WO2024071002A1 - 測量装置 - Google Patents

測量装置 Download PDF

Info

Publication number
WO2024071002A1
WO2024071002A1 PCT/JP2023/034634 JP2023034634W WO2024071002A1 WO 2024071002 A1 WO2024071002 A1 WO 2024071002A1 JP 2023034634 W JP2023034634 W JP 2023034634W WO 2024071002 A1 WO2024071002 A1 WO 2024071002A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical axis
unit
measurement
distance measurement
distance measuring
Prior art date
Application number
PCT/JP2023/034634
Other languages
English (en)
French (fr)
Inventor
文夫 大友
一毅 大佛
薫 熊谷
直樹 東海林
Original Assignee
株式会社トプコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トプコン filed Critical 株式会社トプコン
Publication of WO2024071002A1 publication Critical patent/WO2024071002A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00

Definitions

  • the present invention relates to a surveying device that scans with distance measuring light to obtain point cloud data.
  • Surveying equipment laser scanners
  • a rigid support device such as a tripod
  • one type of laser scanner that acquires point cloud data rotates a pair of prisms relative to one another and scans distance measurement light by using the mutual deflection action of the two prisms.
  • Such laser scanners can be made small and lightweight, making it possible to perform measurements in a handheld state.
  • distance measurement light scans by continuously rotating a prism.
  • Coriolis force is generated as the prism rotates, and this Coriolis force can affect the support posture of the laser scanner when it is supported unstable, such as in a handheld device, and can affect the stability of the measurement.
  • the present invention aims to suppress the generation of Coriolis force that occurs when scanning is performed by a surveying device whose scanning unit for distance measurement light has a rotating body, stabilize the attitude of the surveying device, and ensure stable measurements.
  • the present invention relates to a distance measuring unit that emits distance measuring light on a distance measuring optical axis and performs distance measurement by receiving reflected distance measuring light from a measurement target, an optical axis deflection unit that is provided on a reference optical axis of the distance measuring unit and deflects the distance measuring light with respect to the reference optical axis, an optical axis deflection motor driver that drives the optical axis deflection unit, an attitude detection device, a measurement direction detection unit that detects the emission direction of the distance measuring light with respect to the reference optical axis, a memory unit, and a method for controlling the deflection of the distance measuring optical axis via the optical axis deflection unit, performing distance measurement by the distance measuring unit, and synchronizing the distance measuring unit, the attitude detection device, and the optical axis deflection unit.
  • the optical axis deflection unit has a pair of disk prisms made of optical prisms, and is configured to deflect the distance measurement optical axis by the individual rotation and relative rotation of the pair of disk prisms.
  • the optical axis deflection unit drives the optical axis deflection unit via the optical axis deflection motor driver, scans the distance measurement light in a predetermined scan pattern, and rotates one of the disk prisms in the opposite direction relative to the other to suppress the generation of Coriolis force.
  • the present invention also relates to a surveying device in which the calculation control unit is configured to control the drive of the optical axis deflection unit so that the mass x angular velocity of one of the pair of disk prisms is equal or approximately equal to the mass x angular velocity of the other disk prism.
  • the present invention also relates to a surveying device configured such that the calculation control unit controls the drive of the optical axis deflection unit so that the ratio of the mass x rotation speed of the two disk prisms is 0.7 to 1.5.
  • the present invention also relates to a surveying device that further includes an attitude detection device that detects the attitude of the surveying device, and the calculation control unit is configured to acquire three-dimensional point cloud data with a horizontally referenced scan pattern based on the detection results of the attitude detection device, the distance measurement results of the distance measurement unit, and the detection results of the measurement direction detection unit.
  • the present invention also relates to a surveying device that further includes an attitude detection device that detects the attitude of the surveying device, and the calculation control unit is configured to obtain three-dimensional measurement data of the horizontal reference of the measurement object based on the detection results of the attitude detection device, the distance measurement results of the distance measurement unit, and the detection results of the measurement direction detection unit.
  • a distance measuring device that emits distance measuring light on a distance measuring optical axis and measures distance by receiving reflected distance measuring light from a measurement target, an optical axis deflection unit that is provided on a reference optical axis of the distance measuring device and deflects the distance measuring light with respect to the reference optical axis, an optical axis deflection motor driver that drives the optical axis deflection unit, an attitude detection device, a measurement direction detection unit that detects the emission direction of the distance measuring light with respect to the reference optical axis, a memory unit, and an operating device configured to control the deflection of the distance measuring optical axis via the optical axis deflection unit, perform distance measuring by the distance measuring device, and perform synchronous control of the distance measuring unit, the attitude detection device, and the optical axis deflection unit.
  • the optical axis deflection unit has a pair of disk prisms made of optical prisms, and is configured to deflect the distance measurement optical axis by the individual rotation and relative rotation of the pair of disk prisms
  • the calculation control unit drives the optical axis deflection unit via the optical axis deflection motor driver to scan the distance measurement light in a predetermined scan pattern and to rotate one of the disk prisms in the opposite direction relative to the other to suppress the generation of Coriolis force, thereby suppressing the generation of Coriolis force, stabilizing the attitude of the surveying instrument, and ensuring stable measurements.
  • FIG. 1 is a schematic diagram showing the configuration of a surveying device according to an embodiment of the present invention.
  • 2A and 2B are explanatory diagrams showing the relationship between the operation of the optical axis deflection unit in the surveying instrument and the scan pattern.
  • FIG. 3 is an explanatory diagram showing an example of a scan pattern in the surveying instrument.
  • Figure 4(A) is a diagram showing the relationship between the scan pattern and the horizontal for the image in the measurement direction
  • Figure 4(B) is a diagram showing the state in which the scan pattern has been corrected based on the horizontal reference
  • Figure 4(C) is a diagram showing the image in the measurement direction and the scan pattern in chronological order when the surveying instrument moves.
  • Figure 5(A) is a diagram showing the parts where the distance measurement values are the same when the object to be measured is scanned
  • Figure 5(B) is a diagram extracting the parts where the distance measurement values are the same, and a diagram showing the relationship between the previous scan and the current scan when the surveying instrument is moved.
  • FIG. 1 shows a surveying device 1 to which this embodiment is applied, and the surveying device 1 functions as a laser scanner.
  • the surveying device 1 is portable and can be supported by hand (handheld) or on a single leg. It can also be mounted on a mobile vehicle, aircraft, etc.
  • the surveying device 1 mainly comprises a distance measuring unit 2, a measurement direction imaging unit 3, a calculation control unit 4, a memory unit 5, an attitude detection device 6, a measurement direction detection unit 7, an optical axis deflection motor driver 8, an optical axis deflection unit 9, and a display unit 10. These are housed in a housing 12 and integrated together.
  • the distance measuring unit 2 emits distance measuring light 21 along the distance measuring optical axis 15, receives reflected light from the measurement object, and performs distance measurement based on the round trip time of the distance measuring light 21.
  • the measurement direction imaging unit 3 captures an image in the emission direction (measurement direction) of the distance measuring light 21.
  • the calculation control unit 4 may be a CPU specialized for this embodiment, or a general-purpose CPU, embedded CPU, etc., and a time measurement means is built into the calculation control unit 4. Also, a semiconductor memory, etc. is used as the storage unit 5.
  • the calculation control unit 4 controls the optical axis deflection unit 9 via the optical axis deflection motor driver 8.
  • the calculation control unit 4 also controls the deflection of the distance measurement optical axis 15 via the optical axis deflection unit 9, executes distance measurement by the distance measurement unit 2, and further performs synchronization control of the distance measurement unit 2, the measurement direction imaging unit 3, the attitude detection device 6, the optical axis deflection unit 9, etc.
  • the memory unit 5 stores various programs such as programs for executing this embodiment, for example, a distance measurement program, an image processing program, an optical axis deflection control program, a calculation program for calculating the drive conditions of the optical axis deflection unit 9 for reducing Coriolis force, a program for controlling the optical axis deflection motor driver 8, and a data processing program.
  • the calculation control unit 4 develops and executes the stored programs.
  • the memory unit 5 stores various data such as measurement data and image data.
  • the attitude detection device 6 detects the attitude of the surveying device 1, i.e., the tilt angle, tilt direction, and horizontal rotation angle of the surveying device 1 relative to the horizontal or vertical, or the tilt angle, tilt direction, and horizontal rotation angle of the reference optical axis O (described later) relative to the horizontal or vertical, and outputs the detection results to the calculation control unit 4.
  • the attitude detection device disclosed in Patent Document 1 can be used as the attitude detection device 6.
  • an inertial sensor composed of an acceleration sensor and a gyro sensor can be used.
  • the optical axis deflection unit 9 is disposed on the distance measurement optical axis 15.
  • a straight optical axis passing through the center of the optical axis deflection unit 9 is the reference optical axis O.
  • the reference optical axis O coincides with the distance measurement optical axis 15 when not deflected by the optical axis deflection unit 9, and has a predetermined relationship with the housing 12.
  • the optical axis deflection unit 9 may be one disclosed in Patent Documents 2, 3, and 4.
  • the optical axis deflection unit 9 is equipped with a pair of disk prisms 17, 18 made of optical prisms.
  • the disk prisms 17, 18 are each a disk shape (or a polygon circumscribing a circle) with a mass and diameter appropriate for the application, and are arranged concentrically on the distance measurement optical axis 15, perpendicular to the distance measurement optical axis 15, and parallel to each other at a predetermined interval.
  • the disk prisms 17, 18 are each rotatable around the reference optical axis O (coaxially rotatable), and each disk prism 17, 18 is configured to be rotated individually and independently by a motor, and the motor is driven by the optical axis deflection motor driver 8.
  • the distance measuring light 21 passing through the optical axis deflection unit 9, i.e., the distance measuring light 21 passing through the disk prisms 17, 18, is deflected by the optical action of the disk prisms 17, 18, and is further deflected in any direction by the rotation and relative rotation of the disk prisms 17, 18.
  • the deflection and scanning of the distance measuring light is performed by driving the optical axis deflection unit 9 using the optical axis deflection motor driver 8.
  • the measurement direction detection unit 7 also has an angle detector such as an encoder, and detects the rotation angle and rotation direction of the disk prisms 17 and 18 based on a signal from the angle detector, and detects the measurement direction, i.e., the emission direction of the distance measurement light, and these detection results are input to the calculation control unit 4.
  • the calculation control unit 4 is configured to control the rotation angle, rotation direction, rotation speed, rotation ratio, etc. of the disk prisms 17 and 18 via the optical axis deflection motor driver 8 based on the detection results from the measurement direction detection unit 7.
  • the distance measurement optical axis (i.e., distance measurement light) 15 can be deflected to any angle between 0° and a maximum deflection angle (e.g., ⁇ 30°) with respect to the reference optical axis O. Furthermore, the calculation control unit 4 can scan the distance measurement light in any pattern by individually controlling the disk prisms 17 and 18, and can perform distance measurement in any scan pattern.
  • the distance measuring light 21 can be scanned in any direction and with any scan pattern.
  • the relative rotation angle between the disk prisms 17 and 18 is ⁇
  • the deflection by each of the disk prisms 17 and 18 is A and B
  • the actual trajectory 20 is a composite deflection C
  • the magnitude of the deflection angle is determined by the relative rotation angle ⁇ . Therefore, when the disk prisms 17 and 18 are rotated forward and backward synchronously at a constant speed, the distance measurement optical axis 15 (the distance measurement light 21) is scanned linearly back and forth in the direction of the composite deflection C, and the scan pattern becomes a straight line.
  • the linear scan pattern can be rotated, so that the entire range of the deflection range centered on the reference optical axis O can be scanned with a linear scan pattern to obtain point cloud data.
  • the distance measurement optical axis 15 (the distance measurement light 21) is scanned in a circle centered on the reference optical axis O (see FIG. 1).
  • the angle difference ⁇ gradually increases as the distance measuring light 21 rotates. Therefore, the scanning trajectory of the distance measuring light 21 becomes spiral-shaped.
  • various two-dimensional scan patterns can be obtained by scanning the distance measuring light 21 with the reference optical axis O as the center.
  • the distance measuring unit 2 functions as an optical distance meter, emitting distance measuring light 21 along the distance measuring optical axis 15 to the measurement point or object, receiving reflected distance measuring light 22 from the measurement point or object, and performing optical distance measurement based on the round trip time (flight time) of the distance measuring light.
  • the distance measuring result of the distance measuring unit 2 is input to the calculation control unit 4.
  • the calculation control unit 4 can cause the distance measurement light 21 to scan in a two-dimensional pattern by controlling the disk prisms 17, 18 to continuously rotate at a predetermined rotation ratio while continuously irradiating the distance measurement light 21.
  • the distance measurement light 21 can be emitted in pulses and distance measurement can be performed for each pulse of light to obtain point cloud data along a scan trajectory.
  • the movement of the surveying device 1 when the measurement using the surveying device 1 involves movement of the surveying device 1 itself, the movement of the surveying device 1 generates a Coriolis force in the disk prisms 17 and 18, which are continuously rotating.
  • the surveying device 1 is used in an unstable support state, for example, if the surveying device 1 is hand-held or supported on a single leg, or if the surveying device 1 is mounted on a mobile vehicle, aircraft, etc., the generation of Coriolis force will cause instability in the measurements.
  • the calculation control unit 4 controls the optical axis deflection unit 9 to suppress the generation of Coriolis force.
  • the Coriolis force of a rotating body is expressed as the mass of the rotating body x the number of rotations (or mass x angular velocity). Therefore, the calculation control unit 4 controls the rotation of the disk prisms 17 and 18 so that the Coriolis forces generated by the rotation of the disk prisms 17 and 18 are offset.
  • each disk prism 17, 18 are set and rotated in the opposite directions so that the mass x rotation speed (or mass x angular velocity) of the disk prism 17 and the mass x rotation speed (or mass x angular velocity) of the disk prism 18 are approximately equal, i.e., the inertia force ratio is (0.7 to 1.5).
  • the masses of the disk prisms 17 and 18 are preset and input to the calculation control unit 4, and by setting the conditions for acquiring point cloud data (scanning conditions), such as the point cloud density, the calculation control unit 4 calculates the scan pattern and the rotational speeds of the disk prisms 17 and 18 so that the inertia force ratio of the disk prisms 17 and 18 is (0.7 to 1.5), rotates the disk prism 17 at the calculated rotational speed, and rotates the disk prism 18 in the reverse direction at the calculated rotational speed.
  • point cloud data scanning conditions
  • the calculation control unit 4 calculates the scan pattern and the rotational speeds of the disk prisms 17 and 18 so that the inertia force ratio of the disk prisms 17 and 18 is (0.7 to 1.5), rotates the disk prism 17 at the calculated rotational speed, and rotates the disk prism 18 in the reverse direction at the calculated rotational speed.
  • This control makes it possible to cancel out the Coriolis force generated by the rotation of the disk prism 17 and the Coriolis force generated by the rotation of the disk prism 18, and measurement can be performed while suppressing the Coriolis force generated by the rotation of the disk prisms 17 and 18 of the optical axis deflection unit 9.
  • the measurement direction detection unit 7 detects the rotation angle of each of the disk prisms 17 and 18, and detects in real time the measurement direction of the distance measurement optical axis 15 (the emission direction of the distance measurement light), i.e., the deflection angle and deflection direction of the distance measurement optical axis 15 relative to the reference optical axis O. Therefore, the angle and direction of the distance measurement optical axis 15 relative to the reference optical axis O at each measurement point during scanning can be detected (angle measurement) in real time.
  • the measurement direction detection result of the measurement direction detection unit 7 (the angle measurement result relative to the reference optical axis O) is associated with the distance measurement result and input to the calculation control unit 4, and the calculation control unit 4 stores the distance measurement result, the angle measurement result, and the detection result of the attitude detection device 6 in association with each other in the memory unit 5.
  • the measurement direction imaging unit 3 has a known relationship with the reference optical axis O; that is, the imaging optical axis 23 of the measurement direction imaging unit 3 is parallel to the reference optical axis O, and the distance between the optical axes is known.
  • the measurement direction imaging unit 3 is a camera with an angle of view larger than the maximum deflection angle (e.g., ⁇ 30°) of the optical axis deflection unit 9, and acquires image data including the maximum deflection range by the optical axis deflection unit 9.
  • the measurement direction imaging unit 3 is capable of acquiring moving images or continuous images.
  • the image data acquired by the measurement direction imaging unit 3 is input to the calculation control unit 4.
  • the pixels of the measurement direction imaging unit 3 are a CCD or CMOS sensor that is a collection of pixels, and the position of each pixel on the image element can be specified.
  • the pixels have an orthogonal coordinate system with the imaging optical axis 23 as the origin, and the position of each pixel is specified by pixel coordinates in the orthogonal coordinate system.
  • the pixel coordinates are converted into angles in relation to the angle of view (pixel position x angle of view / number of vertical and horizontal pixels corresponding to the angle of view) and correspond to the measurement direction detection result of the measurement direction detection unit 7.
  • One axis of the orthogonal coordinate system (e.g., pixel y-axis) is set to coincide with the vertical when the measurement direction imaging unit 3 is in a horizontal position, and the other orthogonal axis (e.g., pixel x-axis) is set to coincide with the horizontal.
  • the calculation control unit 4 calculates the inclination angle (vertical angle) and horizontal rotation angle of the reference optical axis O and the imaging optical axis 23 relative to the horizontal based on the detection result of the attitude detection device 6. This makes it possible to calculate the three-dimensional coordinates of the horizontal reference of each measurement point of the point cloud data along the scanning trajectory, and to associate the three-dimensional coordinates of the point cloud data with the pixel coordinates.
  • the display unit 10 displays the image acquired by the measurement direction imaging unit 3, the scan trajectory, the measurement state, the measurement results, etc.
  • the display unit 10 may be a touch panel that also serves as an operation unit.
  • Figures 4(A), 4(B), and 4(C) show an image 25 displayed on the display unit 10, which is a composite image of the image acquired by the measurement direction imaging unit 3 and the scan trajectory (scan pattern 26).
  • the pixel x-axis and pixel y-axis of the pixel are displayed as necessary in the image 25, and furthermore the vertical and horizontal lines obtained from the detection results of the orientation detection device 6 are shown.
  • the pixel y-axis is rotated to the left relative to the vertical line, indicating that the image 25 was acquired with the surveying device 1 tilted to the left relative to the vertical (or horizontal).
  • the inclination angle of the surveying device 1 relative to the vertical (or horizontal) is detected by the attitude detection device 6.
  • the orientation (orientation) of the scan pattern 26 shown in FIG. 4(A) matches the pixel x-axis and pixel y-axis of the pixel.
  • the scan pattern 26 rotates to the left relative to the vertical line (or horizontal line).
  • the calculation control unit 4 can rotate the scan pattern and change the direction of the scan pattern 26 by changing the rotation timing (rotation phase) of the disk prisms 17 and 18 via the optical axis deflection motor driver 8.
  • FIG. 4(B) shows the state in which the calculation control unit 4 determines the tilt (rotation) relationship between the pixel y-axis and the vertical line, rotates the scan pattern 26 to the right, and controls the orientation of the scan pattern 26' so that the orientation (posture) of the scan pattern 26 coincides with the vertical line.
  • Figure 4(C) shows a superposition of images 25a, 25b, and 25c acquired in time series while the surveying device 1 was moving, and also shows scan patterns 26a, 26b, and 26c obtained by performing a scan in synchronization with the image acquisition.
  • the detection results of the posture detection device 6 when the images 25a, 25b, and 25c are acquired are obtained in real time, and the direction of the scan pattern 26 executed when the images 25a, 25b, and 25c are acquired is corrected based on the detection results, so that the scan is always performed based on the vertical line, and the scan pattern 26 is acquired in a direction that matches the vertical line.
  • FIG. 5 shows an example of calculating the moving position by mounting the surveying device 1 on a mobile vehicle (not shown).
  • the reference optical axis O of the distance measurement optical axis is directed in the forward direction, and scanning is repeated at a predetermined time interval (Ts), and distance measurement portions 27 that are approximately equidistant in one scan are extracted (scan trajectory portions (equal distance measurement line portions 28) in the scan portion of a vertical wall or the like in the figure where the distance measurement distances are equal).
  • the difference ( ⁇ L) between the previous equal distance measurement line portion 28 and the current equal distance measurement line portion 28' that was repeatedly measured is calculated, and the moving speed ( ⁇ L/Ts) of the surveying device is calculated using this difference ( ⁇ L) and the time interval (Ts).
  • the positional differences between any measurement point in the previous equal distance measurement line section 28 and the measurement point corresponding to the any measurement point in the equal distance measurement line section 28' this time are all approximately the same ⁇ L, and the movement speed ( ⁇ L/Ts) is approximately the same for the measurement points in the equal distance measurement line section 28. Therefore, by calculating ( ⁇ L/Ts) for all measurement points or a predetermined number of measurement points in the equal distance measurement line section 28 and averaging the movement speed, it is possible to improve accuracy and reliability.
  • the moving position can be determined by continually determining the vertical and horizontal angles based on the output of the attitude detection device 6.
  • the correspondence of the scan trajectory accompanying the movement can be obtained by finding the previous scan position and the current scan position based on the detection results of the posture detection device 6, and comparing the previous scan position with the current scan position.
  • the acquired image can be used in combination.
  • the inclination with respect to the horizontal and the horizontal rotation angle are obtained from the detection results of the attitude detection device 6, and the distance is obtained from the distance measurement results of the distance measurement unit 2, but the position information of the surveying device 1 may be obtained by combining the position information from the GNSS and the detection results of the attitude detection device 6, by providing the surveying device 1 with a GNSS.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

測距光(21)を射出し、測定対象からの反射測距光(22)を受光して測距を行う測距部(2)と、該測距部の基準光軸上に設けられ、前記測距光を偏向させる光軸偏向部(9)と、該光軸偏向部を駆動する光軸偏向モータドライバ(8)と、姿勢検出装置(6)と、前記測距光の前記基準光軸に対する射出方向を検出する測定方向検出部(7)と、記憶部(5)と、前記測距部、前記姿勢検出装置、前記光軸偏向部の同期制御を行う演算制御部(4)とを具備し、前記光軸偏向部は、光学プリズムで構成された一対のディスクプリズム(17,18)を具備し、前記演算制御部は、前記光軸偏向モータドライバを介して前記光軸偏向部を駆動し、前記測距光を所定のスキャンパターンで走査させると共に前記ディスクプリズムの一方を他方に対してコリオリ力の発生を抑止する様に逆回転させる様構成された。

Description

測量装置
 本発明は測距光を走査して、点群データを取得する測量装置に関するものである。
 一般に点群データを取得する測量装置(レーザスキャナ)は、測距光を走査する為の連続回転する部分を有し、大型で重量が大きく、その為3脚等剛性を有する支持装置に設置される。
 一方、レーザスキャナの普及に伴い、小型軽量化が図られ、作業者が携帯した状態(ハンドヘルド状態)で点群データを取得可能なレーザスキャナが実用化されている。
 又、点群データを取得するレーザスキャナの1つとして、1対のプリズムを相対回転させ、2つのプリズムの相互偏向作用によって、測距光を走査するものがある。斯かるレーザスキャナは、小型軽量化が可能で、ハンドヘルド状態での測定を可能とする。
 該レーザスキャナでは、測距光の走査をプリズムの連続回転により行っている。プリズムの回転に伴いコリオリ力が発生し、このコリオリ力は、ハンドヘルド等の、不安定な支持では、レーザスキャナの支持姿勢に影響を与える可能性があり、測定の安定に影響を与える可能性がある。
特許第6541365号公報 特開2016-151423号公報 特開2017-90244号公報 特開2017-106813号公報 特開2018-28464号公報
 本発明は、測距光の走査部が回転体を有する測量装置の、走査実行時に発生するコリオリ力の発生を抑止し、測量装置の姿勢を安定させ、測定の安定を図るものである。
 本発明は、測距光を測距光軸上に射出し、測定対象からの反射測距光を受光して測距を行う測距部と、該測距部の基準光軸上に設けられ、前記測距光を前記基準光軸に対して偏向させる光軸偏向部と、該光軸偏向部を駆動する光軸偏向モータドライバと、姿勢検出装置と、前記測距光の前記基準光軸に対する射出方向を検出する測定方向検出部と、記憶部と、前記光軸偏向部を介して測距光軸の偏向を制御し、前記測距部による測距を実行し、前記測距部、前記姿勢検出装置、前記光軸偏向部の同期制御を行う様構成された演算制御部とを具備し、前記光軸偏向部は、光学プリズムで構成された一対のディスクプリズムを具備し、該一対のディスクプリズムの個々の回転、相対回転により前記測距光軸を偏向する様構成され、前記演算制御部は、前記光軸偏向モータドライバを介して前記光軸偏向部を駆動し、前記測距光を所定のスキャンパターンで走査させると共に前記ディスクプリズムの一方を他方に対してコリオリ力の発生を抑止する様に逆回転させる様構成した測量装置に係るものである。
 又本発明は、前記演算制御部が、前記一対のディスクプリズムの一方のディスクプリズムの質量×角速度と他方のディスクプリズムの質量×角速度とが等しく、或は略等しくなる様、前記光軸偏向部の駆動を制御する様構成された測量装置に係るものである。
 又本発明は、前記演算制御部が前記2つのディスクプリズムの質量×回転数の比を0.7~1.5とする様、前記光軸偏向部の駆動を制御する様構成された測量装置に係るものである。
 又本発明は、測量装置の姿勢を検出する姿勢検出装置を更に具備し、前記演算制御部は、前記姿勢検出装置の検出結果、前記測距部の測距結果、前記測定方向検出部の検出結果に基づき水平基準のスキャンパターンで3次元点群データを取得する様構成された測量装置に係るものである。
 更に又本発明は、測量装置の姿勢を検出する姿勢検出装置を更に具備し、前記演算制御部は、前記姿勢検出装置の検出結果、前記測距部の測距結果、前記測定方向検出部の検出結果に基づき測定対象の水平基準の3次元測定データを取得する様構成された測量装置に係るものである。
 本発明によれば、測距光を測距光軸上に射出し、測定対象からの反射測距光を受光して測距を行う測距部と、該測距部の基準光軸上に設けられ、前記測距光を前記基準光軸に対して偏向させる光軸偏向部と、該光軸偏向部を駆動する光軸偏向モータドライバと、姿勢検出装置と、前記測距光の前記基準光軸に対する射出方向を検出する測定方向検出部と、記憶部と、前記光軸偏向部を介して測距光軸の偏向を制御し、前記測距部による測距を実行し、前記測距部、前記姿勢検出装置、前記光軸偏向部の同期制御を行う様構成された演算制御部とを具備し、前記光軸偏向部は、光学プリズムで構成された一対のディスクプリズムを具備し、該一対のディスクプリズムの個々の回転、相対回転により前記測距光軸を偏向する様構成され、前記演算制御部は、前記光軸偏向モータドライバを介して前記光軸偏向部を駆動し、前記測距光を所定のスキャンパターンで走査させると共に前記ディスクプリズムの一方を他方に対してコリオリ力の発生を抑止する様に逆回転させる様構成したので、コリオリ力の発生が抑止され、測量装置の姿勢を安定させ、測定の安定が図れる。
図1は本発明の実施例に係る測量装置の概略構成図である。 図2(A)、図2(B)は該測量装置に於ける光軸偏向部の作用と、スキャンパターンの関係を示す説明図である。 図3は該測量装置に於けるスキャンパターンの一例を示す説明図である。 図4(A)は測定方向の画像に対するスキャンパターンと水平との関係を示す図、図4(B)はスキャンパターンを水平基準に修正した状態を示す図、図4(C)は測量装置が移動した場合の、測定方向の画像、スキャンパターンを時系列に示す図である。 図5(A)は測定対象をスキャンした場合に測距値が同じになる部分を示す図、図5(B)は測距値が同じになる部分を抽出した図、及び測量装置が移動した場合の前回のスキャンと今回のスキャンの関係を示す図である。
 以下、図面を参照しつつ本発明の実施例を説明する。
 図1は、本実施例が適用される測量装置1を示しており、該測量装置1は、レーザスキャナとしての機能を有している。
 該測量装置1は携帯可能となっており、手持ち(ハンドヘルド)で支持され、或は1脚で支持することができる。又、移動車、飛行体等へ搭載することも可能である。
 前記測量装置1は、主に、測距部2、測定方向撮像部3、演算制御部4、記憶部5、姿勢検出装置6、測定方向検出部7、光軸偏向モータドライバ8、光軸偏向部9、表示部10、を具備している。これらは筐体12に収納され、一体化されている。
 前記測距部2は、測距光軸15上に測距光21を射出し、測定対象からの反射光を受光し、測距光21の往復時間に基づき測距を行う。前記測定方向撮像部3は測距光21の射出方向(測定方向)の画像を取得する。
 前記演算制御部4としては本実施例に特化されたCPU、或は汎用性CPU、埋込みCPU等が用いられ、前記演算制御部4には時刻計測手段が内蔵されている。又、前記記憶部5としては半導体メモリ等が用いられる。
 前記演算制御部4は、前記光軸偏向モータドライバ8を介して前記光軸偏向部9を制御する。又、前記演算制御部4は、前記光軸偏向部9を介して測距光軸15の偏向を制御し、前記測距部2による測距を実行し、更に、前記測距部2、前記測定方向撮像部3、前記姿勢検出装置6、前記光軸偏向部9等の同期制御等を行う。
 前記記憶部5には、本実施例を実行する為のプログラム、例えば測距プログラム、画像処理プログラム、光軸偏向制御プログラム、コリオリ力を軽減する為の前記光軸偏向部9の駆動条件を演算する演算プログラム、前記光軸偏向モータドライバ8を制御する為のプログラム、データ処理のプログラム等の種々のプログラムが格納されている。前記演算制御部4は、格納された前記プログラムを展開し、実行する。又、前記記憶部5には、測定データ、画像データ等の種々のデータが格納される。
 前記姿勢検出装置6は、前記測量装置1の姿勢、即ち該測量装置1の水平又は鉛直に対する傾斜角、傾斜方向、水平回転角、或は基準光軸O(後述)の水平又は鉛直に対する傾斜角、傾斜方向、水平回転角をリアルタイムで検出し、検出結果は前記演算制御部4に出力する。
 ここで、前記姿勢検出装置6としては、特許文献1に開示された姿勢検出装置を用いることができる。或は、加速度センサ、ジャイロセンサによって構成される慣性センサを用いることもできる。
 前記測距光軸15上に前記光軸偏向部9が配設される。該光軸偏向部9の中心を透過する真直な光軸は基準光軸Oとなっている。該基準光軸Oは、前記光軸偏向部9によって偏向されなかった時の前記測距光軸15と合致し、前記筐体12に対して所定の関係となっている。
 尚、前記光軸偏向部9としては、特許文献2、特許文献3、特許文献4に開示されたものを使用することができる。
 該光軸偏向部9は、光学プリズムで構成された一対のディスクプリズム17,18を具備する。該ディスクプリズム17,18は、それぞれ用途に見合った質量と径の円板形(或は円に外接する多角形)であり、前記測距光軸15上に該測距光軸15と直交して同心に配置され、所定間隔で平行に配置されている。
 前記ディスクプリズム17,18はそれぞれ前記基準光軸Oを中心に回転可能(同軸で回転可能)に設けられており、各ディスクプリズム17,18はそれぞれモータによって個別に且つ独立して回転される様構成され、モータは前記光軸偏向モータドライバ8によって駆動される。
 前記光軸偏向部9を透過する測距光21、即ち前記ディスクプリズム17,18を透過する測距光21は、該ディスクプリズム17,18の光学作用によって偏向され、更に該ディスクプリズム17,18の回転及び相対回転によって任意の方向に偏向される。
 測距光の偏向、走査は、該光軸偏向モータドライバ8による前記光軸偏向部9の駆動によって行われる。
 又、前記測定方向検出部7は、エンコーダ等の角度検出器を有し、該角度検出器からの信号に基づき前記ディスクプリズム17,18の回転角、回転方向を検出し、測定方向、即ち測距光の射出方向を検出し、これらの検出結果は前記演算制御部4に入力される。該演算制御部4は、前記測定方向検出部7からの検出結果に基づき前記光軸偏向モータドライバ8を介して前記ディスクプリズム17,18の回転角、回転方向、回転速度、回転比等を制御する様構成されている。
 前記ディスクプリズム17,18の回転を制御することで、前記基準光軸Oを基準として0°から最大偏角(例えば±30°)迄の任意の角度に前記測距光軸(即ち測距光)15を偏向することができる。更に、前記演算制御部4は、前記ディスクプリズム17,18の個別制御によって、測距光を任意のパターンでスキャン(走査)させることができ、任意のスキャンパターンで測距を実行することができる。
 更に、前記測距光21を照射しつつ、前記ディスクプリズム17,18の相対回転、一体回転を実行することで任意の方向及び任意のスキャンパターンで前記測距光21をスキャンさせることができる。
 例えば、図2(A)に示される様に、前記ディスクプリズム17,18間の相対回転角をθとし、個々の前記ディスクプリズム17,18による偏向A、偏向Bとすると、実際の軌跡20は合成偏向Cとなり、更に偏向角の大きさは前記相対回転角θによって決定される。従って、前記ディスクプリズム17,18を等速で正逆同期回転させると、前記測距光軸15(前記測距光21)は前記合成偏向Cの方向で直線的に往復スキャンされ、スキャンパターンは直線となる。更に、前記光軸偏向モータドライバ8を介し前記ディスクプリズム17,18の回転タイミング(回転位相)を変えることで、直線のスキャンパターンを回転することができるので、基準光軸Oを中心とする偏向範囲の全範囲を直線のスキャンパターンにより走査し、点群データを取得することができる。
 又、前記ディスクプリズム17と前記ディスクプリズム18との位置関係を固定した状態で(前記ディスクプリズム17と前記ディスクプリズム18とで得られる偏角を固定した状態で)、前記光軸偏向モータドライバ8により、前記ディスクプリズム17と前記ディスクプリズム18とを一体に回転すると、前記測距光軸15(前記測距光21)は前記基準光軸O(図1参照)を中心とした円でスキャンされる。
 更に、図2(B)に示される様に、前記ディスクプリズム17の回転速度に対して遅い回転速度で前記ディスクプリズム18を回転させれば、角度差θは漸次増大しつつ前記測距光21が回転される。従って、該測距光21のスキャン軌跡はスパイラル状となる。
 又、前記ディスクプリズム17、前記ディスクプリズム18の回転方向、回転速度、回転速度比SRをそれぞれ制御することで、前記測距光21のスキャン軌跡を前記基準光軸Oを中心とした種々の2次元のスキャンパターンが得られる。
 更に、前記ディスクプリズム17と前記ディスクプリズム18の、一方の前記ディスクプリズム17を25回転、他方の前記ディスクプリズム18を逆方向に5回転することで(回転比5/25)、図3に示される様な、花びら状の2次元の閉ループスキャンパターン24(内トロコイド曲線)が得られる。
 更に、前記ディスクプリズム17と前記ディスクプリズム18とを逆方向に回転し、回転比を略等しくすることで、図4に示される様な2次元の閉ループのスキャンパターン24が得られる。
 前記測距部2は、光波距離計としての機能を有し、測距光21を前記測距光軸15に沿って、測定点、或は測定対象に射出し、測定点、或は測定対象からの反射測距光22を受光し、測距光の往復時間(飛行時間)に基づき光波距離測定を実行する。前記測距部2の測距結果は前記演算制御部4に入力される。
 前記演算制御部4は、前記測距光21を連続して照射しつつ、前記ディスクプリズム17,18を所定の回転比で連続回転する様制御することで、前記測距光21を2次元のパターンでスキャンさせることができる。又、測距光21をパルス発光させ、パルス光毎の測距を行うことでスキャン軌跡に沿った点群データを取得することができる。
 ここで、前記測量装置1による測定に於いて、該測量装置1自体の動きを伴う場合、該測量装置1の動きが連続回転する前記ディスクプリズム17,18にコリオリ力を生じさせる。
 この為、前記測量装置1が不安定な支持状態で使用されていた場合、例えば、該測量装置1が手持ちであったり、或は1脚に支持されていた場合、或は測量装置1が移動車、飛行体等へ搭載された場合等では、コリオリ力の発生により、測定に不安定性をもたらす。
 この為、本実施例では、コリオリ力の発生を抑止する様、前記演算制御部4により前記光軸偏向部9を制御する。
 一般に、回転体のコリオリ力は、回転体の質量×回転数(或は質量×角速度)で表される。従って、前記演算制御部4は前記ディスクプリズム17及び前記ディスクプリズム18の回転によって発生するコリオリ力が相殺される様に前記ディスクプリズム17,18の回転を制御する。
 前記ディスクプリズム17の質量×回転数(或は質量×角速度)と前記ディスクプリズム18の質量×回転数(或は質量×角速度)とが略等しく、即ち慣性力比が(0.7~1.5)となる様、各ディスクプリズム17,18の質量及び回転数を設定して逆回転させる。
 前記演算制御部4には、前記ディスクプリズム17,18の質量が予め設定入力されており、点群データを取得する条件(スキャン条件)、例えば点群密度等を設定することで、前記演算制御部4は、前記ディスクプリズム17,18の前記慣性力比が(0.7~1.5)となる様に、スキャンパターン、前記ディスクプリズム17,18の回転速度を演算し、演算された回転速度で前記ディスクプリズム17を回転し、演算された回転速度で前記ディスクプリズム18を逆回転させる。
 この制御で、前記ディスクプリズム17の回転によって発生するコリオリ力と前記ディスクプリズム18の回転によって発生するコリオリ力とを相殺することができ、前記光軸偏向部9の前記ディスクプリズム17,18の回転によって発生するコリオリ力を抑止した状態で、測定を実行できる。
 前記測定方向検出部7は、前記ディスクプリズム17,18のそれぞれの回転角を検出し、前記測距光軸15の測定方向(測距光の射出方向)、即ち前記基準光軸Oに対する前記測距光軸15の偏向角、偏向方向をリアルタイムで検出する。従って、スキャン時の各測定点の前記基準光軸Oに対する前記測距光軸15の角度、方向がリアルタイムで検出(測角)できる。
 前記測定方向検出部7の測定方向検出結果(前記基準光軸Oに対する測角結果)は、測距結果に関連付けられて前記演算制御部4に入力され、該演算制御部4は測距結果、測角結果、前記姿勢検出装置6の検出結果とを関連付けて前記記憶部5に格納する。
 前記測定方向撮像部3は前記基準光軸Oと既知の関係であり、即ち、前記測定方向撮像部3の撮像光軸23は前記基準光軸Oと平行で光軸間の距離が既知となっている。又、前記測定方向撮像部3は、前記光軸偏向部9の最大偏角(例えば±30°)よりも大きい画角を有するカメラであり、前記光軸偏向部9による最大偏向範囲を含む画像データを取得する。又、前記測定方向撮像部3は、動画像、又は連続画像が取得可能である。該測定方向撮像部3により取得された画像データは前記演算制御部4に入力される。
 前記測定方向撮像部3の画素は、画素の集合体であるCCD、或はCMOSセンサであり、各画素は画像素子上での位置が特定できる様になっている。例えば、前記画素は前記撮像光軸23を原点とした直交座標系を有し、前記各画素は該直交座標系での画素座標で位置が特定される。又、画素座標は前記画角との関係で角度換算(画素位置×画角/画角対応の縦及び横画素数)され、前記測定方向検出部7の測定方向検出結果と対応付けられる。尚、前記直交座標系の1軸(例えば、画素y軸)は、前記測定方向撮像部3が水平姿勢の状態で鉛直と合致し、直交する他の軸(例えば、画素x軸)は水平と合致する様に設定されている。
 前記演算制御部4は前記姿勢検出装置6の検出結果に基づき、前記基準光軸O及び前記撮像光軸23の水平に対する倒れ角(鉛直角)と水平回転角を求める。これにより、前記スキャン軌跡に沿った前記点群データの各測定点の水平基準の三次元座標も求めることができ、該点群データの三次元座標と前記画素座標との関連付けもできる。
 従って、前記測量装置1が、不安定な支持状態(例えば、手持ち支持状態)で使用されていた場合でも、コリオリ力の発生が抑止され、前記測量装置1が水平に支持されていなくても(整準されて無くとも)、安定した測定状態で、水平基準の3次元測定データを取得することができる。
 前記表示部10は、前記測定方向撮像部3により取得した画像や前記スキャン軌跡、測定状態、測定結果等を表示する。尚、前記表示部10をタッチパネルとして操作部と兼用してもよい。
 図4(A)、図4(B)、図4(C)は前記表示部10に表示される画像25を示し、該画像25は前記測定方向撮像部3で取得された画像と、スキャン軌跡(スキャンパターン26)との合成画像となっている。前記画像25中には画素の画素x軸、画素y軸が必要に応じ表示され、更に前記姿勢検出装置6の検出結果から得られる鉛直線及び水平線が示されている。
 図4(A)に於いて、画素y軸は鉛直線に対して左に回転しており、前記測量装置1が鉛直(或は水平)に対して、左に傾いた状態で、前記画像25が取得されたことを示している。
 前記測量装置1の鉛直(或は水平)に対する傾斜角は、前記姿勢検出装置6によって検出される。
 図4(A)中で示される前記スキャンパターン26の姿勢(向き)は、画素の画素x軸、画素y軸と合致している。
 従って、前記スキャンパターン26は前記鉛直線(又は水平線)に対して、左に回転している。
 前記演算制御部4は、前記光軸偏向モータドライバ8を介し前記ディスクプリズム17,18の回転タイミング(回転位相)を変えることで、スキャンパターンを回転させ、スキャンパターン26の向きを変更できる。
 図4(B)は演算制御部4で前記画素y軸と鉛直線の傾き(回転)関係を求め、前記スキャンパターン26を右方向に回転させ、スキャンパターン26の向き(姿勢を)鉛直線と一致する様に、スキャンパターン26′の向きを制御した状態を示している。
 図4(C)は前記測量装置1の移動中、時系列で取得した画像25a,25b,25cを重合させたものであり、又画像取得と同期してスキャンを実行して得られたスキャンパターン26a,26b,26cを示している。
 前記画像25a,25b,25cの取得時の前記姿勢検出装置6の検出結果をリアルタイムで取得し、前記画像25a,25b,25cの取得時に実行されたスキャンパターン26の向きを前記検出結果に基づき修正することで、常に鉛直線を基準としたスキャンを実行し、鉛直線と合致する方向の前記スキャンパターン26を取得したことを示している。
 図5は前記測量装置1を移動車(図示せず)に搭載して移動位置を算出する例を示す。
 図5(A)に示す様に前進方向に前記測距光軸の基準光軸Oを向けてスキャンを所定の時間間隔(Ts)で繰返し、1回のスキャンに於いて略等距離となる測距部分27(図中の鉛直壁等のスキャン部で、測距距離が等しくなるスキャン軌跡部分(等測距線部28))を抽出する。
 次に、図5(B)に示す様に該測距部分27に関し、繰返し測距した前回の等測距線部28と今回の等測距線部28′との差(ΔL)を算出し、該差(ΔL)と前記時間間隔(Ts)とで前記測量装置の移動速度(ΔL/Ts)を求める。
 前回の前記等測距線部28中の任意の測定点と今回の前記等測距線部28′中の前記任意の測定点に対応する測定点(即ち、前記等測距線部28、前記等測距線部28′に於いて、それぞれ前記測定方向検出部7によって検出される偏向方向が同一な点)との間の位置に関する差は全て略同一のΔLであり、前記等測距線部28中の測定点に関し、移動速度(ΔL/Ts)が略同じとなる。従って、前記等測距線部28中の全ての測定点、或は所定数の測定点について(ΔL/Ts)を求め、移動速度を平均化することで精度と信頼性の向上が図れる。
 又、姿勢検出装置6の出力に基づき鉛直角と水平角を随時求めることで、移動位置を求めることができる。
 尚、移動に伴うスキャン軌跡の対応関係は、前回のスキャン位置と今回のスキャン位置とをそれぞれ前記姿勢検出装置6の検出結果に基づき求め、前回のスキャン位置と今回のスキャン位置とを対比させることで得られる。尚、移動に伴うスキャン軌跡の対応関係を求める場合、前記取得画像を併用してもよい。
 以上説明した測量装置1の実施例では水平に対する傾きと、水平回転角は姿勢検出装置6の検出結果から取得し、距離は測距部2の測距結果から取得しているが、前記測量装置1の位置情報については該測量装置1にGNSSを設け、該GNSSからの位置情報と姿勢検出装置6の検出結果とを組合わせてもよい。
    1       測量装置
    2       測距部
    3       測定方向撮像部
    4       演算制御部
    5       記憶部
    6       姿勢検出装置
    7       測定方向検出部
    8       光軸偏向モータドライバ
    9       光軸偏向部
    10      表示部
    15      測距光軸
    17      ディスクプリズム
    18      ディスクプリズム

Claims (5)

  1.  測距光を測距光軸上に射出し、測定対象からの反射測距光を受光して測距を行う測距部と、該測距部の基準光軸上に設けられ、前記測距光を前記基準光軸に対して偏向させる光軸偏向部と、該光軸偏向部を駆動する光軸偏向モータドライバと、姿勢検出装置と、前記測距光の前記基準光軸に対する射出方向を検出する測定方向検出部と、記憶部と、前記光軸偏向部を介して測距光軸の偏向を制御し、前記測距部による測距を実行し、前記測距部、前記姿勢検出装置、前記光軸偏向部の同期制御を行う様構成された演算制御部とを具備し、前記光軸偏向部は、光学プリズムで構成された一対のディスクプリズムを具備し、該一対のディスクプリズムの個々の回転、相対回転により前記測距光軸を偏向する様構成され、前記演算制御部は、前記光軸偏向モータドライバを介して前記光軸偏向部を駆動し、前記測距光を所定のスキャンパターンで走査させると共に前記ディスクプリズムの一方を他方に対してコリオリ力の発生を抑止する様に逆回転させる様構成した測量装置。
  2.  前記演算制御部は、前記一対のディスクプリズムの一方のディスクプリズムの質量×角速度と他方のディスクプリズムの質量×角速度とが等しく、或は略等しくなる様、前記光軸偏向部の駆動を制御する様構成された請求項1の測量装置。
  3.  前記2つのディスクプリズムの質量×回転数の比を0.7~1.5とする様、前記光軸偏向部の駆動を制御する様構成された請求項1の測量装置。
  4.  測量装置の姿勢を検出する姿勢検出装置を更に具備し、前記演算制御部は、前記姿勢検出装置の検出結果、前記測距部の測距結果、前記測定方向検出部の検出結果に基づき水平基準のスキャンパターンで3次元点群データを取得する様構成された請求項1~請求項3のうちいずれか1項の測量装置。
  5.  測量装置の姿勢を検出する姿勢検出装置を更に具備し、前記演算制御部は、前記姿勢検出装置の検出結果、前記測距部の測距結果、前記測定方向検出部の検出結果に基づき測定対象の水平基準の3次元測定データを取得する様構成された請求項1~請求項3のうちいずれか1項の測量装置。
PCT/JP2023/034634 2022-09-29 2023-09-25 測量装置 WO2024071002A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022156076A JP2024049688A (ja) 2022-09-29 2022-09-29 測量装置
JP2022-156076 2022-09-29

Publications (1)

Publication Number Publication Date
WO2024071002A1 true WO2024071002A1 (ja) 2024-04-04

Family

ID=90477797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/034634 WO2024071002A1 (ja) 2022-09-29 2023-09-25 測量装置

Country Status (2)

Country Link
JP (1) JP2024049688A (ja)
WO (1) WO2024071002A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019007909A (ja) * 2017-06-28 2019-01-17 株式会社トプコン 偏向装置及び測量機
JP2020201112A (ja) * 2019-06-10 2020-12-17 株式会社トプコン 測量装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019007909A (ja) * 2017-06-28 2019-01-17 株式会社トプコン 偏向装置及び測量機
JP2020201112A (ja) * 2019-06-10 2020-12-17 株式会社トプコン 測量装置

Also Published As

Publication number Publication date
JP2024049688A (ja) 2024-04-10

Similar Documents

Publication Publication Date Title
JP5145013B2 (ja) 測量機
US10048063B2 (en) Measuring instrument and surveying system
KR101026611B1 (ko) 긴 물체의 방향변수를 결정하는 장치 및 방법
JP6577295B2 (ja) 測定装置
EP2869024A1 (en) Three-dimensional measuring method and surveying system
JP6823482B2 (ja) 三次元位置計測システム,三次元位置計測方法,および計測モジュール
JP2019203822A (ja) 測量装置
JP2019109154A (ja) 測量装置
JP7191643B2 (ja) 測量装置
US20230175844A1 (en) Inclination sensor and data acquisition device
JP2017044549A (ja) 測定装置
US11421989B2 (en) Surveying instrument
EP3742115B1 (en) Surveying instrument
US10809379B2 (en) Three-dimensional position measuring system, three-dimensional position measuring method, and measuring module
US11940274B2 (en) Tilt detecting device and surveying instrument
JP2020201111A (ja) 測量装置
WO2024071002A1 (ja) 測量装置
JP7311342B2 (ja) 3次元測量装置、3次元測量方法および3次元測量プログラム
US20220317149A1 (en) Reversing actuation type inertia detecting device and surveying instrument
JP2020094846A (ja) 測量装置及び写真測量方法
JP7287820B2 (ja) 測量装置
WO2024071000A1 (ja) 回転作動型慣性検出装置及び測量装置
US12123543B2 (en) Inclination sensor and data acquisition device
JP2023048409A (ja) 測量システム
JP2022054848A (ja) 追尾方法及びレーザスキャナ及び追尾プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23872227

Country of ref document: EP

Kind code of ref document: A1