻度の設定については、装置が要求する許容誤差、前記傾斜センサ21の安定性を考慮して設定してもよい。
上記説明では、X軸、Y軸に関するキャリブレーションとZ軸に関するキャリブレーションを個別に実施する場合を説明したが、X軸、Y軸、Z軸に関するキャリブレーションを一連の操作で連続して実行することも可能である。
図7(A)~図7(I)、及び図8を参照して説明する。
図7(A)は、定常状態を示している。図7(A)の定常状態から前記傾斜センサ21をX軸を中心に90゜左回転すると図7(B)の状態となり、更にY軸を中心に90゜右回転すると図7(C)の状態となり、更にX軸を中心に90゜左回転(合計180゜左回転)すると図7(D)の状態となり、更にY軸を中心に90゜右回転(合計180゜右回転)すると図7(E)の状態となり、更にX軸を中心に90゜左回転(合計270゜左回転)すると図7(F)の状態となり、更にY軸を中心に90゜右回転(合計270゜右回転)すると図7(G)の状態となり、更にX軸を中心に90゜左回転(合計360゜左回転)すると図7(H)の状態となり、更にY軸を中心に90゜右回転(合計360゜右回転)すると図7(I)の状態となる。
X軸、Y軸共に一方向に360゜回転することで、元の状態(図7(A)で示す定常状態)に復帰する。
X軸、Y軸共に90゜ずつ順次回転する過程で、図7(E)の状態は前記傾斜センサ21の向きがx,y共に、図7(A)の状態に対して180゜反転する。従って、前記傾斜センサ21の図7(A)の状態と図7(E)の状態での検出結果を用いて、x,y方向のキャリブレーションが可能となる。(図8参照)
又、図7(D)の状態と図7(H)の状態では前記傾斜センサ21のz方向が水平で且つ逆向きとなっている。従って、図7(D)の状態と図7(H)の状態での検出結果を用いて、z方向のキャリブレーションが可能となる。(図8参照)
而して、前記傾斜センサ21をX軸、Y軸について交互に90゜ずつ回転することで、継続して傾斜センサ21のx,y,zの3方向(X軸、Y軸、Z軸)でキャリブレーションが可能である。
尚、回転の方法については種々考えられるものであり、傾斜センサ21のx,y,zそれぞれについて水平方向で且つ反転した2つの姿勢が得られればよい。
図9~図11に於いて、本実施例に係る傾斜検出装置1を具備した測量装置システム31を説明する。図9中、Oは光軸が偏向されていない状態での測距光軸を示し、この時の測距光軸28を基準光軸Oとする。
前記測量装置システム31は、主に支持装置としての三脚32、測量装置33、該測量装置33の支持部である設置台ユニット34を有している。
該設置台ユニット34は前記三脚32の上端に取付けられ、前記測量装置33は前記設置台ユニット34によって上下方向、左右方向にそれぞれ回転可能に支持される。
図10に示される様に、前記設置台ユニット34は、前記三脚32の上端に固定される台座35、該台座35に固定して取付けられる水平基盤36、該水平基盤36に水平方向に回転可能に設けられる托架部37を有している。該托架部37に前記測量装置33が鉛直方向に回転可能に取付けられる。
前記托架部37の下面からは、水平回転軸38が突設され、該水平回転軸38は軸受(図示せず)を介して前記水平基盤36に回転自在に嵌合している。前記托架部37は、前記水平回転軸38を中心に水平方向に回転自在となっている。
又、該水平回転軸38と前記水平基盤36との間には、水平角(前記水平回転軸38を中心とした回転方向の角度)を検出する水平角検出器39(例えばエンコーダ)が設けられ、該水平角検出器39によって前記托架部37の前記水平基盤36に対する水平方向の相対回転角が検出される様になっている。
前記水平基盤36には水平回転ギア41が前記水平回転軸38と同心に固定され、該水平回転ギア41には水平ピニオンギア42が噛合している。前記托架部37には、水平モータ43が設けられ、前記水平ピニオンギア42は前記水平モータ43の出力軸に固着されている。
該水平モータ43の駆動により、前記水平ピニオンギア42が回転し、該水平ピニオンギア42が前記水平回転ギア41の回りを公転する。前記水平ピニオンギア42の公転により、前記托架部37と前記測量装置33とが前記水平回転軸38を中心に一体に回転する。而して、前記水平モータ43によって、前記測量装置33が水平方向に回転される。
該測量装置33は、鉛直回転軸44を介して前記托架部37に支持され、前記測量装置33は前記鉛直回転軸44を中心に鉛直方向に回転自在となっている。
前記鉛直回転軸44の一端には、鉛直回転ギア45が嵌合、固着され、該鉛直回転ギア45にはピニオンギア46が噛合している。該ピニオンギア46は前記托架部37に設けられた鉛直モータ47の出力軸に固着されている。該鉛直モータ47が駆動されることで、前記ピニオンギア46が回転され、更に前記鉛直回転ギア45、前記鉛直回転軸44を介して前記測量装置33が鉛直方向に回転される。
又、前記鉛直回転軸44と前記托架部37との間には、鉛直角(前記鉛直回転軸44を中心とした回転方向の角度)を検出する鉛直角検出器48(例えばエンコーダ)が設けられている。該鉛直角検出器48により、前記測量装置33の前記托架部37に対する鉛直方向の相対回転角が検出される。
前記水平モータ43、前記鉛直モータ47は、第1モータドライバ57(後述)によって駆動され、該第1モータドライバ57を介し、制御部としての演算制御部54(後述)によって所要のタイミングで所要の回転量となる様に駆動制御される。
前記水平モータ43の回転量(即ち、前記托架部37の水平角)は、前記水平角検出器39によって検出される。前記鉛直モータ47の回転量(即ち、前記測量装置33の鉛直角)は、前記鉛直角検出器48によって検出される。
而して、前記測量装置33の水平角、鉛直角はそれぞれ、前記水平角検出器39、前記鉛直角検出器48によって検出され、検出結果はそれぞれ前記演算制御部54に入力される。尚、前記水平モータ43と前記鉛直モータ47とによって回転駆動部が構成される。
前記水平角検出器39と前記鉛直角検出器48とにより、前記測量装置33の鉛直回転角及び水平回転角を検出する角度検出部、即ち方向角検出部が構成される。
図11により前記測量装置33について更に説明する。
該測量装置33は、主に、測距部51、追尾部52、測定方向撮像部53、前記演算制御部54、本体記憶部55、前記傾斜検出装置1、測定方向検出部56、前記第1モータドライバ57、第2モータドライバ58、画像処理部59、表示部60、光軸偏向部61を具備している。これらは筐体62に収納され、一体化されている。
又、前記傾斜検出装置1の前記外フレーム2は、前記筐体62に固定されるか、或は該筐体62に固定された構造部材に固定され、前記筐体62即ち前記測量装置33と一体となっている。
前記演算制御部54としては本実施例に特化されたCPU、或は汎用性CPU、埋込みCPU、マイクロプロセッサ等が用いられる。又、前記本体記憶部55としてはRAM、ROM、FlashROM、DRAM等の半導体メモリ、HDD等の磁気記録メモリ、CDROM等の光学記録メモリが用いられる。又前記演算制御部54の一部の機能を前記演算処理部19として割当ててもよい。
前記本体記憶部55には、本実施例を実行する為のプログラム、例えば測距プログラム、追尾プログラム、画像処理プログラム、光軸偏向制御プログラム、前記傾斜検出装置1のキャリブレーションを実行する為のプログラム等の種々のプログラムが格納されている。前記演算制御部54は、格納された前記プログラムを展開し、実行する。又、前記本体記憶部55には、測定データ、画像データ等の種々のデータが格納される。
前記演算制御部54は、前記第2モータドライバ58を介して前記光軸偏向部61を制御する。更に前記光軸偏向部61を介して測距光軸28の偏向を制御し、前記測距部51、前記追尾部52の統合制御、測距、撮像、追尾の同期制御等を行う。
前記傾斜検出装置1は、前記測量装置33の水平又は鉛直に対する傾斜を検出し、検出結果は前記演算制御部54に入力される。又前記傾斜検出装置1として、傾斜を検出するセンサとしては例えば加速度センサが用いられており、該加速度センサは所定時間間隔で、或は連続的にキャリブレーションが実行される。従って、前記傾斜検出装置1は検出精度が維持されている。
前記追尾部52の光軸はミラー65,66によって偏向され、前記測距部51の光軸と合致する。以下、合致した光軸を測距光軸28とする。
該測距光軸28上に前記光軸偏向部61が配設される。該光軸偏向部61の中心を透過する真直な光軸は、前記基準光軸Oとなっている。該基準光軸Oは、前記光軸偏向部61によって偏向されなかった時の前記測距光軸28と合致する。
尚、前記光軸偏向部61としては、特許文献2、特許文献3、特許文献4に開示されたものを使用することができる。
以下、該光軸偏向部61について略述する。
該光軸偏向部61は、光学プリズムで構成された一対のディスクプリズム71,72を具備する。該ディスクプリズム71,72は、それぞれ同径の円板形であり、前記測距光軸28上に該測距光軸28と直交して同心に配置され、所定間隔で平行に配置されている。前記ディスクプリズム71,72はそれぞれ前記基準光軸Oを中心に回転可能に設けられており、各ディスクプリズム71,72はそれぞれモータによって個別に且つ独立して回転される様構成され、モータは前記第2モータドライバ58によって駆動され、該第2モータドライバ58を介して前記ディスクプリズム71,72の回転角、回転方向、回転速度等が前記演算制御部54によって制御される様構成されている。而して、前記ディスクプリズム71,72の回転を制御することで、前記基準光軸Oを基準として0°から最大偏角(例えば±20°)迄の任意の角度に前記測距光軸28を偏向することができる。
前記測距部51は、光波距離計としての機能を有し、測距光67を測定点、或は測定対象に射出し、測定点、或は測定対象からの反射測距光68を受光し、測距光の往復時間に基づき光波距離測定を実行する。
又、前記光軸偏向部61により前記測距光軸28を偏向することで、測定点への視準、測定点の変更が行われる。
前記光軸偏向部61による前記測距光軸28の変更により、前記基準光軸Oを固定した状態で(即ち、前記測量装置33を固定した状態で)前記光軸偏向部61の変更範囲内の測定が可能となる。
更に、前記測距光67を連続して照射しつつ、前記ディスクプリズム71,72を連続的に駆動し、連続的に偏向することで、前記測距光67を所定のパターンで2次元スキャンさせることができる。又、前記測距光67をパルス発光させ、パルス光毎の測距を行うことで、スキャン軌跡に沿った点群データを取得することができる。
前記測定方向検出部56は、前記ディスクプリズム71,72のそれぞれの回転角を検出し、前記測距光軸28の測定方向(視準方向)、即ち前記基準光軸Oに対する前記測距光軸28の偏向角、偏向方向をリアルタイムで検出する。従って、測距時の前記基準光軸Oに対する前記測距光軸28の角度、方向が検出(測角)できる。
測定方向検出結果(測角結果)は、測距結果に関連付けられて前記演算制御部54に入力され、該演算制御部54は測距結果、測角結果とを関連付けて前記本体記憶部55に格納する。
前記追尾部52を作動させることで、移動する測定対象を追尾しつつ、測定対象の測定を行うことができる。
前記追尾部52は、前記測距光軸28と同光軸で追尾光を射出し、測定対象からの反射追尾光を追尾部の受光素子(図示せず)で受光し、反射追尾光の受光素子上の基準位置との偏差を求め、前記演算制御部54が該偏差を0とする様、前記光軸偏向部61による前記測距光軸28の偏向を制御することで追尾が実行される。
又、前記測距部51は追尾動作と平行して測距を行うことで、移動中の測定対象についてリアルタイムで測定を行うことができる。
前記測定方向撮像部53は前記基準光軸Oと既知の関係、即ち、前記測定方向撮像部53の撮像光軸75は前記基準光軸Oと平行で光軸間の距離が既知となっている。又、前記測定方向撮像部53は、前記光軸偏向部61の最大偏角(例えば±20°)よりも大きい画角、例えば50°~60°の画角を有するカメラであり、前記光軸偏向部61による最大偏向範囲を含む画像データを取得する。又、前記測定方向撮像部53は、動画像、又は連続画像が取得可能である。
前記測定方向撮像部53の撮像素子は、画素の集合体であるCCD、或はCMOSセンサであり、各画素は画像素子上での位置が特定できる様になっている。例えば、各画素は、前記撮像光軸75を原点とした座標系での画素座標を有し、該画素座標によって画像素子上での位置が特定される。更に、前記撮像光軸75と、前記追尾光軸、基準光軸Oとは既知の関係となっている。
前記画像処理部59は、前記測定方向撮像部53で取得した画像データについて、エッジ抽出処理、特徴点の抽出、測定対象の検出、画像トラッキング処理、画像マッチング等の画像処理を行い、又画像データから濃淡画像を作成する。
前記表示部60は、前記測定方向撮像部53により取得した画像を表示し、測定状態、測定結果等を表示する。尚、前記表示部60をタッチパネルとして操作部と兼用してもよい。
以下、本実施例に係る測量装置システム31をトータルステーションとして使用する場合の作用について説明する。
前記測量装置33を前記三脚32を介して既知点(3次元座標が既知の点)に設置する。
前記測量装置33は前記傾斜検出装置1を有している。該傾斜検出装置1により、前記測量装置33の水平に対する設置姿勢(傾き)を検出できる。この為、前記測量装置33の整準作動は必要ない。測定結果を、検出された傾きで補正することで、正確な測定結果が得られる。
前記基準光軸Oを測定対象(測定点)に向ける。
前記基準光軸Oを測定対象(測定点)に向ける方法としては、前記測距光軸28を前記基準光軸Oに合致させ、即ち、前記光軸偏向部61で前記測距光軸28を偏向させない状態で、前記基準光軸Oを測定対象に視準させる。視準した状態は、前記測定方向撮像部53が取得した画像が前記表示部60に表示され、作業者が画像から確認することができる。
前記測量装置33を固定した状態で前記光軸偏向部61を作動させ、前記測距光軸28を偏向させ最終的に測定点に視準させる。この時の、前記基準光軸Oに対する偏角、偏角の方向は前記ディスクプリズム71,72の回転角に基づき前記測定方向検出部56によって検出される。
前記測距光軸28が測定点に視準された時点で測距が行われ、測距時の前記測距光軸28の方向角が、前記水平角検出器39、前記鉛直角検出器48、前記測定方向検出部56の検出結果に基づき演算され、測距値と方向角とで測定点の3次元座標が測定される。
尚、前記測量装置33が水平に対して傾斜している場合は、傾斜角が前記傾斜検出装置1によって検出され、前記測定された3次元座標が前記傾斜角に基づき補正される。
測定点が複数ある場合は、順次前記測距光軸28が測定点に視準され、測定が実行される。測定点の測定結果は、測定点と関連付けられて前記記憶部23に格納される。
又、前記測量装置33の静止状態で前記傾斜検出装置1に対して、所定時間間隔でキャリブレーションが実行され、前記傾斜検出装置1の前記傾斜センサ21のドリフトが修正される。
上記した測定作動は、静止した測定点を視準して1点、1点測定し、3次元座標を求めている。
次に、測設等、測定対象を追尾しつつ測定を実行する場合について説明する。ここで、測定対象はプリズム等、再帰反射性の光学部材であり、測定対象により測定点が示される。
前記追尾部52は、追尾光を射出し、光学部材からの反射光を受光し、受光結果に基づき追尾を行う。尚、前述した様に、追尾光軸は前記測距光軸28と合致しているので、前記測距部51も光学部材からの反射測距光を受光しており、光学部材の移動中リアルタイムで光学部材(測定対象)の測定が行われる。
追尾中の前記測距光軸28の測定対象への追尾は、先ず前記光軸偏向部61によって実行される。測定対象の移動範囲が前記光軸偏向部61の偏向範囲内である場合は、前記測量装置33自体の向きは固定でもよい。
或は、先ず前記光軸偏向部61により前記測距光軸28を偏向して測定対象を視準し、視準した状態を維持したまま、前記基準光軸Oと前記測距光軸28間の偏角、偏向方向が0となる様、前記水平モータ43、前記鉛直モータ47を駆動し、前記測量装置33本体を回転させてもよい。
前記基準光軸Oと前記測距光軸28間の偏角、偏向方向が0となる様、前記水平モータ43、前記鉛直モータ47を駆動制御することで、前記光軸偏向部61の偏向範囲を超えた広い範囲での追尾が可能となる。
追尾動作に於ける、前記測距光軸28の偏向は、前記ディスクプリズム71、前記ディスクプリズム72それぞれの回転によって生ぜられ、前記ディスクプリズム71,72は小型、軽量であり、モータによって高速に、又、高応答性で回転されることが可能である。従って、追尾動作の応答性の向上、追尾速度の高速化が可能であり、高速で移動する測定対象に対して追従性が向上する。
又、追尾動作中も前記傾斜検出装置1により傾斜が検出されており、該傾斜検出装置1が傾斜を検出すれば、検出結果により前記測量装置33による測定結果はリアルタイムで補正される。
尚、測定対象の移動が遅い場合は、即ち、前記測量装置33が前記測定対象の移動に追従可能な場合は、前記基準光軸Oと前記測距光軸28とが合致した状態で追尾が行われる。
上記実施例では、前記測量装置33を前記三脚32に固定した場合を説明したが、前記測量装置33単体を作業者が保持、携帯し、測定点の測定を行うことができる。
作業者が携帯した状態では、前記測量装置33の姿勢は不安定であり、測定点に向けられた前記測距光軸28もブレるが、前記光軸偏向部61によって高速で前記測距光軸28を偏向させ、測定点の追尾が可能であるので、手ブレがあった状態でも前記測距光軸28を正確に測定点に向けることができ、精度の高い測定の実行が可能である。更に、前記測量装置33の傾斜(姿勢)は前記傾斜検出装置1によってリアルタイムで検出され、該傾斜検出装置1の検出結果に基づき前記光軸偏向部61が前記演算制御部54によって制御されることは言う迄もない。
更に、作業者が前記測量装置33を携帯した状態でも測定対象の追尾が可能である。
又、上記説明では、測量装置システム31をトータルステーションとして説明したが、前記光軸偏向部61のディスクプリズム71,72をそれぞれ連続的に回転し、更に回転速度、回転方向をそれぞれ個別に制御することで任意のパターンで前記測距光軸28を走査することができ、更に、スキャン中パルス光毎に測距を行えば、スキャン軌跡に沿って点群データを取得でき、前記測量装置33をレーザスキャナとしても使用することができる。
上記した様に、前記ディスクプリズム71と前記ディスクプリズム72の回転を個別に制御することで種々の2次元のスキャンパターン、方法を実現することができる。
尚、上記説明では実施例に係る傾斜検出装置1を測量装置33に設けた場合を説明したが、傾斜を測定する傾斜検出装置1単体として実施してもよい。
又、上記傾斜検出装置を搭載する測定装置は、図9~図11に示した装置に限らず、一般的なトータルステーションや3Dレーザスキャナでもよい。
1 傾斜検出装置
2 外フレーム
3 内フレーム
4 傾斜検出ユニット
11 第1モータ
12 第1エンコーダ
16 第2モータ
17 第2エンコーダ
19 演算処理部
21 傾斜センサ
23 記憶部
24 入出力制御部
28 測距光軸
31 測量装置システム
33 測量装置
34 設置台ユニット
39 水平角検出器
43 水平モータ
47 鉛直モータ
48 鉛直角検出器
51 測距部
52 追尾部
53 測定方向撮像部
54 演算制御部
55 本体記憶部
61 光軸偏向部

Claims (5)

  1. 外フレームの内部に内フレームが設けられ、該内フレームの内部に水平からの傾斜を検出する傾斜センサを有する傾斜検出ユニットが設けられ、前記内フレームは前記外フレームに第1軸を介して回転自在に支持され、前記傾斜検出ユニットは前記第1軸と直交する第2軸を介して前記内フレームに回転自在に支持され、前記第1軸に前記外フレームと前記内フレーム間の回転角を検出する第1エンコーダが設けられ、前記第2軸に前記内フレームと前記傾斜検出ユニット間の回転角を検出する第2エンコーダが設けられ、各軸をそれぞれ回転させる様、各軸にそれぞれ設けたモータと、前記傾斜センサからの検出結果に基づき前記各モータをそれぞれ駆動制御する演算処理部とを具備し、
    該演算処理部は、前記傾斜センサが傾斜を検出して発する信号に基づき該傾斜センサが水平を検出する様、前記各モータの駆動量を演算し、前記第1エンコーダ、前記第2エンコーダの検出結果に基づき前記各モータを演算された駆動量となる様駆動し、前記傾斜センサが水平を検出した時の前記第1、第2エンコーダの出力に基づき前記外フレームの傾斜をリアルタイムで演算する様構成され、
    前記演算処理部は、前記傾斜センサからの検出結果に基づき傾斜検出装置の静止状態を判断し、前記第1軸、第2軸に関して、前記各モータを駆動し、それぞれのエンコーダの検出結果に基づき前記傾斜検出ユニットを少なくとも一回180゜反転させ、反転前後の前記傾斜センサが出力する検出信号に基づき反転前後の傾斜角の差の1/2を傾斜角として求め、ドリフト成分を除去するキャリブレーションを実行する様構成された傾斜検出装置。
  2. 前記傾斜センサは加速度センサである請求項1に記載の傾斜検出装置。
  3. 前記演算処理部は、前記傾斜検出装置の外フレームの静止状態で前記第1軸、第2軸の少なくとも一方の軸に関して、該一方の軸のエンコーダの出力に基づき前記傾斜検出ユニットを90゜回転させ、更に他方の軸に対して前記傾斜検出ユニットを180゜反転させ、反転前後の前記傾斜センサが出力する検出信号に基づき前記傾斜センサのキャリブレーションを実行する様構成された請求項2に記載の傾斜検出装置。
  4. 前記演算処理部は、前記傾斜検出装置の外フレームの静止状態で前記傾斜検出ユニットを、a)前記第1軸を中心に90゜回転し、b)次に第2軸を中心に90°回転し、c)次に第1軸を中心に90゜回転し、d)次に第2軸を中心に90゜回転し、e)次に第1軸を中心に90゜回転し、f)次に第2軸を中心に90°回転し、g)次に第1軸を中心に90°回転し、h)次に第2軸を中心に90°回転し、前記傾斜検出ユニットを各軸に関し同方向に90゜ずつ回転する過程で前記第1軸、第2軸について前記傾斜検出ユニットがそれぞれ180゜反転する前後の前記傾斜センサの検出信号に基づき前記第1軸、第2軸の前記傾斜センサのキャリブレーションを実行し、又前記第1軸、第2軸に直交する第3軸について180゜反転する前後の前記傾斜センサの検出信号に基づき前記第3軸についてのキャリブレーションを実行する様構成した請求項2に記載の傾斜検出装置。
  5. 測量装置は光波距離測定を行う測距部と、測距光軸を偏向し、測距光を測定点に視準させる光軸偏向部と、測距光軸の視準方向を検出する測定方向検出部と、請求項1~請求項4のいずれかの傾斜検出装置と、演算制御部とを具備し、該演算制御部は、前記測距部の測距結果と、前記測定方向検出部の検出結果に基づき測定点の3次元座標を取得し、又前記傾斜検出装置の検出結果に基づき水平に対する3次元座標に変換する様構成された測量装置。
JP2019189590A 2019-10-16 2019-10-16 傾斜検出装置及び測量装置 Active JP7372108B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019189590A JP7372108B2 (ja) 2019-10-16 2019-10-16 傾斜検出装置及び測量装置
US17/070,966 US11940274B2 (en) 2019-10-16 2020-10-15 Tilt detecting device and surveying instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019189590A JP7372108B2 (ja) 2019-10-16 2019-10-16 傾斜検出装置及び測量装置

Publications (2)

Publication Number Publication Date
JP2021063761A JP2021063761A (ja) 2021-04-22
JP7372108B2 true JP7372108B2 (ja) 2023-10-31

Family

ID=75486129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019189590A Active JP7372108B2 (ja) 2019-10-16 2019-10-16 傾斜検出装置及び測量装置

Country Status (2)

Country Link
US (1) US11940274B2 (ja)
JP (1) JP7372108B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024071000A1 (ja) * 2022-09-29 2024-04-04 株式会社トプコン 回転作動型慣性検出装置及び測量装置
WO2024071001A1 (ja) * 2022-09-29 2024-04-04 株式会社トプコン 回転作動型慣性検出装置及び測量装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000356647A (ja) 1999-06-14 2000-12-26 Denso Corp 加速度センサのオフセット誤差検出方法及び装置、車両用現在位置検出装置、ナビゲーション装置
JP2007322337A (ja) 2006-06-02 2007-12-13 Oki Electric Ind Co Ltd 3軸加速度センサおよび3軸加速度センサの検査方法
JP2008020214A (ja) 2006-07-10 2008-01-31 Daishowa Seiki Co Ltd 水準器
JP2009092526A (ja) 2007-10-10 2009-04-30 Akebono Brake Ind Co Ltd デジタル水準器
JP2010281598A (ja) 2009-06-02 2010-12-16 Fujitsu Ltd センサ較正装置
JP2012112789A (ja) 2010-11-24 2012-06-14 Sony Computer Entertainment Inc キャリブレーション装置、キャリブレーション方法、及び電子機器の製造方法
US20140088906A1 (en) 2012-09-25 2014-03-27 John M. Wilson Inertial Sensor Bias Estimation by Flipping
JP2014232096A (ja) 2013-05-29 2014-12-11 フリースケール セミコンダクター インコーポレイテッド トランスデューサ内蔵デバイス、その較正方法および較正装置
JP2016050775A (ja) 2014-08-28 2016-04-11 株式会社トプコン 測定装置および傾斜センサ装置
JP2017096629A (ja) 2015-11-18 2017-06-01 株式会社トプコン 測量装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3634058B2 (ja) * 1996-04-10 2005-03-30 株式会社トキメック 傾斜角測定装置
US6119355A (en) * 1998-06-02 2000-09-19 Trimble Navigation Limited Audible tilt sensor calibration
JP2004264060A (ja) * 2003-02-14 2004-09-24 Akebono Brake Ind Co Ltd 姿勢の検出装置における誤差補正方法及びそれを利用した動作計測装置
JP6541365B2 (ja) 2015-02-16 2019-07-10 株式会社トプコン 姿勢検出装置及びデータ取得装置
JP6621305B2 (ja) 2015-11-10 2019-12-18 株式会社トプコン 測量システム
JP6777987B2 (ja) 2015-12-10 2020-10-28 株式会社トプコン 測定装置
JP6771994B2 (ja) 2016-08-17 2020-10-21 株式会社トプコン 測定方法及びレーザスキャナ
JP6937126B2 (ja) * 2017-01-31 2021-09-22 株式会社トプコン ローバー及びローバー測定システム
JP7017422B2 (ja) * 2018-01-31 2022-02-08 株式会社トプコン 測量装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000356647A (ja) 1999-06-14 2000-12-26 Denso Corp 加速度センサのオフセット誤差検出方法及び装置、車両用現在位置検出装置、ナビゲーション装置
JP2007322337A (ja) 2006-06-02 2007-12-13 Oki Electric Ind Co Ltd 3軸加速度センサおよび3軸加速度センサの検査方法
JP2008020214A (ja) 2006-07-10 2008-01-31 Daishowa Seiki Co Ltd 水準器
JP2009092526A (ja) 2007-10-10 2009-04-30 Akebono Brake Ind Co Ltd デジタル水準器
JP2010281598A (ja) 2009-06-02 2010-12-16 Fujitsu Ltd センサ較正装置
JP2012112789A (ja) 2010-11-24 2012-06-14 Sony Computer Entertainment Inc キャリブレーション装置、キャリブレーション方法、及び電子機器の製造方法
US20140088906A1 (en) 2012-09-25 2014-03-27 John M. Wilson Inertial Sensor Bias Estimation by Flipping
JP2014232096A (ja) 2013-05-29 2014-12-11 フリースケール セミコンダクター インコーポレイテッド トランスデューサ内蔵デバイス、その較正方法および較正装置
JP2016050775A (ja) 2014-08-28 2016-04-11 株式会社トプコン 測定装置および傾斜センサ装置
JP2017096629A (ja) 2015-11-18 2017-06-01 株式会社トプコン 測量装置

Also Published As

Publication number Publication date
US11940274B2 (en) 2024-03-26
JP2021063761A (ja) 2021-04-22
US20210116241A1 (en) 2021-04-22

Similar Documents

Publication Publication Date Title
EP2056066B1 (en) Surveying Instrument
JP6541365B2 (ja) 姿勢検出装置及びデータ取得装置
JP6560596B2 (ja) 測量装置
JP5145029B2 (ja) 測量機及び測量補正方法
JP6577295B2 (ja) 測定装置
JP6584226B2 (ja) 測定装置
JP2018028464A (ja) 測定方法及びレーザスキャナ
JP2017090244A (ja) 測量システム
US10564265B2 (en) Measurement device and measurement method
US10634795B2 (en) Rover and rover measuring system
JP6823482B2 (ja) 三次元位置計測システム,三次元位置計測方法,および計測モジュール
JP7191643B2 (ja) 測量装置
JP7372108B2 (ja) 傾斜検出装置及び測量装置
JP2019124496A (ja) 3次元測量装置および3次元測量方法
JP4916780B2 (ja) 測量装置
US20200318963A1 (en) Surveying Instrument
US20220317149A1 (en) Reversing actuation type inertia detecting device and surveying instrument
JP7287824B2 (ja) 測量装置
US11293754B2 (en) Surveying instrument
JPH0854234A (ja) 三次元座標位置計測方法
WO2024071000A1 (ja) 回転作動型慣性検出装置及び測量装置
WO2024071001A1 (ja) 回転作動型慣性検出装置及び測量装置
WO2024071002A1 (ja) 測量装置
US20240125597A1 (en) In-the-field leveling calibration of a surveying instrument

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230425

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231019

R150 Certificate of patent or registration of utility model

Ref document number: 7372108

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150