JP7294781B2 - レーダ装置および物体判別方法 - Google Patents

レーダ装置および物体判別方法 Download PDF

Info

Publication number
JP7294781B2
JP7294781B2 JP2018167190A JP2018167190A JP7294781B2 JP 7294781 B2 JP7294781 B2 JP 7294781B2 JP 2018167190 A JP2018167190 A JP 2018167190A JP 2018167190 A JP2018167190 A JP 2018167190A JP 7294781 B2 JP7294781 B2 JP 7294781B2
Authority
JP
Japan
Prior art keywords
peak
power spectrum
distance
target
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018167190A
Other languages
English (en)
Other versions
JP2020041818A (ja
Inventor
昭造 貝野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Ten Ltd
Original Assignee
Denso Ten Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Ten Ltd filed Critical Denso Ten Ltd
Priority to JP2018167190A priority Critical patent/JP7294781B2/ja
Publication of JP2020041818A publication Critical patent/JP2020041818A/ja
Application granted granted Critical
Publication of JP7294781B2 publication Critical patent/JP7294781B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Description

開示の実施形態は、レーダ装置および物体判別方法に関する。
従来、レーダ装置は、物体で反射した送信波の反射波を受信信号として受信し、受信信号を解析することによって、物体までの距離、相対速度、存在方位などを得る(例えば、特許文献1参照)。
特開2016-3873号公報
特に車両の制御の対象となるような物体(物標と呼ばれることもある)については、さらに物標の種類(歩行者であるか否かなど)も判別したいという要望があった。しかしながら、従来の技術では、歩行者と路面クラッタとを高確度で判別することが困難であった。
実施形態の一態様は、上記に鑑みてなされたものであって、歩行者と路面クラッタとを高確度で判別することができるレーダ装置および物体判別方法を提供することを目的とする。
実施形態の一態様に係るレーダ装置は、受信部と、生成部と、判別部とを備える。受信部は、物体で反射した送信波の反射波を受信信号として受信する。生成部は、前記受信部によって受信される前記受信信号から、前記物体との距離に対応する距離方向と、前記物体との相対速度に対応する速度方向との二次元に対するパワースペクトルを生成する。判別部は、前記生成部によって生成される前記パワースペクトルからピークを検出し、前記ピークと前記ピーク近傍のパワースペクトルとに基づいて前記ピークが歩行者によるものであるか否かの判別を行う。
実施形態の一態様に係るレーダ装置および物体判別方法によれば、歩行者と路面クラッタとを高確度で判別することができる。
図1は、実施形態に係るレーダ装置のブロック図である。 図2は、実施形態に係る送信周波数と、受信周波数と、ビート周波数との関係の一例を示す図である。 図3は、実施形態に係るビート信号に対して距離FFT処理を行った結果を示す図である。 図4は、実施形態に係る第2処理部の処理内容を示す図である。 図5は、実施形態に係る中心セルおよびピーク近傍セルの一例を示す説明図である。 図6Aは、実施形態に係るピーク近傍データの速度方向における特徴を示す説明図である。 図6Bは、実施形態に係るピーク近傍データの距離方向における特徴を示す説明図である。 図6Cは、実施形態に係るピーク近傍データの特徴の傾向を示す説明図である。 図7は、実施形態に係るパワーの速度方向における重心位置の傾向を示す説明図である。 図8は、実施形態に係るパワー相対値の定義の一例を示す説明図である。 図9Aは、実施形態に係る距離方向においてターゲットピークから1bin離れたピーク近傍データのパワー相対値の傾向を示す説明図である。 図9Bは、実施形態に係る距離方向においてターゲットピークから2bin離れたピーク近傍データのパワー相対値の傾向を示す説明図である。 図10は、実施形態に係る斜め方向においてターゲットピークと隣接するピーク近傍データのパワー相対値の傾向を示す説明図である。 図11Aは、実施形態に係る速度方向においてターゲットピークから1bin離れたピーク近傍データのパワー相対値の傾向を示す説明図である。 図11Bは、実施形態に係る速度方向においてターゲットピークから2bin離れたピーク近傍データのパワー相対値の傾向を示す説明図である。 図12は、実施形態に係るレーダ装置の信号処理部が実行する処理の一例を示すフローチャートである。
以下、添付図面を参照して、レーダ装置および物体判別方法の実施形態を詳細に説明する。なお、以下に示す実施形態によりこの発明が限定されるものではない。図1は、実施形態に係るレーダ装置1のブロック図である。
実施形態に係るレーダ装置1は、車両に搭載され、FCM(Fast Chirp Modulation)方式によって車両の周囲に存在する物体(以下、「物標」と記載する)を検知する。FCM方式は、周波数が連続的に変化する複数のチャープ波が繰り返される送信波を出力して検出範囲内に存在する物標との距離および相対速度を検出する方式である。
具体的には、FCM方式は、送信波が物標によって反射された反射波を受信信号として複数の受信アンテナによって受信し、受信した反射波と送信波とから生成されるビート信号に対して二次元高速フーリエ変換(Fast Fourier Transform)処理(以下、二次元FFT処理と記載する場合がある)を行って物標との距離および相対速度を検出する。
なお、二次元FFT処理は、物標との距離に対応する距離方向への距離FFT処理および物標との相対速度に対応する速度方向への速度FFT処理の2回のFFT処理を行うことである。
かかるレーダ装置1は、図1に示すように、車両制御装置2に接続される。車両制御装置2は、レーダ装置1による物標の検出結果に基づいてPCS(Pre-crash Safety System)やAEB(Advanced Emergency Braking System)などの車両制御を行う。なお、レーダ装置1は、車載レーダ装置以外の各種用途(例えば、飛行機や船舶の監視等)に用いられてもよい。
レーダ装置1は、送信部10と、受信部20と、処理部30とを備える。送信部10は、信号生成部11と、発振器12と、送信アンテナ13とを備える。信号生成部11は、ノコギリ波状に電圧が変化する変調信号を生成し、発振器12へ供給する。発振器12は、信号生成部11で生成された変調信号に基づいてチャープ信号を生成して、送信アンテナ13へ出力する。
送信アンテナ13は、発振器12から入力されるチャープ信号を送信波へ変換し、かかる送信波を車両の外部へ出力する。送信アンテナ13が出力する送信波は、複数のチャープ波が繰り返される波形である。送信アンテナ13から車両の前方に送信された送信波は、物標で反射されて反射波となる。
受信部20は、アレーアンテナを形成する複数の受信アンテナ21と、アンテナ21毎に設けられるミキサ22と、ミキサ22毎に設けられるA/D変換器23とを備える。各受信アンテナ21は物標からの反射波を受信波として受信し、かかる受信波を受信信号へ変換してミキサ22へそれぞれ出力する。なお、図1に示す受信アンテナ21の数は、4つであるが3つ以下または5つ以上であってもよい。特に本実施形態においては物標の方位を得る必要はないため、受信アンテナは1つであってもよい。
各受信アンテナ21から出力された受信信号は、不図示の増幅器(例えば、ローノイズアンプ)で増幅された後にミキサ22へ入力される。ミキサ22は、チャープ信号と受信信号の一部とをミキシングし不要な信号成分を除去してビート信号を生成し、A/D変換器23へ出力する。
これにより、チャープ信号の周波数fST(以下、送信周波数fSTと記載する)と受信信号の周波数fSR(以下、受信周波数fSRと記載する)との差となるビート周波数fSB(=fST-fSR)を有するビート信号が生成される。ミキサ22で生成されたビート信号は、A/D変換器23でデジタルの信号へ変換された後に処理部30に出力される。
図2は、送信周波数fSTと、受信周波数fSRと、ビート周波数fSBとの関係の一例を示す図である。図2に示すように、ビート信号は、チャープ波毎に生成される。なお、ここでは、1回目のチャープ波によって得られるビート信号を「B1」とし、2回目のチャープ波によって得られるビート信号を「B2」とし、n回目のチャープ波によって得られるビート信号を「Bn」としている。
また、図2に示す例では、送信周波数fSTは、チャープ波毎に、基準周波数f0から時間に伴って傾きθ(=(f1-f0)/Tm)で増加し、最大周波数f1に達すると基準周波数f0に短時間で戻るノコギリ波状(いわゆるアップチャープ)である。
なお、送信周波数fSTは、チャープ波毎に基準周波数f0から最大周波数f1へ短時間で到達し、かかる最大周波数f1から時間に伴って傾きθ(=(f0-f1)/Tm)で減少するノコギリ波状(いわゆるダウンチャープ)であってもよい。
図1の説明に戻り、処理部30について説明する。処理部30は、送信制御部31および信号処理部32を備える。信号処理部32は、第1処理部33、第2処理部34、生成部35、判別部36および出力部37を備える。
かかる処理部30は、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、入出力ポート等を含むマイクロコンピュータであり、レーダ装置1全体を制御する。
処理部30は、マイクロコンピュータのCPUがROMに記憶されたプログラムを読み出し、RAMを作業領域として使用して実行することにより機能する送信制御部31および信号処理部32を備える。
なお、送信制御部31および信号処理部32のうち少なくとも一部または全部をASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)等のハードウェアで構成することもできる。
送信制御部31は、送信部10の信号生成部11を制御し、信号生成部11からノコギリ歯状に電圧が変化する変調信号を発振器12へ出力させる。これにより、時間の経過に従って周波数が変化するチャープ信号が発振器12から送信アンテナ13へ出力される。
信号処理部32は、各A/D変換器23から出力されるビート信号に対してそれぞれ二次元FFT処理(距離FFT処理および速度FFT処理)を行う。そして、信号処理部32は、かかる二次元FFT処理の結果に基づいて物標の距離、相対速度(縦方向への相対速度および横方向への相対速度)および方位を演算し、算出した距離および相対速度から、例えば、物標が歩行者か否かを判別する。以下、信号処理部32の各部の処理について説明する。
信号処理部32の第1処理部33は、各A/D変換器23から入力されるビート信号のそれぞれに対して距離FFT処理を行うことで受信アンテナ21毎に周波数スペクトルを生成する。具体的には、第1処理部33は、ビート信号毎に各距離[bin]fr(fr1~frm)について距離FFT処理を行う。ここで、図3を用いて、距離FFT処理の結果について具体的に説明する。
図3は、ビート信号に対して距離FFT処理を行った結果を示す図である。図3に示す周波数スペクトルでは、横軸を距離[bin](周波数)とし、縦軸をパワースペクトル(パワー[dB])の大きさ(ピークの大きさ)としている。図3に示す例では、距離[bin]fr10のみにピークが出現していることとする。
ここで、ビート信号の周波数は、物標とレーダ装置1との間の距離に比例して増減する。このため、第1処理部33は、ビート信号に対して距離FFT処理を行うことで、物標との距離に対応する距離[bin]frに出現するピーク(パワーが所定値以上)を距離方向のターゲットピークとして取得する。
なお、第1処理部33は、4つのA/D変換器23から入力される各ビート信号に対して所定サイクルで周期的に距離FFT処理を行う。第1処理部33は、距離FFT処理の結果を第2処理部34へ出力する。
第2処理部34は、第1処理部33における距離FFT処理の結果に対して速度FFT処理を行う。速度FFT処理とは、距離FFT処理の結果である周波数スペクトルの距離[bin]fr毎に各速度[bin]fvについて2回目のFFT処理を行うことである。これにより、速度FFT処理の結果として、物標の相対速度に対応する速度[bin]fvにピークが出現することとなる。
かかる第2処理部34は、物標の相対速度がゼロでない場合に生じる受信信号のドップラ成分を利用する。具体的には、第2処理部34は、ビート信号の周波数スペクトルにおけるピークの位相の変化を検出する。ここで、図4を用いて、第2処理部34の処理内容について説明する。
図4は、第2処理部34の処理内容を示す図である。図4では、複数の受信アンテナ21のうち、任意の1つの受信アンテナ21の周波数スペクトルを時系列に並べて示している。また、図4では、時間的に連続するビート信号B1~B8の距離FFT処理の結果とビート信号B1~B8間のピークの位相変化の一例を示す。図4に示す例では、各ビート信号B1~B8の距離[bin]fr10にピークがあり、かかるピークの位相が変化している。
ここで、物標とレーダ装置1との相対速度がゼロでない場合、ビート信号B1~B8間において同一物標に相当する距離[bin]fr10のピークにドップラ周波数に応じた位相の変化が現われる。
第2処理部34は、所定サイクルで周期的に距離FFT処理を行って得られる周波数スペクトルを時系列に並べて速度FFT処理を行うことで、ドップラ周波数に対する周波数(速度[bin])にピークが出現する周波数スペクトルを速度方向のターゲットピークとして取得する。第2処理部34は、速度FFT処理の結果を生成部35へ出力する。
図1へ戻って生成部35および判別部36について説明する。生成部35は、第2処理部34から入力される速度FFT処理の結果から距離方向を第1軸とし、速度方向を第2軸とした二次元の直交座標系(以下、二次元座標系と記載する)におけるパワースペクトルを生成する。
判別部36は、生成部35によって生成されるパワースペクトルに基づいて、物標との距離、相対速度および角度(方位)を演算する。そして、判別部36は、算出した距離および相対速度から、例えば、物標が歩行者か否かを判別する。そして、判別部36は、演算結果および判別結果を出力部37へ出力する。
なお、判別部36による角度の推定は、例えば、ESPRIT(Estimation of Signal Parameters via Rotational Invariance Techniques)、DBF(Digital Beam Forming)、または、MUSIC(Multiple Signal Classification)などの所定の推定方式を用いて行われる。
出力部37は、車両制御装置2に対して各種情報を出力する。例えば、出力部37は、検出した物標に関する物標情報を車両制御装置2へ出力する。物標情報には、例えば、判別部36によって歩行者と判別された物標の距離、相対速度および角度が含まれる。
ここで、一般的なレーダ装置の判別部は、距離方向のターゲットピークと、速度方向のターゲットピークとに基づいて、物標が歩行者か否かを判別する。例えば、一般的な判別部は、距離方向のターゲットピークについて、歩行者の方が路面クラッタよりもパワーが高い傾向があるため、パワーが所定の閾値以上である場合に、物標を歩行者と判別する。
しかし、ときとして路面クラッタの距離方向におけるパワーが閾値を超える場合がある。かかる場合に、判別部は、路面を歩行者と誤判別することがある。
また、一般的な判別部は、速度方向のターゲットピークについて、歩行者は移動するが路面は移動しないため、物標との相対速度から自車両の速度成分を差し引いた対地速度が所定の閾値以上である場合に、物標を歩行者と判別する。しかし、かかる判別部は、閾値未満の対地速度で移動する歩行者を路面と誤判別することがある。
このように、一般的な判別部は、距離方向のターゲットピークと、速度方向のターゲットピークとに基づいて、物標が歩行者か否かを判別するため、歩行者と路面クラッタとを高確度で判別することが困難であった。
なお、一般的な判別部は、複数サイクルの処理で連続して取得されるターゲットピークに基づいて物標が歩行者か否かを判別することにより、判別の確度を向上させることは可能であるが、これでは、歩行者か否かの判別に要する時間が嵩む。
そこで、実施形態に係る判別部36は、二次元座標系におけるターゲットピーク近傍のパワースペクトルの特徴が歩行者と路面クラッタとで異なることを利用することにより、物標が歩行者か否かを判別する。これにより、レーダ装置1は、1サイクルの処理で取得される瞬時値から物標が歩行者か否かを迅速、且つ高角度に判別することができる。
具体的には、判別部36は、二次元座標系内でターゲットピークが検出される位置に中心セルを定義し、中心セルの周囲にピーク近傍のパワースペクトル(以下、ピーク近傍データと記載する)を検出する位置となるピーク近傍セルを定義する。
図5は、実施形態に係る中心セルおよびピーク近傍セルの一例を示す説明図である。図5に示すように、判別部36は、例えば、物標との相対速度(以下、速度と記載する)を横軸、物標との距離(以下、距離と記載する)を縦軸とする二次元座標系において、ターゲットピークが検出される位置に中心セル(7)を定義する。
そして、判別部36は、中心セル(7)の周囲に、近傍セル(1)~(6)、(8)~(13)を定義する。例えば、判別部36は、距離方向において、中心セル(7)から正側に1[bin]離れた近傍セル(3)、正側に2[bin]離れた近傍セル(1)、負側に1[bin]離れた近傍セル(11)、および負側に2[bin]離れた近傍セル(13)を定義する。
また、判別部36は、速度方向において、中心セル(7)から正側に1[bin]離れた近傍セル(6)、正側に2[bin]離れた近傍セル(5)、負側に1[bin]離れた近傍セル(8)、および負側に2[bin]離れた近傍セル(9)を定義する。さらに、判別部36は、斜め方向において中心セル(7)と隣接する4つの近傍セル(2)、(4)、(10)、(12)を定義する。
そして、判別部36は、生成部35によって生成されるパワースペクトルから物標に対応するターゲットピークを検出した場合、ターゲットピークが検出された中心セル(7)の各近傍セル(1)~(6)、(8)~(13)からピーク近傍データを検出する。
このとき、ピーク近傍データには、受信信号が歩行者からの反射波であった場合と、路面クラッタであった場合とで、異なる特徴が表れる。ここで、図6A、図6B、および図6Cを参照し、ピーク近傍データの特徴および特徴の傾向について説明する。
図6Aは、実施形態に係るピーク近傍データの速度方向における特徴を示す説明図である。図6Bは、実施形態に係るピーク近傍データの距離方向における特徴を示す説明図である。図6Cは、実施形態に係るピーク近傍データの特徴の傾向を示す説明図である。
図6Aの右図に示すように、路面クラッタの場合、速度方向におけるピーク近傍データのパワーは、路面が静止しているため、中心セル(7)から速度方向へ遠ざかるにつれて低下する特徴がある。その結果、路面クラッタの場合、ピーク近傍データのピーク形状は、速度方向に広がりを持たず、ターゲットピークに対して対称な形状となる。
一方、図6Aの左図に示すように、歩行者の場合、速度方向におけるピーク近傍データのパワーは、歩行者に動きがあるため、中心セル(7)から速度方向へ遠ざかっても一方(ここでは、速度正方向)では低下しない特徴がある。その結果、歩行者の場合、ピーク近傍データのピーク形状は、路面クラッタの場合に比べて速度方向に広がりを持ち、ターゲットピークに対して非対称な形状となる。
また、図6Bの左図に示すように、歩行者の場合、距離方向におけるピーク近傍データのパワーは、送信波が歩行者の存在地点で反射されるため、中心セル(7)から距離方向へ遠ざかるにつれて低下する特徴がある。その結果、歩行者の場合、ピーク近傍データのピーク形状は、距離方向に広がりを持たず、ターゲットピークに対して対称な形状となる。
一方、図6Bの右図に示すように、路面クラッタの場合、距離方向におけるピーク近傍データのパワーは、送信波が距離方向に幅(奥行)がある路面で反射されるため、中心セル(7)から距離方向へ遠ざかっても殆ど低下しない特徴がある。その結果、路面クラッタの場合、ピーク近傍データのピーク形状は、歩行者の場合に比べて距離方向に広がりを持った形状となる。
このため、図6Cに示すように、ピーク近傍データのパワー重心(速度方向)の偏りは、歩行者の場合にありとなり、路面クラッタの場合になしとなる傾向がある。また、ピーク形状の速度方向の広がりは、歩行者の場合に大となり、路面クラッタの場合に小となる傾向がある。また、ピーク形状の距離方向の広がりは、歩行者の場合に小となり、路面クラッタの場合に大となる傾向がある。
また、歩行者である場合、図6Aの左図に示すように、ピーク近傍データの速度方向におけるピーク形状は、ターゲットピークに対して非対称となり、図6Bの左図に示すように、距離方向におけるピーク形状は、ターゲットピークに対して対称となっている。
一方、路面クラッタである場合、図6Aの右図に示すように、ピーク近傍データの速度方向におけるピーク形状は、ターゲットピークに対して対称となり、図6Bの右図に示すように、距離方向におけるピーク形状も、ターゲットピークに対して対称となっている。
このため、ピーク近傍データのパワーは、二次元座標系における斜め方向にも対称性の差よる分布の偏りが発生する傾向がある。このように、ピーク近傍データには、受信信号が歩行者からの反射波であった場合と、路面クラッタであった場合とで、異なる特徴が表れる傾向がある。
そこで、判別部36は、上記したピーク近傍データの特徴の傾向を利用し、ターゲットピークと、ピーク近傍データとに基づいて物標が歩行者か否かを判定する。これにより、レーダ装置1は、歩行者と路面クラッタとを高確度で判別することができる。
具体的には、判別部36は、二次元座標系におけるピーク近傍データの速度方向の重心位置、距離方向のピーク形状、斜め方向のピーク形状、および速度方向のピーク形状のそれぞれについて、物標が歩行者か否かを判定する。
判別部36は、ピーク近傍データの速度方向における重心位置に基づいて、物標を歩行者か否か判別する場合、パワースペクトルの特徴量として、中心セル(7)を原点としたターゲットピークおよびピーク近傍データの速度方向における重心を算出する。
このとき、判別部36は、近傍セル(1)~(6)、中心セル(7)、および近傍セル(8)~(13)の各ピーク近傍データのパワーを、それぞれP~P13とした場合に、下記式[1]によって、重心Vを算出する。
Figure 0007294781000001
そして、判別部36は、算出した重心Vが統計に基づく閾値を超えて中心セルから離れている場合に、パワー重心の偏り(速度方向)があるとして、物標を歩行者と判別する。図7は、実施形態に係るパワーの速度方向における重心位置の傾向を示す説明図である。
図7に破線のグラフで示すように、統計では、路面クラッタの場合の重心Vは、中心セル近傍に集中して分布する傾向がある。これに対して、図7に実線のグラフで示すように、歩行者の場合の重心は、路面クラッタの場合よりも広範囲に分布する傾向がある。
このため、判別部36は、[1]によって算出した重心Vが、図7に点線で示す閾値を超えて中心セルから離れている場合に、物標を歩行者と判別する。つまり、判別部36は、算出した重心Vが、図7に示す統計において路面クラッタの割合よりも歩行者の割合が大きい領域に位置している場合に、物標を歩行者と判別する。これにより、判別部36は、今回のサイクルで取得される瞬時値のターゲットピークおよびピーク近傍データから物標が歩行者か否かを高確度に判別することができる。
また、判別部36は、ピーク形状に基づいて歩行者か否かを判別する場合、各ピーク近傍データの特徴量として、ピーク近傍データのパワーと、ターゲットピークのパワーとの差分(以下、パワー相対値と記載する)を取得する。
図8は、実施形態に係るパワー相対値の定義の一例を示す説明図である。図8に示すように、判別部36は、例えば、近傍セル(1)~(6)、(8)~(13)における各パワー相対値をA(1)~H(13)と定義する。
ここで、例えば、A(1)は、P(近傍セル(1)におけるピーク近傍データのパワー)からP(中心セル7におけるターゲットピークのパワー)を減算することで算出される。また、B(2)は、PからPを減算することで算出される。なお、他のパワー相対値についても同様に算出される。
そして、判別部36は、二次元座標系におけるピーク近傍データの距離方向のピーク形状に基づいて、物標を歩行者か否か判別する場合、ピーク形状の速度方向の広がりが小さい場合に、物標を歩行者と判別する(図6C参照)。
このとき、判別部36は、距離方向において、ターゲットピークから1bin離れたピーク近傍データのパワー相対値と、ターゲットピークから2bin離れたピーク近傍データのパワー相対値とに基づく歩行者か否かの判別とを行う。そして、判別部36は、パワー相対値の絶対値が統計に基づく閾値より大きい場合に、速度方向の広がりが小さいとして、物標を歩行者と判定する。
図9Aは、実施形態に係る距離方向においてターゲットピークから1bin離れたピーク近傍データのパワー相対値の傾向を示す説明図である。図9Bは、実施形態に係る距離方向においてターゲットピークから2bin離れたピーク近傍データのパワー相対値の傾向を示す説明図である。
判別部36は、距離方向において、ターゲットピークから1bin離れたピーク近傍データのパワー相対値に基づく歩行者か否かの判別を行う場合、C(3)とG(11)とのうち、大きい方を特徴量として取得する。なお、判別部36は、C(3)とG(11)との平均値を特徴量として取得してもよい。
ここで、図9Aに示すように、統計では、ターゲットピークから1bin離れたピーク近傍データのパワー相対値の絶対値は、実線のグラフで示す歩行者の場合の方が、破線のグラフで示す路面クラッタよりも大きい傾向がある。
このため、判別部36は、パワー相対値の絶対値が図9Aに点線で示す閾値よりも大きい場合に、物標を歩行者と判別する。つまり、判別部36は、取得したパワー相対値が、図9Aに示す統計において路面クラッタの割合よりも歩行者の割合が大きい領域に位置している場合に、物標を歩行者と判別する。
また、判別部36は、距離方向において、ターゲットピークから2bin離れたピーク近傍データのパワー相対値に基づく歩行者か否かの判別を行う場合、A(1)とH(13)とのうち、大きい方を特徴量として取得する。なお、判別部36は、A(1)とH(13)との平均値を特徴量として取得してもよい。
図9Bに示すように、統計では、ターゲットピークから2bin離れたピーク近傍データのパワー相対値の絶対値は、図9Aに示す統計よりも増大するが、実線のグラフで示す歩行者の場合の方が、破線のグラフで示す路面クラッタよりも大きい傾向は同じである。
このため、判別部36は、パワー相対値の絶対値が図9Bに点線で示す閾値よりも大きい場合に、物標を歩行者と判別する。つまり、判別部36は、取得したパワー相対値が、図9Bに示す統計において路面クラッタの割合よりも歩行者の割合が大きい領域に位置している場合に、物標を歩行者と判別する。
また、判別部36は、二次元座標系におけるピーク近傍データの斜め方向のピーク形状に基づいて、物標を歩行者か否か判別する。このとき、判別部36は、パワー相対値の絶対値が統計に基づく閾値よりも小さい場合に、斜め方向の広がりが大きいとして、物標を歩行者と判定する。
図10は、実施形態に係る斜め方向においてターゲットピークと隣接するピーク近傍データのパワー相対値の傾向を示す説明図である。判別部36は、二次元座標系におけるピーク近傍データの斜め方向のピーク形状に基づいて、物標を歩行者か否か判別する場合、B(2)、B(4)、F(10)、およびF(12)の最大値を特徴量として取得する。
ここで、図10に示すように、統計では、斜め方向においてターゲットピークと隣接するピーク近傍データのパワー絶対値は、実線のグラフで示す歩行者の場合の方が、破線のグラフで示す路面クラッタよりも小さい傾向がある。
このため、判別部36は、パワー相対値の絶対値が図10に点線で示す閾値よりも小さい場合に、物標を歩行者と判別する。つまり、判別部36は、取得したパワー相対値が、図10に示す統計において路面クラッタの割合よりも歩行者の割合が大きい領域に位置している場合に、物標を歩行者と判別する。
また、判別部36は、二次元座標系におけるピーク近傍データの速度方向のピーク形状に基づいて、物標を歩行者か否か判別する。ここでは、判別部36は、ピーク形状の速度方向の広がりが大きい場合に、物標を歩行者と判別する(図6C参照)。
このとき、判別部36は、速度方向において、ターゲットピークから1bin離れたピーク近傍データのパワー相対値と、ターゲットピークから2bin離れたピーク近傍データのパワー相対値とに基づく歩行者か否かの判別とを行う。そして、判別部36は、パワー相対値の絶対値が統計に基づく閾値より小さい場合に、速度方向の広がりが大きいとして、物標を歩行者と判定する。
図11Aは、実施形態に係る速度方向においてターゲットピークから1bin離れたピーク近傍データのパワー相対値の傾向を示す説明図である。図11Bは、実施形態に係る速度方向においてターゲットピークから2bin離れたピーク近傍データのパワー相対値の傾向を示す説明図である。
判別部36は、速度方向において、ターゲットピークから1bin離れたピーク近傍データのパワー相対値に基づく歩行者か否かの判別を行う場合、E(6)とE(8)との平均値を特徴量として取得する。なお、判別部36は、E(6)とE(8)とのうち、大きい方を特徴量として取得してもよい。
ここで、図11Aに示すように、統計では、ターゲットピークから1bin離れたピーク近傍データのパワー相対値の絶対値は、実線のグラフで示す歩行者の場合の方が、破線のグラフで示す路面クラッタよりも小さい傾向がある。
このため、判別部36は、パワー相対値の絶対値が図11Aに点線で示す閾値よりも小さい場合に、物標を歩行者と判別する。つまり、判別部36は、取得したパワー相対値が、図11Aに示す統計において路面クラッタの割合よりも歩行者の割合が大きい領域に位置している場合に、物標を歩行者と判別する。
また、判別部36は、速度方向において、ターゲットピークから2bin離れたピーク近傍データのパワー相対値に基づく歩行者か否かの判別を行う場合、D(5)とD(9)との平均値を特徴量として取得する。なお、判別部36は、D(5)とD(9)とのうち、大きい方を特徴量として取得してもよい。
図11Bに示すように、統計では、ターゲットピークから2bin離れたピーク近傍データのパワー相対値の絶対値は、図11Aに示す統計よりも増大するが、実線のグラフで示す歩行者の場合の方が、破線のグラフで示す路面クラッタよりも小さい傾向は同じである。
このため、判別部36は、パワー相対値の絶対値が図11Bに点線で示す閾値よりも小さい場合に、物標を歩行者と判別する。つまり、判別部36は、取得したパワー相対値が、図11Bに示す統計において路面クラッタの割合よりも歩行者の割合が大きい領域に位置している場合に、物標を歩行者と判別する。
このように、判別部36は、ターゲットピークを基準とするピーク近傍データの速度方向における重心位置と、ピーク近傍データのパワー相対値とを特徴量として取得し、閾値と比較することによって、物標を歩行者か否かを判別する。
これにより、判別部36は、例えば、ターゲットピークの特徴量と閾値とを比較することでは判別することが困難であった歩行者と路面クラッタとを高確度に判別することができる。
次に、図12を参照し、実施形態に係るレーダ装置1の信号処理部32が実行する処理の一例について説明する。図12は、実施形態に係るレーダ装置1の信号処理部32が実行する処理の一例を示すフローチャートである。
信号処理部32は、ビート信号が入力される場合に、図12に示す処理を所定サイクルで繰り返し実行する。具体的には、信号処理部32は、ビート信号が入力されると、まず、ビート信号に対して距離FFT処理を行い(ステップS101)、その後、距離FFT処理の結果に対して速度FFT処理を行う(ステップS102)。
続いて、信号処理部32は、距離FFT処理の結果から二次元座標系におけるパワースペクトルを生成する(ステップS103)。その後、信号処理部32は、ターゲットピークおよびピーク近傍データの速度方向における重心に基づいて歩行者か否かを判別する(ステップS104)。
続いて、信号処理部32は、ピーク近傍データの距離方向におけるピーク形状に基づいて歩行者か否かを判別し(ステップS105)、ピーク近傍データの斜め方向におけるピーク形状に基づいて歩行者か否かを判別する(ステップS106)。
その後、信号処理部32は、ピーク近傍データの速度方向におけるピーク形状に基づいて歩行者か否かを判別し(ステップS107)、物標が歩行者か否かの最終判別を行う(ステップS108)。
このとき、信号処理部32は、例えば、ステップS104~ステップS108の全処理において歩行者と判別した場合に、物標を歩行者であると最終的に判別する。その後、信号処理部32は、歩行者と判別した物標の距離、相対速度、および角度等を含む物標情報を車両制御装置2へ出力して(ステップS109)、処理を終了し、再度、ステップS101から処理を開始する。
なお、信号処理部32は、ステップS104~ステップS108の全処理ではなく、ステップS104~ステップS108の処理うち、少なくともいずれか一つの処理において歩行者と判別した場合に、物標を歩行者であると最終的に判別してもよい。
また、信号処理部32は、必ずしもステップS104~ステップS108の全処理を実行しなくてもよく、ステップS104~ステップS108の処理うち、少なくともいずれか一つの処理を実行して、物標が歩行者か否かの最終判別を行ってもよい。
なお、上述した実施形態は、一例であり種々の変形が可能である。例えば、レーダ装置1の判別部36は、物標のターゲットピークを基準とするピーク近傍のパワースペクトルの特徴量が入力される場合に、物標を歩行者および路面のいずれかに分類する確率的分類器であってもよい。
かかる構成の場合、判別部36には、上述したピーク近傍データの速度方向におけるパワー重心、ピーク近傍データの距離方向におけるパワー相対値、斜め方向におけるパワー相対値、および速度方向におけるパワー相対値が特徴量として入力される。
そして、判別部36は、入力される特徴量に基づいて、例えば、ベイズ理論により、物標が歩行者か否かの判別を行い、その判別結果を出力する。かかる判別部36によっても、1サイクルの処理で取得されるパワースペクトルの瞬時値から歩行者と路面クラッタとを高確度で判別することができる。
さらなる効果や変形例は、当業者によって容易に導き出すことができる。このため、本発明のより広範な態様は、以上のように表しかつ記述した特定の詳細および代表的な実施形態に限定されるものではない。したがって、添付の特許請求の範囲およびその均等物によって定義される総括的な発明の概念の精神または範囲から逸脱することなく、様々な変更が可能である。
1 レーダ装置
2 車両制御装置
10 送信部
11 信号生成部
12 発振器
13 送信アンテナ
20 受信部
21 受信アンテナ
22 ミキサ
23 A/D変換器
30 処理部
31 送信制御部
32 信号処理部
33 第1処理部
34 第2処理部
35 生成部
36 判別部
37 出力部

Claims (11)

  1. 物体で反射した送信波の反射波を受信信号として受信する受信部と、
    前記受信部によって受信される前記受信信号から、前記物体との距離に対応する距離方向と、前記物体との相対速度に対応する速度方向との二次元に対するパワースペクトルを生成する生成部と、
    前記生成部によって生成される前記パワースペクトルからピークを検出し、前記ピークと前記ピーク近傍のパワースペクトルとに基づいて前記ピークが歩行者によるものであるか路面クラッタによるものであるかの判別を行う判別部と
    を備え
    前記判別部は、
    前記ピークおよび前記二次元における前記ピーク近傍のパワースペクトルの前記速度方向における重心位置に基づいて前記判別を行う
    ことを特徴とするレーダ装置。
  2. 前記判別部は、
    前記ピークおよび前記二次元における前記ピーク近傍のパワースペクトルの前記距離方向におけるピーク形状に基づいて前記判別を行う
    ことを特徴とする請求項1に記載のレーダ装置。
  3. 物体で反射した送信波の反射波を受信信号として受信する受信部と、
    前記受信部によって受信される前記受信信号から、前記物体との距離に対応する距離方向と、前記物体との相対速度に対応する速度方向との二次元に対するパワースペクトルを生成する生成部と、
    前記生成部によって生成される前記パワースペクトルからピークを検出し、前記ピークと前記ピーク近傍のパワースペクトルとに基づいて前記ピークが歩行者によるものであるか路面クラッタによるものであるかの判別を行う判別部と
    を備え、
    前記判別部は、
    前記ピークおよび前記二次元における前記ピーク近傍のパワースペクトルの前記距離方向におけるピーク形状に基づいて前記判別を行う
    ことを特徴とするレーダ装置。
  4. 前記判別部は、
    前記ピークおよび前記二次元における前記ピーク近傍のパワースペクトルの斜め方向におけるピーク形状に基づいて前記判別を行う
    ことを特徴とする請求項1~3のいずれか一つに記載のレーダ装置。
  5. 物体で反射した送信波の反射波を受信信号として受信する受信部と、
    前記受信部によって受信される前記受信信号から、前記物体との距離に対応する距離方向と、前記物体との相対速度に対応する速度方向との二次元に対するパワースペクトルを生成する生成部と、
    前記生成部によって生成される前記パワースペクトルからピークを検出し、前記ピークと前記ピーク近傍のパワースペクトルとに基づいて前記ピークが歩行者によるものであるか路面クラッタによるものであるかの判別を行う判別部と
    を備え、
    前記判別部は、
    前記ピークおよび前記二次元における前記ピーク近傍のパワースペクトルの斜め方向におけるピーク形状に基づいて前記判別を行う
    ことを特徴とするレーダ装置。
  6. 前記判別部は、
    前記ピークおよび前記二次元における前記ピーク近傍のパワースペクトルの前記速度方向におけるピーク形状に基づいて前記判別を行う
    ことを特徴とする請求項1~5のいずれか一つに記載のレーダ装置。
  7. 前記判別部は、
    前記ピークを基準とする前記ピーク近傍のパワースペクトルの特徴を示す特徴量と閾値とを比較して前記判別を行う
    ことを特徴とする請求項1~6のいずれか一つに記載のレーダ装置。
  8. 前記判別部は、
    前記ピークを基準とする前記ピーク近傍のパワースペクトルの特徴を示す特徴量を入力とする確率的分類器によって前記判別を行う
    ことを特徴とする請求項1~7のいずれか一つに記載のレーダ装置。
  9. 物体で反射した送信波の反射波を受信信号として受信する受信工程と、
    前記受信工程によって受信される前記受信信号から。前記物体との距離に対応する距離方向と、前記物体との相対速度に対応する速度方向との二次元に対するパワースペクトルを生成する生成工程と、
    前記生成工程によって生成される前記パワースペクトルからピークを検出し、前記ピークと前記二次元における前記ピーク近傍のパワースペクトルの前記速度方向における重心位置とに基づいて前記ピークが歩行者によるものであるか路面クラッタによるものであるかの判別を行う判別工程と
    を含むことを特徴とする物体判別方法。
  10. 物体で反射した送信波の反射波を受信信号として受信する受信工程と、
    前記受信工程によって受信される前記受信信号から。前記物体との距離に対応する距離方向と、前記物体との相対速度に対応する速度方向との二次元に対するパワースペクトルを生成する生成工程と、
    前記生成工程によって生成される前記パワースペクトルからピークを検出し、前記ピークと前記二次元における前記ピーク近傍のパワースペクトルの前記距離方向におけるピーク形状とに基づいて前記ピークが歩行者によるものであるか路面クラッタによるものであるかの判別を行う判別工程と
    を含むことを特徴とする物体判別方法。
  11. 物体で反射した送信波の反射波を受信信号として受信する受信工程と、
    前記受信工程によって受信される前記受信信号から。前記物体との距離に対応する距離方向と、前記物体との相対速度に対応する速度方向との二次元に対するパワースペクトルを生成する生成工程と、
    前記生成工程によって生成される前記パワースペクトルからピークを検出し、前記ピークと前記二次元における前記ピーク近傍のパワースペクトルの斜め方向におけるピーク形状とに基づいて前記ピークが歩行者によるものであるか路面クラッタによるものであるかの判別を行う判別工程と
    を含むことを特徴とする物体判別方法。
JP2018167190A 2018-09-06 2018-09-06 レーダ装置および物体判別方法 Active JP7294781B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018167190A JP7294781B2 (ja) 2018-09-06 2018-09-06 レーダ装置および物体判別方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018167190A JP7294781B2 (ja) 2018-09-06 2018-09-06 レーダ装置および物体判別方法

Publications (2)

Publication Number Publication Date
JP2020041818A JP2020041818A (ja) 2020-03-19
JP7294781B2 true JP7294781B2 (ja) 2023-06-20

Family

ID=69798012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018167190A Active JP7294781B2 (ja) 2018-09-06 2018-09-06 レーダ装置および物体判別方法

Country Status (1)

Country Link
JP (1) JP7294781B2 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015075387A (ja) 2013-10-09 2015-04-20 住友電気工業株式会社 電波センサおよび検知方法
JP2015148577A (ja) 2014-02-10 2015-08-20 住友電気工業株式会社 電波センサおよび検知方法
JP2016125810A (ja) 2014-12-26 2016-07-11 住友電気工業株式会社 電波センサ、検知方法および検知プログラム
JP2018004508A (ja) 2016-07-05 2018-01-11 住友電気工業株式会社 電波センサおよび検知プログラム
JP2018115931A (ja) 2017-01-17 2018-07-26 株式会社デンソーテン レーダ装置および物標検出方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015075387A (ja) 2013-10-09 2015-04-20 住友電気工業株式会社 電波センサおよび検知方法
JP2015148577A (ja) 2014-02-10 2015-08-20 住友電気工業株式会社 電波センサおよび検知方法
JP2016125810A (ja) 2014-12-26 2016-07-11 住友電気工業株式会社 電波センサ、検知方法および検知プログラム
JP2018004508A (ja) 2016-07-05 2018-01-11 住友電気工業株式会社 電波センサおよび検知プログラム
JP2018115931A (ja) 2017-01-17 2018-07-26 株式会社デンソーテン レーダ装置および物標検出方法

Also Published As

Publication number Publication date
JP2020041818A (ja) 2020-03-19

Similar Documents

Publication Publication Date Title
JP4045043B2 (ja) レーダ装置
JP5990761B2 (ja) レーダ装置
US11002845B2 (en) Radar device and target height estimation method
US10718862B2 (en) Radar device and target detecting method
JP6280319B2 (ja) レーダ装置、および、信号処理方法
JP6993136B2 (ja) レーダ装置および物標検知方法
JP7103767B2 (ja) レーダ装置および物標検出方法
US20090102698A1 (en) Measuring device and method
JP2018115931A (ja) レーダ装置および物標検出方法
JP6265617B2 (ja) レーダ装置、及び、信号処理方法
JP2014115137A (ja) レーダ装置、及び、信号処理方法
US10698105B2 (en) Radar device and peak processing method
US20180313935A1 (en) Radar device and target detecting method
JP2019109179A (ja) 車両の物体検出装置
JP2018115930A (ja) レーダ装置および物標検出方法
JP7060441B2 (ja) レーダ装置および物標検出方法
JP2019215281A (ja) レーダ装置および物標データ出力方法
JP7294781B2 (ja) レーダ装置および物体判別方法
JP7127998B2 (ja) レーダ装置
JP6824761B2 (ja) レーダ装置および路面検出方法
US20210286048A1 (en) Radar device
JP2020030140A (ja) 物標検出装置および物標検出方法
JP7067974B2 (ja) レーダ装置およびレーダ装置の制御方法
JP6219652B2 (ja) レーダ装置、及び、信号処理方法
JP7274271B2 (ja) レーダ装置および物標判別方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210831

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20211013

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20220217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230608

R150 Certificate of patent or registration of utility model

Ref document number: 7294781

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150