JP7317788B2 - 冷却構造 - Google Patents

冷却構造 Download PDF

Info

Publication number
JP7317788B2
JP7317788B2 JP2020178925A JP2020178925A JP7317788B2 JP 7317788 B2 JP7317788 B2 JP 7317788B2 JP 2020178925 A JP2020178925 A JP 2020178925A JP 2020178925 A JP2020178925 A JP 2020178925A JP 7317788 B2 JP7317788 B2 JP 7317788B2
Authority
JP
Japan
Prior art keywords
oil
cooling
oil reservoir
cooling water
transaxle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020178925A
Other languages
English (en)
Other versions
JP2022069954A (ja
Inventor
智幸 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2020178925A priority Critical patent/JP7317788B2/ja
Publication of JP2022069954A publication Critical patent/JP2022069954A/ja
Application granted granted Critical
Publication of JP7317788B2 publication Critical patent/JP7317788B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • General Details Of Gearings (AREA)

Description

本発明は、冷却構造に関する。
従来、動力伝達装置の冷却構造が提案されている(例えば、特許文献1参照)。
上記特許文献1には、モータ及びギア等が搭載されモータ及びギア等を潤滑及び冷却するためのオイルが収容されたトランスアクスルと、トランスアクスルの上部に設けられモータを駆動させるためにバッテリの出力を制御するPCU(パワーコントロールユニット)と、トランスアクスルの外部に設けられトランスアクスル内を循環するオイルを冷却するオイルクーラと、オイルクーラにおいて熱交換された冷却水を外気によって空冷するラジエータとを備えた動力伝達装置の冷却構造が開示されている。
また、上記特許文献1には、PCUとオイルクーラとラジエータとは冷却水を流すために配管等により接続されており、PCUを冷却した冷却水がオイルクーラに送られることによりトランスアクスル内のオイルが冷却され、オイルクーラにおいて熱交換された冷却水がラジエータに送られて外気によって空冷されること、が記載されている。
特開2017-067258号公報
しかしながら、上記特許文献1に記載の冷却構造では、PCUとトランスアクスルとが別体により構成されているため、PCU及びトランスアクスルを組み付けた状態で小型化するのが難しいという問題点がある。このため、上記特許文献1に記載された従来のPCU及びトランスアクスルを軽自動車や小型車のような狭いエンジンルームへ搭載する場合には、周辺部品の配置変更等が必要となる。
また、上記特許文献1に記載の冷却構造では、トランスアクスルの外部においてオイルを冷却するために別体のオイルクーラが設けられており、PCU冷却後の冷却水をオイルクーラに送るために、PCUとオイルクーラとが配管等により接続されている。上記のように、オイルクーラ及びその配管が設けられることに起因して、ユニットが大きくなるとともに、コストが高くなるという問題点がある。
本発明は、上記問題点を解消すべくなされたものであって、コンパクト化及びコストダウンを図ることが可能な冷却構造を提供することを目的とする。
上記目的を達成するために、本発明は、次のように構成されている。
(1)本発明による冷却構造は、モータ、ギア及びオイルが収容されるトランスアクスルと、前記トランスアクスルと一体的に構成され、前記モータを制御するための高電圧部品が設けられた電力制御装置とを備え、前記電力制御装置には、前記高電圧部品を冷却するための冷却水が流れる冷却水路が設けられ、前記トランスアクスルには、前記モータ及び前記ギアに対して供給される前記オイルを溜めるオイル溜部が設けられ、前記トランスアクスル内に、前記冷却水路と前記オイル溜部とが熱交換する熱交換部を有すること、を特徴とする。
上記構成によれば、電力制御装置を冷却する冷却水を活用して、トランスアクスルに収容されているオイルを冷却できる。そのため、上述した構成によれば、例えば、トランスアクスルに収容されているオイルを冷却するためのオイルクーラや、電力制御装置を冷却する冷却水をオイルクーラに送るための配管等を廃止することができる。また、オイルクーラを廃止しない場合であっても、上述した構成を採用することにより、オイルクーラにおける冷却能力を補助することができる。これにより、オイルクーラの小型化を図ったり、オイルクーラに求める冷却能力を低下させたりすることができる。このように、上述した構成によれば、オイルクーラや配管を廃止したり、オイルクーラの小型化等を図ったりすることにより、冷却構造のコンパクト化及びコストダウンを図ることができる。
(2)本発明による冷却構造において、前記オイル溜部は、前記モータ及び前記ギアの上方に配置されているとよい。このように構成すれば、ギアによって掻き上げられたオイルがギアの上方に配置されたオイル溜部に流入しやすくなるため、効率よくオイルを溜めることができる。また、上記構成によれば、オイル溜部において冷却されたオイルがオイル溜部の下方に位置するモータ及びギアに対して効果的に供給(滴下)される。このため、モータ及びギアに対してオイルを供給するための機構を別途設けることなく、効果的にモータの冷却を行うことができる。
(3)本発明による冷却構造において、前記オイル溜部は、前記冷却水路に対して隣接するように配置されているとよい。このように構成すれば、オイル溜部が冷却水路を流れる冷却水によって直接的に冷却されるため、オイル溜部においてオイルの熱を効果的に放熱することができる。
(4)本発明による冷却構造において、前記オイル溜部と前記高電圧部品とは、対向するように配置され、前記オイル溜部と前記高電圧部品との間に、前記冷却水路が挟まれるように配置されているとよい。このように構成すれば、1つの冷却水路(冷却水)によってオイル溜部のオイル及び高電圧部品の両方が冷却されるため、オイル溜部のオイル及び高電圧部品の各々を冷却するための冷却水路を設けなくてもよい。このため、部品点数が増加するのを抑制することができる。
(5)上記オイル溜部と高電圧部品との間に冷却水路が挟まれる構成において、好ましくは、前記冷却水路は、前記オイル溜部に隣接するオイル溜部用冷却部と、前記高電圧部品に隣接する高電圧部品用冷却部とを有し、前記オイル溜部用冷却部と前記高電圧部品用冷却部とは、仕切部によって仕切られ、前記仕切部には、前記オイル溜部用冷却部と前記高電圧部品用冷却部とを連通する連通孔が形成されているとよい。このように構成すれば、オイル溜部用冷却部を流れる冷却水によってオイル溜部に溜められたオイルを冷却することができるとともに、高電圧部品用冷却部を流れる冷却水によって高電圧部品を冷却することができる。
(6)上記オイル溜部用冷却部及び高電圧部品用冷却部を有する構成において、好ましくは、前記オイル溜部用冷却部の流路面積は、前記高電圧部品用冷却部の流路面積よりも大きいとよい。このように構成すれば、オイル溜部用冷却部における冷却水の流速を高電圧部品用冷却部における冷却水の流速よりも遅くすることができる。オイル溜部のオイルは高電圧部品に対して冷却されにくいため、オイル溜部用冷却部においてオイルに対して時間をかけて冷却することができる。その一方で、高電圧部品用冷却部において高電圧部品を迅速に冷却することができる。
(7)本発明による冷却構造において、前記オイル溜部に前記オイルを圧送するためのオイルポンプをさらに備えるとよい。このように構成すれば、オイル溜部に対してオイルを効率よく溜めることができる。また、上記構成によれば、ギヤによりオイルを掻き上げてオイル溜部に溜める機構と併用することにより、小型のオイルポンプを採用することができるため、冷却構造のコンパクト化及びコストダウンを図ることができる。
(8)本発明による冷却構造において、前記オイル溜部には、前記モータ及び前記ギアに対して前記オイルを滴下させる滴下部が設けられているとよい。このように構成すれば、オイル溜部に溜められたオイルを滴下部を介してモータ及びギアに対して容易に供給することができる。
(9)本発明による冷却構造において、前記電力制御装置は、前記トランスアクスルの上蓋を兼ねているとよい。このように構成すれば、トランスアクスルの上蓋を電力制御装置によって代用できるため、トランスアクスルの上蓋を廃止することができる。このため、部品点数を削減することができる。
(10)本発明による冷却構造において、前記電力制御装置及び前記トランスアクスルは、締結部材により締結固定されているとよい。このように構成すれば、電力制御装置とトランスアクスルとが強固に固定されるため、電力制御装置とトランスアクスルとを容易に一体化させることができる。
(11)本発明による冷却構造において、前記冷却水路における前記オイル溜部と接する面は、波形状に形成されているとよい。このように構成すれば、波形状に形成されている分、熱交換が行われる面積が増加するため、効率よくオイルを冷却することができる。
(12)本発明による冷却構造において、前記冷却水路における前記オイル溜部と接する面は、凹凸形状に形成されているとよい。このように構成すれば、凹凸形状に形成されている分、熱交換が行われる面積が増加するため、効率よくオイルを冷却することができる。
本発明に係る態様によれば、コンパクト化及びコストダウンを図ることが可能な冷却構造を提供することができる。
本発明の第一実施形態に係る冷却構造を説明するための概略図である。 第一実施形態の第一変形例に係る冷却構造を説明するための概略図である。 第一実施形態の第二変形例に係る冷却構造を説明するための概略図である。 本発明の第二実施形態に係る冷却構造の要部拡大図である。
以下、添付図面を参照して、本発明の一実施形態に係る冷却構造を説明する。これらの図は模式図であって、必ずしも大きさを正確な比率で記したものではない。また、図中、同様の構成部品は、同様の符号を付して示す。また、「車両の高さ方向における上方」を単に「上方」と記載する場合や、「車両の高さ方向における下方」を単に「下方」と記載する場合がある。
(第一実施形態)
図1に示すように、第一実施形態による冷却構造100は、トランスアクスル10と、PCU20(Power Control Unit)と、PCUラジエータ30とを備えている。なお、PCU20は、本発明の「電力制御装置」の一例である。
トランスアクスル10における上方にはPCU20が組み付けられており、PCU20はトランスアクスル10の上蓋を兼ねている。PCU20は、トランスアクスル10に対して、ボルト及びナット等の締結部材40により締結固定されている。これにより、トランスアクスル10及びPCU20は、一体的に構成されている。
トランスアクスル10の内部には、駆動源として第一モータ(図示せず)及び第二モータ11が収容されている。第一モータ及び第二モータ11は発電機能を有していてもよく、例えば電気自動車用の場合には、第一モータ及び第二モータ11は、一方で発電した電力を使用して他方を駆動力源として駆動させてもよいし、両方を駆動力源として使用してもよい。また、ハイブリッド車両用の駆動装置とする場合には、トランスアクスル10がエンジン(図示せず)に連結されて、第一モータ、第二モータ11及びエンジンの少なくとも一つから出力される駆動力を駆動輪に向けて伝達する構成にするとよい。
第二モータ11には、動力が伝達可能なようにカウンタギア12及びデファレンシャルギア13が連結されている。カウンタギア12は、第二モータ11における下方に配置されている。デファレンシャルギア13は、カウンタギア12における下方に配置されている。なお、第二モータ11とデファレンシャルギア13との間には、カウンタギア12以外に、図示しない遊星歯車機構及び減速機構等の歯車群が設けられていてもよい。
トランスアクスル10の内部には、オイル14が充填されている。オイル14は、トランスアクスル10内における下方に溜まっており、デファレンシャルギア13によってオイル14が上方に掻き上げられることにより第二モータ11やカウンタギア12等の歯車群の潤滑及び冷却が行われる。
トランスアクスル10内における上方には、オイル溜部15が設けられている。オイル溜部15は、底部16及び壁部17を備えている。底部16及び壁部17は、互いに直交する方向に延びるように形成されている。壁部17における上方には、PCU20が設けられている。底部16における車幅方向の端部16aは、底部16及び後述する冷却水路22によって開口部18が形成されており、デファレンシャルギア13によって掻き上げられたオイル14が矢印Aのように開口部18からオイル溜部15の内部に流入することによりオイルが貯留される。
オイル溜部15には、オイル溜部15に貯留されたオイル14を第二モータ11に対して滴下する滴下部19が形成されている。滴下部19は、例えば、オイル溜部15に貯留されたオイル14を第二モータ11の頂部11aに向けて滴下させるノズル等により構成するとよい。また、滴下部19の他の例としては、オイル溜部15の底部16にオイルを滴下させる孔を形成するとよい。
PCU20には、第一モータ及び第二モータ11に供給される電力や発電された電力を制御するための高電圧部品21が搭載されている。高電圧部品21としては、インバータや昇降圧コンバータを実装した制御基板等が挙げられる。
PCU20には、高電圧部品21を冷却するための冷却水が流れる冷却水路22が設けられている。冷却水路22における上方には、中間部材26を介して高電圧部品21が配置されている。冷却水路22における下方には、トランスアクスル10のオイル溜部15が隣接するように配置されている。言い換えると、オイル溜部15と高電圧部品21とは、冷却水路22を挟んで対向するように配置されている。
冷却水路22は、オイル溜部用冷却部23及び高電圧部品用冷却部24を有している。オイル溜部用冷却部23は、オイル溜部15に隣接するように配置されているとともに、車幅方向に沿って延びるように形成されている。オイル溜部用冷却部23は、車両の高さ方向に対して、トランスアクスル10側に膨出するように形成されている。
高電圧部品用冷却部24は、高電圧部品21に隣接するように配置されているとともに、車幅方向に沿って延びるように形成されている。オイル溜部用冷却部23及び高電圧部品用冷却部24における車幅方向の一方端部は、それぞれ、PCUラジエータ30に接続されている。
オイル溜部用冷却部23と高電圧部品用冷却部24とは、仕切部25によって仕切られている。仕切部25は、車幅方向に沿って延びるように形成されている。仕切部25における車幅方向の端部には、オイル溜部用冷却部23と高電圧部品用冷却部24とを連通する連通孔25aが形成されている。これにより、オイル溜部用冷却部23及び高電圧部品用冷却部24における車幅方向の他方端部は、連通孔25aによって接続されている。このため、冷却水は、高電圧部品用冷却部24、連通孔25a、及びオイル溜部用冷却部23の順に流れる。
オイル溜部用冷却部23の流路面積は、高電圧部品用冷却部24の流路面積よりも大きい。これにより、オイル溜部用冷却部23を流れる冷却水の流速は、高電圧部品用冷却部24の流速よりも小さい(遅い)。
上記のように、PCU20の冷却水路22を流れる冷却水は、PCUラジエータ30から、高電圧部品用冷却部24、連通孔25a、オイル溜部用冷却部23を介して、PCUラジエータ30に戻るように構成されている。このようにして、冷却水によって、高電圧部品21及びオイル溜部15のオイル14が冷却される。
ここで、第一実施形態では、トランスアクスル10内において、冷却水路22のオイル溜部用冷却部23とオイル溜部15とが熱交換する熱交換部H1(図1に示す破線部)を有している。具体的には、オイル溜部15に貯留されたオイル14が、オイル溜部用冷却部23における下方に接触することによって、オイル14の熱が冷却水によって冷却される。また、オイル14の熱がオイル溜部15における底部16及び壁部17を介してオイル溜部用冷却部23に伝達されることによっても熱交換され得る。
また、第一実施形態においては、デファレンシャルギア13によってオイルが掻き上げられてオイル溜部15にオイルが貯留されるが、オイル溜部15にオイル14を圧送するためのオイルポンプ(図示せず)をさらに備えることも可能である。オイルポンプを併用することにより、オイル溜部15にオイル14を効率よく貯留することが可能である。例えば、トランスアクスル10内の任意の位置にオイルポンプを設けて、ストレーナ及びオイルポンプを介してオイル溜部15にオイルを圧送することが可能である。
上記説明した第一実施形態によれば、以下の効果(1)~(10)を得ることができる。
(1)上記第一実施形態による冷却構造100において、トランスアクスル10内に、冷却水路22とオイル溜部15とが熱交換する熱交換部H1を有するように構成した。このため、PCU20を冷却した後の冷却水が熱交換部H1において冷却されるため、PCU20を冷却した後の冷却水をオイルクーラに送ることなく冷却することができる。これにより、オイルクーラを廃止できるとともに、PCU20とオイルクーラとを接続する冷却水の配管等を廃止することができる。このため、オイルクーラ及び配管が廃止される分、冷却構造100のコンパクト化及びコストダウンを図ることができる。なお、第一実施形態においては、オイルクーラ及びこれに接続される配管を廃止した例を示したが、オイルクーラ及びこれに接続される配管を廃止しない構成としても良い。このような構成とした場合には、オイルクーラのみでオイルを冷却する場合に比べて、オイルクーラの小型化を図ったり、オイルクーラに求める冷却能力を低下させたりすることができる。従って、上記第一実施形態の構成によれば、オイルクーラや配管を廃止しない場合であっても、オイルクーラの小型化等により、冷却構造のコンパクト化及びコストダウンを図ることができる。
(2)上記第一実施形態による冷却構造100において、第二モータ11及びデファレンシャルギア13の上方にオイル溜部15を配置した。これにより、デファレンシャルギア13によって掻き上げられたオイル14が、デファレンシャルギア13の上方に配置されたオイル溜部15に流入しやすくなる。このため、効率よくオイル14を溜めることができる。また、上記第一実施形態によれば、オイル溜部15において冷却されたオイル14がオイル溜部15の下方に位置する第二モータ11及びデファレンシャルギア13に対して効果的に供給(滴下)される。このため、第二モータ11及びデファレンシャルギア13に対してオイル14を供給するための機構を別途設けることなく、効果的に第二モータ11の冷却を行うことができる。
(3)上記第一実施形態による冷却構造100において、オイル溜部15を冷却水路22に対して隣接するように配置した。このため、オイル溜部15が冷却水路22を流れる冷却水によって直接的に冷却されるため、オイル溜部15に溜められたオイル14の熱を効果的に放熱することができる。
(4)上記第一実施形態による冷却構造100において、オイル溜部15と高電圧部品21とを対向するように配置し、オイル溜部15と高電圧部品21との間に冷却水路22が挟まれるように配置した。このため、1つの冷却水路22(冷却水)によってオイル溜部15のオイル14及び高電圧部品21の両方が冷却されるため、オイル溜部15のオイル14及び高電圧部品21の各々を冷却するための冷却水路22を設けなくてもよい。このため、部品点数が増加するのを抑制することができる。
(5)上記第一実施形態による冷却構造100において、オイル溜部用冷却部23と高電圧部品用冷却部24とを仕切部25によって仕切り、仕切部25にオイル溜部用冷却部23と高電圧部品用冷却部24とを連通する連通孔25aを形成した。このため、オイル溜部用冷却部23を流れる冷却水によってオイル溜部15に溜められたオイル14を冷却することができるとともに、高電圧部品用冷却部24を流れる冷却水によって高電圧部品21を冷却することができる。
(6)上記第一実施形態による冷却構造100において、オイル溜部用冷却部23の流路面積を高電圧部品用冷却部24の流路面積よりも大きくした。このため、オイル溜部用冷却部23における冷却水の流速を高電圧部品用冷却部24における冷却水の流速よりも遅くすることができる。オイル溜部15のオイル14は高電圧部品21に対して冷却されにくいため、オイル溜部用冷却部23においてオイル14に対して時間をかけて冷却することができる。その一方で、高電圧部品用冷却部24において高電圧部品21を迅速に冷却することができる。
(7)上記第一実施形態による冷却構造100において、オイル溜部15にオイル14を圧送するためのオイルポンプを備えた。このため、オイル溜部15に対してオイル14を効率よく溜めることができる。また、上記第一実施形態によれば、デファレンシャルギア13によりオイル14を掻き上げてオイル溜部15に溜める機構と併用することにより、小型のオイルポンプを採用することができるため、冷却構造100のコンパクト化及びコストダウンを図ることができる。
(8)上記第一実施形態による冷却構造100において、オイル溜部15に第二モータ11及びデファレンシャルギア13に対してオイル14を滴下させる滴下部19を設けた。このため、オイル溜部15に溜められたオイル14を滴下部19を介して第二モータ11及びデファレンシャルギア13に対して容易に供給することができる。
(9)上記第一実施形態による冷却構造100において、PCU20は、トランスアクスル10の上蓋を兼ねているとよい。このように構成すれば、トランスアクスル10の上蓋をPCU20によって代用できるため、トランスアクスル10の上蓋を廃止することができる。このため、部品点数を削減することができる。
(10)上記第一実施形態による冷却構造100において、PCU20及びトランスアクスル10は、締結部材40により締結固定されているとよい。このように構成すれば、PCU20とトランスアクスル10とが強固に固定されるため、PCU20とトランスアクスル10とを容易に一体化させることができる。
(第一実施形態の第一変形例)
次に、図2を参照して、上記第一実施形態の第一変形例に係る冷却構造110について説明する。
図2に示すように、第一変形例に係る冷却構造110では、上記第一実施形態で説明した冷却構造100とは異なり、オイル溜部用冷却部23における冷却水とオイル溜部15におけるオイル14とが熱交換する熱交換部H2(図2に示す破線部)が、波形状に形成されている。
上記説明した第一変形例によれば、上記第一実施形態の効果(1)~(10)に加えて、以下の効果(11)を得ることができる。
(11)上記第一変形例による冷却構造110において、冷却水路22のオイル溜部用冷却部23におけるオイル溜部15と接する面を波形状に形成した。このため、熱交換部H2が波形状に形成されている分、熱交換が行われる面積が増加するため、効率よくオイル14を冷却することができる。
(第一実施形態の第二変形例)
次に、図3を参照して、上記第一実施形態の第二変形例に係る冷却構造120について説明する。
図3に示すように、第二変形例に係る冷却構造120では、上記第一実施形態で説明した冷却構造100とは異なり、オイル溜部用冷却部23における冷却水とオイル溜部15におけるオイル14とが熱交換する熱交換部H3(図3に示す破線部)が、凹凸形状に形成されている。
上記説明した第二変形例によれば、上記第一実施形態の効果(1)~(10)に加えて、以下の効果(12)を得ることができる。
(12)上記第二変形例による冷却構造120において、冷却水路22のオイル溜部用冷却部23におけるオイル溜部15と接する面を凹凸形状に形成した。このため、熱交換部H3が凹凸形状に形成されている分、熱交換が行われる面積が増加するため、効率よくオイル14を冷却することができる。
(第二実施形態)
次に、図4を参照して、第二実施形態の冷却構造130について説明する。
図4に示すように、第二実施形態による冷却構造130は、オイル溜部70、張出部72、窪部74、ガイド部76、及び膨出部78を用いて構成されている。ここで、第二実施形態におけるオイル溜部70は、第二モータ(図示せず)と同軸線上に設けられている。また、オイル溜部70における裏面側(紙面奥側)には、PCU20が配置されており、オイル溜部70とPCU20のオイル溜部用冷却部23とが隣接するように配置されている。すなわち、オイル溜部70の裏面側において、オイル溜部70に貯留されたオイルの熱をオイル溜部用冷却部23の冷却水によって冷却することが可能な熱交換部が設けられている。
なお、オイル溜部70の裏面側に熱交換部を設けずに、オイル溜部70の上方又は下方に熱交換部を有するように構成してもよい。この場合、オイル溜部70の上方又は下方にオイル溜部用冷却部23が接するようにトランスアクスル210に対してPCU20を取り付けるとよい。
また、オイル溜部70は、台座部80及び溜部閉塞体82を備えている。台座部80は、オイル溜部70の外縁をなすものであり、正面視において略円形となるように形成されている。台座部80には、オイル溜部70にオイルを導入するための連通孔84が形成されている。
連通孔84は、台座部80の径方向外側から内側に向けて延びるように形成された溝によって形成されている。連通孔84は、トランスアクスル210の設置状態において、上方から下方に向けてオイルを導入可能なように形成されている。
溜部閉塞体82は、台座部80の開放端側に取り付けられ、台座部80を閉塞するためのプレートである。溜部閉塞体82には、扇面状の開口88と、ノズル状に形成された差込部90とが設けられている。差込部90は、オイル溜部70の内外を連通するパイプ状のものである。差込部90は、オイル溜部70の略軸心位置において、オイル溜部70の外側に向けて突出するように形成されている。
オイル溜部70の近傍においては、オイル溜部70の下方に配置されたデファレンシャルギアの回転に伴って掻き上げられたオイルが、矢印Aによって示される方向への流れを形成する。張出部72は、連通孔84に対して上方側であって、連通孔84を基準としてオイルの流れ方向上流側において張り出した部分である。
張出部72には、案内リブ86が設けられている。案内リブ86は、オイル溜部70の近傍におけるオイルの流れ方向に向けて延びるように形成されている。案内リブ86は、オイル溜部70よりも下方側から上方側に向けて掻き上げられたオイルを、連通孔84に向けて案内することができる。
窪部74は、連通孔84に対して上方側であって、連通孔84を基準としてオイルの流れ方向下流側、すなわち上述した張出部72とは反対側に存在している。張出部72を通過したオイルは、窪部74側に流れ込む。
ガイド部76は、張出部72側から窪部74側に流れ込んできたオイルを捕捉する受け皿のような機能と、連通孔84に向けて案内するガイドとしての機能を兼ね備えたものである。ガイド部76は、オイル溜部70の台座部80側を基端側として窪部74側に延びるように形成されている。
膨出部78は、上述した窪部74内に設けられている。膨出部78は、ガイド部76及び連通孔84に臨むように膨出している。また、膨出部78は、ガイド部76及び連通孔84の上方に設けられている。
第二実施形態による冷却構造130は、上述したような構成とされている。かかる構成とされているため、トランスアクスル210内においてギア等が作動することによって掻き上げられたオイルは、張出部72を通過して窪部74に向けて流れる間にガイド部76や膨出部78によって連通孔84に案内される。
具体的には、矢印Aのように流れるオイルの一部は、ガイド部76によって捕捉される。ガイド部76によって捕捉されたオイルは、ガイド部76の傾斜に沿って連通孔84に向けて案内され、オイル溜部70に流れ込む。また、矢印Aのように流れるオイルの一部は、膨出部78に当たり、下方にある連通孔84やガイド部76に向けて落下し、そのままオイル溜部70内に導入される。また、ガイド部76に向けて落下したオイルは、ガイド部76によって捕捉されたオイルと同様に、ガイド部76の傾斜に沿って連通孔84に向けて案内され、オイル溜部70内に導入される。
上述したようにしてオイル溜部70内に導入されたオイルは、台座部80に嵌め込まれたキャリア軸(図示せず)を支持するための軸受(図示せず)等を潤滑する。
上記説明した第二実施形態によれば、上記第一実施形態の効果(1)及び(3)~(10)に加えて、以下の効果(13)を得ることができる。
(13)上記第二実施形態による冷却構造130において、第二モータと同軸線上における裏面側(紙面奥側)にオイル溜部70を配置した。このため、オイル溜部70において冷却されたオイルがオイル溜部70の表面側(紙面手前側)に位置する第二モータ、及びオイル溜部70の下方に位置するギア等に対して効果的に供給される。このため、第二モータ及びギア等に対してオイルを供給するための機構を別途設けることなく、効果的に第二モータ及びギア等の冷却を行うことができる。
(その他の変形例)
上記実施形態は、以下のように変更した構成とすることもできる。
上記実施形態では、オイル溜部を第二モータ及びデファレンシャルギアの上方又は裏面(背面)側に配置する例を示したが、本発明はこれに限られない。本発明では、冷却水路とオイル溜部とが熱交換することが可能であれば、オイル溜部を第二モータ及びデファレンシャルギアの下方や側方に配置することも可能である。
上記実施形態では、モータの一例として第二モータを例示して、第二モータに対してオイルを供給する例を示したが、本発明はこれに限られない。本発明では、第一モータに対してオイルを供給するような構成にすることも可能であるし、第一モータ及び第二モータの両方に対してオイルを供給するような構成としてもよい。
上記実施形態では、ギアの一例としてデファレンシャルギアを例示して、デファレンシャルギアによりオイルが掻き上げられる例を示したが、本発明はこれに限られない。本発明では、カウンタギアやその他の駆動力を伝達する機構によりオイルが掻き上げられる構成としてもよい。
上記実施形態では、オイル溜部が冷却水路に対して隣接するように配置されている例を示したが、本発明はこれに限られない。本発明では、冷却水路とオイル溜部とが熱交換することが可能であれば、冷却水路とオイル溜部との間に必要に応じて他の部材を設けることも可能である。
上記実施形態では、オイル溜部用冷却部と高電圧部品用冷却部との間に配置された仕切部に1つの連通孔を形成する例を示したが、本発明はこれに限られない。本発明では、冷却水の流量や流速に応じて仕切部に連通孔を2つ以上形成してもよい。
上記実施形態では、オイル溜部用冷却部の流路面積を高電圧部品用冷却部の流路面積よりも大きい例を示したが、本発明はこれに限られない。本発明では、冷却水の流量や流速に応じて、オイル溜部用冷却部の流路面積を高電圧部品用冷却部の流路面積と同じにするか、又はオイル溜部用冷却部の流路面積を高電圧部品用冷却部の流路面積よりも小さくすることも可能である。
上記実施形態では、電力制御装置及びトランスアクスルをボルト及びナット等の締結部材により締結固定する例を示したが、本発明はこれに限られない。本発明では、ボルト及びナット以外の締結部材を使用することも可能である。
上記実施形態は、いずれも本発明の適応の例示であり、特許請求の範囲に記載の範囲内におけるその他いかなる実施形態も、発明の技術的範囲に含まれることは当然のことである。
10、210 :トランスアクスル
11 :第二モータ(モータ)
13 :デファレンシャルギア(ギア)
14 :オイル
15、70 :オイル溜部
19 :滴下部
20 :PCU(電力制御装置)
21 :高電圧部品
22 :冷却水路
23 :オイル溜部用冷却部
24 :高電圧部品用冷却部
25 :仕切部
40 :締結部材
100、110、120、130 :冷却構造
H1、H2、H3 :熱交換部

Claims (2)

  1. モータ、ギア及びオイルが収容されるトランスアクスルと、
    前記トランスアクスルと一体的に構成され、前記モータを制御するための高電圧部品が設けられた電力制御装置とを備え、
    前記電力制御装置には、前記高電圧部品を冷却するための冷却水が流れる冷却水路が設けられ、
    前記トランスアクスルには、前記モータ及び前記ギアに対して供給される前記オイルを溜めるオイル溜部が設けられ、
    前記トランスアクスル内に、前記冷却水路と前記オイル溜部とが熱交換する熱交換部を有し、
    前記オイル溜部と前記高電圧部品とは、対向するように配置され、
    前記オイル溜部と前記高電圧部品との間に、前記冷却水路が挟まれるように配置されていること、を特徴とする冷却構造。
  2. 前記冷却水路は、
    前記オイル溜部に隣接するオイル溜部用冷却部と、
    前記高電圧部品に隣接する高電圧部品用冷却部とを有し、
    前記オイル溜部用冷却部と前記高電圧部品用冷却部とは、仕切部によって仕切られ、
    前記仕切部には、前記オイル溜部用冷却部と前記高電圧部品用冷却部とを連通する連通孔が形成されていること、を特徴とする請求項1に記載の冷却構造。
JP2020178925A 2020-10-26 2020-10-26 冷却構造 Active JP7317788B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020178925A JP7317788B2 (ja) 2020-10-26 2020-10-26 冷却構造

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020178925A JP7317788B2 (ja) 2020-10-26 2020-10-26 冷却構造

Publications (2)

Publication Number Publication Date
JP2022069954A JP2022069954A (ja) 2022-05-12
JP7317788B2 true JP7317788B2 (ja) 2023-07-31

Family

ID=81534158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020178925A Active JP7317788B2 (ja) 2020-10-26 2020-10-26 冷却構造

Country Status (1)

Country Link
JP (1) JP7317788B2 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020084800A (ja) 2018-11-16 2020-06-04 株式会社豊田自動織機 圧縮機
WO2020213509A1 (ja) 2019-04-19 2020-10-22 日本電産株式会社 駆動装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020084800A (ja) 2018-11-16 2020-06-04 株式会社豊田自動織機 圧縮機
WO2020213509A1 (ja) 2019-04-19 2020-10-22 日本電産株式会社 駆動装置

Also Published As

Publication number Publication date
JP2022069954A (ja) 2022-05-12

Similar Documents

Publication Publication Date Title
US9022174B2 (en) Lubrication device of power transmission device for hybrid vehicle
EP3892892B1 (en) Oil lubrication mechanism for front bearing of water-cooled motor and motor driving assembly
US10738878B2 (en) Lubricating system of vehicle transmission device
JP6314947B2 (ja) 動力伝達装置の冷却構造
CN111692324B (zh) 正反驱动减速器
JP6210200B2 (ja) 車両用変速機のオイル供給装置
JP7310259B2 (ja) モータユニット
JP2013194891A (ja) 動力伝達機構の潤滑装置
JP7484552B2 (ja) 駆動装置
JP2012060785A (ja) 車両用駆動装置の冷却構造
JP6748442B2 (ja) 車両用駆動装置
JP7456382B2 (ja) モータユニット
JP7317788B2 (ja) 冷却構造
CN113494594A (zh) 用于新能源混动变速器的润滑系统
CN215751858U (zh) 电动总成和具有其的车辆
JP7509112B2 (ja) 電動車両のトランスアクスル
JP3956818B2 (ja) 車両用のオイル供給装置
CN219493009U (zh) 变速器和车辆
US20240175486A1 (en) Systems and methods for gearbox fluid reservoir
KR20150044137A (ko) 철도차량의 드라이빙기어 윤활장치
JP7069244B2 (ja) 車両用動力伝達装置の潤滑構造
CN219639398U (zh) 变速器及车辆
JPH055318Y2 (ja)
JPH055319Y2 (ja)
JP4992804B2 (ja) 動力伝達装置の潤滑構造

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230719

R150 Certificate of patent or registration of utility model

Ref document number: 7317788

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150