JP7314639B2 - 赤外線検出器、及びこれを用いた撮像装置 - Google Patents

赤外線検出器、及びこれを用いた撮像装置 Download PDF

Info

Publication number
JP7314639B2
JP7314639B2 JP2019112194A JP2019112194A JP7314639B2 JP 7314639 B2 JP7314639 B2 JP 7314639B2 JP 2019112194 A JP2019112194 A JP 2019112194A JP 2019112194 A JP2019112194 A JP 2019112194A JP 7314639 B2 JP7314639 B2 JP 7314639B2
Authority
JP
Japan
Prior art keywords
layer
light
receiving
barrier layer
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019112194A
Other languages
English (en)
Other versions
JP2020205339A (ja
Inventor
浩司 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2019112194A priority Critical patent/JP7314639B2/ja
Priority to US16/888,894 priority patent/US11549844B2/en
Publication of JP2020205339A publication Critical patent/JP2020205339A/ja
Application granted granted Critical
Publication of JP7314639B2 publication Critical patent/JP7314639B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4228Photometry, e.g. photographic exposure meter using electric radiation detectors arrangements with two or more detectors, e.g. for sensitivity compensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14649Infrared imagers
    • H01L27/1465Infrared imagers of the hybrid type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14649Infrared imagers
    • H01L27/14652Multispectral infrared imagers, having a stacked pixel-element structure, e.g. npn, npnpn or MQW structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/1013Devices sensitive to infrared, visible or ultraviolet radiation devices sensitive to two or more wavelengths, e.g. multi-spectrum radiation detection devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0488Optical or mechanical part supplementary adjustable parts with spectral filtering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/10Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void
    • G01J1/16Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/10Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void
    • G01J1/16Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void using electric radiation detectors
    • G01J1/1626Arrangements with two photodetectors, the signals of which are compared
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/10Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void
    • G01J1/16Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void using electric radiation detectors
    • G01J1/1626Arrangements with two photodetectors, the signals of which are compared
    • G01J2001/1652Arrangements with two photodetectors, the signals of which are compared one detector being transparent before the other one
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • G01J2001/4446Type of detector
    • G01J2001/448Array [CCD]

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Description

本発明は、赤外線検出器と、これを用いた撮像装置に関する。
化合物半導体基板上にエピタキシャル成長したタイプII超格子(Type II Superlattice:T2SL)は、基板と格子定数の近い異種の結晶材料を短周期で繰り返し積層して形成される。超格子に形成されるミニバンド間の遷移によって赤外線を吸収できるため、量子効率が高いという利点がある。T2SLでは、超格子を形成する材料の膜厚を制御することで、カットオフ波長を変えることができる。特に、中波長赤外線(3~5μm)から長波長赤外線(8~12μm)にかけては、比較的容易に検出対象の波長に設計することができる。
異なる波長に感度を持つ二つのT2SLを受光層に用い、二つの受光層の間にバリア層を配置して、一つの素子で二波長の赤外光を検出する構成が提案されている(たとえば、特許文献1参照)。
図1は、公知の二波長検知素子の構成を示す。第1吸収層202、バリア層204、第2吸収層206、界面層208がこの順に配置され、第2吸収層206は界面層208によって読出しチップに接続される。光は、バンドギャップの大きい第1吸収層202の側から入射する。第1吸収層202と第2吸収層206に印加するバイアスの極性を切り替えることで、第1波長の光と第2波長の光が検知される。
特開2015-38977号公報
従来の二波長検出素子の構成では、長波長側の第2吸収層で、第2波長以外の光が検知される場合がある。たとえば、背景放射、筐体からの放射など、第1波長と第2波長の間の波長の光が検知され得る。第2吸収層はまた、第1波長にも感度を持つため、第1吸収層で吸収しきれなかった第1波長の光を吸収する。ターゲット波長以外の光の吸収によってクロストークが発生し、ターゲット波長に対する信号対雑音(S/N:Signal-to-Noise)比が低下する。S/N比の低下により、各波長の光の検出信号の独立性が低下して、検出精度が低下する。
本発明は、赤外線検出器でターゲット波長に対する検出信号のS/N比の低下を抑制し、検出精度を向上することを目的とする。
本発明の一態様では、赤外線検出器は、
第1のカットオフ波長を有する第1受光層と、
第1のカットオフ波長よりも長い第2のカットオフ波長を有する第2受光層と、
前記第1受光層と前記第2受光層の間に配置され、前記第1のカットオフ波長と同じかそれより長く、かつ前記第2のカットオフ波長と同じかそれよりも短い第3のカットオフ波長を有する中間フィルタ層と、
前記第1受光層と前記中間フィルタ層の間に配置される第1バリア層と、
前記第2受光層と前記中間フィルタ層の間に配置される第2バリア層と、
を有する。
赤外線検出器において、検出信号のS/N比の低下を抑制し、検出精度を向上することができる。
従来の二波長検知素子の構成を示す模式図である。 pBp構造の二波長検知素子のエネルギーバンド図である。 カットオフ波長型の二波長検知素子の分光感度特性を示す模式図である。 ピーク波長型の二波長検知素子の分光感度特性を示す模式図である。 実施形態の赤外線検知素子の基本構成を示す模式図である。 図5の赤外線検知素子のエネルギーバンド図である。 実施形態の素子構造の分光感度特性を示す模式図である。 従来の二波長検知素子の計算によるエネルギーバンド図である。 実施形態の素子構造の計算によるエネルギーバンド図である。 実施形態の画素アレイの作製工程図である。 実施形態の画素アレイの作製工程図である。 実施形態の画素アレイの作製工程図である。 実施形態の画素アレイの作製工程図である。 実施形態の画素アレイの作製工程図である。 実施形態の画素アレイの作製工程図である。 実施形態の画素アレイの作製工程図である。 実施形態の画素アレイを用いた赤外線検出器の模式図である。 実施形態の赤外線検出器を用いた撮像装置の模式図である。
一つの素子で二つの波長の赤外線を検出する二波長検知素子では、異なる波長で検知された信号に融合、相関等の処理を施すことで、温度分布の検出精度を高め、単一波長の赤外線センサと比較して測定精度を向上することができる。
長波長の赤外線を検知する素子はバンドギャップが小さいため、暗電流が流れやすい。暗電流を減らすため、受光素子にpn接合を用いずに、nBn、pBpといった同じ極性の受光層とバリア層を組み合わせる構成が考えられる。
図2は、pBp構造の二波長検知素子のエネルギーバンド図である。短波長受光層と長波長受光層の間にバリア層が挿入され、バリア層は二つの受光層によって共有される。光は、エネルギーバンドギャップE1を有する短波長受光層側から入射する。短波長受光層で吸収された光によって発生する電子は、長波長受光層側に正バイアスを印加することで、外部に引き出される。
長波長受光層は、E1よりも小さなエネルギーバンドギャップE2を有し、E2で決まる波長の光を吸収する。長波長受光層で光吸収により発生する電子は、短波長受光層側に正バイアスを印加することで外部へ引き出される。
図3は、T2SLの二波長検知素子の分光感度特性を示す。T2SLで形成される受光層は、特定の波長以下の光を検出するカットオフ波長型の分光感度特性を有する。実線で示す短波長受光層のカットオフ波長はλ1、破線で示す長波長受光層のカットオフ波長はλ2である。この分光感度特性からわかるように、長波長受光層では、背景や筐体等から放射されるλ1とλ2の間の波長の光も検知される。また、長波長受光層はλ1より波長の短い光にも感度を持つため、短波長受光層で吸収されなかったλ1より波長の短い光も長波長受光層で吸収される。
これらの余分な光の検出信号が長波長受光層の検出信号に混入すると、クロストークが発生し、S/N比が低下する。この問題は、図4のようなピーク波長型の分光感度特性を有する量子井戸型または量子ドット型の素子では生じなかった問題である。
図4では、量子井戸内または量子ドット内の離散的なエネルギー準位間の遷移によって光吸収に応じた光電流が流れる。基底準位と励起準位の間のエネルギー差を設計することで、ターゲット波長にピークを持つ分光感度特性が得られる。
これに対し、T2SLでは、異なる二つ以上の結晶材料が短周期で繰り返し積層され、その超格子に対応した電子とホールのミニバンドが形成される。ミニバンド間の最も小さいエネルギー差よりも大きいエネルギーの光が吸収されるので、図3のようにカットオフ波長型の分光感度特性となる。図4のピーク波長型の分光感度特性を持つ素子ではクロストークの影響は少ないが、量子効率と波長感度の制御性の良さから、T2SLを利用した赤外線検出器が望ましい。
図2に戻って、二つの受光層の間に配置されるバリア層は、多数キャリア、あるいは表面リーク成分の移動を抑制するために、十分な膜厚を持つことが望ましいが、バリア層を厚くするのが難しいという問題もある。pBp構造やnBn構造では、二つの受光層とバリア層の極性は同じに設定される。バンドギャップの大きいバリア層が厚くなると、pBp構造の場合は、伝導帯にΔEで示すバンドオフセットが生じる。nBn構造の場合は、図2と逆に、バリア層の伝導帯が図の上側に突出して、価電子帯にバンドオフセットが生じる。
図2のように、少数キャリアに対するバンドオフセットが生じると、受光層で生じたキャリアを引き抜くために印加するバイアス電圧が大きくなり、暗電流が増加して、S/N比が劣化する。クロストークの影響、印加バイアスの増大などによるS/N比の低下を解決して、測定精度の高い赤外線検出器を実現することが望まれる。
以下の実施形態では、バリア層を2層以上のサブバリア層に分割し、サブバリア層の間に、第1のカットオフ波長以上、かつ第2のカットオフ波長以下のカットオフ波長を有するフィルタ層を挿入することで、二波長型の赤外線検出器の測定精度を向上する。
図5は、実施形態の受光素子10の基本構成を示す。受光素子10は、赤外線検出器の画素アレイを形成する画素101を含む。受光素子10は、複数波長の光を検知する光吸収層22を有する。
光吸収層22は、第1のカットオフ波長を有する第1受光層221、第1バリア層222、中間フィルタ層223、第2バリア層224、及び第2のカットオフ波長を有する第2受光層225を有し、これらの層がこの順で積層されている。第1受光層221と第2受光層225の間に位置するバリア層は、第1バリア層222と第2バリア層224に分割され、第1バリア層222と第2バリア層224の間に、中間フィルタ層223が配置されている。中間フィルタ層223は、第1波長以上、かつ第2波長以下のカットオフ波長を有する。この例では、第1波長は第2波長よりも短く、光は第1受光層221の側から入射する。
図5では、図示を簡略化するために、バッファ層21とキャップ層23の間に光吸収層22が配置されて描かれているが、バッファ層21と光吸収層22の間、及び光吸収層22とキャップ層23の間には、半導体電極層、エッチングストッパ層など、その他の層が配置されていてもよい。あるいはバッファ層21の一部、またはキャップ層23の一部が半導体電極層として機能してもよい。
キャップ層23と光吸収層22を含むメサMは、個々の画素101を形成し、保護膜25で覆われている。バッファ層21は、画素アレイに含まれる多数の画素に共通に接続される。
メサMの上部で保護膜25の一部が除去されて、キャップ層23は上部電極26に接続されている。ここで、「上部」または「上面」というときは、赤外線検出器の成膜プロセスにおける積層方向または成長方向の上側を意味する。したがって、フリップチップ実装等により赤外線検出器が逆向きに配置される場合も、積層方向または成長方向でみたときの上側が「上部」または「上面」となる。
後述するように、実装時には、上部電極26にバンプ等の突起電極が配置され、突起電極によって画素アレイは読出し回路に接続される。
バッファ層21の裏面から入射した光のうち、第1波長以下の波長の光は、第1受光層221で吸収される。第1受光層221で吸収されずに透過した光のうち、中間フィルタ層223のカットオフ波長よりも短い波長の光は、中間フィルタ層223で吸収される。第2受光層225に光が入射する前に、クロストークの原因となる第1波長の光や、筐体輻射等に起因する第1波長と第2波長の間の波長成分は、あらかじめ低減されている。これにより、第2受光層225への光学的なクロストークが低減される。
図6は、図5の受光素子10のエネルギーバンド図である。中間フィルタ層223のエネルギーバンドギャップEmは、第1受光層221のエネルギーバンドギャップE1よりも小さく、第2受光層225のエネルギーバンドギャップE2よりも大きい。
第1バリア層222と第2バリア層224は、第1受光層221、中間フィルタ層223、及び第2受光層225のいずれよりも大きいエネルギーバンドギャップを有する。
第1受光層221、中間フィルタ層223、第2受光層225、第1バリア層222、及び第2バリア層224で、動作キャリアの極性は同じである。図6の例では、光吸収層22はpBpBp構造を持つ。これにより、第1受光層221と第2受光層225のそれぞれに隣接する電極層にバイアスを印加することで、受光層の多数キャリアと異なる極性の動作キャリア(図6の例では光吸収により発生した電子)を電極層に引き抜くことができる。中間フィルタ層223で生じたホールは、外部へ引き出すことができないので、定常状態で赤外線吸収によって発生した電子-ホール対は、再結合によって消滅する。
第1バリア層222、中間フィルタ層223、及び第2バリア層224のキャリア濃度は、第1受光層221及び第2受光層225のキャリア濃度よりも低いことが好ましい。たとえば、第1受光層221と第2受光層225の不純物濃度を1016cm-3のオーダーとすると、第1バリア層222、中間フィルタ層223、及び第2バリア層224の不純物濃度を1015cm-3のオーダーとする。
第1バリア層222、中間フィルタ層223、及び第2バリア層224を超格子で形成する場合は、超格子を構成するすべての薄膜に不純物を導入する必要はなく、n周期ごと(nは1以上の整数)、または不均一に、特定の層だけに不純物を導入してもよい。これにより、第1バリア層222、中間フィルタ層223、及び第2バリア層224の各層で、またはこれら三層の全体としてみたときに、不純物濃度を下げることができる。
第1バリア層222、中間フィルタ層223、及び第2バリア層224の不純物濃度を第1受光層221と第2受光層225の不純物濃度よりも低くすることで、光吸収で生じる少数キャリアに対するバンドオフセットまたはエネルギーの障壁を最小にすることができる。このことで、受光素子10に印加されるバイアス電圧が低減される。これについては、図8Aと図8Bを参照して後述する。少数キャリアに対するバンドオフセットを取り除くことで、第1バリア層222と第2バリア層224の厚さを厚くして暗電流を抑制し、S/N比の低下を抑制することができる。
図7は、図5の受光素子10の分光感度特性を示す。実線は第1受光層221での吸収特性、破線は第2受光層225での吸収特性、点線は中間フィルタ層223での吸収特性である。中間フィルタ層223は、第1受光層221のカットオフ波長λ1と、第2受光層225のカットオフ波長λ2の間のカットオフ波長λmを有する。λ1を含むλmよりも短い波長の光は、中間フィルタ層を223で吸収される。背景、筐体等から放射されるλ1とλ2の間の波長の光は低減され、λ2の光に対する光学的なクロストークが低減される。
図8Aは、図5の光吸収層22を有する実施形態の受光素子10の計算によるエネルギーバンド図である。ここでは、長波長の第2受光層225で発生した電子を引き抜くために、第1受光層221側に正バイアスを0.2V印加している。第1受光層221と第2受光層225の不純物濃度は1×1016cm-3、第1バリア層222、中間フィルタ層223、及び第2バリア層224の不純物濃度は1×1015cm-3である。
横軸は積層方向の位置を示し、左端が光の入射側、右端が第2受光層225側である。価電子帯VBで下側に突出する二つの障壁は第1バリア層222と第2バリア層224に対応する。
伝導帯CBでは、第2受光層225で発生した電子が感じるエネルギーの障壁またはバンドオフセットがなく、電子は効果的に正バイアスが印加された第1受光層側へと移動する。
図8Bに、比較例として、図1の従来構成での計算によるエネルギーバンド図を示す。図8Bで、二つの受光層へのドープ濃度は、図8Aと同じく1×1016cm-3、二つの受光層の間に配置されるバリア層へのドープ濃度は、図8Aと異なり1×1016cm-3である。破線のサークルBで示すように、バリア層に対応する位置で、伝導帯CVにバンドオフセットが発生している。このバンドオフセットは、長波長側の受光層で発生した電子にとってエネルギーの障壁となる。計算によるこのエネルギーの障壁は59meVである。この障壁を超えて電子を短波長側に引き抜くためには、印加バイアスを大きくする必要があるが、印加バイアスの増大は暗電流の増加を引き起こす。
これに対し、図8Aで、第1バリア層222、中間フィルタ層223、及び第2バリア層224の不純物濃度を、第1受光層221及び第2受光層225の不純物濃度よりも低くすることで、電子が感じるエネルギーの障壁を0meVにすることができる。
このように、第1受光層221のカットオフ波長以上、第2受光層225のカットオフ波長以下のカットオフ波長を有する中間フィルタ層223を配置することで、2波長の受光素子10が検出する信号間の光学的なクロストークを防止することができる(図7参照)。また、中間フィルタ層223、第1バリア層222及び第2バリア層224の不純物濃度を第1受光層221及び第2受光層225よりも低く設定することで、動作キャリア(図8Aの例では電子)が感じるバンドオフセット量またはエネルギーの障壁が、動作キャリアが持つ熱エネルギーと比較して小さくなるため、バイアス電圧を小さくすることができる。
図9A~図9Gは、実施形態の受光素子10が多数配列された画素アレイの製造工程図である。図9A~図9Gでは、図示の便宜上、画素アレイの最外周に位置する一つの画素に着目して製造工程が示されているが、実際は、画素アレイに含まれる多数の画素が一度に形成される。
まず、図9Aで、基板41の上に、たとえば分子線エピタキシー(MBE:Molecular Beam Epitaxy)により、画素アレイの作製に必要な積層を形成する。一例として、GaSbの基板41の上に、p型不純物が1×1018cm-3にドーピングされたGaSbバッファ層を1μmエピタキシャル成長する。このバッファ層により,基板41の表面の自然酸化膜を除去する際に生じた表面荒れを小さくして、より平坦な超格子層を得ることができる。ただし、基板41とこのバッファ層の材料は同じであるため、図9Aでは基板41と区別していない。
次に、最終的に基板41を除去する際に用いる第1エッチングストッパ層42として、p型不純物が1×1018cm-3にドープされたInAs0.91Sb0.09層を2μmエピタキシャル成長する。続いて、InAs0.91Sb0.09の第1エッチングストッパ層42を除去する際に用いる第2エッチングストッパ層43として、p型不純物が1×1018cm-3にドープされたGaSb層を、500nmエピタキシャル成長する。続いて、GaSbの第2エッチングストッパ層43の除去とメサエッチングの際に用いる第3エッチングストッパ層44として、p型不純物が1×1018cm-3にドープされたInAs0.91Sb0.09層を、1μmエピタキシャル成長する。この第3エッチングストッパ層44は、画素アレイの共通コンタクト層としても機能する。
次に、半導体電極層45を形成する。半導体電極層45は、p型不純物が1×1018cm-3にドープされたInAs/GaSbの超格子を、膜厚比11/4(ML)で約500nmエピタキシャル成長する。一例として、GaSbにBeを添加する。半導体電極層45は、上層の光吸収層22の下部電極層として機能する。
次に、光吸収層22を形成する。光吸収層22は、図5に示したように、第1受光層221、第1バリア層222、中間フィルタ層223、第2バリア層224、及び第2受光層225がこの順に積層されている。
第1受光層221として、p型不純物を1×1016cm-3にドープしたInAs/GaSbの超格子を膜厚比11/4(ML)で約2μmエピタキシャル成長する。第1バリア層222として、p型の不純物を1×1015cm-3にドープしたInAs/AlSbの超格子を膜厚比15/4(ML)で約100nmエピタキシャル成長する。
中間フィルタ層223として、p型不純物を1×1015cm-3にドープしたInAs/GaSbの超格子を膜厚比13/5(ML)で約1μmエピタキシャル成長する。第2バリア層224として、p型の不純物を1×1015cm-3にドープしたInAs/AlSbの超格子を膜厚比15/4(ML)で約100nmエピタキシャル成長する。第2受光層225として、p型不純物を1×1016cm-3にドープしたInAs/GaSbの超格子を膜厚比14/7(ML)で約3μmエピタキシャル成長する。
これにより、第1受光層221、第1バリア層222、中間フィルタ層223、第2バリア層224、及び第2受光層225の積層を含む光吸収層22が形成される。第1受光層221は、中波長の赤外域にカットオフ波長を有し、第2受光層225は、長波長の赤外域にカットオフ波長を有する。中間フィルタ層223は、中波長~長波長の赤外域にカットオフ波長を有する。第1バリア層222と第2バリア層224は、この例では、ホールに対する障壁となる。
光吸収層22の上に、上部電極としての半導体電極層46を形成する。半導体電極層46として、p型不純物を1×1018cm-3にドープしたInAs/GaSbの超格子を膜厚比14/7(ML)で約500nmエピタキシャル成長する。次に、キャップ層47として、1×1018cm-3にドープされたInAsを20nmエピタキシャル成長する。キャップ層47は、上部コンタクト層としても機能する。
これらの積層の上に、500nmのSiON層48をプラズマ化学気相堆積(CVD)法により成膜する。SiON層48上に、リソグラフィにより画素のパターン形状を有するレジストマスク49を形成する。
図9Bで、積層に各画素となるメサMを形成する。メサMは、ハードマスクを用いたドライエッチングで形成される。一例として、レジストマスク49を用い、CF4/Arガスを用いた反応性イオンエッチング(RIE)によりSiON層48をエッチングして、ハードマスクを形成する。ハードマスクを用いて、BCl3/Arガスを用いたRIE法により、超格子の積層をエッチングしてメサMを形成する。このとき、二次イオン等によるGaのパルス信号をモニタし、Gaの低減によってエッチングの終点を検知する。InAs0.91Sb0.09の第3エッチングストッパ層44の表面が露出した時点で、エッチングを終了する。その後、リン酸、クエン酸、過酸化水素水、及び水の混合溶液にて、超格子のメサMの側壁を約100nmエッチングして、RIEにより生じたメサ側壁のダメージ層を除去する。続いて、BHFを用いて、ハードマスクを形成していたSiON層48を除去する。
図9Cで、全面に、メサMを覆う保護膜25を形成する。たとえば、SiH4/N2Oガスを用いたプラズマCVDにより、シリコン酸化膜を300nm成膜して、保護膜25とする。
図9Dで、リソグラフィとRIE法により、各メサの上面の保護膜25の一部と、画素アレイの最外周の第3エッチングストッパ層44の上面を覆う保護膜25の一部を除去して上部電極26と下部電極51を形成する。具体例としては、メサ上面の保護膜25を除去したコンタクトホールと、第3エッチングストッパ層44の上面の保護膜25を除去したコンタクトホールに、リソグラフィにて、キャップ層47とオーミック接触する電極パターンと、第3エッチングストッパ層44とオーミック接触する電極パターンをそれぞれ形成する。その後、蒸着法にて、たとえばTi/Pt/Auの電極材料を堆積し、リフトオフ法により形状を加工して、上部電極26と下部電極51を形成する。
アレイ中の有効画素としては、下部電極51を除いた素子が均一に配置されており、アレイの最外周にダミー画素が配置されている。以下で述べるように、下部電極51は、ダミー画素のメサ上部に引き出される。
図9Eで、リソフラフィと蒸着法を組み合わせたリフトオフ法により、上部電極26の上に、In等の良導体でバンプ電極52を形成する。図示は省略しているが、下部電極51は、ダミー画素のメサ側壁に形成された引き出し配線によってメサの上部に引き出されており、ダミー画素の上部電極によって、バンプ電極に接続されている。下部電極51は画素アレイの対応する列または行を形成する複数の画素に共通の電極として用いられる。
図9Fで、バンプ電極52が形成された画素アレイと、接続電極が形成された読出し回路50とをフリップチップ接合する。図9Fでは、図示の便宜上、図9A~図9Eと同じ向きの画素アレイに読出し回路50が接続されているが、画素アレイのバンプ電極52を読出し回路50に形成された接続電極に位置合わせして、フリップチップで接続する。これにより画素アレイを含む基板と、読出し回路50の間が、接合電極53によって接合される。接合電極53で連結された画素アレイと読出し回路50の間に、アンダーフィル56を充填する。
図9Gで、基板41を背面研削により、600μm程度除去して薄化する。続いて、InAs0.91Sb0.09の第1エッチングストッパ層42を用いて、HF/CrO3の混合液により基板41の残りをウェットエッチングで除去する。続いて、GaSbの第2エッチングストッパ層43を用いて、リン酸、過酸化水素水、及び水の混合溶液により、InAs0.91Sb0.09の第1エッチングストッパ層をウェットエッチングで除去する。さらに、InAs0.91Sb0.09の第3エッチングストッパ層44を用いて、リン酸、クエン酸、過酸化水素水、及び水の混合溶液により、GaSbの第2エッチングストッパ層43をウェットエッチングにより除去する。これにより、画素アレイ100が得られる。
この後、赤外線の入射面となる第3エッチングストッパ層44の背面に反射防止膜を成膜し、容器に実装することで、赤外線検出器が完成する。
図10は、実施形態の赤外線検出器150の模式図である。赤外線検出器150は、画素アレイ100と、読出し回路50を有する。画素アレイ100では、各画素101を形成する受光素子10が、アレイ状に配置されている。各画素101は、接合電極53(図9G参照)によって、読出し回路50に形成された対応するユニットセル501に電気的に接続されている。
光吸収層22のうち、第1受光層221で吸収された光によって生成されたキャリア(たとえば電子)を読み出すときは、選択した画素101の上部電極26から半導体電極層46に正バイアスを印加して、半導体電極層46から電子を引き抜く。この電荷は、読出し回路50の対応するユニットセル501のキャパシタに蓄積され、所定のタイミングで電荷量が読み出される。
第2受光層225で吸収された光によって生成されたキャリア(たとえば電子)を読み出すときは、下部電極51から、半導体電極層45に正バイアスを印加し、半導体電極層45から電子を引き抜く。引き出された電荷は、読出し回路50の対応するユニットセル501のキャパシタに蓄積され、所定のタイミングで電荷量が読み出される。
第1受光層221と第2受光層225の間に、中間フィルタ層223が配置され、第1受光層221と中間フィルタ層223の間に第1バリア層222が挿入され、中間フィルタ層223と第2受光層225の間に第2バリア層224が挿入されている。これによって、第1受光層221と第2受光層225の間の光学的なクロストークが抑制され、S/N比が向上する。
また、第1バリア層222、中間フィルタ層223、及び第2バリア層224の不純物濃度を、第1受光層221及び第2受光層225よりも低く設定することで、動作キャリアが感じるエネルギーの障壁を小さくして、バイアス電圧を小さくすることができる。これにより、暗電流を抑制して、S/N比の向上に寄与することができる。
図11は、赤外線検出器150を用いた撮像装置1のシステム構成図である。撮像装置1は、赤外線検出器150と、赤外線検出器150の光入射側に配置される光学系2と、赤外線検出器150の読出し回路50に接続される信号処理回路6と、表示記録装置7を有する。また、光学系2と赤外線検出器150を制御する第1制御部3、及び信号処理回路6と表示記録装置7を制御する第2制御部4を由比鵜する。赤外線検出器150の全体は冷却器5の内部に配置されていてもよい。
信号処理回路6は、DSP(Digital Signal Processor)等の専用の信号処理回路であってもよいし、FPGA(Field Programmable Gate Array)のようなロジックデバイスであってもよいし、これらに専用の画像処理プロセッサを組み合わせてもよい。信号処理回路6は、各画素の第1受光層221で検出された赤外線と、第2受光層225で検出された赤外線を用いて演算処理、感度補正を含む補正処理等を行って、画像信号を生成する。生成された画像信号は、表示記録装置7に供給され、各画素101への入射赤外光に応じた画像が表示され、記録される。
撮像装置1は、光学的クロストークが抑制されてS/N比が向上しているので、測定対象物の画像を高精細で画像表示することができる。撮像装置1は、セキュリティシステム、無人探査システム等に適用可能であり、赤外光を検出するので、夜間の監視システムにも有効に適用できる。
以上、特定の構成例に基づいて実施例及び変形例を説明したが、本発明は、上述した構成、及び手法に限定されない。S/N比改善の効果が得られる範囲で、適宜、変更または代替が可能である。たとえば、実施形態では、中波長赤外線と長波長赤外線の受光部としてInAs/GaSb超格子を用いたが、この例に限定されず、InAs/GaInSb超格子、InAs/InAsSb超格子などを用いてもよい。また、第1バリア層と第2バリア層はInAs/AlSbに限定されず、第1受光層と第2受光層よりもバンドギャップの広い超格子、たとえば、InAs/GaSb/AlSb/GaSb超格子などを用いてもよい。
実施形態では、光吸収層22がp型の場合について説明し、第1バリア層と第2バリア層をホールに対するバリア層としたが、ドーパントとしてSi、Te等を用いて、光吸収層22をn型にしてもよい。その場合は、電子に対するバリア層として、第1バリア層と第2バリア層をAlxGa1-xSbなどを用いることができる。光吸収層22に添加されるp型の不純物はBeに限定されず、Zn等を用いてもよい。
光吸収層22に添加される不純物は、すべての超格子に均等に導入される必要はなく、何層かおきに導入してもよい。特に、第1バリア層、中間フィルタ層、及び第2バリア層で、第1受光層及び第2受光層よりも不純物濃度を低くする場合は、不純物を添加しない超格子層の数を増やしてもよい。
p型の光吸収層を用いる場合(動作キャリアが電子の場合)は、第1受光層、第1バリア層、中間フィルタ層、第2バリア層、及び第2受光層を、InAs、GaSb、AlSbの2以上の組み合わせによる超格子で形成してもよい。
n型の光吸収層を用いる場合(動作キャリアがホールの場合)は、第1受光層、中間フィルタ層、及び第2受光層をInAs、GaSb、AlSbの2以上の組み合わせによる超格子で形成し、第1バリア層と第2バリア層をAlxGa1-xSbで形成してもよい。
積層の形成はMBE法に限定されず、MOCVD法や、積層構造が作製可能なその他の方法を用いてもよい。
赤外線検出器150の入射側、すなわち光学系2と画素アレイ100の間に、シャッタを配置してもよい。赤外線検出器150または冷却器5に、温度センサを設けてもよい。読出し回路50の外周に沿って、垂直走査回路(シフトレジスタ)、水平走査回路(シフトレジスタ)、水平読出し回路、ノイズキャンセラ等の回路が配置されていてもよい。撮像装置1の動作を制御する第1制御部3と第2制御部4は、一つのプロセッサで実現されてもよい。
いずれの場合も、第1受光層と第2受光層の間に、第1受光層のカットオフ波長以上、かつ第2受光層のカットオフ波長以下のカットオフ波長を持つ中間フィルタ層を挿入することで、光学的なクロストークを抑制してS/N比を改善することができる。
また、中間フィルタ層と第1バリア層及び第2バリア層の不純物濃度を、第1受光層と第2受光層の不純物濃度よりも低くすることで、動作キャリアが感じるエネルギーの障壁を小さくして、バイアス電圧を小さくすることができる。これにより、暗電流を抑制してS/N比の向上に寄与することができる。
1 撮像装置
6 信号処理回路
10 受光素子
22 光吸収層
221 第1受光層
222 第1バリア層
223 中間フィルタ層
224 第2バリア層
225 第2受光層
26 上部電極
41 基板
45、46 半導体電極層
47 キャップ層
50 読出し回路
51 下部電極
53 接合電極
100 画素アレイ
101 画素
150 赤外線検出器
M メサ

Claims (8)

  1. 第1のカットオフ波長を有する第1受光層と、
    第1のカットオフ波長よりも長い第2のカットオフ波長を有する第2受光層と、
    前記第1受光層と前記第2受光層の間に配置され、前記第1のカットオフ波長と同じかそれより長く、かつ前記第2のカットオフ波長と同じかそれよりも短い第3のカットオフ波長を有する中間フィルタ層と、
    前記第1受光層と前記中間フィルタ層の間に配置される第1バリア層と、
    前記第2受光層と前記中間フィルタ層の間に配置される第2バリア層と、
    を有し、
    前記第1受光層、前記第2受光層、前記中間フィルタ層、前記第1バリア層、及び前記第2バリア層は、同じ導電型である
    赤外線検出器。
  2. 前記中間フィルタ層、前記第1バリア層、及び前記第2バリア層の不純物濃度は、前記第1受光層と前記第2受光層の不純物濃度よりも低いことを特徴とする請求項1に記載の赤外線検出器。
  3. 前記第1バリア層と前記第2バリア層のエネルギーバンドギャップは、前記第1受光層、前記中間フィルタ層、及び前記第2受光層のエネルギーバンドギャップよりも大きいことを特徴とする請求項1または2に記載の赤外線検出器。
  4. 前記第1受光層と前記第2受光層で発生する動作キャリアはn型キャリアであり、前記第1受光層、前記第2受光層、前記第1バリア層、前記第2バリア層、及び前記中間フィルタ層は、InAs、GaSb、AlSbから選択される2以上の材料による超格子で形成されていることを特徴とする請求項1~のいずれか1項に記載の赤外線検出器。
  5. 前記第1受光層と前記第2受光層で発生する動作キャリアはp型キャリアであり、前記第1受光層、前記中間フィルタ層、及び前記第2受光層は、InAs、GaSb、AlSbから選択される2以上の材料による超格子で形成されており、
    前記第1バリア層と前記第2バリア層はAlxGa1-xSbで形成されていることを特徴とする請求項1~のいずれか1項に記載の赤外線検出器。
  6. 前記超格子を形成する繰り返し層への不純物の導入は不均一であることを特徴とする請求項またはに記載の赤外線検出器。
  7. 前記第1受光層、前記第1バリア層、前記中間フィルタ層、前記第2バリア層、及び前記第2受光層がこの順で積層された受光素子が複数配列された画素アレイと、
    前記画素アレイに接合される読出し回路と、
    を有する請求項1~のいずれか1項に記載の赤外線検出器。
  8. 請求項の赤外線検出器と、
    前記読出し回路の出力に接続される信号処理回路と、
    を有する撮像装置。
JP2019112194A 2019-06-17 2019-06-17 赤外線検出器、及びこれを用いた撮像装置 Active JP7314639B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019112194A JP7314639B2 (ja) 2019-06-17 2019-06-17 赤外線検出器、及びこれを用いた撮像装置
US16/888,894 US11549844B2 (en) 2019-06-17 2020-06-01 Infrared detector and imaging device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019112194A JP7314639B2 (ja) 2019-06-17 2019-06-17 赤外線検出器、及びこれを用いた撮像装置

Publications (2)

Publication Number Publication Date
JP2020205339A JP2020205339A (ja) 2020-12-24
JP7314639B2 true JP7314639B2 (ja) 2023-07-26

Family

ID=73745913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019112194A Active JP7314639B2 (ja) 2019-06-17 2019-06-17 赤外線検出器、及びこれを用いた撮像装置

Country Status (2)

Country Link
US (1) US11549844B2 (ja)
JP (1) JP7314639B2 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060118722A1 (en) 2004-12-03 2006-06-08 Raytheon Company A Corporation Of The State Of Delaware Method and apparatus providing single bump, multi-color pixel architecture
JP2006286825A (ja) 2005-03-31 2006-10-19 Toyota Central Res & Dev Lab Inc 光電変換装置
US20170053969A1 (en) 2015-08-19 2017-02-23 Samsung Electronics Co., Ltd. Stacked image sensor and method of manufacturing the same
CN108831879A (zh) 2018-06-15 2018-11-16 杭州国翌科技有限公司 混合集成型双谱段多光谱短波红外探测器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4223774B2 (ja) 2002-09-17 2009-02-12 京セミ株式会社 半導体受光素子
JP4743453B2 (ja) * 2008-12-25 2011-08-10 住友電気工業株式会社 気体モニタリング装置、燃焼状態モニタリング装置、経年変化モニタリング装置、および不純物濃度モニタリング装置
US20120217475A1 (en) * 2011-02-25 2012-08-30 Leavitt Richard P Optoelectronic Devices Including Compound Valence-Band Quantum Well Structures
US9207120B2 (en) 2013-07-15 2015-12-08 The Boeing Company Systems and methods for detecting multiple infrared bands
JP6880601B2 (ja) * 2016-08-22 2021-06-02 富士通株式会社 光検出器及び撮像装置
WO2020073028A1 (en) * 2018-10-05 2020-04-09 Flir Commercial Systems, Inc. Dual band photodetection system and method
WO2020123161A1 (en) * 2018-12-14 2020-06-18 Flir Commercial Systems, Inc. Superlattice-based detector systems and methods
CN112490310A (zh) * 2020-11-25 2021-03-12 天津津航技术物理研究所 一种单片集成式pBpBp四波段探测器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060118722A1 (en) 2004-12-03 2006-06-08 Raytheon Company A Corporation Of The State Of Delaware Method and apparatus providing single bump, multi-color pixel architecture
JP2006286825A (ja) 2005-03-31 2006-10-19 Toyota Central Res & Dev Lab Inc 光電変換装置
US20170053969A1 (en) 2015-08-19 2017-02-23 Samsung Electronics Co., Ltd. Stacked image sensor and method of manufacturing the same
CN108831879A (zh) 2018-06-15 2018-11-16 杭州国翌科技有限公司 混合集成型双谱段多光谱短波红外探测器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG, Yiyun et al.,"Suppressing Spectral Crosstalk in Dual-Band Long-Wavelength Infrared Photodetectors With Monolithically Integrated Air-Gapped Distributed Bragg Reflectors",IEEE Journal of Quantum Electronics,2019年02月,Vol. 55,No. 1, Article number: 4000106,pp. 1-6,DOI: 10.1109/JQE.2018.2882808

Also Published As

Publication number Publication date
US20200393293A1 (en) 2020-12-17
JP2020205339A (ja) 2020-12-24
US11549844B2 (en) 2023-01-10

Similar Documents

Publication Publication Date Title
TWI676281B (zh) 光偵測器及其製造方法
US6455908B1 (en) Multispectral radiation detectors using strain-compensating superlattices
KR20180008327A (ko) 이중 대역 광검출기 및 이의 제작 방법
EP2446483B1 (en) Low-level signal detection by semiconductor avalanche amplification
US8610170B2 (en) Compound semiconductor light-receiving element array
US9178089B1 (en) Strain-balanced extended-wavelength barrier detector
EP2756523B1 (en) Frontside-illuminated barrier infrared photodetector device and methods of fabricating the same
US10714531B2 (en) Infrared detector devices and focal plane arrays having a transparent common ground structure and methods of fabricating the same
JP2007081225A (ja) 赤外線センサ、および、その製造方法
US9209218B2 (en) Infrared solid-state imaging device
JP7314639B2 (ja) 赤外線検出器、及びこれを用いた撮像装置
JP7505320B2 (ja) 2波長光検出器、及びこれを用いたイメージセンサ
JP2000188407A (ja) 赤外線検知素子
US9728577B2 (en) Infrared image sensor
JP4331428B2 (ja) サブバンド間遷移量子井戸型光検知装置
JP4468600B2 (ja) 暗電流低減機構を有する光検知装置
US20230114881A1 (en) Barrier Infrared Detector Architecture for Focal Plane Arrays
JP2021022662A (ja) 量子型赤外線センサ
JP2023163932A (ja) 赤外線検出器、及びこれを用いたイメージセンサ
JP2023011110A (ja) 2波長赤外線センサ、及び撮像システム
JP2022072407A (ja) 光検出器
JP2022080609A (ja) 光検出器、及び撮像装置
JP2021100023A (ja) 光検出装置、及びこれを用いた撮像装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230626

R150 Certificate of patent or registration of utility model

Ref document number: 7314639

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150