JP7317273B1 - Evacuation shelters for tsunami, etc. installed in solid building rooms such as condominiums, hotels, and buildings - Google Patents

Evacuation shelters for tsunami, etc. installed in solid building rooms such as condominiums, hotels, and buildings Download PDF

Info

Publication number
JP7317273B1
JP7317273B1 JP2022101001A JP2022101001A JP7317273B1 JP 7317273 B1 JP7317273 B1 JP 7317273B1 JP 2022101001 A JP2022101001 A JP 2022101001A JP 2022101001 A JP2022101001 A JP 2022101001A JP 7317273 B1 JP7317273 B1 JP 7317273B1
Authority
JP
Japan
Prior art keywords
cylinder
tsunami
shelter
building
vertical frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022101001A
Other languages
Japanese (ja)
Other versions
JP2024002045A (en
Inventor
盟子 冨田
Original Assignee
冨田 穣
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 冨田 穣 filed Critical 冨田 穣
Priority to JP2022101001A priority Critical patent/JP7317273B1/en
Application granted granted Critical
Publication of JP7317273B1 publication Critical patent/JP7317273B1/en
Publication of JP2024002045A publication Critical patent/JP2024002045A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

【課題】南海トラフ巨大地震による津波は、1~5分で到達し10m、20mの高さである。避難所まで逃げる時間猶予がない。死者も32万人以上で、それは真冬の真夜中とされ、その時、人は家の中で熟睡中である。【解決手段】マンション、ホテル、ビルは堅固な建物であり、波力でガラス窓が突破されると、むしろ建物の横力が抜け転倒しない。建物に浮力も働かない。その部屋は最短時間の最適避難場所といえる。壁を最大に利用する。生存必要空気量の体積の袋状の、天井高さの立筒をシェルターとする。筒材は防水性の強化プラスチックで、その4隅を縦枠材で保護した小型シェルターを部屋の角隅に設置すれば、アンカー不要で転倒せず、漂流物の直撃を回避できる。コンパクト化も可能。【選択図】図9A tsunami caused by a Nankai Trough megathrust earthquake arrives in 1 to 5 minutes and reaches heights of 10m and 20m. There is no time to escape to an evacuation center. More than 320,000 people died, and it was the middle of the night in the dead of winter, when people were sleeping soundly in their homes. SOLUTION: Condominiums, hotels, and buildings are solid buildings, and when a wave force breaks through a glass window, the lateral force of the building is released and the building does not topple over. No buoyancy acts on the building. The room can be said to be the optimum evacuation place for the shortest time. Make the most of your walls. The shelter is a bag-shaped vertical cylinder with a ceiling height that has the volume of air necessary for survival. The cylinder is made of waterproof reinforced plastic, and if a small shelter with four corners protected by vertical frames is installed in the corner of the room, it will not fall over without the need for anchors, and can avoid direct hits from flotsam. Compact design is also possible. [Selection drawing] Fig. 9

Description

本発明は、マンション、ホテル、ビルなどの堅固な建物室内に設置する小型の津波等避難シェルターに関する。 TECHNICAL FIELD The present invention relates to a small evacuation shelter for tsunami to be installed in a solid building room such as an apartment, a hotel, or a building.

来る南海トラフ巨大地震では最大34.4mの津波が最短1~5分で到達する。死者数は32万人と予測され、真冬の真夜中深夜の時間帯が最大被害である。10m、20mの防潮堤ができるのはいつのことか。津波避難タワーまでは遠い。ともかく逃げ切ることとされるが、0.3mの津波でも足元をすくわれ、なすすべもない。人の口元高さの1.5mの、発生確率の高い小さな津波でも人は息ができず絶命する。何とかならないか。堅固なマンション、ホテルでは、夜間に津波の来襲を受けた場合に、そのままの室内の避難シェルターが有効である。昼間では、ビルなどの比較的小さい部屋割りの事業所で室内避難シェルターが有効である。壁際に設置する少人数の小型シェルターである。特許庁特許情報プラットホームで「津波シェルター」で検索したところ、2件であった。特許文献1は、生活空間の上又は下に上方が気密のシェルターを設けるものだが、吸気及び排気装置を有するので本発明とは異なる。特許文献2は、建物に津波シェルターを設けるものだが、新たに建てた建物内に気密性のシェルターを設置するもので、本発明の既設のマンション、ホテルの壁を利用して設置する非密閉構造のシェルターとは異なる。 A tsunami with a maximum height of 34.4m will arrive in 1 to 5 minutes at the shortest in the event of the Nankai Trough megathrust earthquake. The number of deaths is estimated to be 320,000, and the maximum damage occurs in the middle of the night and midnight in the middle of winter. When will 10m and 20m seawalls be built? It is far from the tsunami evacuation tower. They were supposed to escape anyway, but even a 0.3m tsunami swept them under their feet and there was nothing they could do. Even a small tsunami with a high probability of occurrence, 1.5m above the mouth of a person, can cause people to die because they cannot breathe. Can we do something about it? If a tsunami strikes at night in solid condominiums and hotels, it is effective to keep the evacuation shelter in the room as it is. During the daytime, indoor evacuation shelters are effective in offices with relatively small room allocations such as buildings. It is a small shelter for a small number of people installed on the wall. When I searched for "tsunami shelter" on the patent information platform of the Patent Office, there were two cases. Patent Document 1 provides an airtight shelter above or below the living space, but differs from the present invention in that it has air intake and exhaust devices. Patent document 2 is to install a tsunami shelter in a building, but it is to install an airtight shelter in a newly built building. different from shelters.

特開2015-178769JP 2015-178769 実登3170840real climb 3170840

中川工業所安全資料Nakagawa Industrial Safety Materials 防波堤の耐津波設計ガイドライン:国土交通省港湾局、2013.9Tsunami Resistant Design Guidelines for Breakwaters: Port and Harbor Bureau, Ministry of Land, Infrastructure, Transport and Tourism, 2013.9

来る南海トラフ巨大地震では、最大34.4mの津波が最短1~5分で到達する。死者数は32万人とされ、真冬の真夜中の時間帯が最大被害である。すなわち、その時間帯では避難する時間余裕もなく当然就寝中であればなすすべもない。1~5分といえども、地震の揺れが収まるのが2~3分とされるので、揺れが収まったその後の避難では2分の猶予さえあるかないか。躊躇している時間はない。揺れている間に意を決して避難しなければならない。しかし、慌てて外への避難は、0.3mの津波でも足元をすくわれ、かえって命を落とす危険がある。巨大津波が注目されるが、それより発生確率の高いわずか1.5mの低い津波でも、人はその水中で呼吸ができないので絶望的である。何とかならないか。建物の各階ごとで、床から高さ1.5mの口元高さで空気が確保できればまずは一つ問題が解決する。幸いにしてマンションなどの建固な建物では、木端みじんとなる一般住宅とは異なり、構造物が頑丈なので津波の波力、漂流物の衝突にも耐えられる。寒い真冬にも外に出なくて済む。波力で転倒しそうだが逆に窓ガラスが破られ波が抜けることとなり、波力による転倒モーメントを受けず建物自体が転倒しない。窓が破れることで浸水し浮力が解消され建物が浮力で浮くことがない。すなわち、堅固な建物自体が津波に強いといえ、守られたその強さを十分に利用、生かすこととする。人が生存できるためには、急襲する津波による漂流物の衝撃を避けることができて、かつ津波の水中でも空気を保持できる必要がある。すなわち、衝撃から生身を守り、水中で空気を包む空気袋があればいいことが分かる。その空気袋の形成体としてシェルターということになる。本発明では、堅固な建物の部屋の壁際に沿って少人数対応の非密閉型小型避難シェルターを設置することで瞬時に避難することができ、水中でも継続して生存できる課題を解決できる。室内で避難できるので、建物の部屋内が瞬時の最短距離の避難場所となる。建物の壁、床、天井などの鉄筋コンクリート部位は強度があり、波力や突入する漂流物に十分耐えることができる。これらで仕切られ守られた部屋も堅固であり、その壁は十分に利用できる。水中となっても空気さえ確保できれば助かる。そこで、生存空気量を確保する避難シェルターを、漂流物の直撃を避ける位置となるよう、かつ水流の影響の少ない位置に、すなわち、窓ガラスのある壁に隠れた位置や突入する津波の流れを平行に受け流す隣家との戸境壁沿いに設置する。避難シェルターの筒材は、防水性、空気遮断性など気密性に優れ、強度のあるガラス繊維、炭素繊維などの強化プラスチック、不織布からなる。あるいは、鋼材、板材とその内側にポリ袋、プラ袋、ゴム袋との重ね合わせなども有効である。津波に襲われた水中では空気を含んだ筒に浮力が働くので、立ち居の形状保持がむつかしいと思われるが、パスカルの原理で、筒内外の空気圧と水圧とは等しいので、膨らむことはない。ただ、水流で揺らぐと考えられるので、この場合は裾から大きな空気の塊が逸脱する。また、浮力と津波の横力により変形すると転倒しやすくなるので、鋼材をシェルター4隅に配置するなどで剛性を向上し転倒防止を図る必要がある。小型のシェルターであるので、建物の天井壁は浮力による貫通に耐えると考えるが、また一時的な荷重であり最終耐力として鉄筋の範囲の天井壁全面で受けると考えられるものの、天井壁の耐力は建物により異なるので確認しておく必要がある。また、窓からの漂流物衝突の衝撃を緩和する必要がある。室内のタンスなどの家具が回流して衝突する可能性もある。水中の空気は、アルキメデスの原理で上昇して抜けるので、シェルターは津波の水中で生存空気量を確保する形状、すなわち上部を閉じた袋状の立筒形状となる。できるだけ多くの空気量を確保するためには、四角柱の囲む空気体積同じとすると、床から天井までの高さを生かすことが望ましい。天井高さから逆算して平面積を求める。例えば、必要空気量、空間量は1m3/人・時間とし、天井までの高さを一般建物の平均的高さの2.4mとし、筒の下部の入り口高さを0.7mとすれば、水中で空気が溜まる有効高さは、入り口頂点高さより上の、2.4-0.7=1.7mである。必要とする平面積は1/(2.4-0.7)=0.59m2である。幼児は同じシェルター内とすることができるが大人2人分は2倍の体積となるので、別々としてもよい。
図1に、部屋に設置する各形状のシェルターを掲げる。0.59m2に対して立筒を四角柱aとすれば1辺が0.77m≒0.8m、半円柱bとすれば半径0.62mである。部屋の角隅部の壁際に設置するのも漂流物を避けるのに有効である。四角柱はそのままであるが、角隅の直角3角形cとすれば1辺が1.09mとなる。角隅設置の1/4の円柱dとすれば、半径は0.87mである。また壁沿いに1.0mの四角柱eとすれば突出量は0.6mと扁平となる。ここで、浮力を緩和するために、平面を1m*1mとすると高さは、1mとなり、出入り口高さは1.4mとなる。窓の頂点高さと天井との高さの差を1mとすれば、部屋空間の空気がありシェルターには浮力はかからない。このように、浮力の観点から工夫することも必要だ。すなわち、耐震性のあるマンションで天井強度の余裕や寸法に余裕がある場合は選択肢となる。
幅0.8mを標準として図2にシェルターの側面図、図3に頂点部平面図、図4に断面平面図を示す。空気をはらんだ立筒が、漂流物の直撃を受け破損したのでは生存空気が抜け、元も子もない。室内のタンスなどの家具が回流して衝突するかもしれない。通過する波流、波圧で揺らぎやすいので、例えば四角柱ではその4隅のコーナーをL形鋼やメタルラック鋼などの縦枠材で保護することで漂流物や家具の直接的衝突や波圧の揺らぎ、変形に耐える課題が解決できる。部屋の角隅の1/4の円柱、直角3角形柱では少なくとも角隅を含めて3本の縦枠材となる。筒材表面はパンチィングメタルでカバーすれば、先の鋭利な漂流物からの保護に役立つ。シェルターは、津波の前の巨大地震のみならずその後の津波波力で転倒の危険性もあるので、その縦枠材を壁に固定した方が望ましいが手続きが容易でない。アンカー位置は、建物の構造的な影響とならないよう壁の鉄筋位置は避けなければならない。壁に穴を明けるとなると、ホテル、ビルのオーナー所有は別としてマンションでは、管理規定で壁は共用部分であり、管理組合や隣人の合意が必要で厄介、面倒である。接着剤で壁に接着する方法もあるが壁に穴を明けない分、合意は得やすいかもしれないが強度不足の問題がある。そこで、図5に示す壁に穴を明けずに、すなわち、アンカーを設けない転倒防止方法を考えることで、容易に進まない面倒な課題を解決できる。筒に設けた縦枠材の対角の長さを利用する。筒が転倒するとした場合、水平な床と天井があることで、床が踏ん張り、支点となり、高さより長い筒対角線長が天井につかえて回転できないようにする。対角線長は高さと水平幅から計算されピタゴラスの定理から求まる。すなわち、筒の対角線長は√(2.4*2.4+0.8*0.8)=√6.4=2.53mで、天井高さ2.4mより13cmほど長い。このことは、転倒するには筒の対角線長以上の長さ、天井との空間が必要なので、筒の頂点部分の断面部を天井に密着、くっつけておけば物体、筒は回転しづらい、回転しない。すなわち、筒の縦枠材の高さや天井高さより筒が傾斜した対角線長が大なので転倒する空間がないことを利用する。結果、天井高さまでの縦枠材と天井までの余裕、隙間は5cm程度まで可能とすれば、筒は天井高さより大の対角線長による回転抵抗で転倒しない。具体的には、筒が変形しないように剛とする。筒の4コーナーの縦枠材の頂点部、途中部、下部などをそれぞれで連結する水平材の配置が有効である。こうすることで、剛となり形状保持に役立つ。多少横滑りするとしても転倒する心配はない。すなわち、隣家との壁にはアンカーが不要となり、マンションでは管理組合との調整が不要で個人個人での室内設置が可能となる。揺らぎによる水平移動も、床から天井までの密着に近い高さをキープしたままの状態なので、小刻みに揺れるもののほぼ移動することはないといえる。多少の水平移動は空気保持に特別な支障もないので許容の範囲である。
つぎに、シェルターの室内搬送と立ち上げる据え付け時の問題も解決する必要がある。図6に示すように天井高さは、マンション毎により異なるため縦枠材長さを調整する必要がある。丁度に計測して製作すればよいが販売現場となるとそうはいかない。そこで、例えば、工場で2mの縦枠材を基準としてその下端0.2mに縦長孔を設け、室内現場で台座を使い持ち上げて0.6mの短尺ものをボルトで継ぎ足すこととすれば、重ね長を0.2mとして高さが2.4mになる。0.7mの短尺ものを継ぎ足すこととすれば、2.5mとなり天井高さ変化に適応出来る。筒体の長さも、同様に調整できれば望ましい。空気保持には出入り口高さより上部だけでよいが、漂流物の衝突保護から床まで垂らしたほうが良い。縦枠材と同様に、2.0mのところでファスナー、ホックなどで継ぎ足すとよい。また、筒体の出入り口にファスナーをつけてもよい。出入り口に同材料の垂面材をつければ漂流物突入防止ともなる。ただし、それでもファスナー部では空気が漏れるので空気量保持の設計上の有効高さはその上部となる。
また、縦長の筒といえども狭い住宅事情の日本では空間占用部が大となり、邪魔な抵抗感がある。壁からの0.8m幅の突出量をできるだけ小さくしたい。図7に示すようにコンパクトとしたい。そうすれば違和感も少なくなる。方法は2つ。壁沿いの長さを長くする横長の扁平形状とするか、折りたたみできないか考える。できれば突出量として図7aの0.8mから、図7eで0.6m、図7hで0.5m、図7iで0.4m、図7jで0.3m、図7fで0.2m、図7gで0.1mの可能性を考える。さらに、浮力、天井壁の耐力の関係から逆に広くすることも検討する。部屋の角隅に設置する図7kで、平面幅1m*1mで、出入口高さを1.4mとし、有効空気保存高さをその上の1.0mとする例を示す。扁平とする前者の方法では、内部の人の腹部周りが支障となるので個人差にもよるが0.3m=3.14*0.3=94cmの人が限界として考えられ、その場合の壁沿いの長さは0.59/0.3≒2.0mとなる。それ以上の扁平、薄型は難しいといえる。そこで当初から、壁面からの突出量を0.4m、0.5mで我慢すると、壁面沿いの長さは、図7iの0.59m2/0.4≒1.5m、図7hの0.59m2/0.5≒1.2m、すなわち、概1.5*0.4m、または概1.2*0.5mの長方形断面となる。さらに突出量を小さくするには、後者の折りたたみの方法による。図7f、g、図8f、gに示すように壁面からの突出量は2*0.1=0.2m、2*0.05=0.1mでスマートである。筒材の側面部は、縦枠材のコーナーからの2つ折りならば0.8/2=0.4mほどが筒内部に折り込まれ、その両先端間に隙間がなく、互いにずらすことができればよいが、天板部材に余裕がない。そこで、0.1mの縦枠材の部材端から折り込むと2つ折りで0.8/2―0.1=0.3m、0.05mの縦枠材で0.8/2―0.05=0.35mほどが筒内部に折り込まれ両先端間に余裕が生まれる。最小の突出幅0.1mとするには、外枠の縦枠材の幅は、半分の0.05mで、メタルラックの細い板柱やL形鋼が考えられる。ところが、突出量が0.1mの場合の対角線長は、√2.4*2.4+0.1*0.1=2.4005cmでほとんど長くならず、これでは転倒する。突出量を0.2mとしても、√2.4*2.4+0.2*0.2=2.4083cmで転倒する。突出量を0.3mとすれば、√2.4*2.4+0.2*0.2=2.4187cmで、床に下敷きを入れるなどの工夫で、天井と密着させれば何とか転倒しないといえる。突出量を0.2mとか0.1mとかの薄厚のコンパクトとするには、多くの住民の賛同を得て壁側に穴を明けアンカーボルトで定着するか、壁側の縦枠材を接着剤で接着するか、壁、床、天井に小さいアンカーをとって、ひも、ロープでシェルターを縛るか囲むかなどの転倒防止策をとることで突出量を少なくでき、コンパクトにする課題を解決できる。立筒のシェルターの筒材は、内部で2つ折りにたたむことになる。側面を折りたたむので、筒体の側面部は、板面の折り返し部となり、筒体内部で360度に折り返すことになる折れ面では遮水の気密性、柔軟性が求められる。さらに、筒体の天板部は、極端に折り込まれることになり、折りたたみ易さ、折り目の伸ばしやすさ、追従性などが求められ、別材料となる可能性も考慮する必要がある。立筒の天板部と建物の天井との隙間は密着、あるいはわずかなので、漂流物が入り込むこともないといえ天板部は柔軟性、気密性があれば比較的弱い材料でも可能である。筒体の底辺部では特に空気保持には有効でなく、出入り口の面材もなければ折り返しがスムーズでないことからも、省略することもできる。ただし、筒体の縦本体部との上部の接合は、ボタン穴のようでは空気が抜けると元も子もないので密接、密着でなければならないことは言うまでもない。津波来襲時前には、すでに人が中に入って避難できた状態にするために、素早く折りたたみ部を引き延ばし元の0.8mとなるよう成型しなければならない。引き出すために壁から遠い側のシェルターの縦枠材には、図6に示す取手等が必要である。壁側の縦枠材は壁と固定していることが望ましいが、壁と接着剤で接着しても反力を受け持つ効果はある。引っ張りやすさから、取っ手は、壁とは対面側の2本の外縦枠を水平に結ぶひも、帯が作業性に優れる。対面側の縦外枠の頂点部、底辺部に滑りやすいように滑車、リールを配置する工夫も考えられる。折りたたんだ時点では対面側には水平材が配置できているものの、側面側には水平材は配置できてないので、拡張した後の形状保持のための水平材の取り付け作業は大切で、急がなくてはならない。当然後付けになる。例えば、壁側の縦枠材の表面に突出ボルトを設け、そこに仮に垂らして縦置きとする水平材を設け、地震後に下端を引き出し90度回転し、対面の縦枠材の突出ボルトに橋渡しする。あるいは単に、両側の縦枠材に突出ボルトを設け、外に準備した脚立に上がり、用意した穴あきの水平材を嵌合し橋渡しする。シェルターは、特に膨らませる必要はなく、筒材を所定長さになるまで引き出すことで拡張され、内部に所定空気量を確保することができる。ここで、逆にコンパクトでなく壁からの突出を我慢できるとすれば、1m*1m*1mの立方体形状では入り口高さが1.4mと高く避難しやすい。この場合も当然縦枠材が必要である。
津波の高さが10m、20m、30mとなるとそれに伴い筒体内部の水位が上がる。1階の人に比べ、2階、3階と上層階の人は床高さに応じて、津波水圧の負担が少なくなる。1階の人のその時の内部水位の変化を図9に示す。空気体積がボイルの法則で、1/2、1/3、1/4に圧縮されるので、内部水位は1.7*(1/2、1/3、1/4)で天井頂点部から0.85m、0.57m、0.425mと呼吸する余裕空間高さが少なくなる。その分呼吸する口の高さを確保しなければならないので、筒の内部には、脚立、組み立て脚立が役に立つ。筒を折りたたむと中に脚立を挿入できないので、折り畳み式脚立の事前挿入とするか、製品脚立の後挿入とするかである。安全を見て個人の頭頂部が天井に届く高さの脚立が良い。内部の脚立は、漂流物の侵入、衝突防止にも役立つ。中に閉じ込めた空気で筒体全体に浮力が生じるが、部屋の天井壁で受け止めることになる。頂点部には、面材で覆うとすることで浮力を広く分散できる。
図10に示すように、0.8m角で長さ2.4mのポリ袋、ビニール袋などの気密性の袋体を事前に内蔵することとすれば2重の安心となる。長さ2.4mのポリ袋は、当初は、出入り口の頂点高さの0.7mに蛇腹式に巻き上げて、そのままでもよいが、内部に避難後、それを床面までおろせば生存必要空気量は2.4/1.7=1.4倍確保できるので安心度が増すといえる。また水位上昇とともに体が濡れ、特に冬場では耐えがたいほど寒い。そこで足元から肩口までのビニール袋サックを用意しておけば身を包むことができる。幼児、子供、あるいは夫婦と複数の同時避難するシェルターの拡大にも別途対応が可能である。さらにシェルターに穴が開き空気が逸脱する最悪のケースでは、ごみ収集用のビニール袋を用意しておけば頭からかぶれるのでシェルター内の空気が逸脱する場合の最後の砦、賢者の備えとなる。
また、狭い筒の中の空気量は限定的であるが、筒の外の部屋の天井空間の空気は、津波水中でも上に凸の広い面積の天井空間に空気が溜まっている。空気層圧を0.1mとしても新鮮で大容量である。そこで筒内部の新鮮な酸素量が減ってきたときに空気を補充できないかと考える。幸いにして垂直壁で囲まれた天井空間には、水平な水位上昇とともに閉塞空間が生まれ空気が外に逃げずに残っている。筒内部空気と筒外部の天井空間の空気を、筒の出入り口を迂回して、すなわち、図11に示すようにゴムホースのチューブをU型に折り返すように設置すれば、内部が息苦しくなってもチューブ口から広い天井空間の外部の新鮮な空気を吸引できる。外の片側のホース端は部屋の天井高さとすると水位が上がった場合でも水が入ってこない。埃の溜まらないよう先端は水平に曲げておく。下方の出入り口部で折り返して筒内部側へは補助棒で立ち上げ頂点部まで伸ばした後に、下に折り返し、例えば0.5m以上延長とすれば口元に届き、筒の外の天井の新鮮な空気を吸い込みやすい。
津波以外に、近年多発する河川の氾濫時や集中豪雨の洪水時の大浸水、大水害にも本発明のシェルターは有効である。
In the upcoming Nankai Trough megathrust earthquake, a tsunami with a maximum height of 34.4m will arrive in as little as 1-5 minutes. The number of deaths is said to be 320,000, and the maximum damage occurs in the middle of the night in the middle of winter. In other words, there is no time to evacuate during that time, and naturally there is nothing you can do if you are asleep. Even if it takes 1 to 5 minutes, it takes 2 to 3 minutes for the shaking of the earthquake to subside. There is no time for hesitation. You have to make up your mind to evacuate while it is shaking. However, evacuating to the outside in a hurry is dangerous because even a 0.3-meter tsunami can trip over your feet and even kill you. A huge tsunami attracts attention, but even a low tsunami of only 1.5m, which has a higher probability of occurrence, is hopeless because people cannot breathe in the water. Can we do something about it? If air can be secured at a mouth height of 1.5m from the floor on each floor of the building, one problem will be solved first. Fortunately, solid buildings such as condominiums are strong enough to withstand the wave force of tsunamis and the collision of drifting objects, unlike ordinary houses that are shredded to pieces. You don't have to go outside even in the coldest of winters. The wave force is likely to topple the building, but instead the window glass is broken and the wave escapes. If the windows are broken, water will flood and the buoyancy will be eliminated, so the building will not float. In other words, it can be said that the solid building itself is strong against tsunamis, and the strength that has been protected should be fully utilized and utilized. In order for humans to survive, they must be able to avoid the impact of debris from a rushing tsunami and be able to hold air even in the water of a tsunami. In other words, it can be seen that an air bag that protects the body from impact and envelops the air in the water is sufficient. The formation body of the air bag is called a shelter. In the present invention, by installing a non-sealed small evacuation shelter for a small number of people along the wall of a room in a solid building, it is possible to instantly evacuate and solve the problem of being able to continue to survive underwater. Since it is possible to evacuate indoors, the inside of a room in the building becomes an instant evacuation site with the shortest distance. Reinforced concrete parts such as walls, floors, and ceilings of buildings are strong enough to withstand wave forces and incoming drifting objects. The rooms partitioned and guarded by these are also solid, and the walls are fully usable. Even if it becomes underwater, it will be saved if we can secure air. Therefore, evacuation shelters that secure air volume for survival should be placed in positions that avoid direct hits by drifting objects and are less affected by water currents. It is installed along the boundary wall with the neighboring house that parries in parallel. Evacuation shelter cylinders are made of reinforced plastics such as glass fiber, carbon fiber, and non-woven fabric, which are excellent in airtightness such as waterproofness and air barrier properties. Alternatively, it is effective to superimpose a steel material or plate material with a plastic bag, a plastic bag, or a rubber bag inside. In the water hit by the tsunami, buoyancy acts on the air-filled cylinder, so it seems difficult to maintain the shape of the cylinder. However, since it is thought that it will be swayed by the water flow, in this case a large mass of air will deviate from the hem. In addition, if the shelter is deformed by the buoyancy and the lateral force of the tsunami, it will easily topple over. Therefore, it is necessary to improve the rigidity of the shelter by placing steel materials at the four corners of the shelter to prevent it from overturning. Since it is a small shelter, the ceiling wall of the building can withstand penetration by buoyancy.Although it is a temporary load and it is considered that the entire surface of the ceiling wall within the area of the reinforcing bars receives the ultimate strength, the strength of the ceiling wall is It depends on the building, so it is necessary to confirm. Also, it is necessary to mitigate the impact of collision with drifting objects from the window. There is also a possibility that furniture such as a chest of drawers in the room will circulate and collide. Since the air in the water rises and escapes according to Archimedes' principle, the shelter has a shape that secures the amount of air to survive in the water of the tsunami. In order to secure as much air volume as possible, it is desirable to make use of the height from the floor to the ceiling, assuming that the volume of air enclosed by the quadrangular prisms is the same. Calculate the flat area by calculating back from the ceiling height. For example, if the required air volume and space volume are 1 m3/person/hour, the height to the ceiling is 2.4 m, which is the average height of a general building, and the entrance height at the bottom of the cylinder is 0.7 m, The effective height at which air accumulates in the water is 2.4−0.7=1.7m above the entrance apex height. The required flat area is 1/(2.4-0.7)=0.59m2. Infants can be kept in the same shelter, but two adults can be separated as they are double the volume.
Figure 1 shows shelters of each shape to be installed in a room. With respect to 0.59m2, if the upright cylinder is a square column a, one side is 0.77m≈0.8m, and if it is a half cylinder b, the radius is 0.62m. Placing it near the wall in the corner of the room is also effective in avoiding drifting objects. The quadrangular prism is left as it is, but if it is assumed to be a right-angled triangle c at the corners, one side is 1.09 m. Assuming a 1/4 corner cylinder d, the radius is 0.87 m. In addition, if a 1.0 m square pole e is formed along the wall, the protruding amount becomes 0.6 m, which is flat. Here, in order to reduce the buoyancy, if the plane is 1m*1m, the height will be 1m, and the height of the entrance/exit will be 1.4m. Assuming that the difference between the top height of the window and the height of the ceiling is 1 m, there is air in the room space and no buoyancy is applied to the shelter. In this way, it is also necessary to devise from the viewpoint of buoyancy. In other words, it is an option for earthquake-resistant condominiums with room for ceiling strength and dimensions.
2 shows a side view of the shelter, FIG. 3 shows a plan view of the top part, and FIG. If the air-filled vertical cylinder were to be damaged by a direct hit from drifting objects, the survival air would be lost and there would be nothing left. Furniture such as a chest of drawers in the room may circulate and collide. Since it is easy to be shaken by passing waves and wave pressure, for example, by protecting the four corners of a square column with vertical frame materials such as L-shaped steel and metal rack steel, it is possible to avoid direct collisions with drifting objects and furniture and wave pressure. It is possible to solve the problem of enduring fluctuation and deformation of 1/4 of the corners of the room are cylinders, and in the case of a right-angled triangular column, there are at least three vertical frame members including the corners. If the surface of the cylinder is covered with punching metal, it will be useful for protection from sharp drifting objects. Since shelters are at risk of overturning not only in the event of a mega-earthquake before a tsunami, but also in the force of subsequent tsunamis, it is desirable to fix the vertical frames to the walls, but this is not an easy procedure. Anchor positions should be avoided at wall rebar positions so as not to affect the structure of the building. When it comes to drilling a hole in the wall, apart from hotels and buildings owned by owners, in condominiums, walls are common areas according to management regulations, and it is troublesome and troublesome because the agreement of the management union and neighbors is required. There is also a method of adhering to the wall with adhesive, but it may be easier to obtain agreement because it does not make holes in the wall, but there is a problem of insufficient strength. Therefore, by devising a tipping prevention method without drilling a hole in the wall, that is, without providing an anchor as shown in FIG. The diagonal length of the vertical frame member provided on the cylinder is used. If the cylinder falls over, the horizontal floor and ceiling act as a fulcrum, and the diagonal length of the cylinder, which is longer than the height, catches on the ceiling and prevents it from rotating. The diagonal length is calculated from the height and horizontal width and is obtained from the Pythagorean theorem. That is, the diagonal length of the cylinder is √(2.4*2.4+0.8*0.8)=√6.4=2.53m, which is 13cm longer than the ceiling height of 2.4m. This means that in order to fall over, it is necessary to have a length longer than the diagonal length of the cylinder and a space with the ceiling. do not. In other words, since the diagonal length of the tilted cylinder is greater than the height of the vertical frame members of the cylinder and the height of the ceiling, there is no space for overturning. As a result, if the space between the vertical frame members up to the ceiling height and the ceiling is allowed to be about 5 cm, the cylinder will not fall over due to the rotational resistance due to the diagonal length greater than the ceiling height. Specifically, the tube is made rigid so as not to deform. It is effective to arrange horizontal members that connect the tops, middles, bottoms, etc. of the vertical frame members at the four corners of the cylinder. This makes it stiff and helps it retain its shape. Even if it skids a little, there is no need to worry about falling over. That is, there is no need for an anchor on the wall between neighboring houses, and in condominiums, individual installation is possible without coordination with the management association. The horizontal movement caused by fluctuations is also maintained at a height that is close to the close contact from the floor to the ceiling, so it can be said that there is almost no movement, although it shakes in small steps. A small amount of horizontal movement is permissible because it does not cause any particular problem with air retention.
Next, it is necessary to solve the problems of transporting the shelter indoors and setting it up. As shown in FIG. 6, the ceiling height differs depending on the condominium, so it is necessary to adjust the length of the vertical frame members. It would be nice to measure and manufacture exactly, but that is not the case when it comes to the sales site. Therefore, for example, if a vertically long hole of 0.2m is made at the lower end of a 2m vertical frame member at the factory, and a pedestal is used to lift it indoors and a short 0.6m member is added with bolts, The length is 0.2m and the height is 2.4m. If a short piece of 0.7m is added, it becomes 2.5m and can be adapted to changes in ceiling height. It is desirable if the length of the cylinder can be similarly adjusted. Only above the doorway height is required for air retention, but it is better to hang down to the floor from the collision protection of drifting objects. As with the vertical frame material, it is recommended to add fasteners, hooks, etc. at 2.0m. Moreover, you may attach a fastener to the doorway of a cylinder. If a vertical material of the same material is attached to the entrance, it will also prevent drifting objects from entering. However, since air still leaks from the fastener, the design effective height for retaining the air volume is the upper portion.
In addition, even with a vertically long cylinder, the space occupied in Japan is large, and there is a sense of resistance to it being an obstacle. We want to minimize the amount of protrusion of the 0.8m width from the wall as much as possible. We want to make it compact as shown in FIG. This will reduce discomfort. There are two ways. Consider whether it should be a horizontally long flat shape that lengthens the length along the wall, or whether it can be folded. If possible, the amount of protrusion is 0.8 m in FIG. 7a, 0.6 m in FIG. 7e, 0.5 m in FIG. 7h, 0.4 m in FIG. 7i, 0.3 m in FIG. Consider the possibility of 0.1 m. In addition, considering the relationship between buoyancy and the strength of the ceiling wall, we will consider making it wider. Fig. 7k, which is installed in a corner of a room, shows an example in which the plane width is 1m*1m, the entrance/exit height is 1.4m, and the effective air storage height is 1.0m above it. In the former method of flattening, the circumference of the abdomen of the person inside becomes a hindrance. The length along the line is 0.59/0.3≈2.0 m. It can be said that further flatness and thinness are difficult. Therefore, if the amount of protrusion from the wall surface is endured at 0.4m and 0.5m from the beginning, the length along the wall surface is 0.59m2/0.4≈1.5m in Fig. 7i and 0.59m2/ in Fig. 7h. 0.5≈1.2m, ie a rectangular cross-section of approximately 1.5*0.4m, or approximately 1.2*0.5m. The latter folding method is used to further reduce the amount of protrusion. As shown in FIGS. 7f, g and 8f, g, the amount of protrusion from the wall surface is 2*0.1=0.2m and 2*0.05=0.1m, which is smart. If the side part of the cylindrical material is folded in two from the corner of the vertical frame material, about 0.8/2 = 0.4m is folded inside the cylinder, and there is no gap between both ends, and it is sufficient if they can be shifted from each other. However, there is no room for the top plate member. Therefore, when folding from the member end of a 0.1 m vertical frame material, 0.8/2-0.1 = 0.3 m when folded in two, and 0.8/2 - 0.05 = when folding a 0.05 m vertical frame material. About 0.35m is folded inside the cylinder, creating a margin between both ends. In order to achieve the minimum projecting width of 0.1m, the width of the vertical frame material of the outer frame should be halved to 0.05m. However, when the amount of protrusion is 0.1 m, the diagonal length is √2.4*2.4+0.1*0.1=2.4005 cm, which is almost not long, and it falls over. Even if the amount of protrusion is 0.2m, it falls over at √2.4*2.4+0.2*0.2=2.4083cm. If the protruding amount is 0.3m, it is √2.4*2.4+0.2*0.2=2.4187cm. I can say. In order to make it compact and thin with a protrusion of 0.2m or 0.1m, holes must be made in the wall and fixed with anchor bolts with the approval of many residents. The amount of protrusion can be reduced by taking measures to prevent overturning, such as attaching small anchors to walls, floors, and ceilings, and tying or enclosing the shelter with strings or ropes, and the problem of making it compact can be solved. The tubular material of the vertical shelter is folded in two inside. Since the side surface is folded, the side surface of the cylindrical body serves as a folded portion of the plate surface, and the folded surface that is folded back 360 degrees inside the cylindrical body requires airtightness and flexibility for water impermeability. Furthermore, the top plate portion of the cylindrical body is extremely folded, so that easiness of folding, easiness of stretching folds, followability, etc. are required, and it is necessary to consider the possibility of using a different material. The gap between the top plate of the vertical tube and the ceiling of the building is close or small, so drifting objects cannot enter, but if the top plate is flexible and airtight, it is possible to use a relatively weak material. It is not particularly effective for retaining air at the bottom of the cylinder, and it can be omitted because there is no face material for the entrance and exit and the folding is not smooth. However, it is needless to say that the upper portion of the cylindrical body and the vertical main body portion must be closely and closely attached, because if the air is released like a buttonhole, the upper portion will become useless. Before the tsunami hits, the folding part must be quickly extended to the original 0.8 m so that people can already enter and evacuate. A handle or the like shown in FIG. 6 is required for the vertical frame member of the shelter on the far side from the wall for pulling out. It is desirable that the vertical frame member on the wall side is fixed to the wall, but even if it is adhered to the wall with an adhesive, there is an effect of receiving the reaction force. For ease of pulling, the handle is a string or belt that horizontally connects the two outer vertical frames on the side facing the wall, and is excellent in workability. It is conceivable to arrange pulleys and reels on the top and bottom of the vertical outer frame on the facing side so that they slide easily. At the time of folding, the horizontal members can be placed on the opposite side, but the horizontal members cannot be placed on the side, so it is important to attach the horizontal members to maintain the shape after expansion. Must-have. Of course it will be an afterthought. For example, a protruding bolt is provided on the surface of the vertical frame member on the wall side, and a horizontal member that is temporarily suspended vertically is provided. do. Alternatively, simply provide protruding bolts on the vertical frame members on both sides, climb on a stepladder prepared outside, and engage and bridge the prepared horizontal members with holes. The shelter does not need to be inflated, and can be expanded by pulling out the tubular material to a predetermined length, and a predetermined amount of air can be secured inside. On the other hand, if it is not compact and the protrusion from the wall can be endured, the cubic shape of 1m*1m*1m has a high entrance height of 1.4m, which makes it easy to evacuate. In this case, of course, a vertical frame member is also required.
When the height of the tsunami becomes 10 m, 20 m, and 30 m, the water level inside the cylinder rises accordingly. Compared to people on the 1st floor, people on the 2nd and 3rd floors will be less affected by the tsunami water pressure according to the floor height. Fig. 9 shows the change in the internal water level of the people on the first floor at that time. Since the air volume is compressed to 1/2, 1/3, and 1/4 according to Boyle's law, the internal water level is 1.7*(1/2, 1/3, 1/4) from the top of the ceiling. 0.85m, 0.57m, 0.425m, and the height of the space for breathing is reduced. Because it is necessary to secure the height of the mouth for breathing, stepladders and assembled stepladders are useful inside the cylinder. Since the stepladder cannot be inserted into the tube when it is folded, there is a choice between inserting the folding stepladder in advance or inserting the product stepladder afterward. For safety, a stepladder with a height where the top of the head reaches the ceiling is good. The internal stepladder also helps prevent drifting objects from entering and collisions. The air trapped inside creates a buoyant force on the entire cylinder, which is received by the ceiling wall of the room. The buoyancy can be widely distributed by covering the vertex with a face material.
As shown in FIG. 10, if an airtight bag such as a plastic bag or a plastic bag of 0.8 m square and 2.4 m in length is incorporated in advance, double security can be obtained. The 2.4m-long plastic bag can be rolled up in a bellows-like manner to 0.7m above the top of the entrance at first, and it can be left as it is. can be secured 2.4/1.7=1.4 times, so it can be said that the degree of security increases. Also, as the water level rises, the body gets wet, and it is unbearably cold, especially in winter. Therefore, if you prepare a plastic bag sack from your feet to your shoulders, you can wrap yourself. It is also possible to separately expand the number of shelters where infants, children, or couples can evacuate at the same time. Furthermore, in the worst-case scenario where a hole opens in the shelter and the air escapes, if you prepare a plastic bag for garbage collection, you can get a rash on your head, so it will be the last bastion, the wise man's preparation, in case the air inside the shelter escapes.
In addition, although the amount of air in the narrow cylinder is limited, the air in the ceiling space of the room outside the cylinder is accumulated in the ceiling space with a large area that is convex upward even in the water of the tsunami. Even if the air layer pressure is 0.1 m, it is fresh and has a large capacity. Therefore, I think that it is possible to replenish air when the amount of fresh oxygen inside the cylinder decreases. Fortunately, in the ceiling space surrounded by vertical walls, as the water level rises horizontally, a closed space is created and the air remains without escaping. If the air inside the cylinder and the air in the ceiling space outside the cylinder bypass the entrance of the cylinder, that is, by folding the rubber hose tube in a U shape as shown in FIG. Fresh air outside the wide ceiling space can be sucked from the mouth. If the hose end on one side of the outside is at the ceiling height of the room, water will not come in even if the water level rises. Bend the tip horizontally to prevent dust from accumulating. Fold back at the lower entrance and exit to the inner side of the cylinder with an auxiliary rod. easy to absorb.
In addition to tsunami, the shelter of the present invention is also effective for large floods and large floods during river floods and torrential rains that have frequently occurred in recent years.

このような課題を解決するために、本発明のマンション、ホテル、ビルなどの室内設置の津波等避難シェルターは、マンション、ホテル、ビルなどの堅固な建物室内に設置する少人数対応、小型の立筒形の津波等避難シェルターであって、筒体内部に人数分の水中での生存必要空気量を確保する空間を有し、筒材は、気密性、強度に優れたガラス繊維、炭素繊維等の強化プラスチック、不織布あるいは鋼板、板材等と内部側にポリ袋などのプラスチック袋などとの重ね合わせなどから成り、筒体は下部に出入り口となる開口部、またはまくり上げて出入りできる蛇腹式開口部を設け、上部は閉じた中空の袋状の構造とし、外枠として、高さが床から概天井までとする縦枠材を筒体のコーナー部に設け形状保持とし、津波による内部水位の上昇や漂流物の侵入に備え脚立、踏み台などを用意することとし、前記シェルターを部屋の壁面沿いや隅角部に設置することを特徴とする。 In order to solve such problems, the tsunami evacuation shelter for indoor installation in condominiums, hotels, buildings, etc. of the present invention is a small-sized standing shelter that can accommodate a small number of people and is installed in a solid building room such as condominiums, hotels, and buildings. A cylindrical evacuation shelter for tsunami, etc., which has a space inside the cylinder to secure the amount of air necessary for survival in the water for the number of people, and the cylinder material is glass fiber, carbon fiber, etc. with excellent airtightness and strength. It consists of reinforced plastic, non-woven fabric, steel plate, plate material, etc., and a plastic bag such as a plastic bag on the inside, and the cylindrical body has an opening at the bottom that serves as an entrance or exit, or a bellows type opening that can be rolled up to enter and exit. The upper part has a closed hollow bag-like structure, and as an outer frame, a vertical frame material whose height is approximately from the floor to the ceiling is provided at the corner part of the cylindrical body to maintain the shape, and the internal water level rises due to the tsunami. Stepladders, stepping stools, etc. are prepared in preparation for the invasion of drifting objects, and the shelters are installed along the walls and corners of the room.

また、本発明のマンション、ホテル、ビルなどの室内設置の津波等避難シェルターは、前記筒体コーナー部の縦枠材の頂点部および底辺部を連結する面材または水平材を設けることで、立筒形の形状保持、漂流物衝突の衝撃緩和を図り、壁にアンカーが取れなくても縦枠材と面材または水平材とでなる回転の長さとなる対角線長が、床と天井との空間高さを上回ること、すなわち回転時に部屋の天井壁につかえることを利用して転倒防止を図るとしたことを特徴とする。 In addition, the tsunami evacuation shelter installed indoors in condominiums, hotels, buildings, etc. of the present invention is provided with a face member or a horizontal member that connects the top and bottom portions of the vertical frame members at the corners of the cylindrical body. The diagonal length, which is the length of rotation between the vertical frame member and the surface member or horizontal member, is the length of the space between the floor and the ceiling, in order to maintain the cylindrical shape and reduce the impact of collision with drifting objects, even if the anchor cannot be removed from the wall. It is characterized in that it is designed to prevent overturning by utilizing the fact that it exceeds the height, that is, it can be caught on the ceiling wall of the room when it rotates.

また、本発明のマンション、ホテル、ビルなどの室内設置の津波等避難シェルターは、前記シェルターの壁面からの突出量を減らしコンパクトにすることとし、壁面沿いの筒材の延長を増やし扁平として突出量を減らすか、または筒材を折りたたみ方式とし、折りたたみ方式では筒材の側面部は折りたたみ易さに優れ、筒材の頂点部は伸縮性に優れたものとし、折りたたむ側の縦枠材間の水平材は、折りたたみ部を拡張した後に水平材を縦枠材間に架け渡す後付け方式とし、折りたたまない側の対面の辺にはあらかじめ縦枠材を連結する水平材を設けることで、立筒形の形状保持、漂流物衝突の衝撃緩和を図り、転倒に対して、壁にアンカーが取れない場合はコンパクトとするにしても壁からの突出量を0.3m以上に確保し、アンカーが取れる場合は突出量を0.1mまでコンパクトにできるとしたことを特徴とする。 In addition, the tsunami evacuation shelter for indoor installation in condominiums, hotels, buildings, etc. of the present invention is made compact by reducing the amount of protrusion from the wall surface of the shelter, and by increasing the extension of the tubular material along the wall surface and making it flat. In the folding method, the sides of the cylinder should be easy to fold, the top of the cylinder should be highly stretchable, and the horizontal between the vertical frames on the folding side should be After the folding part is expanded, the horizontal members are installed afterward by connecting the vertical members between the vertical members. In order to maintain the shape and mitigate the impact of collision with drifting objects, if the anchor cannot be removed from the wall, even if it is made compact, the amount of protrusion from the wall should be 0.3 m or more, and if the anchor can be removed. It is characterized in that the amount of protrusion can be made compact to 0.1 m.

また、本発明のマンション、ホテル、ビルなどの室内設置の津波等避難シェルターは、前記シェルターの断面内側に、空気漏れに対してさらなる安全として筒体と離隔して空気袋体を設置するもので、頂点部から出入り口頂点高さまたは床まで延長した長さの、上を閉じたポリ袋、ビニール袋、ゴム袋などの気密性、柔軟性に優れた薄い袋体を設置することを特徴とする。 In addition, in the evacuation shelter for tsunami, which is installed indoors in condominiums, hotels, buildings, etc., according to the present invention, an air bag is installed on the inner side of the cross section of the shelter, separated from the cylindrical body for further safety against air leakage. A thin bag with excellent airtightness and flexibility such as a plastic bag, plastic bag, rubber bag, etc. with a closed top is installed in a length extending from the top to the height of the top of the entrance or to the floor. .

また、本発明のマンション、ホテル、ビルなどの室内設置の津波等避難シェルターは、前記シェルターの内部空気が新鮮でなくなることの対策として、片端を筒体外側の部屋の天井部とし、反対側の片端を前記袋体、筒体の内部とし、中間の筒体下部端でU字型に折り返し、内部の前記袋体、筒体の頂点部近傍でさらに折り返し、下方に延長し口元に届くとしたゴムホース、チューブなどを配置することで、部屋天井部の新鮮な空気を吸引できるとしたことを特徴とする。 In addition, in the evacuation shelter for tsunami, which is installed indoors in condominiums, hotels, buildings, etc. of the present invention, as a countermeasure against the inside air of the shelter becoming stale, one end is the ceiling of the room outside the cylindrical body, and the other side is One end is used as the inside of the bag and cylinder, folded back into a U shape at the lower end of the middle cylinder, further folded near the top of the bag and cylinder inside, and extended downward to reach the mouth. By arranging rubber hoses, tubes, etc., it is characterized by being able to suck fresh air from the ceiling of the room.

巨大津波にあきらめていた命が容易に助かる。堅固な建物を利用しない方はない。外に出ないで瞬時に避難できる。水中で持続して空気が吸える。確実な光明が見えてきた。最短1~5分で急襲するとされる津波では、外に出て避難する時間余裕がない。地震の揺れが収まるのが2.5分とされ、残りの時間は2分程度しかない。幸いにして建固な建物は、漂流物の直撃は外壁で受けるので影響力は比較的緩和され、ガラス窓が突破されることで波力の横力が抜けて建物の転倒の心配もなくむしろ安全な囲いの中といえ、室内シェルターであれば最短時間、2分で避難できる。真冬の寒い真夜中でも、迅速に避難できる。入浴中でも、泥酔中でも、熟睡中でも。安心して酒が飲めることは何よりうれしい。日々不安なく睡眠できることはなんと幸せなことか。
また、マンションの上層階になればなるほど同じ津波高さに対して負担が軽減される。助かる確率が高くなる。この有利な条件を活かさない方はない。屋上が高ければ上に逃げるのがベストだが、時間もかかる、避難の途中が最も危ない。想定外の津波高さが襲うかもしれないので水中となれば生身では呼吸できない。先の2022年1月のトンガの津波では、命がかかっているといえど、また注意報が出ているにもかかわらず、人は真冬で寒ければ外に逃げるのも億劫、行動しないこと、簡単にあきらめてしまうことが立証された。高齢者はなおさらである。ここでは条件の悪い1階の住民を対象としている。2階、3階と上層階になるほど助かる確率は高く住民の間で差が出るのはやむを得ない。最大高さの津波は確率が低いが、それでも最低、各階で口元高さの床からの高さ1.5mが必要である。本発明のシェルターで全住民が助かる可能性が飛躍的に高くなる。もともと一般住宅の人よりはるかに助かる確率が高いことをかみしめて、あと少しの努力。常日頃からどのように避難するかを考えておくことがとっさの判断、行動となり生死を分ける。本発明は津波弱者に最適の解を提供して、明確に生きる希望を与えるものである。
オーナーのいるホテル、ビル以外のマンションでは、壁にアンカーを打つ場合は、壁は共用部になるので管理組合や隣人の同意が必要である。いきなり集会を開いて同意を得る労苦を避けたい。特に、最初にシェルターを設置する人は面倒なことを避けたい。それとは別にさらに建築法や耐震確認など難題の壁がある。命の方が大事であるにもかかわらず法律の壁がある。壁に穴を明けない方法があるならば気を遣わずベストといえる。本発明では穴を明けないで済むので気苦労は不要である。壁の鉄筋位置を確認しないで済むので個人で設置できる。しばらくして、話題となりある程度の住民がシェルターを設置希望すれば全体でも賛同を得やすい。すなわち、実態として壁のアンカーは、クーラーの取り付けアンカーが可能ならば、同程度の壁へのアンカーは可能、許容されていくものと考えられる。先行して設置した住民も、マンション全体で賛同者が増えれば、すでに設置済みのシェルターに後打ちでアンカーをとることができる。本発明は、煩わしいこととなるアンカーが取れなくても転倒しない。また、命が助かるといえど、壁から突出、嵩張るのは狭い住宅事情から望まれない。折りたためてコンパクトになると平素の生活空間の安寧が保たれる。防潮堤ができるのがいつのことか。津波避難タワーも遠い。真冬に外に出なくて済む本発明のマンション、ホテル、ビル対応のシェルターは、どんなに想定外の大きさの津波にも命が助かる。それよりも頻発しそうな1.5m程度の低い津波、息ができない程度の高さにも備えが必要で、身近に空気筒タイプのシェルターがあるだけで日々安心だ。金額負担も命の対価としては、非常に安価な優れものといえる。これで32万人の命の一部、設置希望者の全員の命、簡単に奪われる命が確実に助かる。早く設置すればするほど、いつ襲われるかという不安が解消され、それだけ早く日々安心して暮らせることか。枕を高くして寝れる。たとえ24時間の半分の夜間だけとしても。精神的にも健康にもよい。命は一つしかない。
A life that had been given up by a huge tsunami can be easily saved. There is no one who does not use solid buildings. You can evacuate instantly without going outside. You can breathe air continuously underwater. A definite light has come into view. A tsunami, which is said to strike in as little as one to five minutes, does not have time to go outside and evacuate. It takes 2.5 minutes for the shaking of the earthquake to subside, leaving only about 2 minutes left. Fortunately, a solid building receives a direct hit from drifting objects on the outer wall, so the impact is relatively mitigated. Even if you are in a safe enclosure, if you are in an indoor shelter, you can evacuate in as little as two minutes. You can quickly evacuate even in the middle of the cold winter night. Even when you're bathing, drunk, or asleep. I am more than happy to be able to drink alcohol in peace. How happy it is to be able to sleep without anxiety every day.
In addition, the higher the floor of the apartment, the less the burden for the same tsunami height. more likely to be helped. There is no one who does not take advantage of this advantageous condition. If the roof is high, it's best to escape to the top, but it takes time, and the middle of the evacuation is the most dangerous. Unexpected tsunami height may hit, so if you are underwater, you can't breathe with your body. In the tsunami in Tonga in January 2022, even though life was at stake, even though warnings were issued, it was difficult for people to escape outside if it was cold in the middle of winter. It has been proven to give up on Elderly people are even more so. Here, the target is the inhabitants of the first floor with poor conditions. The higher the floor, the higher the probability of being saved, and the difference between the residents is unavoidable. The maximum height of the tsunami has a low probability, but even so, a minimum height of 1.5m from the mouth-height floor is required on each floor. The shelter of the present invention dramatically increases the chances that all residents will be saved. Considering that the probability of being saved is much higher than that of a person living in a general house, just a little more effort. Thinking about how to evacuate on a daily basis becomes a quick decision and action that can mean the difference between life and death. The present invention provides the most suitable solution for tsunami-vulnerable people and gives hope to live clearly.
In hotels and condominiums other than buildings with owners, the consent of the management association and neighbors is required when anchoring walls, since the walls are common areas. I want to avoid the trouble of suddenly holding a meeting and obtaining consent. Especially those setting up shelters for the first time want to avoid the hassle. Apart from that, there are also difficult walls such as building laws and earthquake resistance confirmation. Even though life is more important, there is a legal barrier. If there is a way to avoid drilling holes in the wall, it's best not to worry about it. The present invention eliminates the hassle of drilling holes. You don't have to check the position of the reinforcing bars on the wall, so you can install it yourself. After a while, if it becomes a hot topic and a certain number of residents want to set up a shelter, it is easy to get approval from the whole community. In other words, as a matter of fact, if it is possible to anchor the cooler to the wall, anchoring to the wall to the same extent is considered possible and allowed. If the number of supporters increases throughout the apartment building, residents who have already set up shelters will be able to set up anchors in shelters that have already been installed. The present invention will not topple over if the anchor fails, which can be annoying. Also, even if it saves lives, it is not desirable to protrude from the wall and be bulky due to the narrow housing situation. When it is foldable and compact, the peace of mind of a normal living space is maintained. When will the seawall be built? The tsunami evacuation tower is also far away. The shelter for condominiums, hotels, and buildings of the present invention, which does not require going outside in the middle of winter, will save lives, no matter how unexpectedly large the tsunami may be. It is necessary to be prepared for tsunamis as low as 1.5m, which are likely to occur more frequently, as well as tsunamis so high that it is difficult to breathe. It can be said that the monetary burden is also very cheap and excellent as a consideration for life. With this, part of the lives of 320,000 people, the lives of all those who wish to install the facility, and the lives that can easily be taken away will be saved. The sooner you set it up, the less anxiety about when it will be attacked, and the sooner you can live with peace of mind. I can sleep with my pillow raised. Even if it's only at night for half the 24 hours. It's good for you mentally and healthily. You only have one life.

図1は形状各種の室内小型シェルター鳥観図Figure 1 is a bird's-eye view of indoor small shelters of various shapes 図2はシェルター側面図Figure 2 is a side view of the shelter 図3はシェルター頂部平面図Figure 3 is a top plan view of the shelter 図4はシェルター断面平面図Figure 4 is a cross-sectional plan view of the shelter 図5は転倒防止の説明図Figure 5 is an explanatory diagram of fall prevention 図6は高さ調整、出入り口構造等説明図Figure 6 is an explanatory diagram of height adjustment, doorway structure, etc. 図7は突出量が各種の断面平面図FIG. 7 is a cross-sectional plan view with various protrusion amounts 図8は折りたたみ、コンパクトとした断面平面図Fig. 8 is a folded and compact cross-sectional plan view 図9は津波高10m、20m、30mのときの内部水位変化Figure 9 shows internal water level changes at tsunami heights of 10m, 20m, and 30m 図10は2重安全の袋体Figure 10 shows a double safety bag 図11は3重安全の空気吸引ゴムホースFig. 11 shows triple safety air suction rubber hose

図面及び詳細な説明の全体を通じて同じ要素を示すために共通の参照符号が用いられる。 Common reference characters are used throughout the drawings and detailed description to refer to the same elements.

図1に各種シェルターの配置例図を示す、シェルターの形状は好みによる。津波の突入の影響を避ける位置を選ぶのが基本である。ガラス窓のある外壁内側、壁の交差する部屋の角隅、隣家との戸境壁沿いが望ましい。窓ガラスに正対する部屋の間仕切板壁、ふすまなどは強度が弱く漂流物の突入に耐えられないので避ける。 Fig. 1 shows an example layout of various shelters. The shape of the shelter depends on preference. It is basic to choose a position that avoids the influence of a tsunami rush. The inside of the outer wall with a glass window, the corner of the room where the walls intersect, and along the boundary wall with the neighboring house are desirable. Avoid partition walls and fusuma (sliding doors) facing the window glass, as they are weak and cannot withstand the intrusion of flotsam.

立筒のシェルターの必要空気量、空間量は1m3/人・時間とし、天井までの高さを平均的高さとして2.4m、筒の下部の出入り口高さを0.7mとすれば、水中で空気が溜まる有効高さは、それより上の部分の2.4-0.7=1.7mである。必要とする平面積は1/(2.4-0.7)=0.59m2である。0.59m2に対して立筒を四角柱とすれば1辺が0.77m≒0.8m、円柱とすれば直径0.87mである。部屋の角隅の壁際に設置するのが漂流物を避けるのに有効である。円形の1/4の円の、角隅設置の1/4円柱とすれば、半径は0.87mである。角隅の直角3角形状とすれば1辺が1.09mとなる。筒体の底辺部は、筒材を設けずとも、面材、水平材で形状保持ができるので空気保持には不要な部位である。ただ、設けた方が、筒材への漂流物衝突などには形状保持に優れていてしっかりしている。 空気をはらんだ立筒が、漂流物の直撃を受け破損したのでは生存空気が抜け、元も子もない。通過する波流、波圧で揺らぎやすく、例えば四角柱では4隅のコーナーをL形鋼、ラック鋼の縦枠材で保護することで漂流物の直接的衝突や波圧の揺らぎに耐える。角隅の4分の1の円柱、直角3角形柱では少なくとも3本の縦枠材となる。筒材表面はパンチィングメタルでカバーすれば、先の鋭い漂流物からの保護に役立つ。 The required air volume and space volume of the vertical shelter is 1 m3/person/hour, the average height to the ceiling is 2.4 m, and the entrance height at the bottom of the cylinder is 0.7 m. The effective height at which air accumulates is 2.4 - 0.7 = 1.7 m in the upper part. The required flat area is 1/(2.4-0.7)=0.59m2. With respect to 0.59 m 2 , if the vertical cylinder is a square column, one side is 0.77 m≈0.8 m, and if it is a cylinder, the diameter is 0.87 m. Placing it near the wall in the corner of the room is effective in avoiding drifting objects. Assuming a corner-mounted quarter cylinder of a quarter circle of a circle, the radius is 0.87 m. One side is 1.09m if it is assumed to be a right-angled triangle with corners. The base portion of the cylindrical body is a portion that is unnecessary for retaining air because the shape can be maintained by the face member and the horizontal member without providing a cylindrical member. However, if it is provided, it is excellent in shape retention and is firm when drifting objects collide with the cylindrical material. If the air-filled vertical cylinder were to be damaged by a direct hit from drifting objects, the survival air would be lost and there would be nothing left. It is easily shaken by passing waves and wave pressure. For example, by protecting the four corners of a square column with vertical frame materials of L-shaped steel and rack steel, it can withstand direct collisions of drifting objects and fluctuations of wave pressure. At least 3 vertical frame members are required for a 1/4 corner column and a right-angled triangular column. If the surface of the cylinder is covered with punching metal, it will be useful for protection from sharp drifting objects.

津波高さが10m、20m、30mの状況に対して、筒内部の空気量は、1.7mの空気高さが1/2、1/3、1/4に圧縮される。すなわち、シェルター内の水面は、頂点から0.85m、0.57m、0.43mまでの距離に縮小する。逆に床から1.55m、1.83m、1.97mに水位が上がるので背丈の低い人では口元で息ができなくなる。当然、この時に息継ぎができなくてはならないので、頭が頂点につくとして身長1.5mの女性は0.9mの3階段式の脚立、1.4mの高齢者は1.0mの4階段式の脚立を筒内部に用意する。すなわち、背丈に見合った脚立、踏み台を必要とする。この場合、バランスを崩しやすいので、筒体に寄り掛からなくて済むように1.5m程度の棒をつっかえ棒として用意しておくとよい。実施例7の補助棒と兼用できる。この脚立で内部への漂流物突入を防ぐことができるので脚立は必須条件といえる。中に閉じ込めた空気で筒体全体に浮力が生じるが、耐荷重のある部屋の天井壁全体で受け止めることができる。頂点部には、面材で覆うほうが浮力を分散できる。 For the tsunami heights of 10 m, 20 m, and 30 m, the amount of air inside the cylinder is compressed to 1/2, 1/3, and 1/4 of the air height of 1.7 m. That is, the water surface in the shelter is reduced to distances of 0.85m, 0.57m and 0.43m from the vertex. Conversely, the water level rises to 1.55m, 1.83m, and 1.97m from the floor, making it difficult for short people to breathe. Of course, you have to be able to breathe at this time, so if your head is at the top, a woman with a height of 1.5m should use a 0.9m stepladder with three steps, and an elderly person with a height of 1.4m should use a stepladder with 1.0m with four steps. Prepare a stepladder inside the cylinder. In other words, you need a stepladder or step stool that matches your height. In this case, it is easy to lose balance, so it is better to prepare a stick of about 1.5 m as a support bar so that you do not have to lean on the cylinder. It can also be used as the auxiliary rod of the seventh embodiment. This stepladder can be said to be an essential condition because it can prevent drifting objects from entering the interior. The air trapped inside creates a buoyant force on the entire cylinder, which can be received by the entire ceiling wall of a room with a load-bearing capacity. The buoyancy can be dispersed by covering the vertex with a face material.

津波の前の巨大地震で転倒の可能性もあるので、その縦枠材を壁に固定した方が望ましい。ところが壁に穴を明けるとなると、管理組合の合意、隣人の合意、で煩わしい。しかも壁の鉄筋位置を避ける必要があり、アンカーを打ち込む専門業者の依頼が必要で余分な出費となる。そこで、アンカーを設けない転倒防止方法を考える。筒の縦枠材と水平材で形成する対角線の長さを利用する。筒が転倒するとした場合、床を支点として回転する。そのストローク長さが対角線長さであり回転する。水平な床と天井があることで、床が踏ん張り、支点となり、天井高さより長い筒の対角線長が天井につかえて回転できないようにする。対角線長は高さと幅からなるピタゴラスの定理から求まる。すなわち、筒の対角線長は√(2.4*2.4+0.8*0.8)=√6.4=2.53mで、天井高さ2.4mより13cmほど長い。このことは、転倒するには筒の対角線長以上の長さ、天井との空間が必要なので、筒の頂点部分の断面部、両サイドの縦枠材を天井に密着、くっつけておけば物体、筒は回転しづらい、回転しない。すなわち、筒の縦枠材の高さである天井高さより、筒が傾斜した対角線長が大なので転倒する物理的空間がないことを利用する。結果、天井高さまでの縦枠材、天井までの余裕、隙間は5cm程度まで可能とすれば、筒は天井高さより大の対角線長による回転抵抗で転倒しない。天井との間で筒体が転倒しないためにも、一体となって回転に抵抗する剛な形状保持が大事である。具体的には、縦枠材の頂点部には面材の天板を設けると形状保持に役立つ。もしくは水平材を設けることで、水平力を取り、筒の形状を保持する。さらには筒の4コーナーの縦枠材の途中部、下部などをそれぞれで連結する水平材、または筋交い、方杖のような斜材を配置することにより剛となり形状保持に有効となる。縦枠材や筒体の下部は、底辺部となり、面材となれば形状保持に役立つが空気保持量には関係がないといえる。津波の横力で多少横滑りするが転倒する心配はない。すなわち、隣家との壁にはアンカーが不要となり、マンションでは管理組合との調整が不要で個人個人での室内設置が可能となる。揺らぎによる水平移動も、床から天井までの密着に近い高さをキープしたままの横移動なのでシェルターとして機能は維持されている。 It is desirable to fix the vertical frame members to the wall because there is a possibility of overturning in a huge earthquake before the tsunami. However, when it comes to drilling a hole in the wall, it is troublesome with the agreement of the management union and the agreement of the neighbors. In addition, it is necessary to avoid the position of the reinforcing bar on the wall, and it is necessary to request a professional company to drive the anchor, which is an extra expense. Therefore, a fall prevention method that does not require an anchor is considered. The length of the diagonal line formed by the vertical frame members and horizontal members of the cylinder is used. If the cylinder falls over, it will rotate with the floor as a fulcrum. Its stroke length is the diagonal length and it rotates. With the horizontal floor and ceiling, the floor acts as a fulcrum, and the diagonal length of the cylinder, which is longer than the height of the ceiling, hits the ceiling and prevents it from rotating. The diagonal length can be obtained from the Pythagorean theorem, which consists of height and width. That is, the diagonal length of the cylinder is √(2.4*2.4+0.8*0.8)=√6.4=2.53m, which is 13cm longer than the ceiling height of 2.4m. This means that in order to topple over, a length longer than the diagonal length of the cylinder and a space with the ceiling are required. The cylinder is difficult to rotate, and does not rotate. That is, since the diagonal length of the inclined cylinder is larger than the height of the ceiling, which is the height of the vertical frame member of the cylinder, there is no physical space where the cylinder falls over. As a result, if the vertical frame material up to the ceiling height, the margin to the ceiling, and the gap are allowed to be about 5 cm, the cylinder will not fall over due to the rotational resistance due to the diagonal length greater than the ceiling height. In order to prevent the cylinder from overturning between the ceiling and the ceiling, it is important to maintain a rigid shape that resists rotation together. Specifically, providing a top plate of a face member at the vertex of the vertical frame member helps to retain the shape. Alternatively, by providing a horizontal member, the horizontal force is taken and the shape of the cylinder is maintained. Furthermore, by arranging horizontal members or diagonal members such as braces or braces that connect the middle and lower portions of the vertical frame members at the four corners of the cylinder respectively, it becomes rigid and effective in maintaining the shape. The vertical frame member and the lower part of the cylindrical body become the bottom part, and if it becomes a face member, it helps to retain the shape, but it can be said that it has nothing to do with the air retention amount. The lateral force of the tsunami causes some skidding, but there is no need to worry about tipping over. That is, there is no need for an anchor on the wall between neighboring houses, and in condominiums, individual installation is possible without coordination with the management association. The horizontal movement caused by the fluctuation is also a horizontal movement while maintaining the height close to the close contact from the floor to the ceiling, so the function as a shelter is maintained.

シェルターの製作、運搬、取り付けを考える必要がある。0.8mの角柱とすれば、立筒形に成形された状態では、製作、運搬はできるとしても、転倒防止とは逆の作用が働き、角柱の幅があれば天井までの高さに阻まれて室内で搬入時の横倒しの状態から対角線長の抵抗で立ち上げることができない。この問題を解決するために、折り畳みとして幅を最小の0.1m程度にするか、筒材を天井までの長さに対して短くし、縦枠材も短くし、長さを延長できる継ぎ足し部材、継手装置を設けるなどの工夫が必要である。縦枠材は筒材のコーナーの外側、4隅に配置する。この場合はメタルラック鋼材、L形鋼が望ましい。漂流物の直撃の衝突を緩和する。立筒が四角柱なら4コーナーの4か所が基本。ただし、筒材は、出入り口の高さ0.7mより下は空気保持には必要がない部分だが漂流物の衝突があるので床まで伸ばすのが好ましい。そして出入り口にファスナーが可能なら出入り口を覆うことができるので漂流物に対してより安全となる。立筒の外面には、パンチィングメタルで覆うとすると特に先の鋭い漂流物に対しての保護となる。縦材を継ぎ足しとした例で、天井から2.0mのところで継ぎ足し2.4mとする場合は、双方の縦枠材に2穴を設け継ぎ足し材と穴接合する、あるいは長孔を設けスライドして、重ねて締め付けるなどの方法がある。筒材も出入り口高さの0.7mの位置でいったん切断し、合計2.4mとなるよう床まで空いたままの何もない出入口としてもよいが漂流物の侵入、衝突を避けるために、ファスナー、ホックで筒材を継ぎ足した方が望ましい。あるいは4辺を切断し、0.7mの位置でファスナー、フックで継ぎ足し、出入り口の1辺は両サイドの縦にファスナー、フックとしてもよい。 You need to think about building, transporting and installing shelters. If a square column of 0.8 m is used, even if it is possible to manufacture and transport it in a vertical cylindrical shape, it will have the opposite effect of preventing overturning, and if the width of the square column is large, the height to the ceiling will be blocked. Rarely, it is impossible to stand up from the sideways state at the time of carrying in the room with the resistance of the diagonal length. In order to solve this problem, the width is reduced to about 0.1 m at the minimum for folding, or the cylindrical material is shortened relative to the length to the ceiling, the vertical frame material is also shortened, and the extension member that can extend the length It is necessary to devise such as providing a joint device. The vertical frame members are arranged at the four corners outside the corners of the tubular member. In this case, metal rack steel and L-shaped steel are desirable. Mitigate direct hit collisions with flotsam. If the vertical cylinder is a square pole, the basics are four corners. However, it is preferable to extend the tubular material to the floor below the height of 0.7 m at the entrance, because although it is not necessary for air retention, it is likely to be hit by drifting objects. And if the doorway can be zipped, the doorway can be covered, making it safer against flotsam. If the outer surface of the vertical tube is covered with perforated metal, it will be particularly protected against sharp drifting objects. In the example of adding a vertical member, if you want to add 2.4m at a point of 2.0m from the ceiling, make two holes in both vertical frame members and join the additional member, or make a long hole and slide it. There are methods such as overlapping and tightening. The tubular material may also be cut once at a height of 0.7m above the entrance and exit, and the total 2.4m may be left open to the floor to create a blank entrance. , It is desirable to replenish the tubular material with hooks. Alternatively, 4 sides may be cut and added with fasteners and hooks at the 0.7m position, and fasteners and hooks may be added vertically on both sides of one side of the doorway.

壁からの突出量を0.5mとすれば壁沿いに1.2m、突出量を0.4mとすれば壁沿いに1.5m、0.3mとすれば2.0mとなる。この時の中の人の腰回りサイズは0.3*3.14=0.94mでこの程度までが、形状で扁平とする場合の限界といえる。閉塞感の限界もある。工夫すれば台形状も可能である。ただ、狭い住宅事情では0.8mの突出幅は空間占拠が大きく感じられ邪魔な感じがする。そこで、シェルターは折り畳み式とできれば空間の圧迫感を和らげることができる。すなわち、半分の0.4m、さらには収納厚、突出厚0.1m~0.3mの薄型を目指す。図7、図8にコンパクトとした例を示す。方法の1つには、壁沿いの幅を広げて突出量を減らす方法がある。壁沿いの幅を1.0mにすると0.59m2/1.0m≒0.6mの突出量、1.25mにすると0.59m2/1.25m≒0.5m、1.5mまで広げて突出量を逆算すると0.59m2/1.5m≒0.4mとなり、人の腹の出っ張りに何とか収まる。突出量をもう少し減らしてコンパクトとしたい場合には、もう一つの方法として、さらに縮小を目指すことができる折りたたむ方法がある。この場合の基本幅は当初の0.8mとすれば、L形鋼の一辺0.1mを用いて対面と合わせて突出量を0.2mに縮小するならば、内側に折りたたむ長さは、(0.8-0.1*2)/2=0.3mとなる。0.8―0.3*2=0.2mの空間に、頂点部の天端材を折り込む。畳み込むためには筒体の天端材に柔軟性が求められ、同時に筒体側面部との接合部から空気が漏れない密着性が求められる。さらにシェルターの0.8mの突出量を0.1mのコンパクトとするとなると、筒のコーナーに設ける縦部材は一辺0.05mのL形鋼で、シェルターの厚みは倍の0.1mとなり、その厚みの中に折りたたんだ筒材が納まる。壁にアンカーが取れるとして、壁からの0.1mから0.8mまで、地震後から津波来襲までに引っ張り出さなければならない。かなりの引っ張り力が必要となるので、対面側の縦部材の中間部に取っ手を設ける。帯状の取っ手もよい。折りたたむ側は2つ折りが望ましい。筒材の底辺部の面材は特に必要ない。筒材の天井部は折り畳みに応じて間隔が狭くなるので伸縮性が求められる。脚立は事前に折りたたんだ中に入らないので、外の身近に必ず用意しておく。折りたたんでいるので当初には水平材が設置できないが、拡張した時の後付けで水平材を橋渡しする。脚立を挿入することを忘れないように。外側作業として脚立に乗り、手を伸ばせば頂点部の水平材を連結することができる。壁側の縦部材側面にボルトの頭を設け、水平材の片端をボルトの頭にはめて縦部材に沿わせ垂らして設置し、他方の対面側の縦部材にもボルトの頭を設け、そこに水平材の穴部を回しこんで押し込む。あるいは、両側の縦枠材に突出部を設け、両端部に穴の開いた水平材を装着する。中間部、底部にも水平材を橋渡しすればさらに形状保持に寄与する。これら作業は、津波が押し寄せるまでに完了しなければならないので、何度も訓練して素早く取り付けられるよう熟達しておく必要がある。 If the amount of protrusion from the wall is 0.5 m, the length along the wall will be 1.2 m. If the amount of protrusion is 0.4 m, the length along the wall will be 1.5 m. At this time, the size of the waist of a person inside is 0.3*3.14=0.94m, and it can be said that up to this level is the limit when the shape is flat. There is also a limit to the sense of blockage. Trapezoidal shape is also possible if devised. However, in a narrow house, the 0.8m protruding width seems to occupy a lot of space and is a hindrance. Therefore, if possible, the shelter can be foldable to alleviate the feeling of pressure in the space. In other words, we aim to reduce the thickness by half to 0.4m, and furthermore to reduce the thickness of the housing and the thickness of the protrusion to 0.1m to 0.3m. 7 and 8 show compact examples. One way is to increase the width along the wall to reduce the amount of protrusion. If the width along the wall is 1.0m, the protrusion is 0.59m2/1.0m≒0.6m, if it is 1.25m, the protrusion is 0.59m2/1.25m≒0.5m. Calculating backwards, it becomes 0.59m2/1.5m≒0.4m, which somehow fits in the protrusion of a person's stomach. If you want to reduce the amount of protrusion a little more and make it compact, another method is to fold it, which can aim for further reduction. In this case, assuming that the basic width is 0.8m from the beginning, if one side of the L-shaped steel is 0.1m and the protruding amount is reduced to 0.2m together with the opposite side, the length to be folded inward is ( 0.8−0.1*2)/2=0.3m. Fold the crown material of the vertex into the space of 0.8-0.3*2=0.2m. In order to fold it, the top member of the cylinder is required to be flexible, and at the same time, it is required to have an adhesiveness that prevents air from leaking from the joint with the side surface of the cylinder. Furthermore, if the protruding length of the shelter from 0.8m is reduced to 0.1m, the vertical members installed at the corners of the cylinder will be L-shaped steel with a side of 0.05m, and the thickness of the shelter will be doubled to 0.1m. A folded cylindrical material is stored inside. Assuming that the anchor can be removed from the wall, it must be pulled out from 0.1m to 0.8m from the wall after the earthquake and before the tsunami hits. Since a considerable pulling force is required, a handle is provided in the intermediate portion of the longitudinal member on the facing side. A belt-shaped handle is also good. It is desirable to fold in two on the folding side. A face member for the bottom portion of the cylindrical member is not particularly required. Stretchability is required for the ceiling portion of the cylindrical member because the interval becomes narrower as it is folded. The stepladder does not fit inside the pre-folded box, so be sure to have it ready outside. Since it is folded, horizontal members cannot be installed at the beginning, but when it is expanded, horizontal members will be bridged. Don't forget to insert the stepladder. For outside work, you can get on the stepladder and reach out to connect the horizontal members at the top. A bolt head is provided on the side of the vertical member on the wall side, one end of the horizontal member is fitted to the head of the bolt and hung along the vertical member, and a bolt head is also provided on the vertical member on the opposite side. The hole of the horizontal member is turned and pushed in. Alternatively, vertical frame members on both sides are provided with projections, and horizontal members with holes at both ends are attached. If a horizontal member is bridged also in the middle part and the bottom part, it contributes further to shape retention. These tasks must be completed before the tsunami hits, so it is necessary to practice many times and become proficient in installing them quickly.

出入り口頂点の0.7m位置に横ファスナーと両側下方に縦ファスナーの筒材とすれば漂流物衝突防止になる。あるいは、継ぎ目なしで0.7m以下に蛇腹の柔軟な材料の蛇腹式とし、0.7m位置に蛇腹の折り畳み持ち上げた状態とし、中に避難後に筒材を下げると、長さ2.4mの筒となり保有空気量は、2.4/1.7=1.4倍の体積となり、空気量に余裕が得られる。また、漂流物による筒材の万が一の穴あきに備え、筒内部に上を閉じたポリ袋、ビニール袋、ゴム袋の薄い袋体、形成体を筒体とは離隔をとって挿入、設置する。筒体の空気保持の有効高さは、1.7m部分であるが、継ぎ目なくさらに延長して、ポリ袋、ビニール袋、ゴム袋を伸ばせば、全体積相当に空気量も増え、2重に安心といえる。ただし最大は1.4倍までである。余り欲張ってはならない。空気保持量が大きくなるということは空気体積が大きくなり、それに比例して相応の浮力がかかることを承知していなければならない。1m*1m*1mの立方体形状では、出入り口高さが1.4mなので、出入り口を完全に囲ってしまうと浮力が大きい。逆に囲まないままでは、漂流物の衝突が心配であるので、ファスナー、ホックなどの工夫が必要。脚立は当然必要である。しかし、津波高さが大となると内部空気体積は圧縮され逆に減少するので、浮力はそれに伴って小さくなる。マンションの階数が上がるほど影響は少なくなる。天井壁ですべての浮力を受けることができればよいが、場合によってはあまり強度の期待できない建物もある。そこで、天井壁の耐力不足の対策メニューを列記する。1.天井壁を補強する。2.シェルターの天板を厚くする。3.天板の面積を拡大する。4.垂直壁にボルトを打ち込みせん断力で分担する。この場合も当然筒体に穴を明けてはならない。コーナーのL形鋼の面から打つ。5.接着剤で反力をとる場合は、壁の塗膜をはがし、L形鋼はコーナーの内側として筒体と壁面との接着面積を増やす。6.床にアンカーを取り、水平材に直接か、縦枠材にロープを介して引っ張り力で分担して浮力に抵抗する。この場合は、縦枠材面と筒体とは接着剤による接着が必要となる。7.水槽実験で浮力を確認する。8.津波の揺らぎで、筒体の下方から空気の塊が抜け、浮力が減少する可能性を水槽実験、水流実験で確認する。9.天井壁耐力を設計上の耐荷力と、100年に1度の荷重で破壊する最終耐荷力で評価する。10.それらの組み合わせ、などが考えられる。状況に応じて解決策、最適の対策を選択する。 If a horizontal fastener is used at the 0.7m position of the top of the entrance and a vertical fastener is used below both sides, it will prevent collision with drifting objects. Alternatively, a bellows-type flexible material with no seams of 0.7m or less is folded and lifted at the 0.7m position. Therefore, the retained air volume is 2.4/1.7=1.4 times the volume, and the air volume has a margin. In addition, in preparation for the possibility of holes in the cylinder due to drifting objects, insert and install a plastic bag, a plastic bag, a thin rubber bag, or a formed body with the top closed inside the cylinder, keeping a distance from the cylinder. . The effective height of the cylindrical body for retaining air is 1.7 m, but if you extend it seamlessly and stretch a plastic bag, a plastic bag, or a rubber bag, the amount of air will increase corresponding to the total volume, and it will be doubled. It can be said that it is safe. However, the maximum is up to 1.4 times. Don't be too greedy. It must be understood that an increase in air retention means an increase in air volume, and a corresponding buoyancy force is applied in proportion to it. In a cubic shape of 1m*1m*1m, the height of the doorway is 1.4m, so if the doorway is completely enclosed, the buoyancy is large. Conversely, if it is left unenclosed, drifting objects may collide, so it is necessary to devise fasteners, hooks, etc. Of course you need a stepladder. However, when the tsunami height increases, the internal air volume is compressed and decreases, so the buoyancy decreases accordingly. The higher the number of apartments, the less the impact. It would be nice if all the buoyancy could be received by the ceiling wall, but depending on the case, there are buildings that cannot be expected to have much strength. Therefore, the countermeasure menu for the insufficient strength of the ceiling wall is listed. 1. Reinforce the ceiling wall. 2. Thicken the roof of the shelter. 3. Expand the area of the top plate. 4. A bolt is driven into the vertical wall to share the shear force. In this case, of course, the cylindrical body must not be perforated. Strike from the face of the corner L-shaped steel. 5. When using an adhesive to take the reaction force, peel off the paint film from the wall and use the L-shaped steel as the inner side of the corner to increase the bonding area between the cylinder and the wall. 6. Anchors are placed on the floor, and the buoyancy is resisted by sharing the pulling force directly on the horizontal member or via the rope on the vertical frame member. In this case, the surface of the vertical frame material and the cylinder must be adhered with an adhesive. 7. Check the buoyancy in a water tank experiment. 8. We will confirm the possibility that buoyancy decreases due to air masses coming out from the bottom of the cylinder due to tsunami fluctuations through water tank experiments and water flow experiments. 9. Ceiling wall bearing strength is evaluated by design load bearing capacity and final load bearing capacity at which a load of once in 100 years causes destruction. 10. A combination thereof, and the like are conceivable. Choose the solution and the most suitable countermeasure according to the situation.

想定より内部の浸水が高くなり、また津波継続時間が長くなっても息苦しくなる。ここでの発想として、シェルターの外の部屋の天井部には新鮮な空気が大量に滞留しているので、筒内外で折り返すU字型のゴムホースを内側に設けて筒内側から吸引すればさらに安心だ。延長は、0.1+2.4+2.4+0.5=5.4mが最低長である。ホースの片端は、筒の外側の天井高さ付近で折り曲げ水平に0.1mほど伸ばしておくと埃堆積防止ともなる。そして、縦枠材に沿って下ろし、筒体の底部で折り返し、また筒体の頂点部まで上げて、そしてまた下に口元に届くように折り返し0.5m以上延長する。立ち上がりのゴムホースは内部に用意した約2.4mの棒に縛れば垂れない。筒体の外側は随所で外枠材に縛ればよい。
さらに、立筒の筒材が鋭利な漂流物で穴をあけられ、中の袋体も破れ空気が抜けるとした時のために、中にゴミ収集袋を用意して、いざというときに頭からかぶれば最小限の空気を確保できる。さらには酸素ボンベを用意しておくことも準備万端の考えといえる。
The internal flooding is higher than expected, and even if the tsunami continues for a long time, it will be difficult to breathe. As an idea here, since a large amount of fresh air remains in the ceiling of the room outside the shelter, it is safer to install a U-shaped rubber hose inside the cylinder that folds back inside the cylinder and sucks it from the inside of the cylinder. is. The minimum extension is 0.1+2.4+2.4+0.5=5.4m. One end of the hose can be bent horizontally around the height of the ceiling outside the cylinder and stretched for about 0.1 m to prevent dust from accumulating. Then, it is lowered along the vertical frame member, folded back at the bottom of the cylinder, raised to the top of the cylinder, and then folded back and extended by 0.5 m or more so as to reach the mouth. The rising rubber hose will not drip if it is tied to a rod of about 2.4m prepared inside. The outside of the cylindrical body can be bound to the outer frame material at any place.
In addition, in the event that the cylindrical material of the vertical cylinder is punctured by a sharp drifting object, and the bag inside is also torn and the air is released, prepare a garbage collection bag inside and use it from your head in case of emergency. If you put it on, you can secure a minimum amount of air. Furthermore, it can be said that it is a well-prepared idea to prepare an oxygen cylinder.

1立筒形のシェルター、筒体
2縦枠材、L型鋼
3水平材
4面材、天板
5出入り口
6ファスナー
7縦枠材の高さ調整長穴
8ボルト、調整ボルト、突出ボルト、
9折り目
10脚立、踏み台
11取っ手
12ポリ袋、ビニール袋
13蛇腹式ポリ袋
14ゴムホース
15回転の対角線長
16回転の軌道
17回転時天井とのつかえ量
20窓ガラス
21海向きの部屋の壁
22隣家との戸境壁
23部屋の壁
24部屋の天井
25部屋の床
26部屋の角隅部
27津波高10mのときの内部水位
28津波高20mのときの内部水位
29津波高30mのときの内部水位
30折り返し部
31折り曲げ部
32ホースの端部
33立ち上げ補助棒
1 vertical cylinder shelter, cylinder 2 vertical frame material, L-shaped steel 3 horizontal material 4 surface material, top plate 5 doorway 6 fastener 7 vertical frame material height adjustment long hole 8 bolt, adjustment bolt, protruding bolt,
9 folds 10 stepladder, step 11 handle 12 plastic bag, plastic bag 13 bellows type plastic bag 14 rubber hose Boundary wall 23 Room wall 24 Room ceiling 25 Room floor 26 Room corner 27 Internal water level when tsunami height is 10m 30 folding part 31 folding part 32 hose end 33 rising auxiliary bar

Claims (3)

マンション、ホテル、ビルなどの堅固な建物室内に設置する少人数対応、小型の立筒形の津波等避難シェルターであって、筒体内部に人数分の水中での生存必要空気量を確保する空間を有し、筒体は、気密性、強度に優れたガラス繊維、炭素繊維等の強化プラスチック、不織布あるいは鋼板、板材から成り、筒体は部屋の壁面沿いに設けることとし、漂流物衝突を避けやすい縦長形状とし、筒体は下部に出入り口となる開口部、上部は閉じた中空の袋状の構造とし、内部に脚立または踏み台を挿入し、外枠として筒体のコーナー部に沿わせて縦枠材を設け、立ち居の保持、水流からの揺らぎ、漂流物衝突からの保護とし、縦枠材は床にアンカーで固定せず、縦枠材の長さを床から概天井までの長さとしたことを特徴とするマンション、ホテル、ビルなどの堅固な建物室内に設置する津波等避難シェルター。 It is a small vertical tube-shaped tsunami evacuation shelter installed in a solid building room such as an apartment, hotel, building, etc., and a space that secures the amount of air necessary for survival in the water for the number of people inside the cylinder. The cylinder is made of reinforced plastic such as glass fiber, carbon fiber, etc., which has excellent airtightness and strength, non-woven fabric, steel plate, and plate material. The cylinder has an opening at the bottom that serves as an entrance and exit, and the top has a closed, hollow bag-like structure. A frame is provided to maintain the standing position, sway from water currents, and protect against collision with drifting objects. A tsunami evacuation shelter installed in a solid building room such as an apartment, a hotel, a building, etc. 前記筒体コーナー部の縦枠材の頂点部間を面材または水平材で連結し、さらに縦枠材の底部間を面材または水平材で連結することとで、立筒形の形状保持、漂流物衝突の衝撃緩和を図り、かつ、水流による縦回転、転倒に対して、縦枠材と面材または水平材とでなる回転の長さとなる対角線長が、床と天井との空間高さを上回ること、すなわち回転時に部屋の天井壁につかえることを利用して転倒防止を図るとしたことを特徴とする請求項1に記載のマンション、ホテル、ビルなどの堅固な建物室内に設置する津波等避難シェルター。 By connecting the apexes of the vertical frame members at the corners of the cylindrical body with a face member or a horizontal member, and further connecting the bottom portions of the vertical frame members with a face member or a horizontal member, the shape of the vertical frame can be maintained. The diagonal length, which is the length of rotation between the vertical frame member and the surface member or horizontal member, is the height of the space between the floor and the ceiling. 2. Tsunami installed in a solid building room such as an apartment, hotel, building, etc. Evacuation shelter. 前記シェルターを折りたたみ式とするもので、筒体の側面の折りたたみ部は折りたたみ易さに優れ、筒体の袋状の頂上部は側面とは異なり伸縮性の優れた素材で形成するとし、前記筒体コーナー部の縦枠材の頂点部間および底部間を連結する水平材は、形状保持し対角線長を保つものでそのままでは折りたたみできないので拡張後に後付けするとし、後付けの連結方法は、縦枠材の表面に突出ボルトを設け、そのうちの頂点部の突出ボルトには仮に垂らして縦置きとする水平材を設け、地震後に下端を引き出し90度回転し、対面の縦枠材の突出ボルトに橋渡し、あるいは単に、両側の縦枠材に突出ボルトを設け、外に準備した脚立に上がり、用意した穴あきの水平材を嵌合し橋渡しすることで連結するとし、平時は筒体の垂直側面を筒体内側に折りたたみ、地震後には折りたたんだ面を水平方向に開いて拡張することで筒体内部に生存必要空気量を確保するもので、脚立または踏み台は折りたたみ式で事前に挿入しておくか、折りたたみ式でないときは筒体外に用意したものを筒体の拡張後に筒体に挿入するとし、平時は筒体を折りたたんで壁面からの突出量を小さくするとしたことを特徴とする請求項1または2のいずれかに記載のマンション、ホテル、ビルなどの堅固な建物室内に設置する室内設置の津波等避難シェルター。 The shelter is of a foldable type, and the folding part on the side of the cylinder is excellent in ease of folding, and the bag-like top part of the cylinder is made of a material with excellent elasticity unlike the side. The horizontal members that connect the vertices and bottoms of the vertical frame members at the body corners maintain the shape and diagonal length, and cannot be folded as they are, so they are added after expansion. A horizontal member is provided on the top of the projecting bolt to temporarily hang it down and place it vertically. Alternatively, simply install protruding bolts on the vertical frame members on both sides, climb on the stepladder prepared outside, and connect by fitting and bridging the prepared horizontal members with holes, and in normal times, the vertical side of the cylinder is connected to the cylinder. It is folded inward, and after an earthquake, the folded surface is opened horizontally and expanded to secure the air volume necessary for survival inside the cylinder. When it is not a type, the thing prepared outside the cylinder is inserted into the cylinder after the cylinder is expanded, and in normal times, the cylinder is folded to reduce the amount of protrusion from the wall surface. An indoor tsunami evacuation shelter installed in a solid building room such as an apartment, hotel, or building according to any of the above.
JP2022101001A 2022-06-23 2022-06-23 Evacuation shelters for tsunami, etc. installed in solid building rooms such as condominiums, hotels, and buildings Active JP7317273B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022101001A JP7317273B1 (en) 2022-06-23 2022-06-23 Evacuation shelters for tsunami, etc. installed in solid building rooms such as condominiums, hotels, and buildings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022101001A JP7317273B1 (en) 2022-06-23 2022-06-23 Evacuation shelters for tsunami, etc. installed in solid building rooms such as condominiums, hotels, and buildings

Publications (2)

Publication Number Publication Date
JP7317273B1 true JP7317273B1 (en) 2023-07-31
JP2024002045A JP2024002045A (en) 2024-01-11

Family

ID=87469790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022101001A Active JP7317273B1 (en) 2022-06-23 2022-06-23 Evacuation shelters for tsunami, etc. installed in solid building rooms such as condominiums, hotels, and buildings

Country Status (1)

Country Link
JP (1) JP7317273B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015117566A (en) 2013-12-16 2015-06-25 尚寿 曽田 Evacuation shelter
JP2021095731A (en) 2019-12-17 2021-06-24 穣 冨田 Evacuation shelter for tsunami and the like
JP2021193259A (en) 2020-06-09 2021-12-23 クリアーシステム株式会社 Temporary structure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0754061B2 (en) * 1986-07-25 1995-06-07 日本電信電話株式会社 Outdoor public telephone box

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015117566A (en) 2013-12-16 2015-06-25 尚寿 曽田 Evacuation shelter
JP2021095731A (en) 2019-12-17 2021-06-24 穣 冨田 Evacuation shelter for tsunami and the like
JP2021193259A (en) 2020-06-09 2021-12-23 クリアーシステム株式会社 Temporary structure

Also Published As

Publication number Publication date
JP2024002045A (en) 2024-01-11

Similar Documents

Publication Publication Date Title
JP4862355B2 (en) Disaster countermeasure device
JP6065277B2 (en) Tsunami-compatible floating small room that fixes a one-storied house with a wire that can be wound by a wire winder
JP2004339920A (en) Evacuating apparatus for evacuating from emergency such as tsunami or flood
US20040045243A1 (en) Flood protection apparatus
KR101380202B1 (en) Calamity safety building with safety room function
JP7317273B1 (en) Evacuation shelters for tsunami, etc. installed in solid building rooms such as condominiums, hotels, and buildings
JP5518822B2 (en) Tsunami countermeasure refuge hut
JP2005232845A (en) Evacuation facility
JP5624234B1 (en) Tsunami evacuation floats and air retention formations
JP6126795B2 (en) Emergency evacuation facility using large steel pipes
GB2535184A (en) Flood defence barriers and methods of erecting flood defence barriers
JP5624237B1 (en) Tsunami ceiling shelter
JP4979040B1 (en) Retreat room for measures against tsunami, storm surge and flood
JP5462309B2 (en) Tsunami evacuation room and air holding independent body used therefor
JP2013234556A (en) Evacuation shelter for emergency situation such as tsunami and flood
JP2013076257A (en) Evacuation shelter
JP5624235B1 (en) Tsunami evacuation floats and air retention formations
JP5782655B2 (en) Protective housing
JP5462319B2 (en) Tsunami evacuation room, drifting material used in it, fire prevention door
JP6547094B2 (en) Building with evacuation room for tsunami, flood and storm surge
JP5841953B2 (en) Tsunami disaster prevention shelter
JP3188958U (en) shelter
JP6816864B1 (en) Bedroom combined shelter
JPH08260751A (en) Disaster safety device
JP3197367U (en) Evacuation shelter for buildings

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230619

R150 Certificate of patent or registration of utility model

Ref document number: 7317273

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150