JP7349580B2 - リチウムイオン電池及び電子装置 - Google Patents

リチウムイオン電池及び電子装置 Download PDF

Info

Publication number
JP7349580B2
JP7349580B2 JP2022551686A JP2022551686A JP7349580B2 JP 7349580 B2 JP7349580 B2 JP 7349580B2 JP 2022551686 A JP2022551686 A JP 2022551686A JP 2022551686 A JP2022551686 A JP 2022551686A JP 7349580 B2 JP7349580 B2 JP 7349580B2
Authority
JP
Japan
Prior art keywords
negative electrode
lithium ion
cell
ion battery
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022551686A
Other languages
English (en)
Other versions
JP2023515590A (ja
Inventor
▲ティン▼ 章
道義 姜
航 崔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningde Amperex Technology Ltd
Original Assignee
Ningde Amperex Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningde Amperex Technology Ltd filed Critical Ningde Amperex Technology Ltd
Publication of JP2023515590A publication Critical patent/JP2023515590A/ja
Application granted granted Critical
Publication of JP7349580B2 publication Critical patent/JP7349580B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/446Initial charging measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/126Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
    • H01M50/129Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers with two or more layers of only organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • H01M50/133Thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • H01M50/134Hardness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/044Activating, forming or electrochemical attack of the supporting material
    • H01M4/0445Forming after manufacture of the electrode, e.g. first charge, cycling
    • H01M4/0447Forming after manufacture of the electrode, e.g. first charge, cycling of complete cells or cells stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Separators (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

本発明はリチウムイオン電池技術分野に属し、リチウムイオン電池及び電子装置に関するものである。
ソフトパック型リチウムイオン電池は、通常、セル及び包装フィルムを含む。ここで、セルに用いられる巻き取りプロセスは、高い生産性があるため、リチウムイオン電池分野において広く適用されている。しかし、巻き取りプロセスにおいて、巻き取りに用いられる電極片が長く(通常、40cm超)、そして正極片と負極片が充放電サイクル過程での体積膨張が異なり、特にケイ素含有負極片の体積膨張がさらに深刻であるため、巻き取って形成されたセルがフォーメーション、容量測定後に歪み、シワとの問題がある。しかし、ケイ素含有負極片は、単位体積当たりの容量が高いため、次世代リチウムイオン電池の負極片として最も有望です。従って、リチウムイオン電池、特にケイ素含有負極片を有するリチウムイオン電池の膨張、歪みの改善は非常に重要である。
上記リチウムイオン電池に存在するセルの膨張、歪みに対して、本発明は、リチウムイオン電池およびそれの調製方法を提供し、膨張を緩和するように外装フィルム(包装フィルム)の打ち抜き穴にスペースを予め空けることで、セルの歪みを効果的に改善し、フルセルのサイクル安定性を向上させる。
そこで、本発明はリチウムイオン電池を提供し、当該リチウムイオン電池は、セル、電解液、及び包装フィルムを含み、前記セルは、正極片及び負極片をセパレータを介して巻き取ることで形成され、前記リチウムイオン電池が半分充電された後、半分充電されたフルセルが得られ、前記半分充電されたフルセルから前記包装フィルムを除去して半分充電されたセルが得られ、
前記半分充電されたフルセルの幅をw1とし、前記半分充電されたセルの幅をw2とし、且つ、g=w2/w1とする場合、下記条件式(1)を満たし、
0.4<g<0.997(1)
且つ、前記負極片はケイ素系材料を含み、前記負極片の単位体積当たりの容量をaとする場合、aとgが、下記条件式(2)を満たし、
420mAh/cm<g×a<2300mAh/cm(2)
ここで、aは、619mAh/cm<a<3620mAh/cmを満たす。
具体的に、前記半分充電されたフルセルの幅wは、当該リチウムイオン電池が半分充電された後に得られた半分充電されたフルセル(包装フィルム及びセルを含む)の幅の最小値であり、通常、ノギスで測定される。前記半分充電されたセルの幅wは、半分充電されたフルセルから包装フィルムを除去した後、セルの最も外側の円の左隅と右隅との距離の最大値であり、通常、ノギスで測定される。巻き取り層数及びセル幅が一定である場合、負極片の体積膨張の度合いによって、セルと包装フィルムの打ち抜き穴との隙間を調整して、さらに前記半分充電されたフルセルの幅を調整することで、体積膨張を効果的に緩和することができ、それによって、セルの歪みを改善し、フルセルのサイクル安定性を改善し、製品の良品率を向上させる。
本発明におけるリチウムイオン電池において、前記ケイ素系材料は、ナノシリコン、ケイ素酸化物、ケイ素炭素複合材料、及びケイ素合金材料のうちの少なくとも一種を含むことが好ましい。
本発明におけるリチウムイオン電池において、前記ケイ素系材料は、粒子状であり、且つ平均粒子径が500nm~30μmであることが好ましい。
本発明におけるリチウムイオン電池において、前記ナノシリコンは、粒子状であり、且つ平均粒子径が100nm未満であることが好ましい。
本発明におけるリチウムイオン電池において、前記ケイ素酸化物はSiOであり、ここで、xは0.6≦x≦2を満たすことが好ましい。
本発明におけるリチウムイオン電池において、前記正極片の正極活物質は、コバルト酸リチウム、マンガン酸リチウム、リン酸鉄リチウム、ニッケル酸リチウム、ニッケルコバルト酸リチウム、及びニッケルコバルトマンガン酸リチウムよりなる群から選択される少なくとも一種であることが好ましい。
本発明におけるリチウムイオン電池において、前記セパレータは、ポリエチレン、ポリプロピレン、及びポリフッ化ビニリデンよりなる群から選択される少なくとも一種であることが好ましい。
本発明におけるリチウムイオン電池において、前記包装フィルムは、アルミニウムプラスチックフィルムであることが好ましい。
本発明におけるリチウムイオン電池において、前記包装フィルムは、厚みが67~153μmであり、引張強度が4~10N/mmであることが好ましい。
本発明はさらに、リチウムイオン電池の調製方法を提供し、以下のステップを含む:
S1、正極活物質、導電材、バインダー、及び溶媒を混合して、撹拌し、混合スラリーを調製し、混合スラリーを基材上に塗布し、乾燥、冷間圧延、ストリップをして、正極片が得られ、
S2、負極活性材料、導電材、バインダー、及び溶媒を混合して、撹拌し、混合スラリーを調製し、混合スラリーを基材上に塗布し、乾燥、冷間圧延、ストリップをして、負極片が得られ、
S3、前記正極片、セパレータ、前記負極片を順次重ね、そして巻き取り、セルが得られ、及び、
S4、セルを包装フィルムに入れ、乾燥させて電解液を注液し、パッケージングし、フォーメーション、脱気、トリミングをして、フルセルが得られる。
前記フルセルが半分充電された後、半分充電されたフルセルが得られ、前記半分充電されたフルセルから前記包装フィルムを除去して半分充電されたセルが得られ、ここで、前記半分充電されたフルセルの幅をw1とし、前記半分充電されたセルの幅をw2とし、且つ、g=w2/w1とする場合、下記条件式(1)を満たし、
0.4<g<0.997(1)
且つ、前記負極片の負極活性材料はケイ素系材料を含み、前記負極片の単位体積当たりの容量をaとする場合、aとgが、下記条件式(2)を満たし、
420mAh/cm<g×a<2300mAh/cm(2)
ここで、aは、619mAh/cm<a<3620mAh/cmを満たす。
本発明はさらに、上記のリチウムイオン電池を含む電子装置を提供する。
本発明によって提供されるリチウムイオン電池及びそれの調整方法は、負極片の体積膨張の度合いによって、セルと包装フィルムの打ち抜き穴との隙間を調整して、さらに前記
半分充電されたフルセルの幅を調整することで、体積膨張を効果的に緩和することができ、それによって、セルの歪みを改善し、フルセルのサイクル安定性を改善し、製品の良品率を向上させる。
図1は、本発明の半分充電されたフルセルの断面構造模式図である。 図2は、実施例6の100回サイクル後のセル(測定されるセルに対応する電池のRipple値は0.8%である)である。 図3は、比較例4の100回サイクル後のセル(測定されるセルに対応する電池のRipple値は7.2%である)である。 図4は、比較例1の100回サイクル後のセル(測定されるセルに対応する電池のRipple値は5.8%である)である。
符号の説明:
1、打ち抜き穴;2、包装フィルム;3、隙間;
、半分充電されたフルセルの幅;w、半分充電されたセルの幅。
以下、本発明の実施例に詳しく説明する。本実施例は、本発明の技術案を前提として実施し、詳しい実施形態及び手順を提供するが、本発明の保護範囲は下記の実施例に制限されず、以下の実施例に具体的な条件が指定されていない試験方法は、通常、一般的な条件に従って実施する。
一、用語の定義
1、シワ、歪み
本発明において、シワとは、セパレータ及び正/負極片が連続して曲がる現象を指し、歪みとは、Ripple>2%の場合、歪みの発生として定義され、Ripple>4%の場合、激しい歪みとして定義されることを指す。ここで、Ripple=フルセルの平板面厚み(PPG)/フルセルの点厚み(MMC)-1。
2、半分充電
3.7V~4.0Vの領域まで充電されたフルセルは半分充電されたフルセルとして定義され、当該過程が半分充電と称される。
二、電池特性の測定:
1、フルセルの歪みの度合いの測定:
PPGは、フルセルの平板面厚みとして定義され、セル厚さ計で厚みを測定し、フルセルを700gのPPG平板の内部に置き、フルセルの面厚みを測定し、順次三回測定し、三つのデータの平均値を取ることで得られる。MMCは、フルセルの点厚みとして定義され、Alタブの下方でタブの垂直方向に沿って、間隔を置いて三つの点を取り、マイクロメータで厚みを測定し、平均値を取ることで得られる。Rippleは、Ripple=PPG/MMC-1として定義される。100回サイクル後のフルセルの厚みのデータを判断点とし、Ripple>2%の場合、歪みが発生し、Ripple>4%の場合、歪みが激しくなっている。
2、フルセルのサイクル特性の測定:
高温サイクル測定:測定温度は45℃であり、0.7Cの定電流で4.4Vまで充電し、定電圧で0.025Cまで充電し、5分間静置した後、0.5Cで3.0Vまで放電した。当該ステップで得られた容量を初期容量とし、0.7Cの充電/0.5Cの放電のサイクル測定を行い、初期容量に対するステップごとの容量の比によって、容量減衰曲線を
得た。本発明は、容量が初期容量の80%まで減衰するサイクル回数を数えることで、電池のサイクル特性を説明する。
三、具体的な実施例及び比較例
実施例1
フルセルの調製
(1)正極活物質であるLiCoO、導電性カーボンブラック、バインダーであるポリフッ化ビニリデン(PVDF)を96.7:1.7:1.6の重量比で、N-メチルピロリドン溶媒系で十分に撹拌し、均一まで混合した後、Al箔上に塗工し、乾燥、冷間圧延、ストリップをして、正極片が得られた。
(2)市販のケイ素酸化物SiO(0.5<x<1.5、DV50=5μm)を黒鉛と混合して、負極活性材料が得られる。市販のケイ素酸化物SiOが負極活性材料に占める割合は0~5wt%であり、負極活性材料、導電材であるアセチレンブラック、ポリアクリル酸(PAA)を95:1.2:3.8の重量比で、脱イオン水溶媒系で十分に撹拌し、均一まで混合した後、Cu箔上に塗工し、乾燥、冷間圧延、ストリップをして、負極片が得られた。
上記の、Cu箔上に負極活性材料を塗工する時に、塗工の重量は9.74mg/cmであり、負極片の単位体積当たりの容量aが619.8mAh/cmになるように、市販のケイ素酸化物SiOが負極活性材料に占める割合を0~5wt%の範囲から選択されたある確定の値に制御した。
(3)ポリエチレン(PE)多孔質ポリマーフィルムをセパレータとし、セパレータがカソードとアノードとの間に位置して絶縁の役割を果たすように、正極片、セパレータ、負極片を順次重ね、そして巻き取り、セルが得られた。
(4)電解液の調製:乾燥したアルゴンガス雰囲気で、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)を1:1:1の重量比で混合してなる溶媒溶液にヘキサフルオロリン酸リチウム(LiPF)を入れ、均一まで混合し、ここで、LiPFの濃度は約1.15mol/Lであり、さらに12wt%のフルオロエチレンカーボネート(FEC)を入れた後、均一まで混合し、電解液が得られた。
(5)セルを包装フィルム2(アルミニウムプラスチックフィルムは、外層としてナイロン、中間層としてAl、及び内層としてPPを含み、厚み及び強度は表1に示す)の打ち抜き穴1に封入し、乾燥させた後、電解液を注液し、パッケージングし、フォーメーション、脱気、トリミングをして、フルセルが得られた。
セルと打ち抜き穴との隙間3を制御することで、半分充電後のフルセルの幅をw=15.7mmにし、半分充電後のセルの幅をw=15.6mmにし、この際、g=0.99、g×a=613.6mAh/cmであった。
上記リチウムイオンフルセルを得た後、電池の歪みの度合いの測定、電池サイクル特性測定を含む電池性能測定を行い、測定結果の詳細は表1に示す。
実施例2
負極片の単位体積当たりの容量aは同様に619.8mAh/cmであり、実施例2と実施例1との違いは、実施例2において、パッケージング時、包装フィルム2の打ち抜き穴1の穴の内側の幅をw=36.7mmに、セルの幅をw=36.1mmに制御す
ることであり、この際、g=0.98、g×a=607.4mAh/cmであった。
上記リチウムイオンフルセルを得た後、電池の歪みの度合いの測定、電池サイクル特性測定を含む電池性能測定を行い、測定結果の詳細は表1に示す。
実施例3
実施例3と実施例1との違いは、以下の通りです。
実施例3において、市販のケイ素酸化物SiO(0.5<x<1.5、DV50=5μm)を黒鉛と混合して、負極活性材料が得られる。市販のケイ素酸化物SiOが負極活性材料に占める割合は10~15wt%であり、そして、負極活性材料、導電材であるアセチレンブラック、ポリアクリル酸(PAA)を95:1.2:3.8の重量比で、脱イオン水溶媒系で十分に撹拌し、均一まで混合した後、Cu箔上に塗工し、乾燥、冷間圧延、ストリップをして、負極片が得られた。
上記の、Cu箔上に負極活性材料を塗工する時に、塗工の重量は7.27mg/cmであり、負極片の単位体積当たりの容量aが957.8mAh/cmになるように、市販のケイ素酸化物SiOが負極活性材料に占める割合を10~15wt%の範囲から選択されたある確定の値に制御した。
パッケージング時、包装フィルム2の打ち抜き穴1の穴の内側の幅をw=17.1mmに、セルの幅をw=16.5mmに制御し、この際、g=0.96、g×a=919.5mAh/cmであった。
上記リチウムイオンフルセルを得た後、電池の歪みの度合いの測定、電池サイクル特性測定を含む電池性能測定を行い、測定結果の詳細は表1に示す。
実施例4
負極片の単位体積当たりの容量aは同様に957.8mAh/cmであり、実施例4と実施例3との違いは、実施例4において、パッケージング時、包装フィルム2の打ち抜き穴1の穴の内側の幅をw=37.2mmに、セルの幅をw=36.2mmに制御することであり、この際、g=0.97、g×a=929.1mAh/cmであった。
上記リチウムイオンフルセルを得た後、電池の歪みの度合いの測定、電池サイクル特性測定を含む電池性能測定を行い、測定結果の詳細は表1に示す。
実施例5
実施例5と実施例1との違いは、以下の通りです。
実施例5において、市販のケイ素酸化物SiO(0.5<x<1.5、DV50=5μm)を黒鉛と混合して、負極活性材料が得られる。市販のケイ素酸化物SiOが負極活性材料に占める割合は20~25wt%であり、そして、負極活性材料、導電材であるアセチレンブラック、ポリアクリル酸(PAA)を95:1.2:3.8の重量比で、脱イオン水溶媒系で十分に撹拌し、均一まで混合した後、Cu箔上に塗工し、乾燥、冷間圧延、ストリップをして、負極片が得られた。
上記の、Cu箔上に負極活性材料を塗工する時に、塗工の重量は5.324mg/cmであり、負極片の単位体積当たりの容量aが1151.3mAh/cmになるように、市販のケイ素酸化物SiOが負極活性材料に占める割合を20~25wt%の範囲から選択されたある確定の値に制御した。
パッケージング時、包装フィルム2の打ち抜き穴1の穴の内側の幅をw=17.0m
mに、セルの幅をw=16.0mmに制御し、この際、g=0.94、g×a=1082.2mAh/cmであった。
上記リチウムイオンフルセルを得た後、電池の歪みの度合いの測定、電池サイクル特性測定を含む電池性能測定を行い、測定結果の詳細は表1に示す。
実施例6
負極片の単位体積当たりの容量aは同様に1151.3mAh/cmであり、実施例6と実施例5との違いは、実施例6において、パッケージング時、包装フィルム2の打ち抜き穴1の穴の内側の幅をw=37.5mmに、セルの幅をw=36.3mmに制御することであり、この際、g=0.97、g×a=1116.8mAh/cmであった。
上記リチウムイオンフルセルを得た後、電池の歪みの度合いの測定、電池サイクル特性測定を含む電池性能測定を行い、測定結果の詳細は表1に示す。
比較例1
比較例1と実施例1との違いは、比較例1において、パッケージング時、包装フィルム2の打ち抜き穴1の穴の内側の幅をw=36.0mmに、セルの幅をw=36.0mmに制御することであり、この際、g=0.9992、g×a=619.3mAh/cmであった。
上記リチウムイオンフルセルを得た後、電池の歪みの度合いの測定、電池サイクル特性測定を含む電池性能測定を行い、測定結果の詳細は表1に示す。
比較例2
比較例2と実施例3との違いは、比較例2において、パッケージング時、包装フィルム2の打ち抜き穴1の穴の内側の幅をw=16.54mmに、セルの幅をw=16.5mmに制御することであり、この際、g=0.9975、g×a=955.4mAh/cmであった。
上記リチウムイオンフルセルを得た後、電池の歪みの度合いの測定、電池サイクル特性測定を含む電池性能測定を行い、測定結果の詳細は表1に示す。
比較例3
比較例3と実施例5との違いは、比較例3において、パッケージング時、包装フィルム2の打ち抜き穴1の穴の内側の幅をw=44.5mmに、セルの幅をw=15.6mmに制御することであり、この際、g=0.35、g×a=403.0mAh/cmであった。
上記リチウムイオンフルセルを得た後、電池の歪みの度合いの測定、電池サイクル特性測定を含む電池性能測定を行い、測定結果の詳細は表1に示す。
実施例7
実施例7と実施例1との違いは、以下の通りです。
実施例7において、市販のケイ素酸化物SiO(0.5<x<1.5、DV50=5μm)を黒鉛と混合して、負極活性材料が得られる。市販のケイ素酸化物SiOが負極活性材料に占める割合は30~35wt%であり、そして、負極活性材料、導電材であるアセチレンブラック、ポリアクリル酸(PAA)を95:1.2:3.8の重量比で、脱イオン水溶媒系で十分に撹拌し、均一まで混合した後、Cu箔上に塗工し、乾燥、冷間圧
延、ストリップをして、負極片が得られた。
上記の、Cu箔上に負極活性材料を塗工する時に、塗工の重量は5.324mg/cmであり、負極片の単位体積当たりの容量aが1336.7mAh/cmになるように、市販のケイ素酸化物SiOが負極活性材料に占める割合を30~35wt%の範囲から選択されたある確定の値に制御した。
パッケージング時、包装フィルム2の打ち抜き穴1の穴の内側の幅をw=17.9mmに、セルの幅をw=15.9mmに制御し、この際、g=0.89、g×a=1189.6mAh/cmであった。
上記リチウムイオンフルセルを得た後、電池の歪みの度合いの測定、電池サイクル特性測定を含む電池性能測定を行い、測定結果の詳細は表1に示す。
実施例8
実施例8と実施例1との違いは、以下の通りです。
実施例8において、市販のケイ素酸化物SiO(0.5<x<1.5、DV50=5μm)を黒鉛と混合して、負極活性材料が得られる。市販のケイ素酸化物SiOが負極活性材料に占める割合は45~50wt%であり、そして、負極活性材料、導電材であるアセチレンブラック、ポリアクリル酸(PAA)を95:1.2:3.8の重量比で、脱イオン水溶媒系で十分に撹拌し、均一まで混合した後、Cu箔上に塗工し、乾燥、冷間圧延、ストリップをして、負極片が得られた。
上記の、Cu箔上に負極活性材料を塗工する時に、塗工の重量は4.181mg/cmであり、負極片の単位体積当たりの容量aが1671.8mAh/cmになるように、市販のケイ素酸化物SiOが負極活性材料に占める割合を45~50wt%の範囲から選択されたある確定の値に制御した。
パッケージング時、包装フィルム2の打ち抜き穴1の穴の内側の幅をw=40.7mmに、セルの幅をw=36.9mmに制御し、この際、g=0.91、g×a=1521.3mAh/cmであった。
上記リチウムイオンフルセルを得た後、電池の歪みの度合いの測定、電池サイクル特性測定を含む電池性能測定を行い、測定結果の詳細は表1に示す。
実施例9
実施例9と実施例1との違いは、以下の通りです。
実施例9において、市販のケイ素酸化物SiO(0.5<x<1.5、DV50=5μm)を黒鉛と混合して、負極活性材料が得られる。市販のケイ素酸化物SiOが負極活性材料に占める割合は55~60wt%であり、そして、負極活性材料、導電材であるアセチレンブラック、ポリアクリル酸(PAA)を95:1.2:3.8の重量比で、脱イオン水溶媒系で十分に撹拌し、均一まで混合した後、Cu箔上に塗工し、乾燥、冷間圧延、ストリップをして、負極片が得られた。
上記の、Cu箔上に負極活性材料を塗工する時に、塗工の重量は3.265mg/cmであり、負極片の単位体積当たりの容量aが2006.6mAh/cmになるように、市販のケイ素酸化物SiOが負極活性材料に占める割合を55~60wt%の範囲から選択されたある確定の値に制御した。
パッケージング時、包装フィルム2の打ち抜き穴1の穴の内側の幅をw=21.8m
mに、セルの幅をw=15.8mmに制御し、この際、g=0.72、g×a=1444.8mAh/cmであった。
上記リチウムイオンフルセルを得た後、電池の歪みの度合いの測定、電池サイクル特性測定を含む電池性能測定を行い、測定結果の詳細は表1に示す。
実施例10
実施例10と実施例1との違いは、以下の通りです。
実施例10において、市販のケイ素酸化物SiO(0.5<x<1.5、DV50=5μm)を黒鉛と混合して、負極活性材料が得られる。市販のケイ素酸化物SiOが負極活性材料に占める割合は80~85wt%であり、そして、負極活性材料、導電材であるアセチレンブラック、ポリアクリル酸(PAA)を95:1.2:3.8の重量比で、脱イオン水溶媒系で十分に撹拌し、均一まで混合した後、Cu箔上に塗工し、乾燥、冷間圧延、ストリップをして、負極片が得られた。
上記の、Cu箔上に負極活性材料を塗工する時に、塗工の重量は2.640mg/cmであり、負極片の単位体積当たりの容量aが2422.2mAh/cmになるように、市販のケイ素酸化物SiOが負極活性材料に占める割合を80~85wt%の範囲から選択されたある確定の値に制御した。
パッケージング時、包装フィルム2の打ち抜き穴1の穴の内側の幅をw=78.0mmに、セルの幅をw=70.0mmに制御し、この際、g=0.89、g×a=2155.7mAh/cmであった。
上記リチウムイオンフルセルを得た後、電池の歪みの度合いの測定、電池サイクル特性測定を含む電池性能測定を行い、測定結果の詳細は表1に示す。
実施例11
実施例11と実施例1との違いは、以下の通りです。
実施例11において、市販のケイ素酸化物SiO(0.5<x<1.5、DV50=5μm)を黒鉛と混合して、負極活性材料が得られる。市販のケイ素酸化物SiOxが負極活性材料に占める割合は90~95wt%であり、そして、負極活性材料、導電材であるアセチレンブラック、ポリアクリル酸(PAA)を95:1.2:3.8の重量比で、脱イオン水溶媒系で十分に撹拌し、均一まで混合した後、Cu箔上に塗工し、乾燥、冷間圧延、ストリップをして、負極片が得られた。
上記の、Cu箔上に負極活性材料を塗工する時に、塗工の重量は2.449mg/cmであり、負極片の単位体積当たりの容量aが2677.7mAh/cmになるように、市販のケイ素酸化物SiOが負極活性材料に占める割合を90~95wt%の範囲から選択されたある確定の値に制御した。
パッケージング時、包装フィルム2の打ち抜き穴1の穴の内側の幅をw=45.9mmに、セルの幅をw=35.9mmに制御し、この際、g=0.78、g×a=2088.6mAh/cmであった。
上記リチウムイオンフルセルを得た後、電池の歪みの度合いの測定、電池サイクル特性測定を含む電池性能測定を行い、測定結果の詳細は表1に示す。
実施例12
実施例12と実施例1との違いは、以下の通りです。
実施例12において、市販のケイ素酸化物SiO(0.5<x<1.5、DV50=5μm)を黒鉛と混合して、負極活性材料が得られる。市販のケイ素酸化物SiOが負極活性材料に占める割合は95~100wt%であり、そして、負極活性材料、導電材であるアセチレンブラック、ポリアクリル酸(PAA)を95:1.2:3.8の重量比で、脱イオン水溶媒系で十分に撹拌し、均一まで混合した後、Cu箔上に塗工し、乾燥、冷間圧延、ストリップをして、負極片が得られた。
上記の、Cu箔上に負極活性材料を塗工する時に、塗工の重量は2.337mg/cmであり、負極片の単位体積当たりの容量aが2839.0mAh/cmになるように、市販のケイ素酸化物SiOが負極活性材料に占める割合を95~100wt%の範囲から選択されたある確定の値に制御した。
パッケージング時、包装フィルム2の打ち抜き穴1の穴の内側の幅をw=35.6mmに、セルの幅をw=15.6mmに制御し、この際、g=0.43、g×a=1220.8mAh/cmであった。
上記リチウムイオンフルセルを得た後、電池の歪みの度合いの測定、電池サイクル特性測定を含む電池性能測定を行い、測定結果の詳細は表1に示す。
実施例13
実施例13と実施例1との違いは以下の通りです。
実施例13において、市販のケイ素酸化物SiO(0.5<x<1.5、DV50=5μm)を黒鉛と混合して、負極活性材料が得られる。市販のケイ素酸化物SiOが負極活性材料に占める割合は95~100wt%であり、そして、負極活性材料、導電材であるアセチレンブラック、ポリアクリル酸(PAA)を95:1.2:3.8の重量比で、脱イオン水溶媒系で十分に撹拌し、均一まで混合した後、Cu箔上に塗工し、乾燥、冷間圧延、ストリップをして、負極片が得られた。
上記の、Cu箔上に負極活性材料を塗工する時に、塗工の重量は2.590mg/cmであり、また、負極片の単位体積当たりの容量aが3600mAh/cmになるように、市販のケイ素酸化物SiOが負極活性材料に占める割合を95~100wt%の範囲から選択されたある確定の値に制御した。
パッケージング時、包装フィルム2の打ち抜き穴1の穴の内側の幅をw1=35.6mmに、セルの幅をw2=15.0mmに制御し、この際、g=0.42、g×a=1512.0mAh/cmであった。
上記リチウムイオンフルセルを得た後、電池の歪みの度合いの測定、電池サイクル特性測定を含む電池性能測定を行い、測定結果の詳細は表1に示す。
比較例4
比較例4と実施例10との違いは、比較例4において、パッケージング時、包装フィルム2の打ち抜き穴1の穴の内側の幅をw=36.2mmに、セルの幅をw=36.2mmに制御することであり、この際、g=1、g×a=2422.2mAh/cmであった。
上記リチウムイオンフルセルを得た後、電池の歪みの度合いの測定、電池サイクル特性測定を含む電池性能測定を行い、測定結果の詳細は表1に示す。
比較例5
比較例5と実施例9との違いは、比較例5において、パッケージング時、包装フィルム2の打ち抜き穴1の穴の内側の幅をw=52.5mmに、セルの幅をw=18.9mmに制御することであり、この際、g=0.36、g×a=722.4mAh/cmであった。
上記リチウムイオンフルセルを得た後、電池の歪みの度合いの測定、電池サイクル特性測定を含む電池性能測定を行い、測定結果の詳細は表1に示す。
比較例6
比較例6と実施例1との違いは、以下の通りです。
比較例6において、市販のケイ素酸化物SiO(0.5<x<1.5、DV50=5μm)を黒鉛と混合して、負極活性材料が得られる。市販のケイ素酸化物SiOが負極活性材料に占める割合は11~20wt%であり、そして、負極活性材料、導電材であるアセチレンブラック、ポリアクリル酸(PAA)を95:1.2:3.8の重量比で、脱イオン水溶媒系で十分に撹拌し、均一まで混合した後、Cu箔上に塗工し、乾燥、冷間圧延、ストリップをして、負極片が得られた。
上記の、Cu箔上に負極活性材料を塗工する時に、塗工の重量は7.560mg/cmであり、負極片の単位体積当たりの容量aが619.8mAh/cmになるように、市販のケイ素酸化物SiOが負極活性材料に占める割合を11~20wt%の範囲から選択されたある確定の値に制御した。
パッケージング時、包装フィルム2の打ち抜き穴1の穴の内側の幅をw=36.35mmに、セルの幅をw=36.3mmに制御し、この際、g=0.43、g×a=266.5mAh/cmであった。
上記リチウムイオンフルセルを得た後、電池の歪みの度合いの測定、電池サイクル特性測定を含む電池性能測定を行い、測定結果の詳細は表1に示す。
比較例7
比較例7と比較例6との違いは、以下の通りです。
比較例7において、市販のケイ素酸化物SiO(0.5<x<1.5、DV50=5μm)を黒鉛と混合して、負極活性材料が得られる。市販のケイ素酸化物SiOが負極活性材料に占める割合は11~20wt%であり、そして、負極活性材料、導電材であるアセチレンブラック、ポリアクリル酸(PAA)を95:1.2:3.8の重量比で、脱イオン水溶媒系で十分に撹拌し、均一まで混合した後、Cu箔上に塗工し、乾燥、冷間圧延、ストリップをして、負極片が得られた。
上記の、Cu箔上に負極活性材料を塗工する時に、塗工の重量は7.130mg/cmであり、負極片の単位体積当たりの容量aが957.8mAh/cmになるように、市販のケイ素酸化物SiOが負極活性材料に占める割合を11~20wt%の範囲から選択されたある確定の値に制御した。
パッケージング時、g×a=411.9mAh/cmであった。
上記リチウムイオンフルセルを得た後、電池の歪みの度合いの測定、電池サイクル特性測定を含む電池性能測定を行い、測定結果の詳細は表1に示す。
比較例8
比較例8と実施例13との違いは、比較例8において、パッケージング時、包装フィル
ム2の打ち抜き穴1の穴の内側の幅をw=16.46mmに、セルの幅をw=16.4mmに制御することであり、この際、g=0.996、g×a=3585.6mAh/cmであった。
上記リチウムイオンフルセルを得た後、電池の歪みの度合いの測定、電池サイクル特性測定を含む電池性能測定を行い、測定結果の詳細は表1に示す。
比較例9
比較例9と実施例1との違いは、包装フィルム2の厚み及び引張強度であり、詳細は表1に示す。
なお、市販のケイ素酸化物SiO(0.5<x<1.5、DV50=5μm)を黒鉛と混合して、負極活性材料が得られる。市販のケイ素酸化物SiOが負極活性材料に占める割合は80~85wt%であり、そして、負極活性材料、導電材であるアセチレンブラック、ポリアクリル酸(PAA)を95:1.2:3.8の重量比で、脱イオン水溶媒系で十分に撹拌し、均一まで混合した後、Cu箔上に塗工し、乾燥、冷間圧延、ストリップをして、負極片が得られた。
上記の、Cu箔上に負極活性材料を塗工する時に、塗工の重量は2.640mg/cmであり、負極片の単位体積当たりの容量aが2422.0mAh/cmになるように、市販のケイ素酸化物SiOが負極活性材料に占める割合を80~85wt%の範囲から選択されたある確定の値に制御した。
パッケージング時、g×a=2397.8mAh/cmであった。
上記リチウムイオンフルセルを得た後、電池の歪みの度合いの測定、電池サイクル特性測定を含む電池性能測定を行い、測定結果の詳細は表1に示す。
比較例10
比較例10と比較例9との違いは、包装フィルム2の厚み及び引張強度であり、詳細は表1に示す。
上記リチウムイオンフルセルを得た後、電池の歪みの度合いの測定、電池サイクル特性測定を含む電池性能測定を行い、測定結果の詳細は表1に示す。

表1に示された通り、ここで、Ripple値は、100回サイクル後の値であり、Ripple>2%の場合、歪みが発生し、Ripple>4%の場合、歪み激しくなっている。単位体積当たりの容量aの測定方法としては、以下の方法である:実施例で得られた負極片(片面の領域)に対して、スパイラルマイクロメーターで片面の極片及び対応する銅箔の厚みを測定し(それぞれt及びtとした)、真空乾燥オーブンにおいて85℃で12時間乾燥させた後、乾燥な雰囲気で、打ち抜き機を使用して、直径1.4cmのピースに打ち抜いて、グローブボックスで、金属リチウムシートを対向電極とし、セパレータとしてcelgard複合フィルムを選択し、電解液を入れてボタン電池を組み立てた。Landian(LAND)シリーズ電池テストを用いて電池の充放電測定を行い、その充放電特性を測定する。ここで、得られた容量をC1(mAh)とし、即ち、単位体積当たりの容量a=C1*単位体積当たりの塗工重量/(t-t)。
まず、実施例1-6と比較例1-3との比較から分かるように、負極片の単位体積当た
りの容量が同様のものである場合、異なるg値を制御することで、異なる程度の歪みが発生することになる。
具体的に、実施例4と比較例2との比較、実施例6と比較例3との比較から分かるように、単位体積当たりの容量が同様のものである場合、g値が大きすぎ、又は小さすぎと、セルの歪み及び電池のサイクル安定性への影響が顕著である。
さらに、実施例1、2と比較例1との比較、実施例3、4と比較例2との比較、実施例5、6と比較例3との比較から分かるように、負極片の単位体積当たりの容量が同様のものである条件下で、g値が0.997超又はg値が0.4未満であると、セルには激しい歪みが発生する。g値が0.997超であると、セルと打ち抜き穴との間の隙間が小さく、セルの体積膨張を十分に緩和することができないことを説明し、比較例1-2に示されたように、セルには激しい歪みが発生する。また、gが0.4未満(例えば、比較例3)であると、セルと打ち抜き穴との隙間が大きいことを説明する。それは、一方で、電解液の量が一定であると電解液がセルを浸潤する空間が減少され、固体電解質界面(SEI)が悪くなり、サイクル特性が悪化することを引き起こし、他方で、打ち抜き穴内のセルの可動性が大きくなり、セルの安全性が影響されることを引き起こす。なお、歪みが激しいセルは、電池のサイクル特性も明らかに悪化する。これは、セルの歪みが激しいため、電極とセパレータとの間にボイドが形成し、電極片上にマイクロクラックが形成し、固体電解質界面(SEI)膜に破裂と再構成が発生し、電解液が消耗されることで、電池のサイクル特性が悪化するからである。
そして、実施例12と比較例6、7との比較から分かるように、g値が同様のものである場合、負極片の単位体積当たり容量aが異なると、セルの歪み及び電池のサイクル安定性にも大きな差が出る。従って、体積膨張を緩和して、セルの歪み及び電池のサイクル安定性をさらに最適化するために、異なる負極片の単位体積当たりの容量aに対して、異なるg値をマッチングする必要がある。そして、比較例6及び7から分かるように、g値が0.4<g<0.997の範囲内にあるが、g×aが420mAh/cm未満であると、セルは激しい歪みが発生する。同様に、g値が0.4<g<0.997の範囲内にあるが、g×aが2300mAh/cm超であると、比較例8に示されたように、セルも激しい歪みが発生する。即ち、負極片の単位体積当たりの容量aの違いによって、発生する体積膨張の度合いに差が出るため、体積膨張を最大限に緩和し、空間利用の最適化を実現するために、異なる単位体積当たりの容量aに応じて、異なる隙間(即ち、セルと包装フィルムの打ち抜き穴との間のスペース)を設定する必要がある。
以上より、g値は、サイクル後のセルの歪みを影響する主な因子であり、そして、セルの構造を最適化するために、異なる負極片の単位体積当たりの容量aを、異なるg値とマッチングさせる必要がある。負極片の単位体積当たりの容量aが619mAh/cm<a<3620mAh/cmの範囲にある場合、g値を0.4<g<0.997の範囲にし、且つ、g×aを420mAh/cm<g×a<2300mAh/cmの範囲内にすることで、セルの歪み及び電池のサイクル安定性の両方も大幅に改善及び向上される。これで分かるように、セル構造の最適化の点から、異なる単位体積当たりの容量aに応じて、対応するスペースを予め空けることで、体積膨張を効果的に緩和することができ、さらにセルの歪みを改善し、電池のサイクル安定性を向上させることで、製品の良品率を高めることができる。
なお、表1を参照し、比較例9-10から分かるように、アルミニウムプラスチックフィルムの厚み及び強度は、セルの歪み及び電池の後期のサイクルにある程度の影響を与え、アルミニウムプラスチックフィルムが薄すぎると、引張強度が十分でなく、サイクル後のセルは、ある程度の歪みが発生する一方、アルミニウムプラスチックフィルムが厚すぎ
ると、セルは明らかな歪み及び電池のサイクル特性の減衰が発生しないものの、フルセルの体積比容量を考慮すると、アルミニウムプラスチックフィルムの体積も総体積の一部を構成するため、フルセルの体積比容量がある程度に減少する。
当然、本発明にはさらに多数の他の実施例が含まれて、本発明の精神及び本質から逸脱することなく、当業者は本発明によって、様々な対応する変更および変形を行うことができるが、これらの対応する変更および変形は、本発明の保護範囲に属する。

Claims (10)

  1. セル、電解液、及び包装フィルムを含むリチウムイオン電池であって、
    前記セルは、正極片及び負極片を、セパレータを介して巻き取ることで形成され、
    前記リチウムイオン電池が半分充電された後、半分充電されたフルセルが得られ、前記半分充電されたフルセルから前記包装フィルムを除去して半分充電されたセルが得られ、
    前記半分充電されたフルセルの幅をw1とし、前記半分充電されたセルの幅をw2とし、且つ、g=w2/w1とする場合、下記条件式(1)を満たし、
    0.4<g<0.997(1)
    且つ、前記負極片はケイ素系材料を含み、前記負極片の単位体積当たりの容量をaとする場合、aとgが、下記条件式(2)を満たし、
    420mAh/cm<g×a<2300mAh/cm(2)
    aは、619mAh/cm<a<3620mAh/cmを満たす、ことを特徴とするリチウムイオン電池。
  2. 前記ケイ素系材料は、ナノシリコン、ケイ素酸化物、ケイ素炭素複合材料、及びケイ素合金材料のうちの少なくとも一種を含むことを特徴とする、請求項1に記載のリチウムイオン電池。
  3. 前記ケイ素系材料は、粒子状であり、且つ平均粒子径が500nm~30μmであることを特徴とする、請求項1に記載のリチウムイオン電池。
  4. 前記ナノシリコンは、粒子状であり、且つ平均粒子径が100nm未満であることを特徴とする、請求項2に記載のリチウムイオン電池。
  5. 前記ケイ素酸化物はSiOであり、ここで、xは0.6≦x≦2を満たすことを特徴とする、請求項2に記載のリチウムイオン電池。
  6. 前記正極片の正極活物質は、コバルト酸リチウム、マンガン酸リチウム、リン酸鉄リチウム、ニッケル酸リチウム、ニッケルコバルト酸リチウム、及びニッケルコバルトマンガン酸リチウムよりなる群から選択される少なくとも一種であることを特徴とする、請求項1に記載のリチウムイオン電池。
  7. 前記セパレータは、ポリエチレン、ポリプロピレン、及びポリフッ化ビニリデンよりなる群から選択される少なくとも一種であることを特徴とする、請求項1に記載のリチウムイオン電池。
  8. 前記包装フィルムは、アルミニウムプラスチックフィルムであることを特徴とする、請求項1に記載のリチウムイオン電池。
  9. 前記包装フィルムは、厚みが67~153μmであり、引張強度が4~10N/mmであることを特徴とする、請求項1に記載のリチウムイオン電池。
  10. 請求項1~9のいずれかに記載のリチウムイオン電池を含むことを特徴とする、電子装置。


JP2022551686A 2020-03-11 2020-03-11 リチウムイオン電池及び電子装置 Active JP7349580B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/078772 WO2021179202A1 (zh) 2020-03-11 2020-03-11 锂离子电池及电子装置

Publications (2)

Publication Number Publication Date
JP2023515590A JP2023515590A (ja) 2023-04-13
JP7349580B2 true JP7349580B2 (ja) 2023-09-22

Family

ID=77671665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022551686A Active JP7349580B2 (ja) 2020-03-11 2020-03-11 リチウムイオン電池及び電子装置

Country Status (6)

Country Link
US (1) US20230006265A1 (ja)
EP (1) EP4120416A1 (ja)
JP (1) JP7349580B2 (ja)
KR (1) KR20220129659A (ja)
CN (1) CN115053376A (ja)
WO (1) WO2021179202A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090075168A1 (en) 2007-09-14 2009-03-19 Youngwoo Lee Pouch for battery and pouch type secondary battery
WO2010086911A1 (ja) 2009-01-29 2010-08-05 パナソニック株式会社 非水電解質二次電池及びその製造方法
JP2011233497A (ja) 2009-12-24 2011-11-17 Sony Corp リチウムイオン二次電池、リチウムイオン二次電池用負極、電動工具、電気自動車および電力貯蔵システム
JP2014229583A (ja) 2013-05-27 2014-12-08 信越化学工業株式会社 負極活物質及び非水電解質二次電池並びにそれらの製造方法
CN106784843A (zh) 2016-12-28 2017-05-31 中天储能科技有限公司 一种大于300wh/kg高比能量、高安全性电池的制作方法
WO2018088248A1 (ja) 2016-11-11 2018-05-17 昭和電工株式会社 負極材料及びリチウムイオン電池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100898293B1 (ko) * 2007-11-27 2009-05-18 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질 및 이의 제조 방법
CN107732145A (zh) * 2017-07-03 2018-02-23 东莞市创明电池技术有限公司 锂离子电池卷芯和锂离子电池
CN108461804A (zh) * 2018-01-31 2018-08-28 深圳市卓能新能源股份有限公司 一种18650-3800mAh锂电池及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090075168A1 (en) 2007-09-14 2009-03-19 Youngwoo Lee Pouch for battery and pouch type secondary battery
WO2010086911A1 (ja) 2009-01-29 2010-08-05 パナソニック株式会社 非水電解質二次電池及びその製造方法
JP2011233497A (ja) 2009-12-24 2011-11-17 Sony Corp リチウムイオン二次電池、リチウムイオン二次電池用負極、電動工具、電気自動車および電力貯蔵システム
JP2014229583A (ja) 2013-05-27 2014-12-08 信越化学工業株式会社 負極活物質及び非水電解質二次電池並びにそれらの製造方法
WO2018088248A1 (ja) 2016-11-11 2018-05-17 昭和電工株式会社 負極材料及びリチウムイオン電池
CN106784843A (zh) 2016-12-28 2017-05-31 中天储能科技有限公司 一种大于300wh/kg高比能量、高安全性电池的制作方法

Also Published As

Publication number Publication date
EP4120416A1 (en) 2023-01-18
CN115053376A (zh) 2022-09-13
JP2023515590A (ja) 2023-04-13
WO2021179202A1 (zh) 2021-09-16
US20230006265A1 (en) 2023-01-05
KR20220129659A (ko) 2022-09-23

Similar Documents

Publication Publication Date Title
US11961993B2 (en) Secondary battery and apparatus including the secondary battery
CN108807974B (zh) 锂离子电池
CN111129502B (zh) 一种负极极片以及二次电池
CN108832075B (zh) 锂离子电池
US20220059864A1 (en) Negative electrode plate and secondary battery
CN109449373B (zh) 负极极片及电池
US11114659B2 (en) Negative electrode sheet and secondary battery
EP3806196A1 (en) Negative electrode tab and secondary battery
CN109449446A (zh) 二次电池
CN109509909B (zh) 二次电池
CN109273771B (zh) 二次电池
JP7106762B2 (ja) 正極シート及びその製造方法、並びにリチウムイオン二次電池
CN111755664A (zh) 一种锂离子电池的电极及锂离子电池
CN108878770B (zh) 电芯及包括该电芯的二次电池
CN109494348B (zh) 负极极片及二次电池
WO2018094822A1 (zh) 一种正极片及其制备方法、锂离子电池
JP2018160379A (ja) リチウムイオン二次電池用負極およびリチウムイオン二次電池
CN108808006B (zh) 负极极片及电池
CN116454274A (zh) 一种负极片及包括该负极片的钠离子电池
CN116365013A (zh) 一种二次电池和用电设备
CN115602787A (zh) 一种负极极片及锂离子电池
JP7349580B2 (ja) リチウムイオン電池及び電子装置
EP3876319B1 (en) Nonaqueous secondary battery electrode binder and nonaqueous secondary battery electrode
CN116632368B (zh) 二次电池及电子装置
WO2024000095A1 (zh) 负极极片、二次电池、电池模组、电池包及用电装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220826

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20230608

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20230608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230911

R150 Certificate of patent or registration of utility model

Ref document number: 7349580

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150