JP7362445B2 - コーティング用組成物 - Google Patents

コーティング用組成物 Download PDF

Info

Publication number
JP7362445B2
JP7362445B2 JP2019210605A JP2019210605A JP7362445B2 JP 7362445 B2 JP7362445 B2 JP 7362445B2 JP 2019210605 A JP2019210605 A JP 2019210605A JP 2019210605 A JP2019210605 A JP 2019210605A JP 7362445 B2 JP7362445 B2 JP 7362445B2
Authority
JP
Japan
Prior art keywords
group
meth
polymer
acrylate
vinyl ether
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019210605A
Other languages
English (en)
Other versions
JP2021038369A (ja
Inventor
宗弘 長谷川
秀明 安藤
裕樹 福留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Publication of JP2021038369A publication Critical patent/JP2021038369A/ja
Application granted granted Critical
Publication of JP7362445B2 publication Critical patent/JP7362445B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Paints Or Removers (AREA)

Description

本発明は、コーティング用組成物に関する。より詳しくは、硬化性に優れたコーティング用組成物に関する。
ガラス、金属、プラスチック等の基材の表面を保護・塗装するために、一般に種々のコーティングを施すことがある。モノマー等を塗布したのちに熱や活性エネルギー線の照射によって硬化させる方法が良く用いられる。主に(メタ)アクリレート樹脂やエポキシ樹脂等を用い、熱及び/又は光を与えて硬化する。
近年、省エネルギー化の観点から、より低温・低照射量の硬化プロセスでも充分に硬化するコーティング材料が求められている。そのための硬化方法として、反応性の高い官能基を利用することが考えられる。その一例として、イソシアネートが挙げられる。イソシアネートを利用した実施形態としては、例えば、ヒドロキシル基含有モノマー・樹脂をイソシアネートで架橋する方法等が挙げられるが、イソシアネートの不安定性、毒性・刺激性等が懸念されている。
ビニルエーテル基もまた、反応性の高い官能基として知られている。ビニロキシ基を分子内に含有する分子として、ビニルエーテル基含有(メタ)アクリル酸エステル類が挙げられる。これは、ラジカル重合性基とイオン重合性基を分子内に併せ持つ異種重合性モノマーであり、(メタ)アクリロイル基のみを選択的に重合することで、ビニルエーテル基を側鎖に含有するアクリル樹脂として使用することができる。
例えば、特許文献1には、カチオン重合性化合物と、ビニルエーテル基等のカチオン重合性官能基を有するアクリル樹脂と、光カチオン重合開始剤をそれぞれ所定範囲量で含むことにより、充分な光硬化性を有し、難接着であるポリカーボネート、PETを代表とする硬質プラスチックに対し十分な接着性を有する光硬化型樹脂組成物が記載されている。
特開2006-57078号公報
上記特許文献1においては、エポキシ、オキセタン樹脂がプラスチックへの密着性に劣ることから、その改善のためにアクリル樹脂を添加していると述べられている。アクリル樹脂中のビニルエーテル基は、アクリル樹脂とエポキシ、オキセタン樹脂との間を架橋する効果を果たしていると考えられる。しかしながら、上記特許文献1においては、ビニルエーテル基を含有するアクリル樹脂をラジカル共重合によって合成している。一般にビニルエーテル基のラジカル重合性は弱いが、それでも徐々に重合するために、重合の進行とともにビニルエーテル基が消費されてしまうという問題がある。またビニルエーテル基含有モノマーの当量を増やすと鎖間での架橋が進行し、不溶性のゲルを生じる。以上より、従来の樹脂組成物のうち密着性改善のためのアクリル樹脂中では、有効なビニルエーテル基の密度が低く架橋が不十分であり、樹脂の組成によっては、硬化性が未だ不十分であるといった問題があった。このようにコーティング用組成物の硬化性においては未だ改善の余地があった。
本発明は、上記現状に鑑みてなされたものであり、グループトランスファー重合等によって合成される、十分な量のビニルエーテル基を含有する樹脂を利用し、低温及び/又は低照射量にて充分な硬化性を示すコーティング用組成物を提供することを目的とする。
本発明者は、コーティング用組成物について種々検討したところ、特定の構造単位を有する重合体と、重合性化合物及び/又は硬化触媒とを含み、上記重合体が特定範囲の分子量分布を有することにより、硬化性に優れたコーティング用組成物が得られることを見いだし、本発明を完成するに至った。
すなわち、本発明は、下記一般式(1)で表される構造単位を有する重合体(A)と、重合性化合物(B)及び/又は硬化触媒(C)とを含むコーティング用組成物であって、上記重合体(A)は、分子量分布(重量平均分子量/数平均分子量)が1.0~4.0であり、上記重合性化合物(B)は、ビニルエーテル基と反応し得る官能基を有することを特徴とするコーティング用組成物である。
Figure 0007362445000001
(式中、Rは、水素原子又はメチル基を表す。R及びRは、同一又は異なって、水素原子又は有機基を表す。Rは、水素原子又は有機基を表す。nは、1以上の整数を表す。)
本発明はまた、重合体(A)と、重合性化合物(B)及び/又は硬化触媒(C)とを含むコーティング用組成物であって、上記重合体(A)は、下記一般式(2)で表されるビニルエーテル基含有(メタ)アクリル酸エステル類を含む単量体成分のグループトランスファー重合物であり、上記重合性化合物(B)は、ビニルエーテル基と反応し得る官能基を有することを特徴とするコーティング用組成物でもある。
Figure 0007362445000002
(式中、Rは、水素原子又はメチル基を表す。R及びRは、同一又は異なって、水素原子又は有機基を表す。Rは、水素原子又は有機基を表す。nは、1以上の整数を表す。)
上述のコーティング用組成物において、上記重合性化合物(B)は、ビニルエーテル化合物、環状エーテル化合物、(メタ)アクリル酸エステル、カルボン酸化合物、及び、チオールからなる群より選択される少なくとも一種であることが好ましい。
上述のコーティング用組成物において、上記硬化触媒(C)は、カチオン硬化触媒、及び、ラジカル硬化触媒からなる群より選択される少なくとも一種であることが好ましい。
本発明のコーティング用組成物は、上述の構成からなるため、低温や低照射量の条件下でも優れた硬化性を有する。本発明のコーティング用組成物は、車両用塗料、建材塗料、家電製品表面部材、光学機器表面部材等の用途に好適に使用される。
GPC法により得られる微分分子量分布曲線の概略図である。
以下に本発明を詳述する。
なお、以下において記載する本発明の個々の好ましい形態を2つ以上組み合わせたものもまた、本発明の好ましい形態である。
また、本明細書において、「(メタ)アクリル酸」は、「アクリル酸及び/又はメタクリル酸」を意味し、「(メタ)アクリレート」は、「アクリレート及び/又はメタクリレート」を意味する。
コーティング用組成物
本発明のコーティング用組成物は、下記一般式(1)で表される構造単位を有する重合体(A)と、重合性化合物(B)及び/又は硬化触媒(C)とを含み、上記重合体(A)は、分子量分布(重量平均分子量/数平均分子量)が1.0~4.0であり、上記重合性化合物(B)は、ビニルエーテル基と反応し得る官能基を有することを特徴とする。
Figure 0007362445000003
(式中、Rは、水素原子又はメチル基を表す。R及びRは、同一又は異なって、水素原子又は有機基を表す。Rは、水素原子又は有機基を表す。nは、1以上の整数を表す。)
本発明のコーティング用組成物が、低温及び/又は低照射量の条件下でも硬化性に優れるのは、架橋点であるビニルエーテル基の反応性が高く、該条件下でも充分な架橋構造が形成されるためと推測される。
以下に、本発明のコーティング用組成物に含まれる各成分について説明する。
<重合体(A)>
本発明において使用する重合体(A)は、上記一般式(1)で表される構造単位(以下、「構造単位(a1)」とも称する。)を有し、分子量分布(重量平均分子量/数平均分子量)が1.0~4.0である。
上記一般式(1)において、Rは、水素原子又はメチル基を表す。
上記一般式(1)において、R及びRは、同一又は異なって、水素原子又は有機基を表す。
又はRで表される有機基としては、例えば、炭素数1~20の鎖状又は環状の1価の炭化水素基、及び、上記炭化水素基を構成する原子の少なくとも一部を、ハロゲン原子、酸素原子、窒素原子又は硫黄原子に置換したもの等が挙げられる。
上記鎖状の炭化水素基としては、直鎖状又は分岐状の脂肪族炭化水素基が挙げられる。
上記脂肪族炭化水素基としては、アルキル基等の飽和炭化水素基、アルケニル基等の不飽和炭化水素基が挙げられ、好ましくは飽和炭化水素基が挙げられる。
上記脂肪族炭化水素基の具体例としては、例えば、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、tert-ブチル基、sec-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、ヘキシル基、2-メチルペンチル基、3-メチルペンチル基、2,2-ジメチルブチル基、2,3-ジメチルブチル基、ヘプチル基、2-メチルヘキシル基、3-メチルヘキシル基、2,2-ジメチルペンチル基、2,3-ジメチルペンチル基、2,4-ジメチルペンチル基、3-エチルペンチル基、2,2,3-トリメチルブチル基、オクチル基、メチルヘプチル基、ジメチルヘキシル基、2-エチルヘキシル基、3-エチルヘキシル基、トリメチルペンチル基、3-エチル-2-メチルペンチル基、2-エチル-3-メチルペンチル基、2,2,3,3-テトラメチルブチル基、ノニル基、メチルオクチル基、3,7-ジメチルオクチル基、ジメチルヘプチル基、3-エチルヘプチル基、4-エチルヘプチル基、トリメチルヘキシル基、3,3-ジエチルペンチル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、エイコシル基等のアルキル基;ビニル基、n-プロペニル基、イソプロペニル基、1-ブテニル基、2-ブテニル基、1-ペンテニル基、2-ペンテニル基、2-メチル-1-ブテニル基、2-メチル-2-ブテニル基、3-メチル-1-ブテニル基、1-ヘキセニル基、2-ヘキセニル基、1-ヘプテニル基、2-ヘプテニル基、1-オクテニル基又2-オクテニル基等のアルケニル基;等が挙げられる。
上記環状の炭化水素基としては、脂環式炭化水素基、芳香族炭化水素基が挙げられる。
上記脂環式炭化水素基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロドデシル基等のシクロアルキル基が挙げられる。
上記芳香族炭化水素基としては、例えば、フェニル基、ナフチル基、ビフェニレル基、メトキシフェニル基、トリクロロフェニル基、エチルフェニル基、トリル基、キシリル基、ベンジル基等の芳香族炭化水素基が挙げられる。
上記ハロゲン原子としては、塩素、臭素、又はフッ素が好ましく、フッ素がより好ましい。
なかでも、上記有機基としては、炭素数1~10のアルキル基、炭素数3~10のシクロアルキル基、炭素数1~5のハロゲン化アルキル基、炭素数6~12の芳香族炭化水素基が好ましく、炭素数1~6のアルキル基、炭素数1~5のハロゲン化アルキル基、又は炭素数6~11の芳香族炭化水素基がより好ましく、炭素数1~2のアルキル基、炭素数1~2のハロゲン化アルキル基、炭素数6~8の芳香族炭化水素基が更に好ましい。
上記一般式(1)において、Rは、水素原子又は有機基を表す。
で表される有機基としては、例えば、上述したR及びRで表される有機基と同じものを挙げることができる。なかでも、Rは、炭素数1~11の鎖状又は環状の炭化水素基であることが好ましく、炭素数1~10のアルキル基、炭素数3~10のシクロアルキル基、炭素数6~11の芳香族炭化水素基であることがより好ましく、炭素数1~3のアルキル基であることが更に好ましい。
nは、1以上の整数である。
上記構造単位(a1)を有する重合体は、例えば、下記一般式(2)で表されるビニルエーテル基含有(メタ)アクリル酸エステル類を含む単量体成分を重合することにより得られる。
Figure 0007362445000004
上記一般式(2)中、R、R、R及びRは、上記一般式(1)中のR、R、R及びRとそれぞれ同じである。nは、1以上の整数を表す。
上記一般式(2)で表されるビニルエーテル基含有(メタ)アクリル酸エステル類としては、具体的には、例えば、(メタ)アクリル酸2-(2-ビニロキシエトキシ)エチル、(メタ)アクリル酸2-ビニロキシエチル等を好ましく挙げることができる。
上記重合体(A)は、上記構造単位(a1)を1種のみ有していてもよいし、2種以上有していてもよい。
上記重合体(A)における上記構造単位(a1)の含有割合は、全構造単位100モル%に対して10~100モル%であることが好ましい。上記構造単位(a1)の含有割合は、硬化体として充分な強度を発現しうる程度に架橋密度を高めることができる点で、20モル%以上であることがより好ましく、30モル%以上であることが更に好ましい。
なお、上記構造単位(a1)として2種以上含む場合は、上記含有割合は、その2種以上の合計含有割合である。
上記重合体(A)は、更に、他の構造単位(a2)を有していてもよい。上記他の構造単位(a2)としては、上記ビニルエーテル基含有(メタ)アクリル酸エステル類以外の他の重合性単量体由来の構造単位が挙げられる。
上記他の重合性単量体としては、例えば、電子不足二重結合を有する重合性単量体が挙げられ、これらは製造する重合体の目的、用途に応じて適宜選択することができる。
上記電子不足二重結合を有する重合性単量体としては、具体的には、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸i-プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸s-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸n-アミル、(メタ)アクリル酸s-アミル、(メタ)アクリル酸t-アミル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸イソデシル、(メタ)アクリル酸トリデシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸シクロヘキシルメチル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸アダマンチル、(メタ)アクリル酸トリシクロデカニル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸フェニル、(メタ)アクリル酸2-(アセトアセトキシ)エチル、(メタ)アクリル酸アリル等の(メタ)アクリル酸エステル類;
(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、カプロラクトン変性ヒドロキシ(メタ)アクリレート、(メタ)アクリル酸4-ヒドロキシメチルシクロヘキシルメチル等の水酸基含有(メタ)アクリル酸エステル類;
(メタ)アクリル酸トリフルオロエチル、(メタ)アクリル酸オクタフルオロペンチル、(メタ)アクリル酸ヘプタドデカフルオロデシル、(メタ)アクリル酸パーフロロオクチルエチル等のハロゲン含有(メタ)アクリル酸エステル類;
(メタ)アクリル酸グリシジル、(メタ)アクリル酸(3,4-エポキシシクロヘキシル)メチル、(メタ)アクリル酸テトラヒドロフルフリル、(メタ)アクリル酸(3-エチルオキセタン-3-イル)メチル等の環状エーテル基含有(メタ)アクリル酸エステル類;
(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジメチルアミノプロピル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、(メタ)アクリル酸N,N’-ジメチルアミノエチル、N-フェニルマレイミド、N-シクロヘキシルマレイミド、2-イソプロペニル-2-オキサゾリン等の窒素原子含有重合性単量体類;
エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート等の多官能性重合性単量体類;
2-(メタ)アクリロイルオキシエチルイソシアネート、(メタ)アクリロイルイソシアネート等のイソシアネート基含有重合性単量体類;
4-(メタ)アクリロイルオキシ-2,2,6,6-テトラメチルピペリジン、1-(メタ)アクリロイル-4-シアノ-4-(メタ)アクリロイルアミノ-2,2,6,6-テトラメチルピペリジン等の紫外線安定性重合性単量体類;
メチレンブチロラクトン、メチルメチレンブチロラクトン等の重合性環状ラクトン単量体類;(メタ)アクリロニトリル;無水マレイン酸;
1,4-ジオキサスピロ[4,5]デカ-2-イルメタアクリル酸、(メタ)アクリロイルモルホリン、テトラヒドロフルフリルアクリレート、4-(メタ)アクリロイルオキシメチル-2-メチル-2-エチル-1,3-ジオキソラン、4-(メタ)アクリロイルオキシメチル-2-メチル-2-イソブチル-1,3-ジオキソラン、4-(メタ)アクリロイルオキシメチル-2-メチル-2-シクロヘキシル-1,3-ジオキソラン、4-(メタ)アクリロイルオキシメチル-2,2-ジメチル-1,3-ジオキソラン、アルコキシ化フェニルフェノール(メタ)アクリレート;等が挙げられる。
上記他の重合性単量体は、炭素数が1~22であることが好ましく、1~18であることがより好ましく、3~15であることが更に好ましい。
上記重合体(A)は、上記他の構造単位(a2)を1種のみ有していてもよいし、2種以上有していてもよい。
上記重合体(A)は、主鎖末端に、炭素-炭素二重結合を有するシラン化合物由来の末端基を有することが好ましい。後述のように、上記重合体(A)が、炭素-炭素二重結合を有するシラン化合物を重合開始剤として使用したグループトランスファー重合により製造される場合、上記重合体の主鎖の重合開始側末端には、上記炭素-炭素二重結合を有するシラン化合物に由来する基が形成される。
グループトランスファー重合は、後述のように、上記炭素-炭素二重結合を有するシラン化合物を重合開始剤としてモノマーを重合させるアニオン重合の一種であり、上記炭素-炭素二重結合を有するシラン化合物が、上述したビニルエーテル基含有(メタ)アクリル酸エステル類の(メタ)アクリル基に付加することにより、後述するような炭素-炭素二重結合を有するシラン化合物由来の構造が末端に形成されると同時に、新たなシリルケテンアセタールが重合体の成長末端側に形成される。そして、形成されたシリルケテンアセタールにビニルエーテル基含有(メタ)アクリル酸エステル類が更に重合する。このように、単量体成分の重合において、成長末端のシリルケテンアセタールが次々と重合体分子の末端へと移ってゆくことにより重合体が得られると考えられている。
上記炭素-炭素二重結合を有するシラン化合物由来の末端基としては、例えば、下記一般式(3)、(4)又は(5)で示される構造が好ましく挙げられる。
Figure 0007362445000005
(式中、R及びRは、同一又は異なって、水素原子又は有機基を表す。Rは、有機基を表す。)
Figure 0007362445000006
(式中、R、R及びR7’は、同一又は異なって、水素原子又は有機基を表す。)
Figure 0007362445000007
(式中、R、R及びR7’は、同一又は異なって、水素原子又は有機基を表す。)
上記一般式(3)、(4)及び(5)において、R及びRで表される有機基としては、上述した有機基と同じものが挙げられるが、なかでも、炭素数1~12の炭化水素基であることが好ましい。
上記炭化水素基としては、アルキル基、アルケニル基、シクロアルキル基、シクロアルケニル基、芳香族炭化水素基等が挙げられる。上記炭化水素基は、上記炭化水素基を構成する原子の少なくとも一部が、酸素原子、窒素原子又は硫黄原子に置換されていてもよいし、上記炭化水素基を構成する水素原子の一つ以上が、フッ素原子、塩素原子、臭素原子等のハロゲン原子;水酸基;アルコキシ基等の置換基で置換されていてもよい。
なかでも、R及びRで表される炭化水素基は、炭素数1~6のアルキル基、シクロアルキル基、ハロアルキル基、芳香族炭化水素基であることがより好ましく、炭素数1~6のアルキル基、シクロアルキル基であることが更に好ましく、炭素数1~6のアルキル基であることが更により好ましく、メチル基、エチル基であることが特に好ましい。
及びR7’で表される有機基としては、例えば、上述した有機基と同じものが挙げられるが、なかでも、炭素数1~22の炭化水素基であることが好ましく、炭素数1~12のアルキル基、シクロアルキル基、芳香族炭化水素基であることがより好ましく、メチル基、エチル基、プロピル基、ブチル基、tert-ブチル基、アダマンチル基、シクロヘキシル基、2-エチルヘキシル基、フェニル基であることが更に好ましく、メチル基、エチル基、tert-ブチル基であることが特に好ましい。
及びR7’で表される上記炭化水素基は、上記炭化水素基を構成する原子の少なくとも一部が、酸素原子、窒素原子又は硫黄原子に置換されていてもよいし、上記炭化水素基を構成する水素原子の一つ以上が、フッ素原子、塩素原子、臭素原子等のハロゲン原子;水酸基;アルコキシ基等の置換基で置換されていてもよい。
また、RとR又はRとR若しくはR7’は、結合して環構造を形成していてもよい。上記環構造としては、例えば、シクロヘキシル、シクロペンチル等のシクロアルキル等の脂環式炭化水素構造;ジヒドロフラン環、テトラヒドロフラン環、ジヒドロピラン環、テトラヒドロピラン環等の含酸素ヘテロ環構造;等が挙げられる。
なお、上記グループトランスファー重合を用いて上記重合体(A)を製造する際に、重合開始剤として、後述する一般式(7)で表されるシリルケテンアセタール、一般式(8)で表されるビニルシラン化合物、一般式(9)で表されるアリルシラン化合物をそれぞれ用いると、得られる重合体は、それぞれ上記一般式(3)、一般式(4)、一般式(5)で表される構造の主鎖末端を有する。
なかでも、上記重合体(A)は、後述するように、ケテンシリルアセタールを用いた場合に、グループトランスファー重合が効率よく進行するので、主鎖に、上記一般式(3)で表されるシリルケテンアセタール由来の末端基を有することが好ましい。
上記重合体(A)はまた、更に、下記一般式(6)で表される末端構造を有していてもよい。主鎖の片末端に、下記一般式(6)で表される末端構造を有すると、重合体に所望の機能を付与することができる。上記重合体(A)は、主鎖の一方の末端に上記炭素-炭素二重結合を有するシラン化合物由来の末端基を有し、もう一方の末端に下記一般式(6)で表される末端構造を有することが好ましい。
Figure 0007362445000008
(式中、Rは、水素原子又はメチル基を表す。R及びRは、同一又は異なって、水素原子又は有機基を表す。Rは、水素原子又は有機基を表す。Xは、水素原子、ハロゲン原子、アルキル基、ヒドロキシメチル基、アリル基又はプロパルギル基を表す。nは、1以上の整数を表す。)
上記一般式(6)中、R、R、R及びRは、上記一般式(1)中のR、R、R及びRとそれぞれ同じである。
上記一般式(6)中、Xは、水素原子、ハロゲン原子、アルキル基、ヒドロキシメチル基、アリル基又はプロパルギル基を表す。上記アルキル基としては、炭素数1~8のアルキル基であることが好ましく、炭素数1~6のアルキル基であることがより好ましい。
上記Xは、なかでも、重合体の末端基を統一できる点では水素原子であることが好ましく、重合体に機能を付与しやすい点ではプロパルギル基であることが好ましく、重合体の安定性を高める点ではアルキル基であることが好ましい。
上記重合体(A)の分子量分布(重量平均分子量/数平均分子量)は、1.0~4.0である。上記重合体(A)が、上記構造単位(a1)を有し、かつ、上記範囲の分子量分布を有することにより、重合体の硬化性に優れ、密着性に優れた硬化物を与えることができる。
上記重合体(A)の分子量分布は、重合体の諸物性のばらつきを抑制することができる点で、3.5以下であることが好ましく、3.0以下であることがより好ましく、2.5以下であることが更に好ましい。なお、上記分子量分布は、「分散度」ともいう。
上記重合体(A)の重量平均分子量は、5000~1000000であることが好ましい。得られる硬化物の密着性がより一層優れるという点で、上記重合体(A)の重量平均分子量は、20000以上であることがより好ましく、100000以上であることが更に好ましい。
上記重合体(A)の重量平均分子量及び数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法を用いて測定することができ、具体的には、後述する実施例に記載の方法により求めることができる。分子量分布は、重量平均分子量を数平均分子量で除することにより算出して求めることができる。
上記重合体(A)は、不溶分率が、上記重合体100質量%に対して、10質量%以下であることが好ましく、5質量%以下であることがより好ましく、1質量%以下であることが更に好ましく、0.5質量%以下であることが特に好ましい。
上記不溶分とは、重合体に含まれるゲル成分であり、好ましくは酢酸エチル、トルエン又はテトラヒドロフランに対して不溶な成分であり、25℃での溶解度が、酢酸エチル、トルエン又はテトラヒドロフラン100gに対して0.5g以下、好ましくは0.1g以下である成分である。
上記不溶分率は、上記重合体の濃度が約33質量%となるように、酢酸エチル、トルエン又はテトラヒドロフランを加え、室温で充分に攪拌した後、孔径4μmのフィルターに通し、そのフィルター上に残った不溶分の乾燥後の質量を(b)とし、初期の重合体の質量を(a)とした場合に、(b)/(a)×100より求めることができる。
上記重合体(A)は、上記重合体(A)をゲルパーミエーションクロマトグラフィー(GPC)法により測定して得られる微分分子量分布曲線において、上記微分分子量分布曲線の最大値の点をTとし、上記微分分子量分布曲線上Tの5%高さの点を低分子量側からL及びLとする場合に、T-L-Lで囲まれた三角形の面積(X)と、該微分分子量分布曲線とL-Lを結ぶ線で囲まれた部分の面積(Y)との比(X/Y)が、0.8~2.0であることが好ましい。上記重合体が上述の範囲の比を満たすことにより、重合体のゲル化が抑制されていると言える。上記比(X/Y)は、0.8~1.5であることがより好ましい。
なお、図1に、GPC法により測定して得られる微分分子量分布曲線の概略図と、上記T、L、Lを示す。
上記GPCの測定条件は、後述する実施例に記載の方法と同様である。
上記重合体(A)の含有量は、コーティング用組成物の固形分総量100質量%に対して1~100質量%であることが好ましく、充分な硬度になるよう架橋反応を起こすことができる点で、5質量%以上であることがより好ましく、10質量%以上であることが更に好ましい。
なお、「固形分総量」とは、硬化物を形成する成分(硬化物の形成時に揮発する溶媒等や硬化触媒を除く成分)の総量を意味する。
(重合体(A)の製造方法)
上記重合体(A)を製造する方法としては、上述した構造を有する重合体(A)を製造することができる方法であれば、特に限定されないが、上記重合体(A)を効率良く製造することができる点で、上述したビニルエーテル基含有(メタ)アクリル酸エステル類を含む単量体成分をグループトランスファー重合することにより製造する方法が好ましい。グループトランスファー重合を行うことにより、ビニルエーテル基含有(メタ)アクリル酸エステル類の(メタ)アクリロイル基のみを重合反応させた重合体を容易に効率良く製造することができる。また、この方法によれば、得られる重合体に含まれるゲル成分(不溶分)の量を低く抑えることができる。
グループトランスファー重合は、シリルケテンアセタール等の炭素-炭素二重結合を有するシラン化合物を重合開始剤としてモノマーを重合させるアニオン重合の一種である。炭素-炭素二重結合を有するシラン化合物が、ビニルエーテル基含有(メタ)アクリル酸エステル類の(メタ)アクリロイル基に付加し、新たに形成された重合体の成長末端のシリルケテンアセタールが次々と重合体分子の末端へと移ってゆくことにより重合体が得られる。
このようなグループトランスファー重合を用いることにより、ビニルエーテル基含有(メタ)アクリル酸エステル類の重合反応を、室温等の、制御が比較的容易な温度範囲で行うことができる。また、反応系内の水分量を厳密に制御する必要もなく、上記重合反応を行うことができる。更に、上記重合を用いれば、不純物の生成が少なく、高転化率でビニルエーテル基を残存させたままビニルエーテル基含有(メタ)アクリル酸エステル重合体を製造することができる。
本発明の重合体(A)の好ましい製造方法として、上記グループトランスファー重合を用いた方法を以下に説明する。
上記重合体(A)の製造方法は、上述したビニルエーテル基含有(メタ)アクリル酸エステル類を含む単量体成分を、炭素-炭素二重結合を有するシラン化合物、及び、触媒の存在下でグループトランスファー重合する工程を含むことが好ましい。
上記の重合反応では、具体的には、反応前に、上記単量体成分、触媒、炭素-炭素二重結合を有するシラン化合物のうちいずれか2つを反応容器内に仕込み、残り1つを添加することにより重合が開始する。これらを添加する順序については特に限定されず、任意の方法で添加して重合を開始することができる。
また、上記炭素-炭素二重結合を有するシラン化合物、触媒、及び、単量体成分は、それぞれ、使用する全量を一度に添加してもよいし、少量ずつ連続的に添加してもよいし、数回に分けて添加してもよい。
上記単量体成分を重合して得られる重合体の分子量は、上記単量体成分の種類及び量や、上記炭素-炭素二重結合を有するシラン化合物の種類及び量、上記触媒の種類及び量、使用する溶媒の種類や量により適宜制御することができる。
上記炭素-炭素二重結合を有するシラン化合物の使用量は、所望の重合体が得られるのであれば特に限定されないが、より効率的に上記重合体を製造することができる点で、使用する単量体成分に対して、1×10-4~10モル%であることが好ましく、1×10-3~5モル%がより好ましく、1×10-2~1モル%であることが更に好ましい。
上記触媒の使用量は、所望の重合体が得られるのであれば特に限定されないが、より効率的に上記重合体を製造することができる点で、使用する単量体成分に対して、1×10-4~10モル%であることが好ましく、1×10-3~5モル%がより好ましく、1×10-2~1モル%であることが更に好ましい。
上記重合反応は、溶媒を使用せずに行うこともできるが、溶媒を使用することが好ましい。使用する溶媒としては、原料、触媒、重合開始剤、重合体を溶解させることのできる溶媒であれば制限されないが、重合反応が効率良く進行し得る点で、非プロトン性溶媒が好ましい。
本発明において使用する溶媒としては、具体的には、例えば、トルエン、キシレン、ベンゼン等の芳香族炭化水素系溶媒;ヘキサン、ペンタン、ヘプタン、シクロヘキサン等の脂肪族炭化水素系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒;クロロベンゼン、ジクロロメタン、クロロホルム、1,2-ジクロロエタン等のハロゲン化炭化水素系溶媒;アセトニトリル、プロピオニトリル、バレロニトリル等のニトリル系溶媒;酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸ブチル等のエステル系溶媒;ジメチルホルムアミド(DMF)、ジメチルアセトアミド、N-メチルピロリドン等のアミド系溶媒;ジエチルエーテル、ジイソプロピルエーテル、1,2-ジメトキシエタン(DME)、1,4-ジオキサン、テトラヒドロフラン(THF)、テトラヒドロピラン(THP)、アニソール、ジエチレングリコールジメチルエーテル(ジグリム)、ジエチレングリコールエチルエーテル(カルビトール)、シクロペンチルメチルエーテル(CPME)等のエーテル系溶媒;ペルフルオロヘキサン、ペルフルオロシクロヘキサン、ペンタフルオロベンゼン、オクタフルオロトルエン等のフッ素系溶媒;DMSO、ニトロメタン等が挙げられる。
なかでも、重合反応がより一層効率良く進行し得る点で、上記溶媒としては、芳香族炭化水素系溶媒、脂肪族炭化水素系溶媒、ケトン系溶媒、ハロゲン化炭化水素系溶媒、エーテル系溶媒、エステル系溶媒、及びニトリル系溶媒からなる群より選択される少なくとも1種であることが好ましく、芳香族炭化水素系溶媒、エーテル系溶媒、エステル系溶媒であることがより好ましい。
上記溶媒は、1種単独で用いても、2種以上を組み合わせて用いてもよい。
上記溶媒の使用量としては、使用する単量体成分総量100質量%に対して、好ましくは10~10000質量%、より好ましくは50~5000質量%、更に好ましくは100~1000質量%が挙げられる。
また、上記重合においては、重合開始時の溶媒中の酸素濃度が1000ppm以下であることが好ましい。重合開始時の溶媒中の酸素濃度が上述の範囲であると、上記炭素-炭素二重結合を有するシラン化合物や触媒等の活性がより低下しにくくなるため、重合反応がより良好に進行し、所望の重合体をより効率良く製造することができる。上記酸素濃度は、800ppm以下であることがより好ましく、0~500ppmであることが更に好ましい。
上記酸素濃度は、ポーラロ方式溶存酸素計により測定することができる。
また、上記重合においては、重合開始時の溶媒中の水分量が1000ppm以下であることが好ましい。重合開始時の溶媒中の水分量が上述の範囲であると、上記炭素-炭素二重結合を有するシラン化合物が分解を起こしにくく触媒等の活性がより低下しにくくなるため、重合反応がより良好に進行し、所望の重合体をより効率良く製造することができる。上記水分量は、500ppm以下であることがより好ましく、300ppm以下であることが更に好ましい。
上記水分量は、カールフィッシャー水分測定法により測定することができる。
上記重合における反応温度は、特に制限されないが、分子量及び分子量分布の制御や触媒活性の維持ができる点で、-20~100℃が好ましく、-10~50℃がより好ましく、0~30℃が更に好ましい。また、製造コスト低減の観点から、室温±20℃で重合する工程を含むことも、本発明の製造方法の好ましい形態の一つである。
反応時間は、特に制限されないが、10分間~48時間が好ましく、30分間~36時間がより好ましく、1~24時間が更に好ましい。
上記重合における反応雰囲気下は、大気下でもよいが、窒素、アルゴン等の不活性ガス雰囲気下であることが好ましい。
また上記重合における雰囲気中の酸素濃度は、10000ppm以下であることが好ましく、1000ppm以下であることがより好ましく、100ppm以下であることが更に好ましい。
上記重合反応で得られる重合体は、主鎖末端に重合開始剤のシリル基を含むシリルケテンアセタール構造又はエノレートアニオン構造となっており、反応系内に水、アルコール、又は酸を添加して、重合体の片末端のシリルケテンアセタール又はエノレートアニオンをカルボン酸又はエステルに変換させることにより、重合反応を停止させることができる。
上記アルコールとしては、例えば、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール等が挙げられる。
上記酸としては、例えば、塩酸、硫酸、リン酸等の無機酸や、酢酸、安息香酸等の有機酸が挙げられる。
水、アルコール又は酸の使用量としては特に制限されないが、使用するシリルケテンアセタール1molに対し、好ましくは1~1000mol、より好ましくは1~100mol、更に好ましくは1~10molである。
また、上記水、アルコール、又は酸の代わりに、求電子剤を添加してもよい。求電子剤を添加することにより、目的の官能基を導入して、重合反応を停止させることができる。上記求電子剤としては、例えば、ヨウ素や臭素等のハロゲン、ハロゲン化コハク酸イミド化合物、ハロゲン化アルキル、ハロゲン化アリル、ハロゲン化プロパルギル、アルデヒド、酸クロライド等が挙げられる。
上記求電子剤の使用量としては、特に限定されないが、使用するシリルケテンアセタール1molに対し、好ましくは0.5~1.5mol、より好ましくは0.6~1.3mol、更に好ましくは0.8~1.2molである。
上記製造方法において使用する単量体成分、炭素-炭素二重結合を有するシラン化合物、及び、触媒について説明する。
上記単量体成分としては、上記構造単位(a1)を導入し得る単量体と、上記構造単位(a2)を導入し得る単量体が挙げられる。上記構造単位(a1)を導入し得る単量体としては、上述したビニルエーテル基含有(メタ)アクリル酸エステル類が挙げられる。上記構造単位(a2)を導入し得る単量体としては、上述した他の重合性単量体が挙げられる。
上記各単量体の含有量は、所望の含有割合範囲の構造単位を有する重合体が得られるよう、適宜設定するとよい。
上記炭素-炭素二重結合を有するシラン化合物としては、例えば、下記一般式(7):
Figure 0007362445000009
(式中、R及びRは、同一又は異なって、水素原子又は有機基を表す。R、R、R及びR10は、同一又は異なって、有機基を表す。RとR又はRとRは、結合して環構造を形成していてもよい。R、R及びR10は、これらのうち2つ以上が結合して環構造を形成していてもよい。)
で表されるシリルケテンアセタール、下記一般式(8):
Figure 0007362445000010
(式中、R、R及びR7’は、同一又は異なって、水素原子又は有機基を表す。R、R及びR10は、同一又は異なって、有機基を表す。RとR又はRとR7’は、結合して環構造を形成していてもよい。R、R及びR10は、これらのうち2つ以上が結合して環構造を形成していてもよい。)
で表されるビニルシラン化合物、及び、下記一般式(9):
Figure 0007362445000011
(式中、R、R及びR7’は、同一又は異なって、水素原子又は有機基を表す。R、R及びR10は、同一又は異なって、有機基を表す。RとR又はRとR7’は、結合して環構造を形成していてもよい。R、R及びR10は、これらのうち2つ以上が結合して環構造を形成していてもよい。)
で表されるアリルシラン化合物の1種又は2種以上が好ましく挙げられる。
なかでも、反応性が高く、効率良く重合が進行する点で、上記シリルケテンアセタールがより好ましい。
上記一般式(7)、(8)及び(9)において、R及びRは、同一又は異なって、水素原子又は有機基を表す。
上記R及びRとしては、上述した一般式(3)、(4)、(5)中のR及びRとそれぞれ同じものが挙げられる。
上記R及びR7’としては、上述した一般式(3)、(4)、(5)中のR及びR7’とそれぞれ同じものが挙げられる。
上記一般式(7)、(8)及び(9)において、R、R、及びR10は、同一又は異なって、有機基を表す。
、R及びR10で表される有機基としては、上述した有機基と同じものが挙げられるが、なかでも、炭素数1~12の炭化水素基、アルコキシ基であることが好ましく、炭素数1~6の炭化水素基、アルコキシ基であることがより好ましく、メチル基、エチル基、イソプロピル基、tert-ブチル基、フェニル基、メトキシ基、エトキシ基であることが更に好ましい。
また、上記R、R及びR10で表される炭化水素基は、上記炭化水素基を構成する原子の少なくとも一部が、酸素原子、窒素原子又は硫黄原子に置換されていてもよいし、上記炭化水素基を構成する水素原子の一つ以上が、フッ素原子、塩素原子、臭素原子等のハロゲン原子;水酸基;アルコキシ基等の置換基で置換されていてもよい。
上記一般式(7)、(8)及び(9)中の-SiR10で表される基としては、具体的には、例えば、トリメチルシリル基、トリエチルシリル基、トリイソプロピルシリル基、トリイソブチルシリル基、tert-ブチルジメチルシリル基、トリフェニルシリル基、メチルジフェニルシリル基、ジメチルフェニルシリル基、トリメトキシシリル基、トリエトキシシリル基 等が挙げられる。なかでも、入手容易であることや合成容易である点で、トリメチルシリル基、トリエチルシリル基、トリイソプロピルシリル基、tert-ブチルジメチルシリル基、トリエトキシシリル基、トリフェニルシリル基が好ましい。
上記一般式(7)で表されるシリルケテンアセタールとしては、具体的には、例えば、メチル(トリメチルシリル)ジメチルケテンアセタール、メチル(トリメチルシリル)ジイソプロピルケテンアセタール、メチル(トリエチルシリル)ジメチルケテンアセタール、メチル(トリイソプロピルシリル)ジメチルケテンアセタール、メチル(tert-ブチルジメチルシリル)ジメチルケテンアセタール、メチル(トリメチルシリル)ジエチルケテンアセタール、メチル(トリフェニルシリル)ジメチルケテンアセタール、メチル(メチルジフェニルシリル)ジメチルケテンアセタール、メチル(ジメチルフェニルシリル)ジメチルケテンアセタール、メチル(トリエトキシシリル)ジメチルケテンアセタール、エチル(トリメチルシリル)ジメチルケテンアセタール、2-エチルヘキシル(トリメチルシリル)ジメチルケテンアセタール、tert-ブチル(トリメチルシリル)ジメチルケテンアセタール、1-[(1-メトキシ-2-メチル-1-プロペニル)オキシ]-1-メチルシラシクロブタン等が挙げられる。
これらの中でも、入手容易である点や合成容易な点、また安定性の点から、メチル(トリメチルシリル)ジメチルケテンアセタール、メチル(トリイソプロピルシリル)ジメチルケテンアセタール、エチル(トリメチルシリル)ジメチルケテンアセタールが好ましい。
上記シリルケテンアセタールは、1種のみ用いてもよいし、2種以上を組み合わせて用いてもよい。
上記一般式(8)で表されるビニルシラン化合物としては、具体的には、例えば、ビニルトリメチルシラン、1-トリメチルシリルヘキセン、1-トリメチルシリルオクテン、1-トリメチルシリル-1-フェニルエチレン、1-トリメチルシリル-2-フェニルエチレン、ビニル-tert-ブチルジメチルシラン、1-tert-ブチルジメチルシリルヘキセン、1-tert-ブチルジメチルシリルオクテン、1-tert-ブチルジメチルシリル-2-フェニルエチレン、ビニルトリス(トリメチルシリル)シラン、1-トリス(トリメチルシリル)シリルヘキセン、1-トリス(トリメチルシリル)シリルオクテン、1-トリス(トリメチルシリル)シリル-2-フェニルエチレン等が挙げられる。
上記一般式(9)で表されるアリルシラン化合物としては、具体的には、例えば、3-(トリメチルシリル)-1-プロペン、3-(トリエチルシリル)-1-プロペン、3-(ジメチルエチルシリル)-1-プロペン、3-(トリイソプロピルシリル)-1-プロペン、3-(ジメチルイソプロピルシリル)-1-プロペン、3-(トリノルマルプロピルシリル)-1-プロペン、3-(ジメチルノルマルプロピルシリル)-1-プロペン、3-(トリノルマルブチルシリル)-1-プロペン、3-(ジメチルノルマルブチルシリル)-1-プロペン、3-(トリフェニルシリル)-1-プロペン、3-(ジメチルフェニルシリル)-1-プロペン、2-メチル-3-(トリメチルシリル)-1-プロペン、3-(トリメチルシリル)-2-メチル-1-プロペン、3-(トリフェニルシリル)-2-メチル-1-プロペン等が挙げられる。
上記触媒としては、ブレンステッド塩基やルイス塩基等の塩基性触媒として作用するものが好ましく挙げられ、アルカリ金属水酸化物、アルカリ土類金属水酸化物等の無機塩基;トリアルキルアミン、ピリジン等の有機塩基;等が挙げられる。
なかでも、上記触媒としては、上記ビニルエーテル基含有(メタ)アクリル酸エステル類の重合をより一層効率良く行うことができる点で、有機リン化合物、N-ヘテロ環カルベン、フッ素イオン含有化合物、環状アミン化合物、及び、アンモニウム塩化合物からなる群より選択される少なくとも一種が好ましい。これらの特定の触媒を使用する場合、ビニルエーテル基含有(メタ)アクリル酸エステル類において、ビニルエーテル基のカチオン重合やビニルエーテルの分解が起こりにくく、(メタ)アクリロイル基のみをより一層効率良く重合させることができる。
上記有機リン化合物としては、例えば、1-tert-ブチル-4,4,4-トリス(ジメチルアミノ)-2,2-ビス[トリス(ジメチルアミノ)ホスホラニリデンアミノ]-2λ,4λ-カテナジ(ホスファゼン)(ホスファゼン塩基P4-t-BuP)、1-tert-オクチル-4,4,4-トリス(ジメチルアミノ)-2,2-ビス[トリス(ジメチルアミノ)ホスホラニリデンアミノ]-2λ,4λ-カテナジ(ホスファゼン)(ホスファゼン塩基P4-tOct)、1-tert-ブチル-2,2,4,4,4-ペンタキス(ジメチルアミノ)-2λ,-4λ-カテナジ(ホスファゼン)(ホスファゼン塩基P2-t-Bu)、1-エチル-2,2,4,4,4-ペンタキス(ジメチルアミノ)-2λ,4λ-カテナジ(ホスファゼン)(ホスファゼン塩基P2-t-Et)、tert-ブチルイミノ-トリス(ジメチルアミノ)ホスホラン(ホスファゼン塩基P1-t-Bu)、tert-ブチルイミノ-トリ(ピロリジノ)ホスホラン(BTPP)、2-tert-ブチルイミノ-2-ジエチルアミノ-1,3-ジメチルペルヒドロ-1,3,2-ジアザホスホリン等のホスファゼン塩基;トリス(2,4,6-トリメトキシフェニル)ホスフィン、トリブチルホスフィン、トリス(ジメチルアミノホスフィン)、2,8,9-トリイソブチル-2,5,8,9-テトラアザ-1-ホスファビシクロ[3,3,3]ウンデカン、2,8,9-トリメチル-2,5,8,9-テトラアザ-1-ホスファビシクロ[3,3,3]ウンデカン、2,8,9-トリイソプロピル-2,5,8,9-テトラアザ-1-ホスファビシクロ[3,3,3]ウンデカン;等が挙げられる。なかでも、塩基性が強く、シリルケテンアセタールを効果的に活性化できる点で、ホスファゼン塩基P4-t-BuP、2,8,9-トリイソブチル-2,5,8,9-テトラアザ-1-ホスファビシクロ[3,3,3]ウンデカンが好ましい。
上記N-ヘテロ環カルベンとしては、例えば、1,3-ジメチルイミダゾール-2-イリデン、1,3-ジエチルイミダゾール-2-イリデン、1,3-ジ-tert-ブチルイミダゾール-2-イリデン、1,3-ジ-シクロヘキシルイミダゾール-2-イリデン、1,3-ジ-イソプロピルイミダゾール-2-イリデン、1,3-ジ(1-アダマンチル)イミダゾール-2-イリデン、1,3-ジ-メシチルイミダゾール-2-イリデン等が挙げられる。なかでも、シリルケテンアセタールを効果的に活性化できる点で、1,3-ジ-tert-ブチルイミダゾール-2-イリデン、1,3-ジ-イソプロピルイミダゾール-2-イリデンが好ましい。
上記フッ素イオン含有化合物としては、例えば、フッ化テトラ-n-ブチルアンモニウム(TBAF)、トリス(ジメチルアミノ)スルホニウムビフルオリド(TASHF)、フッ化水素-ピリジン、テトラブチルアンモニウムビフルオリド、フッ化水素カリウム等が挙げられる。なかでも、入手容易である点やシリルケテンアセタールを効果的に活性化できる点で、フッ化テトラ-n-ブチルアンモニウム(TBAF)、テトラブチルアンモニウムビフルオリド、トリス(ジメチルアミノ)スルホニウムビフルオリド(TASHF)が好ましい。
上記環状アミン化合物としては、例えば、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、1,5-ジアザビシクロ[4.3.0]ノン-5-エン、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン等が挙げられる。
上記アンモニウム塩化合物としては、例えば、テトラブチルアンモニウムビスアセテート、テトラブチルアンモニウムアセテート、テトラブチルアンモニウムベンゾエート、テトラブチルアンモニウムビスベンゾエート、テトラブチルアンモニウムメタクロロベンゾエート、テトラブチルアンモニウムシアネート、テトラブチルアンモニウムメトキシド、テトラブチルアンモニウムチオレート、テトラブチルアンモニウムビブロマイド、及び、これらのアンモニウム塩化合物のアンモニウムカチオンをテトラメチルアンモニウム、トリエチルアンモニウム、ベンジルトリブチルアンモニウム、N-メチル-N-ブチルピペリジニウム、N-メチル-N-ブチルピロリジニウムカチオンに変えたものやピリジニウムカチオンに変えたもの等が挙げられる。
また、上記の他に1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、1,5-ジアザビシクロ[4.3.0]ノン-5-エン、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エンのような塩基性の強い含窒素複素環化合物も用いることができる。
上記触媒は、1種のみ用いてもよいし、2種以上を組み合わせて用いてもよい。
上記重合においては、本発明の効果に影響を与えない範囲において、上述した成分以外に、更に他の成分を使用してもよい。上記他の成分としては、例えば、重合反応において通常使用される重合開始剤、連鎖移動剤、重合促進剤、重合禁止剤等の公知の添加剤等が挙げられる。これらは、必要に応じて適宜選択することができる。
上記製造方法は、上記重合反応工程以外の他の工程を含んでいてもよい。上記他の工程としては、例えば、熟成工程、中和工程、重合開始剤や連鎖移動剤の失活工程、希釈工程、乾燥工程、濃縮工程、精製工程等が挙げられる。これらの工程は、公知の方法により行うことができる。
上記重合体(A)は、上述した製造方法に製造されることが好ましい。すなわち、上記重合体(A)は、上記一般式(2)で表されるビニルエーテル基含有(メタ)アクリル酸エステル類を含む単量体成分のグループトランスファー重合物であることが好ましい。
上記製造方法で重合体(A)を製造した場合、重合に使用する単量体成分の転化率が非常に高く、残存モノマー量を非常に少なくすることができる。
上記重合体(A)の残存モノマーの含有量は、重合体100質量%に対して20質量%以下であることが好ましく、10質量%以下であることがより好ましく、0~5質量%であることが更に好ましく、0~1質量%であることが特に好ましい。
残存モノマーの含有量は、H-NMRやガスクロマトグラフィー、液体クロマトグラフィー、ゲルパーミエーションクロマトグラフィーにより測定することができる。
<重合性化合物(B)>
本発明において使用する重合性化合物は、ビニルエーテル基と反応し得る官能基を有する。
上記ビニルエーテル基と反応し得る官能基としては、例えば、カルボキシル基、環状エーテル基、ビニル基、1又は2級アミノ基、水酸基、チオール基等が挙げられる。
上記重合性化合物は、ビニルエーテル基と反応し得る官能基を有する化合物であり、ビニルエーテル基と反応し得る官能基を有するモノマー、オリゴマー、ポリマー等を含む。
上記カルボキシル基を有する化合物としては、例えば、カルボン酸化合物、カルボキシル基を有する重合体等が挙げられる。
上記カルボン酸化合物としては、例えば、コハク酸、マロン酸、マレイン酸、アジピン酸、リンゴ酸、酒石酸、アゾベンゼン-4,4’-ジカルボン酸、シクロヘキサン-1,4-ジカルボン酸、クエン酸、トリメリット酸、1,3,5-トリカルボン酸ベンゼン等の分子内に2個以上の官能基を有する化合物;ポリ(メタ)アクリル酸等の側鎖にカルボキシル基を含むような重合体等が挙げられる。
また、上記カルボキシル基を有する重合体としては、カルボキシル基含有単量体を含む単量体成分の重合体が挙げられ、上記カルボキシル基含有単量体としては、例えば、(メタ)アクリル酸、クロトン酸、ケイ皮酸、ビニル安息香酸等の不飽和モノカルボン酸類;マレイン酸、フマル酸、イタコン酸、シトラコン酸、メサコン酸等の不飽和多価カルボン酸類;コハク酸モノ(2-アクリロイルオキシエチル)、コハク酸モノ(2-メタクリロイルオキシエチル)等の不飽和基とカルボキシル基との間が鎖延長されている不飽和長鎖モノカルボン酸類;無水マレイン酸、無水イタコン酸、無水フマル酸、無水フタル酸等の不飽和酸無水物類;等が挙げられる。
上記環状エーテル基を有する化合物としては、例えば、環状エーテル化合物、環状エーテル基を有する重合体が挙げられる。
上記環状エーテル化合物としては、例えば、n-ブチルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、フェニルグリシジルエーテル、1,2-エポキシシクロヘキサン等の単官能エポキシ樹脂;ヘキサンジオールジグリシジルエーテル、テトラエチレングリコールジグリシジルエーテル、ビスフェノールA ジグリシジルエーテル、ビスフェノールF ジグリシジルエーテル、モノアリルジグリシジルイソシアヌル酸、グリシジルメタクリレート等の2官能エポキシ樹脂;トリメチロールプロパントリグリシジルエーテル、ソルビトールポリグリシジルエーテル、1,3-ビス(N,N-ジグリシジルアミノエチル)ベンゼン、ノボラック型エポキシ樹脂、テトラキスフェノールエタン型エポキシ樹脂等の多官能エポキシ樹脂;1,2-エポキシ-4-ビニルシクロヘキサン、3’,4’-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、3,4-エポキシシクロヘキシルメチルメタアクリレート等の脂環式オキシラン環を有するエポキシ樹脂;3-エチル-3-ヒドロキシメチルオキセタン、3-エチル-3-フェノキシメチルオキセタン、3-エチル-3-(2-エチルヘキシロキシメチル)オキセタン、3-エチル(トリエトキシシリルプロポキシメチル)オキセタン、3-シクロヘキシルオキシメチル-3-エチル-オキセタン等の単官能オキセタン樹脂;ビス(3-エチル-3-オキセタニルメチル)エーテル、1,4-ビス{〔(3-エチル-3-オキセタニル)メトキシ〕メチル}ベンゼン等の2官能オキセタン樹脂;トリメチロールプロパントリス(3-エチル-3-オキセタニルメチル)エーテル、ペンタエリスリトールトリス(3-エチル-3-オキセタニルメチル)エーテル、ペンタエリスリトールテトラキス(3-エチル-3-オキセタニルメチル)エーテル、ジペンタエリスリトールペンタキス(3-エチル-3-オキセタニルメチル)エーテル等の多官能オキセタン樹脂;テトラヒドロフラン、ジオキサン等が挙げられる。
上記環状エーテル基を有する重合体としては、環状エーテル基含有単量体を含む単量体成分の重合体が挙げられる。
上記環状エーテル基含有単量体としては、例えば、(メタ)アクリル酸グリシジル、(メタ)アクリル酸β-メチルグリシジル、(メタ)アクリル酸β-エチルグリシジル、ビニルベンジルグリシジルエーテル、アリルグリシジルエーテル、(メタ)アクリル酸(3,4-エポキシシクロヘキシル)メチル、ビニルシクロヘキセンオキシド等のエポキシ基含有単量体等が挙げられる。
上記ビニル基を有する化合物としては、ビニルエーテル化合物、(メタ)アクリル酸エステル、ビニル基を有する重合体が挙げられる。
上記ビニルエーテル化合物としては、例えば、メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、n-ブチルビニルエーテル、ヘキシルビニルエーテル、オクチルビニルエーテル、デシルビニルエーテル、エチルヘキシルビニルエーテル、メトキシエチルビニルエーテル、エトキシエチルビニルエーテル、クロルエチルビニルエーテル、1-メチル-2,2-ジメチルプロピルビニルエーテル、2-エチルブチルビニルエーテル、ヒドロキシエチルビニルエーテル、ジエチレングリコールビニルエーテル、ジメチルアミノエチルビニルエーテル、ジエチルアミノエチルビニルエーテル、ブチルアミノエチルビニルエーテル、ベンジルビニルエーテル、テトラヒドロフルフリルビニルエーテル等のアルキルビニルエーテル;ビニルフェニルエーテル、ビニルトリルエーテル、ビニルクロルフェニルエーテル、ビニル-2,4-ジクロルフェニルエーテル、ビニルナフチルエーテル、ビニルアントラニルエーテル等のビニルアリールエーテル;シクロヘキシルビニルエーテル、シクロヘキサンジメタノールモノビニルエーテル等の脂環式化合物含有ビニルエーテル;アリルビニルエーテル等のアリル基含有ビニルエーテル;ジエチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル、1,4-ブタンジオールジビニルエーテル、1,4-シクロヘキサンジメタノールジビニルエーテル等の多官能性ジビニルエーテル;等が挙げられる。
上記(メタ)アクリル酸エステルとしては、例えば、メチル(メタ)アクリレート、ブチル(メタ)アクリレート、イソアミル(メタ)アクリレート、ラウリル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、エトキシ-ジエチレングリコール(メタ)アクリレート、メトキシジプロピレングルコール(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ヘキサフルオロプロピル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、グリシジル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート等の単官能(メタ)アクリレート;1,6-ヘキサンジオールジ(メタ)アクリレート、トリエチレングルコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、9,9-ビス[4-(2-(メタ)アクリロイルオキシエトキシ)フェニル]フルオレン、ジメチロール-トリシクロデカンジ(メタ)アクリレート、トリメチロルプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリス((メタ)アクリロイルオキシエチル)イソシアヌル酸、ジトリメチロルプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の多官能(メタ)アクリレート;エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート等の、(メタ)アクリロイル基を有するマクロマー等が挙げられる。
上記ビニル基を有する重合体としては、ビニル基含有単量体を含む単量体成分の重合体が挙げられる。
上記ビニル基含有単量体としては、例えば、(メタ)アクリル酸アリル、(メタ)アクリル酸ビニル、ジビニルベンゼン等が挙げられる。
上記1又は2級アミノ基を有する化合物としては、1級又は2級アミノ基含有単量体、当該単量体を含む単量体成分の重合体が挙げられる。
上記1級又は2級アミノ基含有単量体としては、例えば、2-アミノエチルアクリレート、2-(モノメチルアミノ)エチルアクリレート、2-アミノプロピルアクリレート、2-(モノメチルアミノ)プロピルアクリレート、3-アミノプロピルアクリレート、3-(モノメチルアミノ)プロピルアクリレート等のアルキルアミノアルキル(メタ)アクリレート類;N,N-ジメチル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド等の(メタ)アクリルアミド類;等が挙げられる。
上記水酸基を有する化合物としては、水酸基含有単量体、当該単量体を含む単量体成分の重合体が挙げられる。
上記水酸基含有単量体としては、例えば、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸2,3-ヒドロキシプロピル、2-ヒドロキシ-1-メチルエチルアクリレート等が挙げられる。
上記チオール基を有する化合物としては、チオールが挙げられ、例えば、1,2-エタンジチオール、1,3-プロパンジチオール、2,4,6-トリメルカプト-トリアジン、2-ジブチルアミノ-4,6-ジメルカプト-トリアジン、1,4-ビス(3-メルカプトブチリルオキシ)ブタン、ペンタエリスリトールテトラキス(3-メルカプトブチレート)等、分子内に2個以上のチオール基を有する化合物等が挙げられる。また、メルカプト酢酸、3-メルカプトプロピオン酸等、分子内にカルボキシル基とチオール基を少なくとも1つずつ含有する化合物であってよい。
上述した各重合体を構成する単量体成分は、上述した所定の単量体以外に、他の重合性単量体を含んでいてもよい。上記他の重合性単量体としては、重合できる単量体であれば種類は問わないが、例えば、上述した単量体;スチレン、ビニルトルエン、α-メチルスチレン、メトキシスチレン等の芳香族ビニル系化合物類;N-ビニルピロリドン、N-ビニルカプロラクタム、N-ビニルイミダゾール等のN-ビニル化合物類;ブタジエン等のジエン類;無水マレイン酸;N-フェニルマレイミド、N-シクロヘキシルマレイミド、4,4’-ジフェニルメタンビスマレイミド、m-フェニレンビスマレイミド、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド、4-メチル-1,3-フェニレンビスマレイミド、1,6’-ビスマレイミド-(2,2,4-トリメチル)ヘキサン、4,4’-ジフェニルエーテルビスマレイミド、4,4’-ジフェニルスルフォンビスマレイミド、1,3-ビス(3-マレイミドフェノキシ)ベンゼン等のマレイミド類;(メタ)アクリロニトリル等が挙げられる。
上記重合体の場合、重量平均分子量は1000~1000000であることが好ましい。上記重量平均分子量は、5000以上であることがより好ましく、10000以上であることが更に好ましく、800000以下であることがより好ましく、500000以下であることが更に好ましい。
上記重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法により求めることができる。
上記重合体は、公知の重合方法を用いて、適宜調製するとよい。
なかでも、上記重合性化合物(B)としては、速やかに架橋反応を起こすことができる点で、ビニルエーテル化合物、環状エーテル化合物、(メタ)アクリル酸エステル、カルボン酸化合物、及び、チオールからなる群より選択される少なくとも一種が好ましく、ビニルエーテル化合物、環状エーテル化合物、チオールがより好ましく、ビニルエーテル化合物、環状エーテル化合物が更に好ましい。
上記重合性化合物は、1種のみ使用してもよいし、2種以上を組み合わせて使用してもよい。
上記重合性化合物(B)の含有量は、上記重合体(A)の100質量部に対して0~10000質量部であることが好ましく、5~2000質量部であることがより好ましく、10~1000質量部であることが更に好ましい。
<硬化触媒(C)>
本発明において使用する硬化触媒としては、特に限定されないが、好ましくは、カチオン硬化触媒、及び、ラジカル硬化触媒からなる群より選択される少なくとも一種を挙げることができる。なかでも、ビニルエーテル基の架橋反応が速やかに進行するというである点で、カチオン硬化触媒が好ましい。
カチオン硬化触媒、ラジカル硬化触媒のどちらの場合も、粘着剤の実施形態に応じて、熱潜在性又は光潜在性のものを用いることもできる。これらの触媒は、1種のみ使用してもよいし、2種以上を組み合わせて使用してもよい。
(熱潜在性カチオン硬化触媒)
熱潜在性カチオン硬化触媒としては、特に限定されず、公知のものを用いることができる。これらは、光照射によっては実用的な量のカチオン活性種を発生し得ない化合物であり、カチオン活性種を発生する温度は、40℃~200℃が好ましく、60℃~180℃がより好ましく、80℃~150℃が更に好ましい。上記熱潜在性カチオン硬化触媒として、非イオン性の硬化触媒と、イオン性の硬化触媒が挙げられる。
上記熱潜在性カチオン硬化触媒のうち、非イオン性硬化触媒としては、有機ホウ素化合物等のルイス酸部と、アミン、ピリジン等の窒素含有化合物、ホスフィン等のリン含有化合物、スルフィド等の硫黄含有化合物等のルイス塩基部との組み合わせからなる化合物が挙げられる。
上記熱潜在性カチオン硬化触媒のうち、イオン性硬化触媒としては、例えば、(4-ヒドロキシフェニル)ベンジルメチルスルホニウム、(4-ヒドロキシフェニル)メチル-o-トリルスルホニウム、(4-アセトキシフェニル)ベンジルメチルスルホニウム、ジフェニルメチルスルホニウム等のカチオンと、テトラフルオロボレート、ヘキサフルオロホスフェート、トリフェニルヘキサフルオロホスフェート、ヘキサフルオロアルセネート、ヘキサフルオロアンチモネート、テトラキス(ペンタフルオロフェニル)ボレート、ビス(トリフルオロメタンスルホニル)イミド、トリシアノメタニド等のアニオンとの組み合わせからなる化合物が挙げられる。
(光潜在性カチオン硬化触媒)
光潜在性カチオン硬化触媒としては、特に限定されず、公知のものを用いることができ、非イオン性の硬化触媒とイオン性の硬化触媒が挙げられる。上記非イオン性の硬化触媒としては、例えば、ニトロベンジルエステル、スルホン酸誘導体、リン酸エステル、フェノールスルホン酸エステル、ジアゾナフトキノン、N-ヒドロキシイミドホスホナート等が挙げられる。上記イオン性の硬化触媒としては、例えば、ジフェニルヨードニウム、4-メトキシジフェニルヨードニウム、ビス(4-メチルフェニル)ヨードニウム、ビス(4-tert-ブチルフェニル)ヨードニウム、ビス(ドデシルフェニル)ヨードニウム、ジフェニル-4-チオフェノキシフェニルスルホニウム、ビス〔4-(ジフェニルスルフォニオ)-フェニル〕スルフィド、ビス〔4-(ジ(4-(2-ヒドロキシエチル)フェニル)スルホニオ)-フェニル〕スルフィド、4-クロロフェニルジフェニルスルホニウム、トリフェニルスルホニウム、η5-2,4-(シクロペンタジェニル)〔1,2,3,4,5,6-η-(メチルエチル)ベンゼン〕-Fe(1+)等のカチオンと、テトラフルオロボレート、ヘキサフルオロホスフェート、トリフェニルヘキサフルオロホスフェート、ヘキサフルオロアルセネート、ヘキサフルオロアンチモネート、テトラキス(ペンタフルオロフェニル)ボレート等のアニオンとの組み合わせからなる化合物が挙げられる。また、必要に応じてチオキサントン等の光増感剤を添加しても良い。
(熱潜在性ラジカル硬化触媒)
熱潜在性ラジカル硬化触媒としては、例えば、クメンハイドロパーオキサイド、ジクミルパーオキサイド、ジイソプロピルベンゼンパーオキサイド、ジ-t-ブチルパーオキサイド、ラウリルパーオキサイド、ベンゾイルパーオキサイド、t-ブチルパーオキシイソプロピルカーボネート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-アミルパーオキシ-2-エチルヘキサノエート等の有機過酸化物;2,2’-アゾビス(イソブチロニトリル)、1,1’-アゾビス(シクロヘキサンカルボニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、ジメチル2,2’-アゾビス(2-メチルプロピオネート)等のアゾ化合物;等が挙げられる。
(光潜在性ラジカル硬化触媒)
光潜在性ラジカル硬化触媒としては、例えば、2,2-ジメトキシ-2-フェニルアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-1フェニルプロパノン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパノン、2-ベンジル-2-(ジメチルアミノ)-4’-モルホリノブチロフェノン等のアルキルフェノン類;2,4,6-トリメチルベンゾイル-ジフェニルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)ジフェニルホスフィンオキサイド等のアシルホスフィンオキサイド類;1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)]-1,2-オクタンジオン、1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)エタノン等のオキシムエステル類;ベンゾイルぎ酸メチル等が挙げられる。
上記硬化触媒(C)の含有量は、上記重合体(A)と重合性化合物(B)の総和を100質量部とした場合に、0.01~20質量部であることが好ましく、0.5~10質量部であることがより好ましく、1~5質量部であることが更に好ましい。
本発明のコーティング用組成物は、上述した成分以外に、他の成分を含んでいてもよい。上記他の成分としては、例えば、溶媒、連鎖移動剤、分散剤、酸化防止剤、レベリング剤、無機微粒子、カップリング剤、硬化剤、硬化助剤、可塑剤、重合禁止剤、紫外線吸収剤、消泡剤、帯電防止剤、酸発生剤、色材、樹脂等の1種又は2種以上の任意の成分が挙げられる。これらは、コーティング用組成物の目的、用途に応じて、公知のものから適宜選択するとよい。また、その使用量も適宜設定することができる。
本発明のコーティング用組成物は、上述した重合体(A)と重合性化合物(B)及び/又は硬化触媒(C)とを含むものであるが、上述したように、上記重合体(A)は、上記ビニルエーテル基含有(メタ)アクリル酸エステル類を含む単量体成分のグループトランスファー重合物であることが好ましい。従って、重合体(A)と、重合性化合物(B)及び/又は硬化触媒(C)とを含むコーティング用組成物であって、上記重合体(A)は、上記一般式(2)で表されるビニルエーテル基含有(メタ)アクリル酸エステル類を含む単量体成分のグループトランスファー重合物であり、上記重合性化合物(B)は、ビニルエーテル基と反応し得る官能基を有することを特徴とするコーティング用組成物もまた、本発明の好ましい形態の一つである。当該コーティング用組成物において、重合体(A)、重合性化合物(B)、硬化触媒(C)は、上述したものと同様のものが挙げられる。またその含有量も同様の含有量が挙げられる。上記コーティング用組成物は、他の成分を含んでもよく、上記他の成分としては、上述した他の成分と同様のものが挙げられる。
<コーティング用組成物の製造方法>
本発明のコーティング用組成物の製造方法としては特に限定されず、例えば、上述した各成分を、各種の混合機や分散機を用いて混合分散することによって調製することができる。分散混合は、特に限定されず、公知の手法により行えばよい。また、通常行われる他の工程を更に含むものであってもよい。例えば、色材を含む場合、溶媒や分散剤等を用いて色材組成物を予め調製し、次いで、上述した各成分と混合してもよい。
<使用方法>
本発明のコーティング用組成物の使用方法としては、例えば、基材上に、上記コーティング用組成物を塗布し、塗布物を乾燥、加熱、又は活性エネルギー線を照射して、あるいはこれらの組み合わせにより、塗布物を硬化させて硬化膜を形成する方法等が挙げられる。
上記基材としては、特に限定されず、例えば、木材、ガラス、SUS板、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ポリ塩化ビニル(PVC)等の各種プラスチック、あるいはこれらの組合せからなる公知の基材が挙げられる。
塗布方法は、特に限定されず、グラビアコート、ロールコート、バーコート、アプリケーター等の公知の方法で行うことができる。
乾燥又は加熱方法は、コーティング用組成物の組成、目的、用途に応じて、公知の方法から適宜選択すればよいが、例えば、40~150℃で行うことが好ましく、60~120℃で行うことがより好ましい。乾燥加熱時間は、1~30分間であることが好ましく、2~10分間であることがより好ましい。
活性エネルギー線照射は、赤外線、紫外線、X線、電子線等の活性エネルギー線を用いて公知の方法で行うことができる。照射量は、コーティング用組成物の組成、用途に応じて適宜設定することができる。
<用途>
本発明のコーティング組成物は、低温又は低照射量条件下でも優れた硬化性を発揮することができる。そのため、本発明のコーティング組成物は、優れた硬化性が必要とされる用途に好適に使用することができる。そのような用途としては、例えば、車両用塗料、建材塗料、家電製品表面部材、光学機器表面部材等が挙げられる。
以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。なお、特に断りのない限り、「部」は「質量部」を、「%」は「質量%」を、それぞれ意味するものとする。
製造例で得られた重合体の各種物性は以下の方法で測定した。
<重量平均分子量(Mw)、数平均分子量(Mn)、及び、分子量分布(Mw/Mn)>
得られた重合体を、テトラヒドロフランで溶解・希釈し、孔径0.45μmのフィルターで濾過したものを、下記ゲルパーミエーションクロマトグラフィー(GPC)装置、及び条件で測定した。
・装置:HLC-8020GPC(東ソー社製)
・溶出溶媒:テトラヒドロフラン
・標準物質:標準ポリスチレン(東ソー社製)
・分離カラム:TSKgel SuperHM-M、TSKgel SuperH-RC(東ソー社製)
H-NMR測定>
得られた重合体について、下記の条件でH-NMR測定を行った。
装置:アジレント・テクノロジー社製核磁気共鳴装置(600MHz)
測定溶媒:重クロロホルム
サンプル調製:得られた重合体組成物の数mg~数十mgを測定溶媒に溶解した。
<不溶分率>
得られた重合体溶液約2~3gに、固形分が約33質量%となるよう酢酸エチルを添加し、室温で充分に攪拌した後、得られた溶液を孔径が4μmのフィルターに通した。フィルター上の残渣を更に約7~10gの酢酸エチルを用いて洗浄した後、残渣を室温で5分間乾燥させ、乾燥後の残渣の質量(b)を測定した。重合体溶液の質量を(a)とし、下記式より、不溶分率を算出した。
不溶分率(質量%)=(b)/(a)×100
<X/Y値>
上記の重合体の分子量測定で得られた微分分子量分布曲線において、図1に示すように、最大値の点をTとし、上記微分分子量分布曲線上Tの5%高さの点を低分子量側からL及びLとした場合の、T-L-Lで囲まれた三角形の面積(X)と、上記微分分子量分布曲線とL-Lを結ぶ線で囲まれた部分の面積(Y)を求め、比(X/Y)の値を算出した。
(製造例1)
<メタクリル酸2-(2-ビニロキシエトキシ)エチル重合体の製造>
300mLのフラスコに、脱水テトラヒドロフラン(50質量部)、メチル(トリメチルシリル)ジメチルケテンアセタール(0.44質量部)、テトラブチルアンモニウムビスアセテート(本触媒は文献Macromolecules,1990,23,4034-4041に基づいて合成した。)(0.01質量部)を入れ、窒素気流下、20℃で撹拌しながらメタクリル酸2-(2-ビニロキシエトキシ)エチル(以下、VEEMと略する。)(50質量部)をゆっくり滴下した。5時間攪拌した後、酢酸エチルで希釈し、シリカゲルショートカラムに通すことで触媒を除去した。得られた溶液の重合体濃度を濃縮・調整し、50%のVEEM重合体溶液を得た。得られた重合体をH-NMRで確認したところ、ビニルエーテル由来のピークを確認し、積分値からビニルエーテル基がすべて残存していることが分かった。モノマーであるVEEMは観測されず、重合体に含まれる不溶分は0%であった。得られたVEEM重合体の重量平均分子量は22600、数平均分子量は20600、分子量分布(重量平均分子量/数平均分子量)は、1.10であった。X/Yの値は1.49であった。
(製造例2)
<メタクリル酸2-(2-ビニロキシエトキシ)エチル-メタクリル酸メチル共重合体の製造>
500mLのフラスコに、脱水テトラヒドロフラン(200質量部)、メチル(トリメチルシリル)ジメチルケテンアセタール(1.7質量部)、テトラブチルアンモニウムベンゾエート(0.02質量部)を入れ、窒素気流下、20℃で撹拌しながら、モノマー混合液(VEEM(20質量部)、メタクリル酸メチル(以下、MMAと略する。)(90質量部))をゆっくり滴下した。5時間攪拌した後、酢酸エチルで希釈し、シリカゲルショートカラムに通すことで触媒を除去した。得られた溶液の重合体濃度を濃縮・調整し、50%のVEEM-MMA共重合体溶液を得た。得られた共重合体をH-NMRで確認したところ、ビニルエーテル由来のピークを確認し、積分値からビニルエーテル基がすべて残存していることが分かった。モノマーであるVEEM、MMAは観測されず、共重合体に含まれる不溶分は0%であった。上記共重合体の構造単位の割合は、VEEM/MMA=11/89(モル%)であった。上記共重合体の重量平均分子量は15000、数平均分子量は12800、分子量分布(重量平均分子量/数平均分子量)は、1.17であった。X/Yの値は1.37であった。
(製造例3)
<メタクリル酸グリシジル重合体の製造>
200mLのフラスコに、メタクリル酸グリシジル(以下、GMAと略する。)(30質量部)、メチルエチルケトン(以下、MEKと略する。)(70質量部)を入れ、シリンジ針を通じて窒素ガスで1時間バブリングを行った。窒素気流下、重合溶液を70℃に昇温した。重合開始剤(アゾビスイソブチロニトリル:AIBN)(0.35質量部)をMEK5質量部に溶解した開始剤溶液を、シリンジで重合溶液に滴下した。10時間撹拌した後、重合溶液を室温まで冷却し、GMA重合体溶液を得た。この溶液を少量とり、減圧下で溶媒を留去して残留物をH-NMRで確認したところ、メタクリロイル基由来のピークがすべて消失していることが分かった。50質量部のMEKで希釈した重合体溶液を、約900質量部のヘキサンに滴下して再沈殿による精製を行った。得られた白色のGMA重合体の重量平均分子量は125700、数平均分子量は23200、分子量分布(重量平均分子量/数平均分子量)は、5.42であった。この重合体をMEKに溶解させて、33%のGMA重合体溶液を得た。
実施例1
<コーティング用組成物の調製>
製造例1で得られたVEEM重合体溶液を、重合体が100部になるようにはかりとり、熱カチオン硬化触媒(サンエイドSI150-L、三新化学工業社製)を0.2部加えて、コーティング用組成物を調製した。
実施例2~15、比較例1~5
表1に従い、製造例1で得られたVEEM重合体若しくは製造例2で得られたVEEM-MMA共重合体の酢酸エチル溶液、又は、製造例3で得られたGMA重合体溶液と、硬化触媒及び/又は重合性化合物とを混合してコーティング用組成物を調製した。
なお表1の「重合体」の質量部は、VEEM重合体溶液、VEEM-MMA共重合体溶液、又は、GMA重合体溶液のうちの、重合体のみの質量部を表している。
得られたコーティング用組成物を使用して、下記のアセトンラビング試験により硬化性を評価した。
<アセトンラビング試験>
(コーティングサンプルの調製)
実施例及び比較例のコーティング用組成物を、それぞれ、バーコーター(No.28、RD Specialties社製)を用いて、PETフィルム(コスモシャインA4100、厚み50μm、東洋紡社製)上に塗布した。塗布物を30分間自然乾燥させた後、表1に記載の条件でオーブンにて加熱又は紫外線照射により処理し、硬化を行った。
(物性評価)
紙ウエスにアセトンを少量浸み込ませ、硬化後のコーティング上に載置し、指の腹で小さく5、6回円を描くようにこする。コーティング面が剥がれたり、こすった部分が溶解して白濁したりした場合は、ラビング試験結果において「×」、それ以外の(すなわち、変化がない)場合は、「〇」と評価した。結果を表2に示す。
Figure 0007362445000012
表1に記載の重合性化合物及び硬化触媒は、下記のとおりである。
jER:ビスフェノールA ジグリシジルエーテル、三菱ケミカル社製
カレンズ:ペンタエリスリトールテトラキス(3-メルカプトブチレート)、昭和電工社製
ジビニルエーテル:トリエチレングリコールジビニルエーテル、東京化成工業社製
脂環式エポキシ:3’,4’-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、ダイセル社製
ポリアクリル酸:重量平均分子量5000、アルドリッチ製
SI-150L:サンエイドSI-150L、三新化学工業社製
SI-110L:サンエイドSI-110L、三新化学工業社製
SI-100L:サンエイドSI-100L、三新化学工業社製
Irg184:Omnirad 184(旧Irgacure184)、IGM Resin B.V.社製
B-1:FX-TP-BC-PC-AD-57103、日本触媒社製
B-2:BluesilTM PI2074(Elkem社製)
Figure 0007362445000013
表2のアセトンラビング試験の結果より、ビニルエーテル基を有するVEEM重合体又はVEEM-MMA共重合体を用いたコーティング組成物の硬化物は、硬化触媒の種類や方法、重合性化合物の有無にかかわらず、充分に架橋形成が進行し、不溶性の硬化膜を形成していることが分かった。一方で、環状エーテル基を有するGMA重合体を用いたコーティング組成物の硬化物は、いずれの場合も膜が溶解してしまい、本硬化条件では架橋形成が不十分であったことが示唆された。
上記ではコーティング用組成物の硬化性を評価したが、実用上はコーティング用組成物により形成される塗膜の物性も重要である。従って、更に、実施例のコーティング用組成物を用いて、硬化塗膜の密着性、鉛筆硬度について下記の方法で評価を行った。
なお、評価用の硬化塗膜として、上述した<アセトンラビング試験>の(コーティングサンプルの調製)と同様の方法で、PETフィルム上に形成された硬化塗膜を用いた。
<密着性評価(クロスカット試験)>
上記評価用の硬化塗膜を用い、旧JIS-K5400に準じて、硬化塗膜のPETフィルムに対する密着性を評価した。すなわち、硬化塗膜の上から、1mm間隔で11本の切込みを入れた後、90℃向きを変えて同様に11本の切込みを入れ、10マス四方の碁盤目を作成した。切り込みは塗膜を貫通し、PETフィルムを貫通しない程度とした。碁盤目を完全に覆うようにセロハンテープを貼付け、よく擦って密着させた。その後、テープの端をもって45度の角度で一気に剥がした。テープを剥がした後に、PETフィルム上に残ったマス目の数を数えた。残ったマス目の数が多いほど密着性が高いと判断する。結果を表3に示す。
<鉛筆硬度試験>
上記評価用の硬化塗膜を用い、JIS K5600-5-4に従って、塗膜のひっかき硬度を評価した。装置は、電動式鉛筆硬度試験機No.553-M(安田精機製作所製)を使用し、鉛筆は三菱鉛筆社製のものを用いた。キズ痕(塑性変形)を生じない、最も硬い鉛筆の硬度を表3に示した。
Figure 0007362445000014
表3より、実施例のコーティング用組成物を用いて形成された硬化塗膜は、PETフィルムに対する密着性に優れ、鉛筆硬度も高く、優れた性能を示すことが認められた。
1 微分分子量分布曲線

Claims (5)

  1. 下記一般式(1)で表される構造単位を有する重合体(A)と、重合性化合物(B)とを含むコーティング用組成物であって、
    該重合体(A)は、分子量分布(重量平均分子量/数平均分子量)が1.0~4.0であり、
    該重合性化合物(B)は、ビニルエーテル基と反応し得る官能基を有し、
    該重合性化合物(B)の含有量は、該重合体(A)の100質量部に対して10~1000質量部であることを特徴とするコーティング用組成物。
    Figure 0007362445000015
    (式中、Rは、水素原子又はメチル基を表す。R及びRは、同一又は異なって、水素原子又は有機基を表す。Rは、水素原子又は有機基を表す。nは、1以上の整数を表す。)
  2. 重合体(A)と、重合性化合物(B)とを含むコーティング用組成物であって、
    該重合体(A)は、下記一般式(2)で表されるビニルエーテル基含有(メタ)アクリル酸エステル類を含む単量体成分のグループトランスファー重合物であり、
    該重合性化合物(B)は、ビニルエーテル基と反応し得る官能基を有し、
    該重合性化合物(B)の含有量は、該重合体(A)の100質量部に対して10~1000質量部であることを特徴とするコーティング用組成物。
    Figure 0007362445000016
    (式中、Rは、水素原子又はメチル基を表す。R及びRは、同一又は異なって、水素原子又は有機基を表す。Rは、水素原子又は有機基を表す。nは、1以上の整数を表す。)
  3. 前記重合性化合物(B)は、ビニルエーテル化合物、環状エーテル化合物、(メタ)アクリル酸エステル、カルボン酸化合物、及び、チオールからなる群より選択される少なくとも一種であることを特徴とする請求項1又は2に記載のコーティング用組成物。
  4. 更に、硬化触媒(C)を含む請求項1~3のいずれかに記載のコーティング用組成物。
  5. 前記硬化触媒(C)は、カチオン硬化触媒、及び、ラジカル硬化触媒からなる群より選択される少なくとも一種であることを特徴とする請求項に記載のコーティング用組成物。
JP2019210605A 2019-08-27 2019-11-21 コーティング用組成物 Active JP7362445B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019154626 2019-08-27
JP2019154626 2019-08-27

Publications (2)

Publication Number Publication Date
JP2021038369A JP2021038369A (ja) 2021-03-11
JP7362445B2 true JP7362445B2 (ja) 2023-10-17

Family

ID=74848255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019210605A Active JP7362445B2 (ja) 2019-08-27 2019-11-21 コーティング用組成物

Country Status (1)

Country Link
JP (1) JP7362445B2 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004099705A (ja) 2002-09-06 2004-04-02 Nippon Shokubai Co Ltd ビニルエーテル基を有する重合体の製造方法及び該重合体の水溶液又は水分散液、並びに、それを含んでなる硬化性組成物
JP2012114397A (ja) 2010-09-24 2012-06-14 Furukawa Electric Co Ltd:The 半導体加工用テープ
JP2014206625A (ja) 2013-04-12 2014-10-30 株式会社日本触媒 光硬化型接着剤組成物およびその用途

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06100628A (ja) * 1992-09-21 1994-04-12 Nippon Oil & Fats Co Ltd ビニルエーテル基含有ポリマー及びその製造方法
JPH06298884A (ja) * 1993-04-09 1994-10-25 Nippon Oil & Fats Co Ltd 硬化性組成物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004099705A (ja) 2002-09-06 2004-04-02 Nippon Shokubai Co Ltd ビニルエーテル基を有する重合体の製造方法及び該重合体の水溶液又は水分散液、並びに、それを含んでなる硬化性組成物
JP2012114397A (ja) 2010-09-24 2012-06-14 Furukawa Electric Co Ltd:The 半導体加工用テープ
JP2014206625A (ja) 2013-04-12 2014-10-30 株式会社日本触媒 光硬化型接着剤組成物およびその用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Polymer, 1997, Vol.38, No.23, p.5893-5895

Also Published As

Publication number Publication date
JP2021038369A (ja) 2021-03-11

Similar Documents

Publication Publication Date Title
JP7329094B2 (ja) ビニルエーテル基含有(メタ)アクリル酸エステル重合体の製造方法、ビニルエーテル基含有(メタ)アクリル酸エステル重合体、及び重合体組成物
JP7240509B2 (ja) 硬化性組成物
TWI496833B (zh) 陽離子聚合性樹脂、陽離子聚合性樹脂組成物及其硬化物
JP7362445B2 (ja) コーティング用組成物
JP2015021045A (ja) 環状エーテル基含有(メタ)アクリレートからなる光学的立体造形用樹脂組成物
JP7265018B2 (ja) 硬化性組成物
JP5723213B2 (ja) カチオン重合性樹脂組成物、及びその硬化物
JP7436255B2 (ja) 接着剤組成物
WO2011129268A1 (ja) ラジカル重合性樹脂、ラジカル重合性樹脂組成物、及びその硬化物
JP2014201534A (ja) ケイ素化合物
JP7312648B2 (ja) 粘着剤組成物
JP6381140B2 (ja) 組成物、硬化性組成物、その製造方法および硬化物
EP3674329A1 (en) Photocurable resin composition, ink, and paint
JP7473811B2 (ja) 光硬化性組成物、その硬化物、電子デバイスおよび光学部材
JP2024067082A (ja) ビニルエーテル基含有(メタ)アクリル酸エステル高分子量体の製造方法
CN111057028B (zh) 含氟阳离子聚合单体及其合成和应用
JP2022028533A (ja) 硬化性樹脂組成物、及び、その用途
JP6059011B2 (ja) カチオン重合性樹脂組成物の製造方法、並びに、カチオン重合性樹脂組成物及びその硬化物
JP2012242458A (ja) 高分子光導波路及びその製造方法、光モジュール

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231004

R150 Certificate of patent or registration of utility model

Ref document number: 7362445

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150