JP7283979B2 - Separator manufacturing method - Google Patents

Separator manufacturing method Download PDF

Info

Publication number
JP7283979B2
JP7283979B2 JP2019102434A JP2019102434A JP7283979B2 JP 7283979 B2 JP7283979 B2 JP 7283979B2 JP 2019102434 A JP2019102434 A JP 2019102434A JP 2019102434 A JP2019102434 A JP 2019102434A JP 7283979 B2 JP7283979 B2 JP 7283979B2
Authority
JP
Japan
Prior art keywords
separator
carbon black
dispersion
coating
containing carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019102434A
Other languages
Japanese (ja)
Other versions
JP2020198167A (en
Inventor
典之 加藤
順 鈴木
佑輔 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Toyota Motor Corp
Original Assignee
Kobe Steel Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Toyota Motor Corp filed Critical Kobe Steel Ltd
Priority to JP2019102434A priority Critical patent/JP7283979B2/en
Publication of JP2020198167A publication Critical patent/JP2020198167A/en
Application granted granted Critical
Publication of JP7283979B2 publication Critical patent/JP7283979B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Description

本発明はセパレータ製造方法に関し、例えば燃料電池用セパレータ製造方法に関する。 TECHNICAL FIELD The present invention relates to a separator manufacturing method, for example, a fuel cell separator manufacturing method.

燃料電池は、固体高分子電解質膜を、アノード電極とカソード電極とで挟んだものを単セルとし、ガス(水素、酸素等)の流路となる溝が形成されたセパレータ(バイポーラプレートとも呼ばれる)を介して、単セルを複数個重ね合わせたスタックとして構成される。この燃料電池は、スタックあたりのセル数を増やすことで、出力を高くすることができる。 A fuel cell consists of a solid polymer electrolyte membrane sandwiched between an anode electrode and a cathode electrode. It is configured as a stack in which a plurality of single cells are superimposed via. This fuel cell can increase the output by increasing the number of cells per stack.

燃料電池用のセパレータは、発生した電流を隣のセルに流す役割も担っているので、セパレータを構成するセパレータ基材には、高い導電性及びその高い導電性が燃料電池のセル内部の高温・酸性雰囲気の中においても長期間維持されることとなる導電耐久性が要求される。ここで、高い導電性及び導電耐久性とは、接触抵抗が低いことを意味する。また、接触抵抗とは、電極とセパレータ表面との間で、界面現象のために電圧降下が生じることをいう。 Separators for fuel cells also play a role in passing the generated current to adjacent cells. Electrically conductive durability is required to be maintained for a long period of time even in an acidic atmosphere. Here, high conductivity and conductive durability mean low contact resistance. Further, the contact resistance means that a voltage drop occurs due to an interfacial phenomenon between the electrode and the separator surface.

特許文献1には、高い導電性及び導電耐久性を備える燃料電池用のセパレータとして、純チタン又はチタン合金からなる基材上に、酸化チタンとカーボンブラックが混合した混合層が形成されており、酸化チタンが結晶性のルチルを含み、混合層中のカーボンの結合状態をX線光電子分光分析により分析した際に検出されたカーボンのうちの70%以上がC-C結合を有するカーボンブラック単体として存在している燃料電池用セパレータ基材が記載されている。 In Patent Document 1, a mixed layer of titanium oxide and carbon black is formed on a substrate made of pure titanium or a titanium alloy as a fuel cell separator having high conductivity and durability. Titanium oxide contains crystalline rutile, and 70% or more of the carbon detected when the bonding state of carbon in the mixed layer is analyzed by X-ray photoelectron spectroscopy is a single carbon black having a C—C bond. An existing fuel cell separator substrate is described.

特開2016-122642号公報JP 2016-122642 A

しかしながら、酸化チタンとカーボンブラックが混合した混合層を形成するために、塗工するカーボンブラックを分散させた分散液の塗工層にばらつきがあると、後工程の低酸素分圧下の熱処理で被処理材(セパレータ基材)が受ける熱履歴が変化するので、結果として熱処理により得られる、前記混合層の厚さが変化し、機能(接触抵抗)や外観品質(基材の色)に影響を与える。この結果、セパレータの製品性能や製品の画像検査精度が低下するという問題があった。 However, in order to form a mixed layer in which titanium oxide and carbon black are mixed, if there is variation in the coating layer of the dispersion liquid in which carbon black is dispersed, it will be exposed to heat treatment under low oxygen partial pressure in the post-process. Since the heat history that the treatment material (separator base material) receives changes, as a result, the thickness of the mixed layer obtained by heat treatment changes, and the function (contact resistance) and appearance quality (color of the base material) are affected. give. As a result, there is a problem that the product performance of the separator and the image inspection accuracy of the product are deteriorated.

一実施態様のセパレータ製造方法は、純チタン又はチタン合金からなる基材の表面にカーボンブラックを含む分散液を塗工する塗工工程と、前記塗工工程が行われた基材を酸素分圧が25Pa以下である低酸素分圧下で熱処理する熱処理工程と、を含み、前記塗工工程において、カーボンブラックを含む分散液の塗工面積あたりの塗工量は、目標値20~100μg/cmであり、目標値からのバラツキが12μg/cmの範囲内になるように、カーボンブラックを含む分散液を塗工するようにした。 A separator manufacturing method of one embodiment comprises a coating step of coating a surface of a base material made of pure titanium or a titanium alloy with a dispersion liquid containing carbon black; and a heat treatment step of performing heat treatment under a low oxygen partial pressure of 25 Pa or less, and in the coating step, the coating amount per coating area of the dispersion containing carbon black is a target value of 20 to 100 μg / cm 2 , and the dispersion liquid containing carbon black was applied so that the variation from the target value was within the range of 12 μg/cm 2 .

本発明のセパレータ製造方法によれば、セパレータの品質がばらつくことを抑制できる。 According to the separator manufacturing method of the present invention, it is possible to suppress variations in separator quality.

本実施の形態にかかるセパレータ製造工程の一部を示すフローチャートである。4 is a flow chart showing part of the separator manufacturing process according to the present embodiment. セパレータの概略構成を示す断面図である。4 is a cross-sectional view showing a schematic configuration of a separator; FIG. カーボンブラックを含む分散液をセパレータ基材表面に塗工する工程における、セパレータ基材の温度と熱処理時間との関係を示すグラフである。4 is a graph showing the relationship between the temperature of the separator substrate and the heat treatment time in the step of coating the surface of the separator substrate with a dispersion containing carbon black. カーボンブラックを含む分散液の塗工量のばらつきとセパレータ基材の接触抵抗との関係を示すブロック図である。FIG. 4 is a block diagram showing the relationship between the variation in the coating amount of the dispersion liquid containing carbon black and the contact resistance of the separator substrate.

本実施の形態
以下、図面を参照して本発明の実施の形態について説明する。図1は、本実施の形態にかかるセパレータ製造工程の一部を示すフローチャートである。
Present Embodiment Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a flow chart showing part of the separator manufacturing process according to this embodiment.

まずステップS11において、基材の表面にカーボンブラックを含む分散液が塗工され、ステップS12に進む。例えば、基材は純チタン又はチタン合金が好適である。また、カーボンブラックを含む分散液の塗工面積あたりの塗工量が、目標値からのバラツキが2μg/cmの範囲内になるように、カーボンブラックを含む分散液が基材に塗工される。 First, in step S11, a dispersion containing carbon black is applied to the surface of the substrate, and the process proceeds to step S12. For example, the substrate is preferably pure titanium or a titanium alloy. In addition, the dispersion containing carbon black is applied to the base material so that the coating amount per coating area of the dispersion containing carbon black varies from the target value within the range of 2 μg/cm 2 . be.

次にステップS12において、カーボンブラックを含む分散液が塗工された基材が低酸素分圧下で熱処理される。例えば、低酸素分圧は、酸素分圧25Pa以下が好適である。 Next, in step S12, the substrate coated with the dispersion containing carbon black is heat-treated under a low oxygen partial pressure. For example, the low oxygen partial pressure is preferably 25 Pa or less.

以上の手順により、セパレータが製造される。次にセパレータの構造について説明する。図2は、セパレータの概略構成を示す断面図である。図2において、セパレータ20は、基材21と、カーボンブラック塗工層22とを備える。図2に示すように、カーボンブラック塗工層22は、位置により塗工量にばらつきがある。そこで、所定の面積単位で、カーボンブラックを含む分散液が塗工された厚みが最も厚いCB(カーボンブラック)を含む分散液(塗料)の最上限と、カーボンブラックを含む分散液が塗工された厚みが最も薄いCBを含む分散液(塗料)の最下限とが、それぞれ目標とする塗工量から所定の範囲内にあるようにする。 A separator is manufactured by the above procedure. Next, the structure of the separator will be explained. FIG. 2 is a cross-sectional view showing a schematic configuration of a separator. In FIG. 2, the separator 20 comprises a base material 21 and a carbon black coating layer 22. As shown in FIG. As shown in FIG. 2, the coating amount of the carbon black coating layer 22 varies depending on the position. Therefore, in a predetermined area unit, the maximum thickness of the CB (carbon black)-containing dispersion (paint) and the carbon black-containing dispersion are applied. The lower limit of the dispersion liquid (paint) containing the thinnest CB is set to be within a predetermined range from the target coating amount.

塗工量の目標値は、20~100μg/cmの範囲が好ましい。例えば、塗工量の目標値を39μg/cmとし、許容できるばらつきを、目標とする塗工量から±6μg/cmとする。すなわち、CBを含む分散液(塗料)の最上限は目標とする塗工量+6μg/cm以下とし、CBを含む分散液(塗料)の最下限は目標とする塗工量-6μg/cm以上とする。換言すれば、目標値からのバラツキ(CBを含む分散液(塗料)の最上限とCBを含む分散液(塗料)の最下限の範囲)が12μg/cmの範囲内とする。 The target coating amount is preferably in the range of 20 to 100 μg/cm 2 . For example, the target coating amount is 39 μg/cm 2 and the permissible variation is ±6 μg/cm 2 from the target coating amount. That is, the upper limit of the dispersion (paint) containing CB is the target coating amount +6 μg/cm 2 or less, and the lower limit of the dispersion (paint) containing CB is the target coating amount −6 μg/cm 2 . That's it. In other words, the variation from the target value (the range between the upper limit of the dispersion (paint) containing CB and the lower limit of the dispersion (paint) containing CB) is within the range of 12 μg/cm 2 .

セパレータ基材の表面処理技術であるナノカーボンでは、真空雰囲気下で微量の酸素を導入する低酸素分圧下熱処理を採用しており、セパレータ基材への入熱は輻射となる。したがって、セパレータ基材表面にカーボンブラックを含む分散液が塗工される量にばらつきがあると、入熱量に差が生じてしまう。図3は、カーボンブラックを含む分散液をセパレータ基材表面に塗工する工程における、セパレータ基材の温度と熱処理時間との関係を示すグラフである。図3において、縦軸はセパレータ基材の温度(℃)を示し、横軸は熱処理時間(sec)を示す。 Nanocarbon, which is a surface treatment technology for separator substrates, employs heat treatment under a low oxygen partial pressure in which a small amount of oxygen is introduced in a vacuum atmosphere, and the heat input to the separator substrate is radiation. Therefore, if the amount of the dispersion liquid containing carbon black applied to the surface of the separator base material varies, the amount of heat input will vary. FIG. 3 is a graph showing the relationship between the temperature of the separator substrate and the heat treatment time in the step of coating the surface of the separator substrate with a dispersion containing carbon black. In FIG. 3, the vertical axis indicates the temperature (° C.) of the separator substrate, and the horizontal axis indicates the heat treatment time (sec).

図3に示すように、熱処理時間が同じである場合、カーボンブラックを含む分散液の塗工量が多い場合、カーボンブラックを含む分散液の塗工量が少ない場合に比べてセパレータ基材への入熱量が多い。そして、セパレータ基材への入熱量がばらつくと、セパレータ基材の抵抗値、外観色調がばらつくことになる。 As shown in FIG. 3, when the heat treatment time is the same, when the coating amount of the dispersion liquid containing carbon black is large, compared to the case where the coating amount of the dispersion liquid containing carbon black is small, the separator base material is affected. High heat input. If the amount of heat input to the separator base material varies, the resistance value and appearance color tone of the separator base material will vary.

そこで、セパレータ基材の抵抗値、外観色調がばらつくことを防ぐために、カーボンブラックを含む分散液の塗工量のばらつきを抑えるようにした。 Therefore, in order to prevent variations in the resistance value and appearance color tone of the separator base material, variations in the coating amount of the dispersion liquid containing carbon black are suppressed.

図4は、カーボンブラックを含む分散液の塗工量のばらつきとセパレータ基材の接触抵抗との関係を示すブロック図である。図4において、縦軸は、セパレータ基材を硫酸に浸漬して4日後の接触抵抗(mΩ・cm2)を示し、横軸はロット番号を示す。図4において、ロット番号3-1~3-20は、カーボンブラックを含む分散液の塗工量のばらつきが12μg/cm未満である。また、ロット番号3-21~3-47は、カーボンブラックを含む分散液の塗工量のばらつきが12μg/cm超である。なお、図4では、セパレータ基材の両面についてそれぞれ接触抵抗を記載している。 FIG. 4 is a block diagram showing the relationship between the variation in coating amount of the dispersion liquid containing carbon black and the contact resistance of the separator substrate. In FIG. 4, the vertical axis indicates the contact resistance (mΩ·cm 2 ) after 4 days of immersing the separator substrate in sulfuric acid, and the horizontal axis indicates the lot number. In FIG. 4, in lot numbers 3-1 to 3-20, the variation in coating amount of the dispersion liquid containing carbon black is less than 12 μg/cm 2 . In addition, lot numbers 3-21 to 3-47 show variations in the coating amount of the dispersion containing carbon black of more than 12 μg/cm 2 . In addition, in FIG. 4, the contact resistance is shown for both surfaces of the separator base material.

図4に示すように、カーボンブラックを含む分散液の塗工量のばらつきが12μg/cm未満であるロットでは、セパレータ基材の接触抵抗について、ロット間のばらつきが小さい。他方、カーボンブラックを含む分散液の塗工量のばらつきが12μg/cm超であるロットでは、セパレータ基材の接触抵抗について、ロット間のばらつきが、塗工量のばらつきが12μg/cm未満の例より大きい。 As shown in FIG. 4, lot-to-lot variations in the contact resistance of the separator substrate are small in lots where the coating amount of the dispersion liquid containing carbon black is less than 12 μg/cm 2 . On the other hand, in lots where the coating amount variation of the dispersion liquid containing carbon black is more than 12 μg/cm 2 , the contact resistance of the separator base material varies between lots, and the coating amount variation is less than 12 μg/cm 2 . is larger than the example of

このように本実施の形態のセパレータ製造方法によれば、カーボンブラックを含む分散液の塗工面積あたりの塗工量は、目標値からのバラツキが12μg/cmの範囲内になるように、カーボンブラックを含む分散液を塗工することにより、熱処理時の入熱量のばらつきが抑制できるので、入熱量のばらつきによる接触抵抗のばらつきが抑えられる。また、外観色調がばらつきも抑えられる。この結果、セパレータの品質がばらつくことを抑制できる。さらに、量産時のセパレータのばらつきを抑制することができる。 As described above, according to the separator manufacturing method of the present embodiment, the coating amount per coating area of the dispersion liquid containing carbon black is such that the variation from the target value is within the range of 12 μg/cm 2 . By applying a dispersion liquid containing carbon black, it is possible to suppress variations in the amount of heat input during heat treatment, thereby suppressing variations in the contact resistance due to variations in the amount of heat input. In addition, variations in appearance color tone can be suppressed. As a result, it is possible to suppress variations in the quality of the separator. Furthermore, it is possible to suppress variations in separators during mass production.

次に、カーボンブラックを含む分散液の塗工量のばらつきを減少させる具体的な例について説明する。カーボンブラックを含む分散液の塗工量が位置によりばらつくことを抑制するには、レベリング(平坦化)が考えられる。例えばカーボンブラックを含む分散液(塗料)の粘度を低くすることにより、塗工量がばらつくことを抑制できる。具体的には、カーボンブラックを含む分散液(塗料)の粘度を10mPa・s未満とすることが好適である。 Next, a specific example of reducing variations in the coating amount of the dispersion liquid containing carbon black will be described. Leveling (flattening) is conceivable for suppressing variation in the coating amount of the dispersion liquid containing carbon black depending on the position. For example, by lowering the viscosity of the dispersion (coating) containing carbon black, it is possible to suppress variations in the amount of coating. Specifically, it is preferable that the viscosity of the dispersion (paint) containing carbon black is less than 10 mPa·s.

なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。例えば、図1のステップS12において熱処理を行った後、余剰のカーボンブラックを除去し、除去後、再度熱処理を行うようにしてもよい。 It should be noted that the present invention is not limited to the above embodiments, and can be modified as appropriate without departing from the scope of the invention. For example, after performing the heat treatment in step S12 of FIG. 1, excess carbon black may be removed, and after the removal, the heat treatment may be performed again.

20 セパレータ
21 基材
22 カーボンブラック塗工層
20 Separator 21 Base material 22 Carbon black coating layer

Claims (1)

純チタン又はチタン合金からなる基材の表面にカーボンブラックを含む分散液を塗工する塗工工程と、
前記塗工工程が行われた基材を酸素分圧が25Pa以下である低酸素分圧下で熱処理する熱処理工程と、を含むセパレータ製造方法において、
前記塗工工程において、前記分散液の塗工面積あたりの塗工量は、目標値20~100μg/cmであり、前記目標値からのバラツキが12μg/cmの範囲内になるように、前記分散液の粘度を10mPa・s未満とし、前記分散液をレベリングして塗工するセパレータ製造方法。
a coating step of coating a dispersion containing carbon black on the surface of a substrate made of pure titanium or a titanium alloy;
A separator manufacturing method comprising a heat treatment step of heat-treating the base material on which the coating step has been performed under a low oxygen partial pressure of 25 Pa or less,
In the coating step, the coating amount per coating area of the dispersion is a target value of 20 to 100 μg/cm 2 , and the variation from the target value is within the range of 12 μg/cm 2 . A method for producing a separator , wherein the dispersion has a viscosity of less than 10 mPa·s, and the dispersion is leveled and applied.
JP2019102434A 2019-05-31 2019-05-31 Separator manufacturing method Active JP7283979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019102434A JP7283979B2 (en) 2019-05-31 2019-05-31 Separator manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019102434A JP7283979B2 (en) 2019-05-31 2019-05-31 Separator manufacturing method

Publications (2)

Publication Number Publication Date
JP2020198167A JP2020198167A (en) 2020-12-10
JP7283979B2 true JP7283979B2 (en) 2023-05-30

Family

ID=73649288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019102434A Active JP7283979B2 (en) 2019-05-31 2019-05-31 Separator manufacturing method

Country Status (1)

Country Link
JP (1) JP7283979B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016122642A (en) 2014-05-28 2016-07-07 株式会社神戸製鋼所 Fuel cell separator material and method for manufacturing the same
JP2017201608A (en) 2016-05-06 2017-11-09 トヨタ自動車株式会社 Method for manufacturing fuel cell separator
JP2017220362A (en) 2016-06-08 2017-12-14 トヨタ自動車株式会社 Method for manufacturing fuel cell separator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016122642A (en) 2014-05-28 2016-07-07 株式会社神戸製鋼所 Fuel cell separator material and method for manufacturing the same
JP2017201608A (en) 2016-05-06 2017-11-09 トヨタ自動車株式会社 Method for manufacturing fuel cell separator
JP2017220362A (en) 2016-06-08 2017-12-14 トヨタ自動車株式会社 Method for manufacturing fuel cell separator

Also Published As

Publication number Publication date
JP2020198167A (en) 2020-12-10

Similar Documents

Publication Publication Date Title
US20040197661A1 (en) Metallic separtor for fuel cell and production method for the same
DE102016105963A1 (en) Fuel cell separator and manufacturing method for a fuel cell separator
US8841045B2 (en) Method for fabricating bi-polar plate of fuel cell
JP2008300463A (en) Solid-state electrolytic capacitor and its manufacturing method
DE102009000544A1 (en) Metallic bipolar plate for a fuel cell and method of forming the surface layer thereof
KR20110139825A (en) Metal separator for fuel cell and method for the same
JP6225716B2 (en) Titanium material for separator of polymer electrolyte fuel cell and method for producing the same
JP6108042B2 (en) Titanium material, separator, polymer electrolyte fuel cell, and method for producing titanium material
JPWO2007018183A1 (en) Positive electrode current collector for lead acid battery and method for producing the same
JP7283979B2 (en) Separator manufacturing method
JP2010524149A (en) Thermo-mechanically robust sealing structure for solid oxide fuel cells
EP0559109A1 (en) Tantalum solid electrolytic capacitor
JP6856871B2 (en) Manufacturing method of separator parts for polymer electrolyte fuel cells and separator parts for polymer electrolyte fuel cells
CN103081193B (en) Method for sintering
CN117248183A (en) Corrosion-resistant coating for metal bipolar plate and preparation method thereof
JP6686822B2 (en) Metal materials, separators, cells, and fuel cells
JP7256103B2 (en) Separator and separator manufacturing method
JP2019106345A (en) Fuel cell separator
KR101168119B1 (en) Method for fabricating metal separator using hydrophilic tretment
US9595397B2 (en) High energy density asymmetric pseudocapacitor and method of making the same
JP6753165B2 (en) Titanium material for separators of polymer electrolyte fuel cells, and separators using it
JP7375721B2 (en) Separator and separator manufacturing method
US20220255089A1 (en) Method of producing separator
JP7306877B2 (en) METHOD FOR MANUFACTURING SEPARATOR MATERIAL FOR FUEL CELL
JP2020087618A (en) Method for manufacturing fuel cell separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230518

R151 Written notification of patent or utility model registration

Ref document number: 7283979

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151