JP2020087618A - Method for manufacturing fuel cell separator - Google Patents

Method for manufacturing fuel cell separator Download PDF

Info

Publication number
JP2020087618A
JP2020087618A JP2018218017A JP2018218017A JP2020087618A JP 2020087618 A JP2020087618 A JP 2020087618A JP 2018218017 A JP2018218017 A JP 2018218017A JP 2018218017 A JP2018218017 A JP 2018218017A JP 2020087618 A JP2020087618 A JP 2020087618A
Authority
JP
Japan
Prior art keywords
fuel cell
separator
titanium
base material
ato
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018218017A
Other languages
Japanese (ja)
Inventor
智司 高田
Tomoji Takada
智司 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018218017A priority Critical patent/JP2020087618A/en
Publication of JP2020087618A publication Critical patent/JP2020087618A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

To provide a method for manufacturing a separator having high corrosion resistance, which suppresses an increase in contact resistance when used in a fuel cell.SOLUTION: In a method for manufacturing a fuel cell separator, antimony-doped tin oxide particles are arranged on the surface of a substrate containing titanium or titanium alloy (S1), and the substrate on which the antimony-doped tin oxide particles are arranged is heat-treated under a low oxygen partial pressure (S2).SELECTED DRAWING: Figure 2

Description

本発明は、燃料電池用のセパレータの製造方法に関する。 The present invention relates to a method for manufacturing a separator for a fuel cell.

燃料電池は、固体高分子電解質膜を、アノード電極とカソード電極とで挟んだものを単セルとし、ガス(水素ガス、酸素ガス等)の流路が形成されたセパレータを介して、単セルを複数個重ね合わせたスタックとして構成される。燃料電池用のセパレータは、加熱された酸性溶液中で電圧をかけられて使用されるため、酸に対して高い耐食性を有することが求められる。 In a fuel cell, a solid polymer electrolyte membrane sandwiched between an anode electrode and a cathode electrode is used as a single cell, and the single cell is formed through a separator in which a gas (hydrogen gas, oxygen gas, etc.) flow path is formed. It is configured as a stack of a plurality of layers. Since a separator for a fuel cell is used by applying a voltage in a heated acidic solution, it is required to have high corrosion resistance against an acid.

特許文献1には、純チタン又はチタン合金からなる基材の表面にカーボンブラックを塗布する工程と、その後基材を酸素分圧が25Pa以下である低酸素分圧下で熱処理する工程とを含む、燃料電池用セパレータの製造方法が記載され、低酸素分圧下での熱処理により、基材中のチタン原子がカーボンブラック層中に拡散するとともに、拡散したチタン原子が雰囲気中の酸素と反応して酸化チタンとなることが記載されている。 Patent Document 1 includes a step of applying carbon black to the surface of a base material made of pure titanium or a titanium alloy, and a step of thereafter heat-treating the base material under a low oxygen partial pressure where the oxygen partial pressure is 25 Pa or less. A method for producing a fuel cell separator is described, and by heat treatment under a low oxygen partial pressure, titanium atoms in the base material diffuse into the carbon black layer, and the diffused titanium atoms react with oxygen in the atmosphere to oxidize. It is described to be titanium.

特開2016−122642号公報JP, 2016-122642, A

本発明者の鋭意検討により、特許文献1に記載の製造方法で得られるセパレータを燃料電池に用いると、セパレータの接触抵抗が増加することがあることがわかった。これは、低酸素分圧下での熱処理中に基材とカーボンブラックの界面において耐食性の低い炭化チタンが生成され、この炭化チタンが燃料電池の酸性セル内生成水により酸化されて絶縁化することにより引き起こされるものであると本発明者は考えている。 The inventors of the present invention have earnestly studied and found that when the separator obtained by the manufacturing method described in Patent Document 1 is used in a fuel cell, the contact resistance of the separator may increase. This is because titanium carbide with low corrosion resistance is generated at the interface between the base material and carbon black during the heat treatment under a low oxygen partial pressure, and this titanium carbide is oxidized by the water generated in the acidic cells of the fuel cell and insulated. The present inventor believes that it is caused.

本発明は、上記点に鑑みてなされたものであり、燃料電池中で使用したときの接触抵抗の増加が抑制された、耐食性の高いセパレータの製造方法を提供することを課題とする。 The present invention has been made in view of the above points, and an object of the present invention is to provide a method of manufacturing a separator having high corrosion resistance, in which an increase in contact resistance when used in a fuel cell is suppressed.

本発明に係る燃料電池用セパレータの製造方法は、チタン又はチタン合金を含む基材の表面にアンチモンドープ酸化スズ(ATO)粒子を配置することと、前記アンチモンドープ酸化スズ粒子を配置した基材を低酸素分圧下で熱処理することと、を含む。 A method for producing a fuel cell separator according to the present invention comprises arranging antimony-doped tin oxide (ATO) particles on the surface of a base material containing titanium or a titanium alloy, and a base material on which the antimony-doped tin oxide particles are arranged. Heat treatment under a low oxygen partial pressure.

本発明の製造方法では熱処理時に炭化チタンのような耐食性の低い物質が形成されないため、耐食性の高いセパレータが得られる。このセパレータは、燃料電池中で使用しても接触抵抗の増加が小さい。 In the production method of the present invention, a substance having low corrosion resistance such as titanium carbide is not formed during heat treatment, so that a separator having high corrosion resistance can be obtained. This separator has a small increase in contact resistance even when used in a fuel cell.

燃料電池用セパレータの模式的な断面図である。FIG. 3 is a schematic cross-sectional view of a fuel cell separator. 燃料電池用セパレータの製造方法のフローチャートである。It is a flowchart of the manufacturing method of the separator for fuel cells. ATO粒子配置工程を説明する模式的概念図である。It is a typical conceptual diagram explaining an ATO particle arrangement process. 低酸素分圧下での熱処理工程を説明する模式的概念図である。It is a typical conceptual diagram explaining the heat processing process under low oxygen partial pressure. 余剰ATO粒子除去工程を説明する模式的概念図である。It is a typical conceptual diagram explaining a surplus ATO particle removal process. 実施例及び比較例の試験片の耐食試験前後における接触抵抗値を示すグラフである。It is a graph which shows the contact resistance value of the test piece of an Example and a comparative example before and behind a corrosion resistance test.

まず、図1を参照して、実施形態に係るセパレータ1を説明する。セパレータ1は燃料電池のセルに用いられるものであり、基材2と、基材2の表面21上に形成された混合層3とを有する。混合層3において、アンチモンドープ酸化スズ(ATO)粒子31と酸化チタン32が混合されている。 First, the separator 1 according to the embodiment will be described with reference to FIG. The separator 1 is used for a cell of a fuel cell, and has a base material 2 and a mixed layer 3 formed on a surface 21 of the base material 2. In the mixed layer 3, antimony-doped tin oxide (ATO) particles 31 and titanium oxide 32 are mixed.

基材2はチタン又はチタン合金を含む。チタンとしては、例えば、JIS H 4600に規定される1〜4種を挙げることができる。また、チタン合金としては、例えば、Ti−Al、Ti−Nb、Ti−Ta、Ti−6Al−4V、Ti−Pdを挙げることができる。ただし、いずれの場合も前記例示に限定されない。チタン又はチタン合金を含む基材は、軽く、耐食性に優れる。基材2の素材は、例えば、厚さ0.05〜1mmに冷間圧延された板材であってよい。厚さをこの範囲とすると、セパレータ1が軽量化及び薄型化の要求を満足し、強度及びハンドリング性を備えるとともに、セパレータ1の形状にプレス加工することが比較的容易となる。 The base material 2 contains titanium or a titanium alloy. Examples of titanium include 1 to 4 types defined in JIS H 4600. Examples of titanium alloys include Ti-Al, Ti-Nb, Ti-Ta, Ti-6Al-4V, and Ti-Pd. However, in any case, it is not limited to the above example. A base material containing titanium or a titanium alloy is light and has excellent corrosion resistance. The material of the base material 2 may be, for example, a plate material cold-rolled to a thickness of 0.05 to 1 mm. When the thickness is within this range, the separator 1 satisfies the requirements for weight reduction and thickness reduction, has strength and handleability, and can be relatively easily pressed into the shape of the separator 1.

混合層3中のATO粒子31は導電性の粒子である。また、ATO粒子31は粒状の形態を有してよい。混合層3中の酸化チタン32は、酸素欠損を有する酸化チタン(TiO)である。ATO粒子31は、酸化チタン32のマトリックス中に埋まっている。混合層3において1つ又は複数のATO粒子31が連なることにより、ATO粒子31が、混合層3と基材2の界面34と、セパレータ1の表面に相当する混合層3の表面35との間の導電パスとして働く。そのため、セパレータ1は高い導電性を有する。また、チタン又はチタン合金を含む基材2と酸化チタン32は親和性が高いため、基材2と混合層3の間の密着性が高い。なお、導電性粒子として、貴金属、スズドープ酸化インジウム(ITO)、LaNiO、SrMoO、(La,Sr)CoO、LaTiO、MgZnO、TaO、ZnMgAlO、SrSnOを含有する粒子があるが、ATO粒子はこれらの粒子と比べて安価であるという利点がある。また、カーボンブラックも導電性粒子であるが、ATO粒子はカーボンブラックと比べて耐電食性が高い(高電位でも酸化しにくい)という利点がある。 The ATO particles 31 in the mixed layer 3 are conductive particles. Also, the ATO particles 31 may have a granular form. The titanium oxide 32 in the mixed layer 3 is titanium oxide (TiO x ) having oxygen deficiency. The ATO particles 31 are embedded in a matrix of titanium oxide 32. One or more ATO particles 31 are connected in the mixed layer 3 so that the ATO particles 31 are present between the interface 34 between the mixed layer 3 and the base material 2 and the surface 35 of the mixed layer 3 corresponding to the surface of the separator 1. Acts as a conductive path. Therefore, the separator 1 has high conductivity. Further, since the base material 2 containing titanium or titanium alloy and the titanium oxide 32 have high affinity, the adhesion between the base material 2 and the mixed layer 3 is high. As the conductive particles, there are particles containing a noble metal, tin-doped indium oxide (ITO), LaNiO 3 , SrMoO 3 , (La,Sr)CoO 3 , LaTiO 3 , MgZnO, Ta 2 O, ZnMgAlO, SrSnO 3. , ATO particles have the advantage of being less expensive than these particles. Further, although carbon black is also a conductive particle, ATO particles have an advantage that they have higher electrolytic corrosion resistance (hard to be oxidized even at a high potential) as compared with carbon black.

次に燃料電池用セパレータの製造方法を説明する。燃料電池用セパレータの製造方法は、図2に示すように、基材の表面にATO粒子を配置すること(S1)と、ATO粒子を配置した基材を低酸素分圧下で熱処理すること(S2)と、余剰のATO粒子を除去すること(S3)とを含む。なお、余剰のATO粒子を除去すること(S3)は任意の工程であり、必須ではない。以下、各工程について順に説明する。 Next, a method for manufacturing the fuel cell separator will be described. As shown in FIG. 2, the method for manufacturing a fuel cell separator comprises arranging ATO particles on the surface of a base material (S1) and heat treating the base material on which the ATO particles are arranged under a low oxygen partial pressure (S2). ) And removing excess ATO particles (S3). Note that removing excess ATO particles (S3) is an optional step and is not essential. Hereinafter, each step will be described in order.

(1)ATO粒子の配置(S1)
図3に示すように、チタン又はチタン合金を含む基材2の表面21上にATO粒子31を配置し、ATO粒子層30を形成する。基材2上にATO粒子31を配置する方法は特に限定されないが、例えば、水やエタノールなどの分散媒中にATO粒子31が分散している分散液を基材2上に塗布し、乾燥させることにより、基材2上にATO粒子31を配置できる。塗布方法としては例えばロールコート法が挙げられる。また、ATO粒子層30の厚みは、後述する熱処理工程(S2)において形成される混合層3の厚みより大きくてもよい。この場合、混合層3に含まれない余剰のATO粒子31は、後述する余剰ATO粒子除去工程(S3)において除去することができる。
(1) Arrangement of ATO particles (S1)
As shown in FIG. 3, ATO particles 31 are arranged on the surface 21 of the base material 2 containing titanium or a titanium alloy to form an ATO particle layer 30. The method for disposing the ATO particles 31 on the base material 2 is not particularly limited, but for example, a dispersion liquid in which the ATO particles 31 are dispersed in a dispersion medium such as water or ethanol is applied on the base material 2 and dried. As a result, the ATO particles 31 can be arranged on the base material 2. Examples of the coating method include a roll coating method. Further, the thickness of the ATO particle layer 30 may be larger than the thickness of the mixed layer 3 formed in the heat treatment step (S2) described later. In this case, the surplus ATO particles 31 not included in the mixed layer 3 can be removed in a surplus ATO particle removing step (S3) described below.

(2)低酸素分圧下での熱処理(S2)
ATO粒子31を配置した基材2を低酸素分圧下で熱処理する。これにより、図4に示すように、基材2のチタン原子がATO粒子層30(図3参照)に外方拡散するとともに、外方拡散したチタン原子と酸素ガスとが反応して酸化チタン32が生成される。その結果、酸化チタン32と、酸化チタン32に保持されたATO粒子31とを含む混合層3が形成される。
(2) Heat treatment under low oxygen partial pressure (S2)
The base material 2 on which the ATO particles 31 are arranged is heat-treated under a low oxygen partial pressure. As a result, as shown in FIG. 4, the titanium atoms of the base material 2 are outwardly diffused into the ATO particle layer 30 (see FIG. 3), and the outwardly diffused titanium atoms are reacted with oxygen gas to form the titanium oxide 32. Is generated. As a result, the mixed layer 3 including the titanium oxide 32 and the ATO particles 31 held by the titanium oxide 32 is formed.

ここで低酸素分圧とは、酸素分圧が13Pa以下であることをいう。特に、熱処理中の酸素分圧は0.001〜13Paであってよい。酸素分圧が0.001Pa未満の場合、チタンの酸化が不十分となる可能性がある。酸素分圧が13Paを超える場合、チタンの外方拡散よりも酸素の内方拡散が優勢になるため、酸化チタンが生成しない。 Here, the low oxygen partial pressure means that the oxygen partial pressure is 13 Pa or less. In particular, the oxygen partial pressure during the heat treatment may be 0.001-13 Pa. If the oxygen partial pressure is less than 0.001 Pa, titanium may be insufficiently oxidized. When the oxygen partial pressure exceeds 13 Pa, inward diffusion of oxygen becomes more dominant than outward diffusion of titanium, so that titanium oxide is not generated.

熱処理の雰囲気温度は、300〜800℃であってよい。熱処理時間は1〜30分であってよい。熱処理の温度及び時間を上記範囲にすることにより、ATO粒子31を十分に保持可能な厚さの混合層3を形成することができる。 The ambient temperature of the heat treatment may be 300 to 800°C. The heat treatment time may be 1 to 30 minutes. By setting the temperature and time of the heat treatment within the above range, the mixed layer 3 having a thickness capable of sufficiently holding the ATO particles 31 can be formed.

(3)余剰のATO粒子の除去(S3)
混合層3の厚みがATO粒子層30(図3参照)の厚みより小さい場合、図4に示すように、混合層3の表面35に酸化チタン32に保持されていない余剰のATO粒子31aが残存する。このように余剰のATO粒子31aが存在する場合には、これらを除去してよい。それにより、図5に示すようなセパレータ1が得られる。余剰のATO粒子31aを除去する方法は特に限定されないが、例えば、ウォータージェット洗浄、ブラスト洗浄、ブラシ洗浄、超音波洗浄が挙げられる。
(3) Removal of surplus ATO particles (S3)
When the thickness of the mixed layer 3 is smaller than the thickness of the ATO particle layer 30 (see FIG. 3 ), as shown in FIG. 4, surplus ATO particles 31 a not retained by the titanium oxide 32 remain on the surface 35 of the mixed layer 3. To do. When the surplus ATO particles 31a thus exist, they may be removed. Thereby, the separator 1 as shown in FIG. 5 is obtained. The method for removing the surplus ATO particles 31a is not particularly limited, and examples thereof include water jet cleaning, blast cleaning, brush cleaning, and ultrasonic cleaning.

本実施形態において導電性粒子として用いたATO粒子31は炭素を含まないため、低酸素分圧下での熱処理(S2)を行っても、基材2と導電性粒子(ATO粒子31)の界面で耐食性の低い炭化チタンが形成されることがない。そのため、実施形態に係る製造方法により得られたセパレータ1は耐久性が高く、燃料電池に組み込んで使用したときの接触抵抗の上昇を抑制できる。 Since the ATO particles 31 used as the conductive particles in the present embodiment do not contain carbon, even if the heat treatment (S2) under a low oxygen partial pressure is performed, at the interface between the base material 2 and the conductive particles (ATO particles 31). Titanium carbide with low corrosion resistance is not formed. Therefore, the separator 1 obtained by the manufacturing method according to the embodiment has high durability, and it is possible to suppress an increase in contact resistance when used by incorporating it into a fuel cell.

以上、本発明の実施形態について詳述したが、本発明は、上記実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができる。 Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above embodiments, and various design modifications are possible without departing from the spirit of the present invention described in the claims. It can be performed.

以下、実施例及び比較例により本発明を具体的に説明するが、本発明はこの実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.

実施例
基材として厚さ0.1mmの純チタン板を用意した。蒸留水及びエタノール中にATO粒子(粒径10nm、三菱マテリアル社製、T−1)を分散させてATO分散液を得、これを基材の表面に塗布してATO粒子層を形成した。次いで、酸素分圧0.1Paで、700℃で2分間、基材を熱処理した。それにより、基材のチタンがATO粒子層に外方拡散し、外方拡散したチタンと酸素とが反応して酸化チタン(TiO)が生成された。その結果、酸化チタン及び酸化チタンに保持されたATO粒子からなる混合層が形成された。その後、ブラシ洗浄及び超音波洗浄を行い、混合層上の余剰のATO粒子を除去した。このようにして基材上に酸化チタン及び酸化チタンに保持されたATO粒子からなる混合層を有する試験片を得た。
Example A pure titanium plate having a thickness of 0.1 mm was prepared as a base material. ATO particles (particle size: 10 nm, manufactured by Mitsubishi Materials, T-1) were dispersed in distilled water and ethanol to obtain an ATO dispersion liquid, which was applied to the surface of the base material to form an ATO particle layer. Then, the base material was heat-treated at 700° C. for 2 minutes under an oxygen partial pressure of 0.1 Pa. As a result, titanium of the base material diffused outward into the ATO particle layer, and the outwardly diffused titanium reacted with oxygen to generate titanium oxide (TiO x ). As a result, a mixed layer composed of titanium oxide and ATO particles held by titanium oxide was formed. Then, brush cleaning and ultrasonic cleaning were performed to remove excess ATO particles on the mixed layer. Thus, a test piece having a mixed layer of titanium oxide and ATO particles held by titanium oxide on the substrate was obtained.

比較例
ATO分散液の代わりにカーボンブラック分散液(東海カーボン社製、Aqua Black、粒径10nm)を塗布した以外は実施例と同様にして試験片を作製した。それにより基材上に酸化チタン及び酸化チタンに保持されたカーボンブラックからなる混合層を有する試験片が得られた。
Comparative Example A test piece was prepared in the same manner as in the example except that a carbon black dispersion (Aqua Black, particle size 10 nm, manufactured by Tokai Carbon Co., Ltd.) was applied instead of the ATO dispersion. Thereby, a test piece having a mixed layer of titanium oxide and carbon black retained by titanium oxide on the substrate was obtained.

以下のようにして日本工業規格の金属材料の電気化学的高温腐食試験法(JIS Z2294)に準じた耐食試験(定電位腐食試験)を行った。試験は大気開放系にて行った。実施例及び比較例で作製した試験片をそれぞれ80℃の硫酸に浸した。この状態で白金板からなる対極と各試験片(試料極)を電気的に接続して対極と各試料極との間に0.9Vの電位差を生じさせ、100時間保持した。試験片の電位は参照電極により一定に保持した。 A corrosion resistance test (constant potential corrosion test) according to the electrochemical high temperature corrosion test method (JIS Z2294) of metal materials of Japanese Industrial Standards was performed as follows. The test was conducted in an open system. The test pieces prepared in Examples and Comparative Examples were immersed in 80° C. sulfuric acid. In this state, the counter electrode made of a platinum plate and each test piece (sample electrode) were electrically connected to generate a potential difference of 0.9 V between the counter electrode and each sample electrode, which was held for 100 hours. The potential of the test piece was kept constant by the reference electrode.

耐食試験前後の各試験片の接触抵抗を以下のようにして測定した。各試験片と金メッキをした銅板でカーボンペーパー(東レ株式会社、TGP−H120、厚さ0.5mm)を挟み、一定荷重(0.98MPa)で加圧した。カーボンペーパーは燃料電池の拡散層に相当する。この状態で、各試験片と銅板の間に一定の電流を流し、電圧を測定した。測定結果に基づき、試験片とカーボンペーパーの間の接触抵抗を算出した。図6に算出結果を示す。比較例の試験片は耐食試験後に接触抵抗が増大したが、実施例の試験片は耐食試験前後で接触抵抗がほぼ変化しなかった。 The contact resistance of each test piece before and after the corrosion resistance test was measured as follows. Carbon paper (Toray Industries, Inc., TGP-H120, thickness 0.5 mm) was sandwiched between each test piece and a gold-plated copper plate, and a constant load (0.98 MPa) was applied. Carbon paper corresponds to the diffusion layer of a fuel cell. In this state, a constant current was passed between each test piece and the copper plate to measure the voltage. Based on the measurement results, the contact resistance between the test piece and the carbon paper was calculated. FIG. 6 shows the calculation result. The contact resistance of the test piece of the comparative example increased after the corrosion resistance test, but the contact resistance of the test piece of the example hardly changed before and after the corrosion resistance test.

1:セパレータ、2:基材、3:混合層、30:アンチモンドーブ酸化スズ粒子層、31:アンチモンドーブ酸化スズ粒子、32:酸化チタン 1: Separator, 2: Base material, 3: Mixed layer, 30: Antimonide tin oxide particle layer, 31: Antimonide tin oxide particle, 32: Titanium oxide

Claims (1)

燃料電池用のセパレータの製造方法であって、
チタン又はチタン合金を含む基材の表面にアンチモンドープ酸化スズ粒子を配置することと、
前記アンチモンドープ酸化スズ粒子を配置した基材を低酸素分圧下で熱処理することと、を含む燃料電池用のセパレータの製造方法。
A method of manufacturing a separator for a fuel cell, comprising:
Disposing antimony-doped tin oxide particles on the surface of a substrate containing titanium or a titanium alloy,
A method of manufacturing a separator for a fuel cell, comprising: heat-treating a base material on which the antimony-doped tin oxide particles are arranged under a low oxygen partial pressure.
JP2018218017A 2018-11-21 2018-11-21 Method for manufacturing fuel cell separator Pending JP2020087618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018218017A JP2020087618A (en) 2018-11-21 2018-11-21 Method for manufacturing fuel cell separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018218017A JP2020087618A (en) 2018-11-21 2018-11-21 Method for manufacturing fuel cell separator

Publications (1)

Publication Number Publication Date
JP2020087618A true JP2020087618A (en) 2020-06-04

Family

ID=70908595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018218017A Pending JP2020087618A (en) 2018-11-21 2018-11-21 Method for manufacturing fuel cell separator

Country Status (1)

Country Link
JP (1) JP2020087618A (en)

Similar Documents

Publication Publication Date Title
US8778562B2 (en) Method of depositing durable thin gold coating on fuel cell bipolar plates
EP3565042A1 (en) Titanium material, separator, cell, and solid polymer fuel cell
TW201804650A (en) Titanium alloy material, separator, cell and fuel cell
JP6446373B2 (en) Electrochemical devices
JP3961434B2 (en) Manufacturing method of fuel cell separator
JP6225716B2 (en) Titanium material for separator of polymer electrolyte fuel cell and method for producing the same
US10505205B2 (en) Titanium product, separator, and proton exchange membrane fuel cell, and method for producing titanium product
JP6805823B2 (en) Titanium material, separator, cell, and polymer electrolyte fuel cell
JP2020087618A (en) Method for manufacturing fuel cell separator
KR102166959B1 (en) Separator for fuel cell
JP2018104808A (en) Titanium material, separator, cell, and solid polymer type fuel cell
JP6686822B2 (en) Metal materials, separators, cells, and fuel cells
JP6904661B2 (en) Manufacturing method of separator for fuel cell
JP7035711B2 (en) Metal plates, separators, cells, and fuel cells
JP2021068539A (en) Separator and method of manufacturing separator
US20220255089A1 (en) Method of producing separator
JP6753165B2 (en) Titanium material for separators of polymer electrolyte fuel cells, and separators using it
EP3181728B1 (en) Metal material and current-carrying component using said metal material
JP2019192570A (en) Fuel cell separator
JP2020193355A (en) Method for producing separator material for fuel cell
JP7283979B2 (en) Separator manufacturing method
JP2020064779A (en) Evaluation method of fuel cell separator
JP7306877B2 (en) METHOD FOR MANUFACTURING SEPARATOR MATERIAL FOR FUEL CELL
WO2023153315A1 (en) Electrode
KR20230064770A (en) Separator plate for fuel cell with metal coating layer and manufacturing method thereof