JP7276632B1 - 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス - Google Patents

蓄電デバイス用外装材、その製造方法、及び蓄電デバイス Download PDF

Info

Publication number
JP7276632B1
JP7276632B1 JP2022577312A JP2022577312A JP7276632B1 JP 7276632 B1 JP7276632 B1 JP 7276632B1 JP 2022577312 A JP2022577312 A JP 2022577312A JP 2022577312 A JP2022577312 A JP 2022577312A JP 7276632 B1 JP7276632 B1 JP 7276632B1
Authority
JP
Japan
Prior art keywords
mass
heat
less
aluminum alloy
alloy foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022577312A
Other languages
English (en)
Other versions
JPWO2023277109A5 (ja
JPWO2023277109A1 (ja
Inventor
敦子 高萩
大佑 安田
孝典 山下
慎二 林
健太 平木
昌保 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Publication of JPWO2023277109A1 publication Critical patent/JPWO2023277109A1/ja
Priority to JP2023071743A priority Critical patent/JP2023109762A/ja
Application granted granted Critical
Publication of JP7276632B1 publication Critical patent/JP7276632B1/ja
Publication of JPWO2023277109A5 publication Critical patent/JPWO2023277109A5/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • H01M50/126Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure comprising three or more layers
    • H01M50/129Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure comprising three or more layers with two or more layers of only organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/131Primary casings, jackets or wrappings of a single cell or a single battery characterised by physical properties, e.g. gas-permeability or size
    • H01M50/133Thickness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

少なくとも、基材層、バリア層、及び熱融着性樹脂層をこの順に備える積層体から構成されており、前記バリア層は、Fe:0.2質量%以上2.0質量%以下、Mg:0.1質量%以上5.0質量%以下の組成を満たすアルミニウム合金箔を含み、前記熱融着性樹脂層は、単層又は複層により構成されており、前記熱融着性樹脂層のうち、前記積層体の表面を構成している第1熱融着性樹脂層は、剛体振り子測定における140℃での対数減衰率ΔEが0.25以下である、蓄電デバイス用外装材。

Description

本開示は、蓄電デバイス用外装材、その製造方法、及び蓄電デバイスに関する。
従来、様々なタイプの蓄電デバイスが開発されているが、あらゆる蓄電デバイスにおいて、電極や電解質等の蓄電デバイス素子を封止するために包装材料(外装材)が不可欠な部材になっている。従来、蓄電デバイス用外装材として金属製の外装材が多用されていた。
一方、近年、電気自動車、ハイブリッド電気自動車、パソコン、カメラ、携帯電話等の高性能化に伴い、蓄電デバイスには、多様な形状が要求されると共に、薄型化や軽量化が求められている。しかしながら、従来多用されていた金属製の蓄電デバイス用外装材では、形状の多様化に追従することが困難であり、しかも軽量化にも限界があるという欠点がある。
そこで、近年、多様な形状に加工が容易で、薄型化や軽量化を実現し得る蓄電デバイス用外装材として、基材/アルミニウム合金箔層/熱融着性樹脂層が順次積層されたフィルム状の外装材が提案されている(例えば、特許文献1を参照)。
このようなフィルム状の外装材においては、一般的に、冷間成形により凹部が形成され、当該凹部によって形成された空間に電極や電解液などの蓄電デバイス素子を配し、熱融着性樹脂層同士を熱融着させることにより、外装材の内部に蓄電デバイス素子が収容された蓄電デバイスが得られる。
特開2008-287971号公報
蓄電デバイスのエネルギー密度を高める観点などから、フィルム状の外装材には、成形によって深い凹部を形成することが求められる。従って、蓄電デバイス用外装材に用いられるアルミニウム合金箔には、高い成形性が要求される。
成形性に優れたアルミニウム合金箔としては、Al-Fe合金系の軟質アルミニウム合金箔が知られている。このような軟質アルミニウム合金箔の具体例としては、例えば、JIS H4160:1994 A8021H-Oで規定される組成、JIS H4160:1994 A8079H-Oで規定される組成、JIS H4000:2014 A8021P-Oで規定される組成、又はJIS H4000:2014 A8079P-Oで規定される組成を備えるアルミニウム合金箔が知られている。
一方、蓄電デバイス用外装材の成形工程や、蓄電デバイス用外装材に蓄電デバイス素子を収容してヒートシールする工程、さらには、ヒートシールした部分を折り曲げる工程などにおいて、外部端子と蓄電デバイス用外装材のアルミニウム合金箔とが異物を介して短絡、あるいはヒートシール時の圧力ムラで外部端子と蓄電デバイス用外装材のアルミニウム合金箔とが近接もしくは接触して短絡し、且つ最内層に位置する熱融着性樹脂層に微細なクラックやピンホールが発生すると、熱融着性樹脂層に浸透した電解液を介して蓄電デバイス用外装材のアルミニウム合金箔と外部端子との間で通電し、アルミニウム合金箔が電解液中のリチウムイオンと合金化腐食する可能性がある(特に、アルミニウム合金箔と負極端子とが電解液を介して短絡すると、アルミニウム合金箔が腐食しやすい)。
また、蓄電デバイス素子を封止する際、金属板などを用いて蓄電デバイス用外装材に高温・高圧を加えることにより、熱融着性樹脂層を熱融着させることが行われている。ところが、蓄電デバイス用外装材に高温・高圧を加えることにより、表面に位置する熱融着性樹脂層が押し潰されて、蓄電デバイス用外装材の絶縁性が低下するという問題がある。
このような状況下、本開示は、少なくとも、基材層、アルミニウム合金箔層を含むバリア層、及び熱融着性樹脂層がこの順に積層された蓄電デバイス用外装材であって、成形性に優れ、電解液が付着した状態で通電が生じた場合のアルミニウム合金箔の腐食が効果的に抑制され、さらには絶縁性が高められた、蓄電デバイス用外装材を提供することを目的とする。
本開示の発明者らは、前記課題を解決すべく、鋭意検討を行った。具体的には、蓄電デバイス用外装材のバリア層に用いられるアルミニウム合金箔の組成について検討を重ね、MgとFeの含有量を所定の範囲に設定することにより、蓄電デバイス用外装材の高い成形性を担保した上で、電解液が付着した状態で通電が生じた場合の腐食が効果的に抑制されることを見出した。さらに、本開示の発明者らは、バリア層に当該アルミニウム合金箔を用いた上で、熱融着性樹脂層のうち、積層体の表面を構成している第1熱融着性樹脂層の剛体振り子測定における140℃での対数減衰率ΔEを所定値以下に設定することにより、熱融着性樹脂層を熱融着させた際の潰れが効果的に抑制されて、絶縁性が高められることも見出した。
本開示は、これらの知見に基づいて、更に検討を重ねることにより完成したものである。即ち、本開示は、下記に掲げる態様の発明を提供する。
少なくとも、基材層、バリア層、及び熱融着性樹脂層をこの順に備える積層体から構成されており、
前記バリア層は、Fe:0.2質量%以上2.0質量%以下、Mg:0.1質量%以上5.0質量%以下の組成を満たすアルミニウム合金箔を含み、
前記熱融着性樹脂層は、単層又は複層により構成されており、
前記熱融着性樹脂層のうち、前記積層体の表面を構成している第1熱融着性樹脂層は、剛体振り子測定における140℃での対数減衰率ΔEが0.25以下である、蓄電デバイス用外装材。
本開示によれば、少なくとも、基材層、アルミニウム合金箔層を含むバリア層、及び熱融着性樹脂層がこの順に積層された蓄電デバイス用外装材であって、成形性に優れ、電解液が付着した状態で通電が生じた場合のアルミニウム合金箔の腐食が効果的に抑制され、さらには絶縁性が高められた、蓄電デバイス用外装材を提供することができる。また、本開示によれば、当該蓄電デバイス用外装材の製造方法、及び蓄電デバイスを提供することもできる。
本開示の蓄電デバイス用外装材の断面構造の一例を示す模式図である。 本開示の蓄電デバイス用外装材の断面構造の一例を示す模式図である。 本開示の蓄電デバイス用外装材の断面構造の一例を示す模式図である。 本開示の蓄電デバイス用外装材の断面構造の一例を示す模式図である。 本開示の蓄電デバイス用外装材の断面構造の一例を示す模式図である。 実施例における耐腐食性の評価方法を説明するための模式図である。 アルミニウム合金箔の厚み方向の断面における、結晶粒と第二相粒子を示す模式図である。 アルミニウム合金箔の表面について、耐腐食性評価後に観察したマイクロスコープ画象であって、腐食が好適に抑制されている例である。 アルミニウム合金箔の表面について、耐腐食性評価後に観察したマイクロスコープ画象であって、腐食が十分には抑制されていない例である。 剛体振り子測定による対数減衰率ΔEの測定方法を説明するための模式図である。 熱融着性樹脂層の熱融着部の内側に形成される突出部を説明するための模式図である。 本開示の実施例における限界成形高さ試験で用いる角型ポンチの平面形状を示す図である。
本開示の蓄電デバイス用外装材は、少なくとも、基材層、バリア層、及び熱融着性樹脂層をこの順に備える積層体から構成されており、前記バリア層は、Fe:0.2質量%以上2.0質量%以下、Mg:0.1質量%以上5.0質量%以下の組成を満たすアルミニウム合金箔を含み、熱融着性樹脂層は、単層又は複層により構成されており、熱融着性樹脂層のうち、積層体の表面を構成している第1熱融着性樹脂層は、剛体振り子測定における140℃での対数減衰率ΔEが0.25以下であることを特徴とする。本開示の蓄電デバイス用外装材によれば、当該構成を備えていることにより、成形性に優れ、かつ、電解液が付着した状態で通電が生じた場合のアルミニウム合金箔の腐食が効果的に抑制され、さらには絶縁性も高められる。
以下、本開示の蓄電デバイス用外装材、その製造方法、及び蓄電デバイスについて詳述する。なお、本明細書において、「~」で示される数値範囲は「以上」、「以下」を意味する。例えば、2~15mmとの表記は、2mm以上15mm以下を意味する。
1.蓄電デバイス用外装材
本開示の蓄電デバイス用外装材10は、例えば図1から図5に示すように、基材層1、バリア層3、及び熱融着性樹脂層4をこの順に備える積層体から構成されている。蓄電デバイス用外装材10において、基材層1が最外層側になり、熱融着性樹脂層4は最内層になる。蓄電デバイス用外装材10と蓄電デバイス素子を用いて蓄電デバイスを組み立てる際に、蓄電デバイス用外装材10の熱融着性樹脂層4同士を対向させた状態で、周縁部を熱融着させることによって形成された空間に、蓄電デバイス素子が収容される。本開示の蓄電デバイス用外装材10を構成する積層体において、バリア層3を基準とし、バリア層3よりも熱融着性樹脂層4側が内側であり、バリア層3よりも基材層1側が外側である。
本開示の蓄電デバイス用外装材10において、熱融着性樹脂層4は、単層又は複層により構成されており、熱融着性樹脂層4のうち、第1熱融着性樹脂層41が、積層体の表面を構成している。図1及び図2には、熱融着性樹脂層4が第1熱融着性樹脂層41の単層により構成されており、第1熱融着性樹脂層41が、積層体の表面を構成している積層構成を図示している。また、図3から図5には、熱融着性樹脂層4が第1熱融着性樹脂層41及び第2熱融着性樹脂層42の複層(2層)により構成されており、第1熱融着性樹脂層41が、積層体の表面を構成している積層構成を図示している。なお、後述の通り、熱融着性樹脂層4は、第1熱融着性樹脂層41及び第2熱融着性樹脂層42に加えて、さらに第3熱融着性樹脂層、第4熱融着性樹脂層などの他の熱融着性樹脂層を第2熱融着性樹脂層42のバリア層3側に備えていてもよい。
蓄電デバイス用外装材10と蓄電デバイス素子を用いて蓄電デバイスを組み立てる際に、蓄電デバイス用外装材10の第1熱融着性樹脂層41同士を対向させた状態で、周縁部を熱融着させることによって形成された空間に、蓄電デバイス素子が収容される。
本開示の蓄電デバイス用外装材のバリア層3は、アルミニウム合金箔を含んでいる。すなわち、本開示の蓄電デバイス用外装材のバリア層3は、アルミニウム合金箔により構成することができる。後述する所定の組成を満たすアルミニウム合金箔を用いた本開示の蓄電デバイス用外装材は、成形性に優れ、かつ、アルミニウム合金箔の腐食が効果的に抑制される。さらに、本開示の蓄電デバイス用外装材においては、140℃における当該対数減衰率ΔEが0.25以下であることにより、第1熱融着性樹脂層41を熱融着させた際の潰れが効果的に抑制され、バリア層(アルミニウム合金箔)との相乗効果により、蓄電デバイス用外装材の絶縁性を高めることができる。
蓄電デバイス用外装材10は、例えば図2から図5に示すように、基材層1とバリア層3との間に、これらの層間の接着性を高めることなどを目的として、必要に応じて接着剤層2を有していてもよい。また、例えば図2,図4及び図5に示すように、バリア層3と熱融着性樹脂層4との間に、これらの層間の接着性を高めることなどを目的として、必要に応じて接着層5を有していてもよい。また、図5に示すように、基材層1の外側(熱融着性樹脂層4側とは反対側)には、必要に応じて表面被覆層6などが設けられていてもよい。
蓄電デバイス用外装材10を構成する積層体の厚みとしては、特に制限されないが、コスト削減、エネルギー密度向上等の観点からは、例えば190μm以下、好ましくは約180μm以下、約155μm以下、約120μm以下が挙げられる。また、蓄電デバイス用外装材10を構成する積層体の厚みとしては、蓄電デバイス素子を保護するという蓄電デバイス用外装材の機能を維持する観点からは、好ましくは約35μm以上、約45μm以上、約60μm以上が挙げられる。また、蓄電デバイス用外装材10を構成する積層体の好ましい範囲については、例えば、35~190μm程度、35~180μm程度、35~155μm程度、35~120μm程度、45~190μm程度、45~180μm程度、45~155μm程度、45~120μm程度、60~190μm程度、60~180μm程度、60~155μm程度、60~120μm程度が挙げられ、特に60~155μm程度が好ましい。
蓄電デバイス用外装材10において、蓄電デバイス用外装材10を構成する積層体の厚み(総厚み)に対する、基材層1、必要に応じて設けられる接着剤層2、バリア層3、必要に応じて設けられる接着層5、熱融着性樹脂層4、及び必要に応じて設けられる表面被覆層6の合計厚みの割合は、好ましくは90%以上であり、より好ましくは95%以上であり、さらに好ましくは98%以上である。具体例としては、本開示の蓄電デバイス用外装材10が、基材層1、接着剤層2、バリア層3、接着層5、及び熱融着性樹脂層4を含む場合、蓄電デバイス用外装材10を構成する積層体の厚み(総厚み)に対する、これら各層の合計厚みの割合は、好ましくは90%以上であり、より好ましくは95%以上であり、さらに好ましくは98%以上である。また、本開示の蓄電デバイス用外装材10が、基材層1、接着剤層2、バリア層3、及び熱融着性樹脂層4を含む積層体である場合にも、蓄電デバイス用外装材10を構成する積層体の厚み(総厚み)に対する、これら各層の合計厚みの割合は、例えば80%以上、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは98%以上とすることができる。
なお、蓄電デバイス用外装材において、後述のバリア層3については、通常、その製造過程におけるMD(Machine Direction)とTD(Transverse Direction)を判別することができる。バリア層3がアルミニウム合金箔により構成されている場合、金属箔の圧延方向(RD:Rolling Direction)には、金属箔の表面に、いわゆる圧延痕と呼ばれる線状の筋が形成されている。圧延痕は、圧延方向に沿って伸びているため、金属箔の表面を観察することによって、金属箔の圧延方向を把握することができる。また、積層体の製造過程においては、通常、積層体のMDと、金属箔のRDとが一致するため、積層体の金属箔の表面を観察し、金属箔の圧延方向(RD)を特定することにより、積層体のMDを特定することができる。また、積層体のTDは、積層体のMDとは垂直方向であるため、積層体のTDについても特定することができる。
また、アルミニウム合金箔の圧延痕により蓄電デバイス用外装材のMDが特定できない場合は、次の方法により特定することができる。蓄電デバイス用外装材のMDの確認方法として、蓄電デバイス用外装材の熱融着性樹脂層の断面を電子顕微鏡で観察し海島構造を確認する方法がある。当該方法においては、熱融着性樹脂層の厚み方向に対して垂直な方向の島の形状の径の平均が最大であった断面と平行な方向を、MDと判断することができる。具体的には、熱融着性樹脂層の長さ方向の断面と、当該長さ方向の断面と平行な方向から10度ずつ角度を変更し、長さ方向の断面に対して垂直な方向までの各断面(合計10の断面)について、それぞれ、電子顕微鏡写真で観察して海島構造を確認する。次に、各断面において、それぞれ、個々の島の形状を観察する。個々の島の形状について、熱融着性樹脂層の厚み方向に対して垂直方向の最左端と、当該垂直方向の最右端とを結ぶ直線距離を径yとする。各断面において、島の形状の当該径yが大きい順に上位20個の径yの平均を算出する。島の形状の当該径yの平均が最も大きかった断面と平行な方向をMDと判断する。
蓄電デバイス用外装材を形成する各層
[基材層1]
本開示において、基材層1は、蓄電デバイス用外装材の基材としての機能を発揮させることなどを目的として設けられる層である。基材層1は、蓄電デバイス用外装材の外層側に位置する。
基材層1を形成する素材については、基材としての機能、すなわち少なくとも絶縁性を備えるものであることを限度として特に制限されない。基材層1は、例えば樹脂を用いて形成することができ、樹脂には後述の添加剤が含まれていてもよい。
基材層1が樹脂により形成されている場合、基材層1は、例えば、樹脂により形成された樹脂フィルムであってもよいし、樹脂を塗布して形成したものであってもよい。樹脂フィルムは、未延伸フィルムであってもよいし、延伸フィルムであってもよい。延伸フィルムとしては、一軸延伸フィルム、二軸延伸フィルムが挙げられ、二軸延伸フィルムが好ましい。二軸延伸フィルムを形成する延伸方法としては、例えば、逐次二軸延伸法、インフレーション法、同時二軸延伸法等が挙げられる。樹脂を塗布する方法としては、ロールコーティング法、グラビアコーティング法、押出コーティング法などがあげられる。
基材層1を形成する樹脂としては、例えば、ポリエステル、ポリアミド、ポリオレフィン、エポキシ樹脂、アクリル樹脂、フッ素樹脂、ポリウレタン、珪素樹脂、フェノール樹脂などの樹脂や、これらの樹脂の変性物が挙げられる。また、基材層1を形成する樹脂は、これらの樹脂の共重合物であってもよいし、共重合物の変性物であってもよい。さらに、これらの樹脂の混合物であってもよい。
基材層1を形成する樹脂としては、これらの中でも、好ましくはポリエステル、ポリアミドが挙げられる。
ポリエステルとしては、具体的には、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリエチレンイソフタレート、共重合ポリエステル等が挙げられる。また、共重合ポリエステルとしては、エチレンテレフタレートを繰り返し単位の主体とした共重合ポリエステル等が挙げられる。具体的には、エチレンテレフタレートを繰り返し単位の主体としてエチレンイソフタレートと重合する共重合体ポリエステル(以下、ポリエチレン(テレフタレート/イソフタレート)にならって略す)、ポリエチレン(テレフタレート/アジペート)、ポリエチレン(テレフタレート/ナトリウムスルホイソフタレート)、ポリエチレン(テレフタレート/ナトリウムイソフタレート)、ポリエチレン(テレフタレート/フェニル-ジカルボキシレート)、ポリエチレン(テレフタレート/デカンジカルボキシレート)等が挙げられる。これらのポリエステルは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。
また、ポリアミドとしては、具体的には、ナイロン6、ナイロン66、ナイロン610、ナイロン12、ナイロン46、ナイロン6とナイロン66との共重合体等の脂肪族ポリアミド;テレフタル酸及び/又はイソフタル酸に由来する構成単位を含むナイロン6I、ナイロン6T、ナイロン6IT、ナイロン6I6T(Iはイソフタル酸、Tはテレフタル酸を表す)等のヘキサメチレンジアミン-イソフタル酸-テレフタル酸共重合ポリアミド、ポリアミドMXD6(ポリメタキシリレンアジパミド)等の芳香族を含むポリアミド;ポリアミドPACM6(ポリビス(4‐アミノシクロヘキシル)メタンアジパミド)等の脂環式ポリアミド;さらにラクタム成分や、4,4’-ジフェニルメタン-ジイソシアネート等のイソシアネート成分を共重合させたポリアミド、共重合ポリアミドとポリエステルやポリアルキレンエーテルグリコールとの共重合体であるポリエステルアミド共重合体やポリエーテルエステルアミド共重合体;これらの共重合体等のポリアミドが挙げられる。これらのポリアミドは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。
基材層1は、ポリエステルフィルム、ポリアミドフィルム、及びポリオレフィンフィルムのうち少なくとも1つを含むことが好ましく、延伸ポリエステルフィルム、及び延伸ポリアミドフィルム、及び延伸ポリオレフィンフィルムのうち少なくとも1つを含むことが好ましく、延伸ポリエチレンテレフタレートフィルム、延伸ポリブチレンテレフタレートフィルム、延伸ナイロンフィルム、延伸ポリプロピレンフィルムのうち少なくとも1つを含むことがさらに好ましく、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリブチレンテレフタレートフィルム、二軸延伸ナイロンフィルム、二軸延伸ポリプロピレンフィルムのうち少なくとも1つを含むことがさらに好ましい。
基材層1は、単層であってもよいし、2層以上により構成されていてもよい。基材層1が2層以上により構成されている場合、基材層1は、樹脂フィルムを接着剤などで積層させた積層体であってもよいし、樹脂を共押出しして2層以上とした樹脂フィルムの積層体であってもよい。また、樹脂を共押出しして2層以上とした樹脂フィルムの積層体を、未延伸のまま基材層1としてもよいし、一軸延伸または二軸延伸して基材層1としてもよい。
基材層1において、2層以上の樹脂フィルムの積層体の具体例としては、ポリエステルフィルムとナイロンフィルムとの積層体、2層以上のナイロンフィルムの積層体、2層以上のポリエステルフィルムの積層体などが挙げられ、好ましくは、延伸ナイロンフィルムと延伸ポリエステルフィルムとの積層体、2層以上の延伸ナイロンフィルムの積層体、2層以上の延伸ポリエステルフィルムの積層体が好ましい。例えば、基材層1が2層の樹脂フィルムの積層体である場合、ポリエステル樹脂フィルムとポリエステル樹脂フィルムの積層体、ポリアミド樹脂フィルムとポリアミド樹脂フィルムの積層体、またはポリエステル樹脂フィルムとポリアミド樹脂フィルムの積層体が好ましく、ポリエチレンテレフタレートフィルムとポリエチレンテレフタレートフィルムの積層体、ナイロンフィルムとナイロンフィルムの積層体、またはポリエチレンテレフタレートフィルムとナイロンフィルムの積層体がより好ましい。また、ポリエステル樹脂は、例えば電解液が表面に付着した際に変色し難いことなどから、基材層1が2層以上の樹脂フィルムの積層体である場合、ポリエステル樹脂フィルムが基材層1の最外層に位置することが好ましい。
基材層1が、2層以上の樹脂フィルムの積層体である場合、2層以上の樹脂フィルムは、接着剤を介して積層させてもよい。好ましい接着剤については、後述の接着剤層2で例示する接着剤と同様のものが挙げられる。なお、2層以上の樹脂フィルムを積層させる方法としては、特に制限されず、公知方法が採用でき、例えばドライラミネート法、サンドイッチラミネート法、押出ラミネート法、サーマルラミネート法などが挙げられ、好ましくはドライラミネート法が挙げられる。ドライラミネート法により積層させる場合には、接着剤としてポリウレタン接着剤を用いることが好ましい。このとき、接着剤の厚みとしては、例えば2~5μm程度が挙げられる。また、樹脂フィルムにアンカーコート層を形成し積層させても良い。アンカーコート層は、後述の接着剤層2で例示する接着剤と同様のものがあげられる。このとき、アンカーコート層の厚みとしては、例えば0.01~1.0μm程度が挙げられる。
また、基材層1の表面及び内部の少なくとも一方には、滑剤、難燃剤、アンチブロッキング剤、酸化防止剤、光安定剤、粘着付与剤、耐電防止剤等の添加剤が存在していてもよい。添加剤は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。
本開示において、蓄電デバイス用外装材の成形性を高める観点からは、基材層1の表面には、滑剤が存在していることが好ましい。滑剤としては、特に制限されないが、好ましくはアミド系滑剤が挙げられる。アミド系滑剤の具体例としては、例えば、飽和脂肪酸アミド、不飽和脂肪酸アミド、置換アミド、メチロールアミド、飽和脂肪酸ビスアミド、不飽和脂肪酸ビスアミド、脂肪酸エステルアミド、芳香族ビスアミドなどが挙げられる。飽和脂肪酸アミドの具体例としては、ラウリン酸アミド、パルミチン酸アミド、ステアリン酸アミド、ベヘン酸アミド、ヒドロキシステアリン酸アミドなどが挙げられる。不飽和脂肪酸アミドの具体例としては、オレイン酸アミド、エルカ酸アミドなどが挙げられる。置換アミドの具体例としては、N-オレイルパルミチン酸アミド、N-ステアリルステアリン酸アミド、N-ステアリルオレイン酸アミド、N-オレイルステアリン酸アミド、N-ステアリルエルカ酸アミドなどが挙げられる。また、メチロールアミドの具体例としては、メチロールステアリン酸アミドなどが挙げられる。飽和脂肪酸ビスアミドの具体例としては、メチレンビスステアリン酸アミド、エチレンビスカプリン酸アミド、エチレンビスラウリン酸アミド、エチレンビスステアリン酸アミド、エチレンビスヒドロキシステアリン酸アミド、エチレンビスベヘン酸アミド、ヘキサメチレンビスステアリン酸アミド、ヘキサメチレンビスベヘン酸アミド、ヘキサメチレンヒドロキシステアリン酸アミド、N,N’-ジステアリルアジピン酸アミド、N,N’-ジステアリルセバシン酸アミドなどが挙げられる。不飽和脂肪酸ビスアミドの具体例としては、エチレンビスオレイン酸アミド、エチレンビスエルカ酸アミド、ヘキサメチレンビスオレイン酸アミド、N,N’-ジオレイルアジピン酸アミド、N,N’-ジオレイルセバシン酸アミドなどが挙げられる。脂肪酸エステルアミドの具体例としては、ステアロアミドエチルステアレートなどが挙げられる。また、芳香族ビスアミドの具体例としては、m-キシリレンビスステアリン酸アミド、m-キシリレンビスヒドロキシステアリン酸アミド、N,N’-ジステアリルイソフタル酸アミドなどが挙げられる。滑剤は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。
基材層1の表面に滑剤が存在する場合、その存在量としては、特に制限されないが、好ましくは約3mg/m2以上、より好ましくは4~15mg/m2程度、さらに好ましくは5~14mg/m2程度が挙げられる。
基材層1の表面に存在する滑剤は、基材層1を構成する樹脂に含まれる滑剤を滲出させたものであってもよいし、基材層1の表面に滑剤を塗布したものであってもよい。
基材層1の厚みについては、基材としての機能を発揮すれば特に制限されないが、例えば、3~50μm程度、好ましくは10~35μm程度が挙げられる。基材層1が、2層以上の樹脂フィルムの積層体である場合、各層を構成している樹脂フィルムの厚みとしては、それぞれ、好ましくは2~25μm程度が挙げられる。
[接着剤層2]
本開示の蓄電デバイス用外装材において、接着剤層2は、基材層1とバリア層3との接着性を高めることを目的として、必要に応じて、これらの間に設けられる層である。
接着剤層2は、基材層1とバリア層3とを接着可能である接着剤によって形成される。接着剤層2の形成に使用される接着剤は限定されないが、化学反応型、溶剤揮発型、熱溶融型、熱圧型等のいずれであってもよい。また、2液硬化型接着剤(2液性接着剤)であってもよく、1液硬化型接着剤(1液性接着剤)であってもよく、硬化反応を伴わない樹脂でもよい。また、接着剤層2は単層であってもよいし、多層であってもよい。
接着剤に含まれる接着成分としては、具体的には、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリエチレンイソフタレート、共重合ポリエステル等のポリエステル;ポリエーテル;ポリウレタン;エポキシ樹脂;フェノール樹脂;ナイロン6、ナイロン66、ナイロン12、共重合ポリアミド等のポリアミド;ポリオレフィン、環状ポリオレフィン、酸変性ポリオレフィン、酸変性環状ポリオレフィンなどのポリオレフィン系樹脂;ポリ酢酸ビニル;セルロース;(メタ)アクリル樹脂;ポリイミド;ポリカーボネート;尿素樹脂、メラミン樹脂等のアミノ樹脂;クロロプレンゴム、ニトリルゴム、スチレン-ブタジエンゴム等のゴム;シリコーン樹脂等が挙げられる。これらの接着成分は1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。これらの接着成分の中でも、好ましくはポリウレタン接着剤が挙げられる。また、これらの接着成分となる樹脂は適切な硬化剤を併用して接着強度を高めることができる。前記硬化剤は、接着成分の持つ官能基に応じて、ポリイソシアネート、多官能エポキシ樹脂、オキサゾリン基含有ポリマー、ポリアミン樹脂、酸無水物などから適切なものを選択する。
ポリウレタン接着剤としては、例えば、ポリオール化合物を含有する主剤と、イソシアネート化合物を含有する硬化剤とを含むポリウレタン接着剤が挙げられる。好ましくはポリエステルポリオール、ポリエーテルポリオール、およびアクリルポリオール等のポリオールを主剤として、芳香族系又は脂肪族系のポリイソシアネートを硬化剤とした二液硬化型のポリウレタン接着剤が挙げられる。また、ポリオール化合物としては、繰り返し単位の末端の水酸基に加えて、側鎖にも水酸基を有するポリエステルポリオールを用いることが好ましい。接着剤層2がポリウレタン接着剤により形成されていることで蓄電デバイス用外装材に優れた電解液耐性が付与され、側面に電解液が付着しても基材層1が剥がれることが抑制される。
また、接着剤層2は、接着性を阻害しない限り他成分の添加が許容され、着色剤や熱可塑性エラストマー、粘着付与剤、フィラーなどを含有してもよい。接着剤層2が着色剤を含んでいることにより、蓄電デバイス用外装材を着色することができる。着色剤としては、顔料、染料などの公知のものが使用できる。また、着色剤は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。
顔料の種類は、接着剤層2の接着性を損なわない範囲であれば、特に限定されない。有機顔料としては、例えば、アゾ系、フタロシアニン系、キナクリドン系、アンスラキノン系、ジオキサジン系、インジゴチオインジゴ系、ペリノン-ペリレン系、イソインドレニン系、ベンズイミダゾロン系等の顔料が挙げられ、無機顔料としては、カーボンブラック系、酸化チタン系、カドミウム系、鉛系、酸化クロム系、鉄系等の顔料が挙げられ、その他に、マイカ(雲母)の微粉末、魚鱗箔等が挙げられる。
着色剤の中でも、例えば蓄電デバイス用外装材の外観を黒色とするためには、カーボンブラックが好ましい。
顔料の平均粒子径としては、特に制限されず、例えば、0.05~5μm程度、好ましくは0.08~2μm程度が挙げられる。なお、顔料の平均粒子径は、レーザ回折/散乱式粒子径分布測定装置で測定されたメジアン径とする。
接着剤層2における顔料の含有量としては、蓄電デバイス用外装材が着色されれば特に制限されず、例えば5~60質量%程度、好ましくは10~40質量%が挙げられる。
接着剤層2の厚みは、基材層1とバリア層3とを接着できれば、特に制限されないが、下限については、例えば、約1μm以上、約2μm以上が挙げられ、上限については、約10μm以下、約5μm以下が挙げられ、好ましい範囲については、1~10μm程度、1~5μm程度、2~10μm程度、2~5μm程度が挙げられる。
[着色層]
着色層は、基材層1とバリア層3との間に必要に応じて設けられる層である(図示を省略する)。接着剤層2を有する場合には、基材層1と接着剤層2との間、接着剤層2とバリア層3との間に着色層を設けてもよい。また、基材層1の外側に着色層を設けてもよい。着色層を設けることにより、蓄電デバイス用外装材を着色することができる。
着色層は、例えば、着色剤を含むインキを基材層1の表面、接着剤層2の表面、またはバリア層3の表面に塗布することにより形成することができる。着色剤としては、顔料、染料などの公知のものが使用できる。また、着色剤は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。
着色層に含まれる着色剤の具体例としては、[接着剤層2]の欄で例示したものと同じものが例示される。
[バリア層3]
蓄電デバイス用外装材において、バリア層3は、少なくとも水分の浸入を抑止する層である。
本開示の蓄電デバイス用外装材のバリア層3は、アルミニウム合金箔を含んでいる。
アルミニウム合金箔は、Fe(鉄):0.2質量%以上2.0質量%以下、Mg(マグネシウム):0.1質量%以上5.0質量%以下の組成を満たすアルミニウム合金箔を含む。アルミニウム合金箔の主成分はAl(アルミニウム)であり、例えば92.10質量%以上はアルミニウムにより構成されている。アルミニウム合金箔は、Si(ケイ素)を含むことが好ましい。ケイ素の含有率は、好ましくは約0.50質量%以下である。
また、アルミニウム合金箔において、Fe、Mg、及びAl以外の他の成分が含まれていてもよい。他の成分としては、例えば、Si(ケイ素)、Mn(マンガン)、Cu(銅)、Cr(クロム)、Zn(亜鉛)等の不可避不純物が挙げられる。アルミニウム合金箔中の不可避不純物は、例えば、個々に0.10質量%以下かつ合計で0.40質量%以下である。他の成分は、1種類であってもよいし、2種類以上であってもよい。
アルミニウム合金箔において、Feは、鋳造時にAl-Fe系金属間化合物として晶出し、前記化合物のサイズが大きい場合は焼鈍時に再結晶のサイトとなるため、再結晶粒を微細化する効果がある。Feの含有量が下限(0.2質量%)を下回ると、粗大な金属間化合物の分布密度が低くなり、結晶粒微細化の効果が低く、最終的な結晶粒径分布も不均一となる。Feの含有量が上限(2.0質量%)を超えると、結晶粒微細化の効果が飽和もしくは却って低下し、さらに鋳造時に生成されるAl-Fe系金属間化合物のサイズが非常に大きくなり、アルミニウム合金箔の伸びと圧延性が低下する。このため、Feの含有量を上記範囲0.2質量%以上2.0質量%以下に定める。同様の理由でFeの含有量は下限0.5質量%とするのが好ましく、さらに同様の理由でFeの含有量は下限1.0質量%、上限1.8質量%とすることが一層好ましい。
アルミニウム合金箔において、Mgは、アルミニウムに固溶し、固溶強化によってアルミニウム合金箔の強度を高めることができる。また、Mgはアルミニウムに固溶し易い為、Feと共に含有しても金属間化合物が粗大化し成形性や圧延性が低下する危険性は低い。Mgの含有量が下限(0.1質量%)を下回ると強度の向上が不十分となり、上限(5.0質量%)を超えるとアルミニウム合金箔が硬くなり圧延性の低下や成形性の低下を招く。特に好ましい下限は0.5質量%である。Mgの含有量が5.0質量%を超えるとアルミニウム合金箔は硬くなり成形性や圧延性は低下するが、非常に高い強度を有するアルミニウム合金箔を得ることができる。Mgの含有量を0.5質量%超4.5質量%以下の範囲とすることが望ましい。また、Mgを添加することで蓄電デバイス用外装材の電解液に対する耐食性が向上する。メカニズムの詳細は明らかではないが、Mg添加量が多いほどアルミニウム合金箔と電解液中のリチウムなどが反応しにくくなり、アルミニウム合金箔の微粉化や貫通孔の発生を抑制することができる。
アルミニウム合金箔において、Siは、微量であればアルミニウム合金箔の強度を高める目的で添加されることもあるが、本開示においては0.5質量%以下とすることにより、鋳造時に生成されるAl-Fe-Si系金属間化合物のサイズが小さくなり、アルミニウム合金箔の伸びや成形性が高められる。よって、アルミニウム合金箔の厚みが薄い場合にも、金属間化合物を起点とした破断が生じ難く、圧延性も向上する。またMg含有量の多い合金にSiを多量に添加しないことで、Mg-Si系析出物の生成量が少なくなり、圧延性の低下やMgの固溶量の低下が生じ難く、強度低下を招きにくくなる。同様の理由でSiの含有量を0.2質量%以下に抑えることが望ましい。Si含有量の下限値は、望ましくは0.001質量%であり、より望ましくは0.005質量%である。なお、Siの含有量が低い程、成形性、圧延性、結晶粒の微細化度合い、そして延性が良好という傾向を有する。
アルミニウム合金箔は、CuやMnなどの不可避不純物を含むことができる。これらの不純物は、例えば、それぞれ0.1質量%以下の含有量とするのが望ましい。なお、本開示としては、前記不可避不純物の含有量の上限が上記数値に限定されるものではない。ただし、Mnはアルミニウムに固溶し難いため、Mgと異なり固溶強化によってアルミニウム合金箔の強度を大きく高めることは期待できない。またFe含有量の多い合金にMnを多量に添加すると、金属間化合物の粗大化やAl-Fe-Mn系の巨大金属間化合物生成の危険性が高くなり、圧延性や成形性の低下を招く恐れがある。このため、Mn含有量は0.1質量%以下とするのが望ましい。Mn含有量は、より望ましくは0.08質量%以下である。また、Mn含有量の下限値は、望ましくは0.001質量%であり、より望ましくは0.005質量%である。
本開示において、成形性に優れ、かつ、電解液が付着した状態で通電が生じた場合の腐食が効果的に抑制された蓄電デバイス用外装材とする観点から、アルミニウム合金箔において、Mn(マンガン):0.1質量%以下の組成を満たすことが好ましく、Mn:0.01質量%以上0.1質量%以下の組成を満たすことがより好ましく、Mn:0.01質量%以上0.08質量%以下の組成を満たすことがより好ましい。
アルミニウム合金箔の好ましい組成及び特性について、より具体的に説明する。
・Fe:0.2質量%以上2.0質量%以下
Feは、鋳造時にAl-Fe系金属間化合物として晶出し、前記化合物のサイズが大きい場合は焼鈍時に再結晶のサイトとなるため、再結晶粒を微細化する効果がある。Feの含有量が下限を下回ると、粗大な金属間化合物の分布密度が低くなり、結晶粒微細化の効果が低く、最終的な結晶粒径分布も不均一となる。含有量が上限を超えると、結晶粒微細化の効果が飽和もしくは却って低下し、さらに鋳造時に生成されるAl-Fe系金属間化合物のサイズが非常に大きくなり、箔の伸びと圧延性が低下する。このため、Feの含有量を上記範囲に定める。同様の理由でFeの含有量は下限0.5質量%とするのが好ましく、さらに同様の理由でFeの含有量は下限1.0質量%、上限1.8質量%とすることが一層好ましい。
・Mg:0.1質量%以上5.0質量%以下
Mgはアルミニウムに固溶し、固溶強化によって軟質箔の強度を高めることが出来る。またMgはアルミニウムに固溶し易い為、Feと共に含有しても金属間化合物が粗大化し成形性や圧延性が低下する危険性は低い。Mgの含有量が下限を下回ると強度の向上が不十分となり、Mgの含有量が上限を超えるとアルミニウム合金箔が硬くなり圧延性の低下や成形性の低下を招く。Mgの含有量の特に好ましい範囲は0.5質量%以上5.0質量%以下である。
またMgを添加することでリチウムイオン二次電池の電解液に対する耐食性が向上することも確認された。メカニズムの詳細は明らかではないが、Mg添加量が多いほどアルミニウム合金箔と電解液中のリチウムが反応しにくくなり、アルミニウム合金箔の微粉化や貫通孔の発生を抑制することが出来る。成形性は若干低下するが、特に明瞭な耐食性向上を期待する場合にもMgの含有量の下限を0.5質量%とすることが望ましい。
・好ましくはSi:0.5質量%以下
Siは微量であれば箔の強度を高める目的で添加されることもあるが、本開示においてはSiの含有量が0.5%以下とすることにより、鋳造時に生成されるAl-Fe-Si系金属間化合物のサイズが小さくなり、箔の伸びや成形性が高められ、箔厚みが薄い場合にも、金属間化合物を起点とした破断が生じにくく圧延性も高められるため、0.5質量%以下が好ましい。またSiを多量に添加しないことでMg-Si系析出物の生成量が少なくなり、圧延性の低下やMgの固溶量の低下が生じ難く、強度低下を招きにくくなる。同様の理由でSiの含有量を0.2質量%以下に抑えることが望ましい。Siが低い程、成形性、圧延性、結晶粒の微細化度合い、そして延性が良好になる傾向を有している。
・不可避不純物
その他に、CuやMnなどの不可避不純物を含むことができる。これらの不可避不純物の各元素の量は、0.1質量%以下とするのが望ましい。なお、本開示としては、前記不可避不純物の含有量の上限が上記数値に限定されるものではない。
ただし、Mnはアルミニウムに固溶し難いため、Mgと異なり固溶強化によって軟質箔の強度を大きく高めることは期待できない。またFe含有量の多い合金にMnを多量に添加すると、金属間化合物の粗大化やAl-Fe-Mn系の巨大金属間化合物が生成する危険性が高くなり、圧延性や成形性の低下を招く恐れがある。このため、Mn含有量は0.1質量%以下とするのが望ましい。
・集合組織のCopper方位、R方位のそれぞれの方位密度が15以下
集合組織は箔の機械的性質や成形性に大きな影響を及ぼす。良好な成形性を得るためにCоpper方位とR方位の密度をそれぞれ15以下に保つのが望ましい。より好ましくはそれぞれの方位密度が10以下である。
・表面のMg濃度が5.0原子パーセント以上、且つ酸化皮膜厚み80Å以上(Mg:0.1質量%以上1.5質量%以下の場合)
メカニズムの詳細は明らかではないが、箔表面のMg濃度と酸化皮膜厚みはリチウムイオン二次電池の電解液に対する耐食性に寄与することが確認されている。箔表面のMg濃度が高く、且つ厚い酸化皮膜が形成されることで耐食性が向上する。このため、Mg:0.1質量%以上1.5質量%以下の場合、アルミニウム箔表面のMg濃度を5.0原子パーセント以上、且つ酸化皮膜厚み80Å以上とするのが望ましい。より好ましくは表面のMg濃度が15.0原子パーセント以上、且つ酸化皮膜厚み200Å以上である。さらに望ましくは表面のMg濃度20.0原子パーセント以上である。ここで、表面のMg濃度は、最表面から深さ8nmまでの表面部のMg濃度であり、Mg濃度は、全ての元素の合計100原子%に対する量である。
・表面のMg濃度が15.0原子パーセント以上、且つ酸化皮膜厚み120Å以上(Mg:1.5質量%超5.0質量%以下の場合)
前記の通り、メカニズムの詳細は明らかではないが、箔表面のMg濃度と酸化皮膜厚みはリチウムイオン二次電池の電解液に対する耐食性に寄与することが確認されている。箔表面のMg濃度が高く、且つ厚い酸化皮膜が形成されることで耐食性が向上する。このため、Mg:1.5質量%超5.0質量%以下の場合、アルミニウム箔表面のMg濃度を15.0原子パーセント以上、且つ酸化皮膜厚み120Å以上とするのが望ましい。より好ましくは表面のMg濃度が20.0原子パーセント以上、且つ酸化皮膜厚み220Å以上である。さらに望ましくは表面のMg濃度25.0原子パーセント以上である。
・後方散乱電子回折法により測定される単位面積あたりの大角粒界の長さをL1、小角粒界の長さをL2としたとき、L1/L2>3.0
焼鈍後の再結晶粒組織における大角粒界(HAGB;High-Angle Grain Boundary)と小角粒界(LAGB;Low-Angle Grain Boundary)の割合が箔の伸びや成形性に影響を及ぼす。最終焼鈍後の再結晶粒組織においてLAGBの割合を低くすることで、変形の局在化を抑制し、伸びや成形性が高められる。この為L1/L2>3.0としてHAGBの割合を高くすることで高い伸びや良好な成形性が期待できる。より好ましくはL1/L2>5.0である。
・引張強さ:110MPa以上180MPa以下(Mg:0.1質量%以上1.5質量%以下の場合)
Mg:0.1質量%以上1.5質量%以下の場合、既存のJIS A8079や8021等の箔に対し、劇的に耐衝撃性や突き刺し強度を向上させるためには110MPa以上の引張強さが必要である。引張強さが180MPa以下とすることが好ましい。
引張強さは、組成の選定と、結晶粒サイズの最適化により達成することができる。
・引張強さ:180MPa以上(Mg:1.5質量%超5.0質量%以下の場合)
Mg:1.5質量%超5.0質量%以下の場合、既存のJIS A8079や8021等の箔に対し、劇的に耐衝撃性や突き刺し強度を向上させるためには180MPa以上の引張強さが好ましい。同様の理由で引張強さは200MPa以上であることが望ましい。ただし引張強さが高い程、成形性は低下する為、成形性を重視する場合は引張強さを押さえた方が良い。
前記の通り、引張強さは、組成の選定と結晶粒サイズの最適化により達成することができる。
・破断伸び:10%以上(Mg:0.1質量%以上1.5質量%以下の場合)
成形性に対する伸びの影響はその成形方法によって大きく異なり、また伸びだけで成形性が決定されるわけではない。アルミニウム包装材で良く用いられる張出し加工においては、アルミニウム合金箔の伸びが高い程成形性は有利であり、Mg:0.1質量%以上1.5質量%以下の場合、10%以上の伸びを有することが望ましい。
伸びの特性は、組成の選定と、結晶粒サイズの微細化により達成することができる。
・破断伸び:15%以上(Mg:1.5質量%超5.0質量%以下の場合)
前記の通り、成形性に対する伸びの影響はその成形方法によって大きく異なり、また伸びだけで成形性が決定されるわけではないが、アルミニウム包装材で良く用いられる張出し加工においては、アルミニウム合金箔の伸びが高い程成形性は有利であり、Mg:1.5質量%超5.0質量%以下の場合、15%以上の伸びを有することが望ましい。
前記の通り、伸びの特性は、組成の選定と結晶粒サイズの微細化により達成することができる。
・平均結晶粒径:25μm以下
軟質アルミニウム合金箔は結晶粒が微細になることで、変形した際の箔表面の肌荒れを抑制することができ、高い伸びとそれに伴う高い成形性が期待できる。なお、この結晶粒径の影響は箔の厚みが薄い程大きくなる。高い伸び特性やそれに伴う高成形性を実現するには平均結晶粒径が25μm以下であることが望ましい。
平均結晶粒径は、組成の選定と、均質化処理や冷間圧延率の最適化を図った製造条件により達成することができる。
アルミニウム合金箔の好ましい組成としては、例えば以下の具体例1,2の組成を満たすものが挙げられる。
・具体例1
Si:0.1質量%以上0.5質量%以下、Fe:0.2質量%以上2.0質量%以下、Mg:0.1質量%以上5.0質量%以下、Mn:0.05質量%以上0.1質量%以下、Cu:0.0質量%以上0.1質量%以下、Cr:0.0質量%以上0.1質量%以下、Zr:0.0質量%以上0.1質量%以下であり、その他の不可避不純物が、個々に0.05質量%以下かつ合計で0.15質量%以下であり、残部がAlである。
・具体例2
Si:0.1質量%以上0.5質量%以下、Fe:0.2質量%以上2.0質量%以下、Mg:0.1質量%以上5.0質量%以下、Mn:0.1質量%、Cu:0.0質量%、Cr:0.0質量%、Zr:0.0質量%であり、その他の不可避不純物が、個々に0.05質量%以下かつ合計で0.15質量%以下であり、残部がAlであることがより好ましい。また、アルミニウム合金箔は、Si:0.5質量%以下、Fe:0.2質量%以上2.0質量%以下、Mg:0.1質量%以上5.0質量%以下、Mn:0.1質量%、Cu:0.0質量%、Cr:0.0質量%、Zr:0.0質量%であり、その他の不可避不純物が、個々に0.05質量%以下かつ合計で0.15質量%以下であり、残部がAlである。
既存のJIS A8079や8021等のアルミニウム合金箔に対し、劇的に耐衝撃性や突き刺し強度を向上させるためには、アルミニウム合金箔の引張強さは100MPa以上であることが望ましく、200MPa以上であることがより望ましい。引張強さの上限値は350MPaであることが望ましい。また、引張強さは、200MPa以上350MPa以下であることが望ましく、200MPa以上310MPa以下であることがより望ましい。ただし、成形性は、引張強さが高い程低下する為、成形性を重視する場合は引張強さを抑さえた方が良い。蓄電デバイス用外装材の成形性を高める観点からは、前記アルミニウム合金箔は、JIS Z2241:2011の規定に準拠して、JIS5号試験片について測定される、引張強さが100MPa以上180MPa以下であることが好ましい。当該引張強さは、具体的には、実施例に記載の方法により測定される。アルミニウム合金箔の引張強さは、組成の選定と結晶粒サイズの最適化により達成することができる。
アルミニウム合金箔の成形性に対する伸びの影響は、その成形方法によって大きく異なり、また伸びだけで成形性が決定されるわけではない。アルミニウム合金箔を用いた外装材に対する張出し加工においては、アルミニウム合金箔の伸びが高い程、成形には有利である。前記アルミニウム合金箔は、JIS Z2241:2011の規定に準拠して、JIS5号試験片について測定される破断伸びが、好ましくは10%以上、より好ましくは15%以上である。破断伸びの上限値は40%であることが望ましく、30%であることがより望ましい。また、破断伸びは0%以上40%であることが望ましく、15%以上40%であることがより望ましく、15%以上30%であることがさらに望ましい。当該破断伸びは、具体的には、実施例に記載の方法により測定される。アルミニウム合金箔の伸びの特性は、組成の選定と結晶粒サイズの微細化により達成することができる。
以上のような組成及び特性を満たすアルミニウム合金箔は、例えば、JIS H4000:2014の合金番号A5000番台の組成を有するアルミニウム合金をベースとして組成を調整し、公知のアルミニウム合金箔の製法と同様、例えば、溶融、均質化処理、熱間圧延、冷間圧延、中間焼鈍、冷間圧延、最終焼鈍の各工程を経て製造することができる。アルミニウム合金箔の製造条件については、例えば特開2005-163077号公報の記載などを参考にすることができる。また、アルミニウム合金箔に含まれる各化学成分の分析は、JIS H4160-1994に規定された分析試験によって行う。
例えば、Fe:0.2質量%以上2.0質量%以下、Mg:0.1質量%以上5.0質量%以下の組成を満たすアルミニウム合金の鋳塊を、半連続鋳造法等の常法によって鋳造する。得られた鋳塊に対しては、480~540℃で6~12時間の均質化処理を行う。
一般にアルミニウム材料の均質化処理は400~600℃で長時間(例えば12時間程度)行われるが、本開示のようにFe添加による結晶粒微細化を考慮すると480~540℃で6時間以上の熱処理をすることが望ましい。480℃未満では、結晶粒微細化が不十分であり、540℃を超えると、結晶粒の粗大化を招く。処理時間が6時間未満であると、均質処理が不十分となる。
均質化処理後、熱間圧延を行い、所望の厚さのアルミニウム合金板を得る。熱間圧延は常法によって行うことができるが、熱間圧延の巻取り温度は、再結晶温度以上、具体的には300℃以上とすることが望ましい。300℃未満では0.3μm以下の微細なAl-Fe系金属間化合物が析出する他、熱間圧延後に再結晶粒とファイバー粒が混在し、中間焼鈍や最終焼鈍後の結晶粒サイズが不均一化し伸び特性が低下する懸念があり、望ましくない。
熱間圧延の後には、冷間圧延、中間焼鈍、最終冷間圧延を行い、厚さを5~100μmとすることで、本開示のアルミニウム合金箔を得る。最終冷間圧延率は90%以上とすることが望ましい。
なお、冷間圧延途中での中間焼鈍は行わなくてもよいが、場合によっては実施しても良い。中間焼鈍にはコイルを炉に投入し一定時間保持するバッチ焼鈍(Batch Annealing)と、連続焼鈍ライン(Continuous Annealing Line、以下CAL焼鈍という)により材料を急加熱・急冷する2種類の方式がある。中間焼鈍を付加する場合、いずれの方法でも良いが、結晶粒の微細化を図り高強度化をする場合はCAL焼鈍が望ましく、成形性を優先するならばバッチ焼鈍が好ましい。
例えば、バッチ焼鈍では、300~400℃で3時間以上、CAL焼鈍では、昇温速度:10~250℃/秒、加熱温度:400℃~550℃、保持時間なしまたは保持時間:5秒以下、冷却速度:20~200℃/秒の条件を採用することができる。ただし、本開示としては、中間焼鈍の有無、中間焼鈍を行う場合の条件等は特定のものに限定されるものではない。
箔圧延後には、最終焼鈍を行って軟質箔とする。箔圧延後の最終焼鈍は一般に250℃~400℃で実施すればよい。しかしMgによる耐食性の効果をより高める場合には350℃以上の高温で5時間以上保持することが望ましい。
最終焼鈍の温度が低いと軟質化が不十分であり、またMgの箔表面への濃化も不十分となり耐食性も低下する懸念がある。400℃を超えると、箔表面へMgが過度に濃化し箔の変色や、酸化皮膜の性質が変化し微小なクラックを生じることで耐食性が低下する懸念がある。最終焼鈍の時間は、5時間未満では、最終焼鈍の効果が不十分である。
以下に、アルミニウム合金箔の好ましい調製法についてより具体的に説明する。
アルミニウム合金の鋳塊を半連続鋳造法等の常法によって鋳造する。アルミニウム合金の鋳塊は、Fe:0.2質量%以上2.0質量%以下、Mg:0.1質量%以上5.0質量%以下を含有し、残部がAlと不可避不純物を含み、所望によりMn:0.1質量%以下とした組成を有する。得られた鋳塊に対しては、480~540℃で6~12時間の均質化処理を行う。
・均質化処理:450~550℃
均質化処理は鋳塊内のミクロ偏析の解消と金属間化合物の分布状態を調整することを目的としており、最終的に狙いの結晶粒組織を得る為に非常に重要な処理である。
一般にアルミニウム材料の均質化処理は400~600℃で長時間行われるが、本発明ではFe添加による結晶粒微細化を考慮する必要がある。
均質化処理において、450℃未満の温度ではFeの析出が不十分となり、最終焼鈍時に結晶粒の粗大化が懸念される。また、その場再結晶の割合が増加することでLAGBの割合が多くなり、L1/L2の低下が懸念される。また、Copper方位とR方位の各方位密度の増加による成形性の低下が懸念される。また550℃を超える温度では晶出物が顕著に成長し、最終焼鈍時の結晶粒の粗大化や成形性の低下に繋がる。均質化処理の時間は最低3時間以上確保する必要がある。3時間未満では析出が十分でなく、微細な金属間化合物の密度が低下してしまう。望ましくは温度480~520℃で時間は5時間以上である。
均質化処理後、熱間圧延を行い、所望の厚さのアルミニウム合金板を得る。熱間圧延は常法によって行うことができるが、熱間圧延の巻取り温度は、再結晶温度以上、具体的には300℃以上とすることが望ましい。300℃未満では0.3μm以下の微細なAl-Fe系金属間化合物が析出する。また、熱間圧延後に再結晶粒とファイバー粒が混在し、中間焼鈍や最終焼鈍の後の結晶粒サイズが不均一化し伸び特性が低下する懸念があり、望ましくない。
熱間圧延の後には、冷間圧延、中間焼鈍、最終冷間圧延を行い、厚さを5~100μmとすることで、本発明のアルミニウム合金箔を得る。
中間焼鈍にはコイルを炉に投入し一定時間保持するバッチ焼鈍(Batch Annealing)と、連続焼鈍ライン(Continuous Annealing Line、以下CAL焼鈍という)により材料を急加熱・急冷する2種類の方式がある。中間焼鈍を負荷する場合、いずれの方法でも良いが、結晶粒の微細化を図り高強度化をする場合はCAL焼鈍が望ましい。しかしCAL焼鈍の後の最終冷間圧延を経て最終焼鈍後に集合組織が発達し、Cоpper方位とR方位の密度が高くなり成形性が低下する懸念がある。このため、成形性を優先するならばバッチ焼鈍が好ましい。
例えば、バッチ焼鈍では、300~400℃で3時間以上の条件を採用することができる。CAL焼鈍では、昇温速度:10~250℃/秒、加熱温度:400℃~550℃、保持時間なしまたは保持時間:5秒以下、冷却速度:20~200℃/秒の条件を採用することができる。ただし、本発明としては、中間焼鈍の有無、中間焼鈍を行う場合の条件等は特定のものに限定されるものではない。
・最終冷間圧延率:84.0%以上97.0%以下
中間焼鈍後から最終厚みまでの最終冷間圧延率が高い程、材料に蓄積されるひずみ量が多くなり最終焼鈍後の再結晶粒が微細化される。またその場再結晶を抑制する効果もあり、L1/L2の増加に伴う成形性の向上も期待される。具体的には最終冷間圧延率を84.0%以上とすることが望ましい。しかし最終冷間圧延率が高すぎる場合には、最終焼鈍後でもCopper方位とR方位の各方位密度の増加による成形性の低下が懸念される。またその結果としてL1/L2の低下も生じることから、具体的には最終冷間圧延率97.0%以下とすることが望ましい。また最終冷間圧延率が低い場合には、結晶粒の粗大化やL1/L2の低下に伴う成形性の低下が懸念される。同様の理由でさらに望ましい最終冷間圧延率の範囲は90.0%以上93.0%以下である。
箔圧延後には、最終焼鈍を行って軟質箔とする。箔圧延後の最終焼鈍は一般に250℃~400℃で実施すればよい。しかしMgによる耐食性の効果を高める場合には300℃以上の高温で5時間以上保持することが望ましく、温度は350℃~400℃がさらに望ましい。
最終焼鈍の温度が低いと軟質化が不十分であり、L1/L2の低下やCopper方位とR方位の各方位密度の増加の懸念がある。またMgの箔表面への濃化や酸化皮膜の成長も不十分となり耐食性も低下する懸念がある。400℃を超えると、箔表面へMgが過度に濃化し箔の変色や、酸化皮膜の性質が変化し微小なクラックを生じることで耐食性が低下する懸念がある。最終焼鈍の時間は、5時間未満では、最終焼鈍の効果が不十分である。
得られたアルミニウム合金箔は、室温において、Mg:0.1質量%以上1.5質量%以下の場合については、引張強さが110MPa以上180MPa以下、破断伸びが10%以上であり、Mg:1.5質量%超5.0質量%以下の場合については、引張強さが180MPa以上、破断伸びが15%以上である。また、平均結晶粒径は、25μm以下である。平均結晶粒径は、JIS G0551で規定された切断法により求めることができる。
本開示においては、図7の模式図に示すように、アルミニウム合金箔(バリア層3)のMDの方向と厚み方向からなる断面において、走査型電子顕微鏡で粒子径に応じた任意の倍率にて試料の像を、直径を0.1μmまでの精度で観察し、画像解析にて視野内の任意の100個の第二相粒子3bについて、個々の第二相粒子3bの厚み方向とは垂直方向の最左端と、厚み方向とは垂直方向の最右端とを結ぶ直線距離を径yとした場合に、当該径yが大きい順に上位20個の第二相粒子3bの径yの平均が、10.0μm以下であることが好ましい。これによって、厚みが例えば約85μm以下、さらには約50μm以下、さらには約40μm以下という非常に薄いアルミニウム合金箔であるにも拘わらず、当該アルミニウム合金箔を蓄電デバイス用外装材に積層し、成形した時にピンホールやクラックが生じ難く、蓄電デバイス用外装材に優れた成形性を備えさせることができる。さらに、本開示においては、アルミニウム合金箔(バリア層3)における第二相粒子3bの径yの平均が10.0μm以下であることによって、アルミニウム合金箔の厚みが例えば約85μm以下、さらには約50μm以下、さらには約40μm以下であり、かつ、蓄電デバイス用外装材の総厚みについても、例えば前述の厚みにまで薄い場合にも、成形時にピンホールやクラックが生じ難く、優れた成形性を備えている。
また、より成形性を高める観点からは、当該径yの平均としては、1.0~8.0μm程度であることがより好ましく、1.0~6.0μm程度であることがさらに好ましい。なお、図7は模式図であるため、描画を省略し、第二相粒子3bを100個描いてない。
本開示において、アルミニウム合金箔に含まれる第二相粒子は、アルミニウム合金中に存在する金属間化合物粒子を指し、圧延によって分断された晶出相や均質化処理や焼鈍を行う際に析出する析出相粒子である。
アルミニウム合金箔のMDの方向と厚み方向からなる断面を走査型電子顕微鏡(SEM)で観察した際、結晶粒は、通常、複数の結晶と接する境界線を描く。これに対して、第二相粒子は、通常、境界線が単一の結晶となる。また、結晶粒と第二相粒子とは、位相が異なる為、SEM画像上で色が異なるという特徴を有している。さらに、アルミニウム合金箔層のMDの方向と厚み方向からなる断面を走査型電子顕微鏡で観察した場合には、結晶粒と第二相粒子との位相の相違に起因して、第二相粒子のみが黒く見えるので、観察が容易になる。
アルミニウム合金箔における平均結晶粒径としては、より成形性を高める観点からは、好ましくは25.0μm以下、より好ましくは20.0μm以下、さらに好ましくは10.0μm以下であり、また、好ましくは1.0μm以上、3.0μm以上、より好ましくは9.0μm以上である。当該平均結晶粒径の好ましい範囲としては、1.0~25.0μm程度、1.0~20.0μm程度、1.0~10.0μm程度、3.0~25.0μm程度、3.0~20.0μm程度、3.0~10.0μm程度、9.0~25.0μm程度、9.0~20.0μm程度、9.0~10.0μm程度が挙げられる。アルミニウム合金箔における平均結晶粒径が、25.0μm以下であり、かつ、第二相粒子3bの前記径yが上記の値であることにより、後述の蓄電デバイス用外装材の成形性をより一層高めることができる。
本開示において、アルミニウム合金箔における平均結晶粒径は、アルミニウム合金箔の厚み方向の断面を走査型電子顕微鏡(SEM)で観察し、視野内に位置する100個のアルミニウム合金の結晶粒3aについて、図7の模式図に示されるように、個々の結晶粒の厚み方向とは垂直方向の最左端と、厚み方向とは垂直方向の最右端とを結ぶ直線距離を最大径xとした際、100個の結晶粒の当該最大径xの平均値を意味する。なお、図7は模式図であるため、描画を省略し、結晶粒3aを100個描いてない。
アルミニウム合金箔の厚みは、蓄電デバイス用外装材において、少なくとも水分の浸入を抑止するバリア層としての機能を発揮すればよく、下限については約9μm以上、上限については約200μm以下が挙げられる。蓄電デバイス用外装材の厚みを薄くする観点から、アルミニウム合金箔の厚みは、例えば、上限については、好ましくは約85μm以下、より好ましくは約50μm以下、さらに好ましくは約45μm以下、特に好ましくは約40μm以下が挙げられ、下限については、好ましくは約10μm以上、さらに好ましくは約20μm以上、より好ましくは約25μm以上が挙げられ、当該厚みの好ましい範囲としては、10~85μm程度、10~50μm程度、10~45μm程度、10~40μm程度、20~85μm程度、20~50μm程度、20~45μm程度、20~40μm程度、25~85μm程度、25~50μm程度、25~45μm程度、25~40μm程度が挙げられる。
また、アルミニウム合金箔の溶解や腐食の抑制などのために、アルミニウム合金箔の少なくとも片面に耐腐食性皮膜を備えていることが好ましい。アルミニウム合金箔は、耐腐食性皮膜を両面に備えていてもよい。ここで、耐腐食性皮膜とは、例えば、ベーマイト処理などの熱水変成処理、化成処理、陽極酸化処理、ニッケルやクロムなどのメッキ処理、コーティング剤を塗工する腐食防止処理をアルミニウム合金箔の表面に行い、アルミニウム合金箔に耐腐食性を備えさせる薄膜をいう。耐腐食性皮膜を形成する処理としては、1種類を行ってもよいし、2種類以上を組み合わせて行ってもよい。また、1層だけではなく多層化することもできる。さらに、これらの処理のうち、熱水変成処理及び陽極酸化処理は、処理剤によって金属箔表面を溶解させ、耐腐食性に優れる金属化合物を形成させる処理である。なお、これらの処理は、化成処理の定義に包含される場合もある。また、アルミニウム合金箔が耐腐食性皮膜を備えている場合、耐腐食性皮膜を含めてアルミニウム合金箔とする。
耐腐食性皮膜は、蓄電デバイス用外装材の成形時において、アルミニウム合金箔と基材層との間のデラミネーション防止、電解質と水分とによる反応で生成するフッ化水素により、アルミニウム合金箔表面の溶解、腐食、アルミニウム合金箔表面に存在する酸化アルミニウムが溶解、腐食することを防止し、かつ、アルミニウム合金箔表面の接着性(濡れ性)を向上させ、ヒートシール時の基材層とアルミニウム合金箔とのデラミネーション防止、成形時の基材層とアルミニウム合金箔とのデラミネーション防止の効果を示す。
化成処理によって形成される耐腐食性皮膜としては、種々のものが知られており、主には、リン酸塩、クロム酸塩、フッ化物、トリアジンチオール化合物、及び希土類酸化物のうち少なくとも1種を含む耐腐食性皮膜などが挙げられる。リン酸塩、クロム酸塩を用いた化成処理としては、例えば、クロム酸クロメート処理、リン酸クロメート処理、リン酸-クロム酸塩処理、クロム酸塩処理などが挙げられ、これらの処理に用いるクロム化合物としては、例えば、硝酸クロム、フッ化クロム、硫酸クロム、酢酸クロム、蓚酸クロム、重リン酸クロム、クロム酸アセチルアセテート、塩化クロム、硫酸カリウムクロムなどが挙げられる。また、これらの処理に用いるリン化合物としては、リン酸ナトリウム、リン酸カリウム、リン酸アンモニウム、ポリリン酸などが挙げられる。また、クロメート処理としてはエッチングクロメート処理、電解クロメート処理、塗布型クロメート処理などが挙げられ、塗布型クロメート処理が好ましい。この塗布型クロメート処理は、バリア層(例えばアルミニウム合金箔)の少なくとも内層側の面を、まず、アルカリ浸漬法、電解洗浄法、酸洗浄法、電解酸洗浄法、酸活性化法等の周知の処理方法で脱脂処理を行い、その後、脱脂処理面にリン酸Cr(クロム)塩、リン酸Ti(チタン)塩、リン酸Zr(ジルコニウム)塩、リン酸Zn(亜鉛)塩などのリン酸金属塩及びこれらの金属塩の混合体を主成分とする処理液、または、リン酸非金属塩及びこれらの非金属塩の混合体を主成分とする処理液、あるいは、これらと合成樹脂などとの混合物からなる処理液をロールコート法、グラビア印刷法、浸漬法等の周知の塗工法で塗工し、乾燥する処理である。処理液は例えば、水、アルコール系溶剤、炭化水素系溶剤、ケトン系溶剤、エステル系溶剤、エーテル系溶剤など各種溶媒を用いることができ、水が好ましい。また、このとき用いる樹脂成分としては、フェノール系樹脂やアクリル系樹脂などの高分子などが挙げられ、下記一般式(1)~(4)で表される繰り返し単位を有するアミノ化フェノール重合体を用いたクロメート処理などが挙げられる。なお、当該アミノ化フェノール重合体において、下記一般式(1)~(4)で表される繰り返し単位は、1種類単独で含まれていてもよいし、2種類以上の任意の組み合わせであってもよい。アクリル系樹脂は、ポリアクリル酸、アクリル酸メタクリル酸エステル共重合体、アクリル酸マレイン酸共重合体、アクリル酸スチレン共重合体、またはこれらのナトリウム塩、アンモニウム塩、アミン塩等の誘導体であることが好ましい。特にポリアクリル酸のアンモニウム塩、ナトリウム塩、又はアミン塩等のポリアクリル酸の誘導体が好ましい。本開示において、ポリアクリル酸とは、アクリル酸の重合体を意味している。また、アクリル系樹脂は、アクリル酸とジカルボン酸又はジカルボン酸無水物との共重合体であることも好ましく、アクリル酸とジカルボン酸又はジカルボン酸無水物との共重合体のアンモニウム塩、ナトリウム塩、又はアミン塩であることも好ましい。アクリル系樹脂は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。
Figure 0007276632000001
Figure 0007276632000002
Figure 0007276632000003
Figure 0007276632000004
一般式(1)~(4)中、Xは、水素原子、ヒドロキシ基、アルキル基、ヒドロキシアルキル基、アリル基またはベンジル基を示す。また、R1及びR2は、それぞれ同一または異なって、ヒドロキシ基、アルキル基、またはヒドロキシアルキル基を示す。一般式(1)~(4)において、X、R1及びR2で示されるアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基などの炭素数1~4の直鎖または分枝鎖状アルキル基が挙げられる。また、X、R1及びR2で示されるヒドロキシアルキル基としては、例えば、ヒドロキシメチル基、1-ヒドロキシエチル基、2-ヒドロキシエチル基、1-ヒドロキシプロピル基、2-ヒドロキシプロピル基、3-ヒドロキシプロピル基、1-ヒドロキシブチル基、2-ヒドロキシブチル基、3-ヒドロキシブチル基、4-ヒドロキシブチル基などのヒドロキシ基が1個置換された炭素数1~4の直鎖または分枝鎖状アルキル基が挙げられる。一般式(1)~(4)において、X、R1及びR2で示されるアルキル基及びヒドロキシアルキル基は、それぞれ同一であってもよいし、異なっていてもよい。一般式(1)~(4)において、Xは、水素原子、ヒドロキシ基またはヒドロキシアルキル基であることが好ましい。一般式(1)~(4)で表される繰り返し単位を有するアミノ化フェノール重合体の数平均分子量は、例えば、500~100万程度であることが好ましく、1000~2万程度であることがより好ましい。アミノ化フェノール重合体は、例えば、フェノール化合物又はナフトール化合物とホルムアルデヒドとを重縮合して上記一般式(1)又は一般式(3)で表される繰返し単位からなる重合体を製造し、次いでホルムアルデヒド及びアミン(R12NH)を用いて官能基(-CH2NR12)を上記で得られた重合体に導入することにより、製造される。アミノ化フェノール重合体は、1種単独で又は2種以上混合して使用される。
耐腐食性皮膜の他の例としては、希土類元素酸化物ゾル、アニオン性ポリマー、カチオン性ポリマーからなる群から選ばれる少なくとも1種を含有するコーティング剤を塗工するコーティングタイプの腐食防止処理によって形成される薄膜が挙げられる。コーティング剤には、さらにリン酸またはリン酸塩、ポリマーを架橋させる架橋剤を含んでもよい。希土類元素酸化物ゾルには、液体分散媒中に希土類元素酸化物の微粒子(例えば、平均粒径100nm以下の粒子)が分散されている。希土類元素酸化物としては、酸化セリウム、酸化イットリウム、酸化ネオジウム、酸化ランタン等が挙げられ、密着性をより向上させる観点から酸化セリウムが好ましい。耐腐食性皮膜に含まれる希土類元素酸化物は1種を単独で又は2種以上を組み合わせて用いることができる。希土類元素酸化物ゾルの液体分散媒としては、例えば、水、アルコール系溶剤、炭化水素系溶剤、ケトン系溶剤、エステル系溶剤、エーテル系溶剤など各種溶媒を用いることができ、水が好ましい。カチオン性ポリマーとしては、例えば、ポリエチレンイミン、ポリエチレンイミンとカルボン酸を有するポリマーからなるイオン高分子錯体、アクリル主骨格に1級アミンをグラフト重合させた1級アミングラフトアクリル樹脂、ポリアリルアミンまたはその誘導体、アミノ化フェノールなどが好ましい。また、アニオン性ポリマーとしては、ポリ(メタ)アクリル酸またはその塩、あるいは(メタ)アクリル酸またはその塩を主成分とする共重合体であることが好ましい。また、架橋剤が、イソシアネート基、グリシジル基、カルボキシル基、オキサゾリン基のいずれかの官能基を有する化合物とシランカップリング剤よりなる群から選ばれる少なくとも1種であることが好ましい。また、前記リン酸またはリン酸塩が、縮合リン酸または縮合リン酸塩であることが好ましい。
耐腐食性皮膜の一例としては、リン酸中に、酸化アルミニウム、酸化チタン、酸化セリウム、酸化スズなどの金属酸化物や硫酸バリウムの微粒子を分散させたものをバリア層の表面に塗布し、150℃以上で焼付け処理を行うことにより形成したものが挙げられる。
耐腐食性皮膜は、必要に応じて、さらにカチオン性ポリマー及びアニオン性ポリマーの少なくとも一方を積層した積層構造としてもよい。カチオン性ポリマー、アニオン性ポリマーとしては、上述したものが挙げられる。
なお、耐腐食性皮膜の組成の分析は、例えば、飛行時間型2次イオン質量分析法を用いて行うことができる。
化成処理においてアルミニウム合金箔の表面に形成させる耐腐食性皮膜の量については、特に制限されないが、例えば、塗布型クロメート処理を行う場合であれば、アルミニウム合金箔の表面1m2当たり、クロム酸化合物がクロム換算で例えば0.5~50mg程度、好ましくは1.0~40mg程度、リン化合物がリン換算で例えば0.5~50mg程度、好ましくは1.0~40mg程度、及びアミノ化フェノール重合体が例えば1.0~200mg程度、好ましくは5.0~150mg程度の割合で含有されていることが望ましい。
耐腐食性皮膜の厚みとしては、特に制限されないが、皮膜の凝集力や、バリア層や熱融着性樹脂層との密着力の観点から、好ましくは1nm~20μm程度、より好ましくは1nm~100nm程度、さらに好ましくは1nm~50nm程度が挙げられる。なお、耐腐食性皮膜の厚みは、透過電子顕微鏡による観察、または、透過電子顕微鏡による観察と、エネルギー分散型X線分光法もしくは電子線エネルギー損失分光法との組み合わせによって測定することができる。飛行時間型2次イオン質量分析法を用いた耐腐食性皮膜の組成の分析により、例えば、CeとPとOからなる2次イオン(例えば、Ce2PO4 +、CePO4 -などの少なくとも1種)や、例えば、CrとPとOからなる2次イオン(例えば、CrPO2 +、CrPO4 -などの少なくとも1種)に由来するピークが検出される。
化成処理は、耐腐食性皮膜の形成に使用される化合物を含む溶液を、バーコート法、ロールコート法、グラビアコート法、浸漬法などによって、アルミニウム合金箔の表面に塗布した後に、アルミニウム合金箔の温度が70~200℃程度になるように加熱することにより行われる。また、アルミニウム合金箔に化成処理を施す前に、予めアルミニウム合金箔を、アルカリ浸漬法、電解洗浄法、酸洗浄法、電解酸洗浄法などによる脱脂処理に供してもよい。このように脱脂処理を行うことにより、アルミニウム合金箔の表面の化成処理をより効率的に行うことが可能となる。また、脱脂処理にフッ素含有化合物を無機酸で溶解させた酸脱脂剤を用いることで、金属箔の脱脂効果だけでなく不動態である金属のフッ化物を形成させることが可能であり、このような場合には脱脂処理だけを行ってもよい。
[熱融着性樹脂層4]
本開示の蓄電デバイス用外装材において、熱融着性樹脂層4は、内層側に位置し、蓄電デバイスの組み立て時に熱融着性樹脂層が熱融着して蓄電デバイス素子を密封する機能を発揮する層(シーラント層)である。本開示の蓄電デバイス用外装材10において、熱融着性樹脂層4は、単層又は複層により構成されており、熱融着性樹脂層4のうち、第1熱融着性樹脂層41が、積層体の表面を構成している。従って、蓄電デバイスの組み立て時に第1熱融着性樹脂層41が熱融着して蓄電デバイス素子を密封する。
熱融着性樹脂層4が単層により構成されている場合、熱融着性樹脂層4は、第1熱融着性樹脂層41を構成する。図1及び図2には、熱融着性樹脂層4が第1熱融着性樹脂層41の単層により構成されており、第1熱融着性樹脂層41が、積層体の表面を構成している積層構成を図示している。
また、熱融着性樹脂層4が複層により構成されている場合、蓄電デバイス用外装材10を構成する積層体の表面側から順に、少なくとも、第1熱融着性樹脂層41及び第2熱融着性樹脂層42を備えている。図3から図5には、熱融着性樹脂層4が第1熱融着性樹脂層41及び第2熱融着性樹脂層42の複層(2層)により構成されており、第1熱融着性樹脂層41が、積層体の表面を構成している積層構成を図示している。
熱融着性樹脂層4が複層により構成されている場合、熱融着性樹脂層4は、第1熱融着性樹脂層41及び第2熱融着性樹脂層42に加えて、さらに第3熱融着性樹脂層、第4熱融着性樹脂層などを第2熱融着性樹脂層42のバリア層3側に備えていてもよい。熱融着性樹脂層4が複層により構成されている場合、熱融着性樹脂層4は、第1熱融着性樹脂層41及び第2熱融着性樹脂層42の2層により構成されていることが好ましい。
本開示の蓄電デバイス用外装材において、第1熱融着性樹脂層41の剛体振り子測定における140℃での対数減衰率ΔEが0.25以下であることを特徴としている。本開示においては、140℃における当該対数減衰率ΔEが0.25以下であることにより、第1熱融着性樹脂層41を熱融着させた際の潰れが効果的に抑制され、前記のバリア層(アルミニウム合金箔)との相乗効果により、蓄電デバイス用外装材の絶縁性を高めることができる。
剛体振り子測定における140℃での対数減衰率は、140℃という高温環境における樹脂の硬度を表す指標であり、対数減衰率が小さくなるほど樹脂の硬度が高いことを意味している。熱融着性樹脂層を熱融着させる際の温度は高温であり、熱融着性樹脂層を熱融着させて形成される熱融着部において、熱融着性樹脂層が熱融着部の内側(蓄電デバイス素子が収容される空間側)に大きく突出することがある。熱融着性樹脂層4が熱融着部の内側に大きく突出すると、この突出部(いわゆるポリ溜まり)を起点として、熱融着性樹脂層4にクラックが生じて、絶縁性が低下しやすくなる。図11には、熱融着性樹脂層4の熱融着部の内側に突出部Aが形成された模式的断面図を示す。この断面図に示すように、突出部Aには、端点A1,A2が存在しており、これら端点A1,A2は、構造上、クラックの起点になりやすい。従って、熱融着性樹脂層4が熱融着部の内側に大きく突出して突出部が形成されると、クラックに起因して絶縁性が低下しやすい。このため、熱融着部の形状を制御することが重要であり、そのためには、熱融着性樹脂層の高温時の硬さが重要となる。そのため、本発明においては、140℃という高温での対数減衰率を採用している。剛体振り子測定においては、樹脂の温度を低温から高温へ上昇させた時の振り子の減衰率を測定する。剛体振り子測定では、一般に、エッジ部を測定対象物の表面に接触させ、左右方向へ振り子運動させて、測定対象物に振動を付与する。本発明の蓄電デバイス用外装材においては、140℃という高温環境における対数減衰率が0.25以下という硬い第1熱融着性樹脂層41を蓄電デバイス用外装材の表面に配置していることにより、蓄電デバイス用外装材の熱融着時の第1熱融着性樹脂層41の潰れ(薄肉化)が抑制される。第1熱融着性樹脂層41の潰れが抑制されることにより、熱融着性樹脂層を熱融着させて形成される熱融着部において、熱融着性樹脂層が熱融着部の内側に大きく突出することが抑制され、熱融着による蓄電デバイス用外装材の絶縁性の低下が効果的に抑制される。
なお、対数減衰率ΔEは、以下の式によって算出される。
ΔE=[ln(A1/A2)+ln(A2/A3)+・・・ln(An/An+1)]/n
A:振幅
n:波数
本発明の蓄電デバイス用外装材において、第1熱融着性樹脂層41を熱融着させた際の第1熱融着性樹脂層41の潰れを効果的に抑制し、絶縁性を高める観点から、140℃における当該対数減衰率ΔEとしては、好ましくは約0.10以上、より好ましくは約0.11以上、さらに好ましくは約0.12以上が挙げられ、また、好ましくは約0.20以下、より好ましくは約0.18以下、さらに好ましくは約0.15以下、さらに好ましくは約0.13以下が挙げられ、好ましい範囲としては、0.10~0.25程度、0.10~0.20程度、0.10~0.18程度、0.10~0.15程度、0.10~0.13程度、0.11~0.25程度、0.11~0.20程度、0.11~0.18程度、0.11~0.15程度、0.11~0.13程度、0.12~0.25程度、0.12~0.20程度、0.12~0.18程度、0.12~0.15程度、0.12~0.13程度が挙げられる。
第1熱融着性樹脂層41の対数減衰率ΔEは、例えば、第1熱融着性樹脂層41を構成している樹脂のメルトマスフローレート(MFR)、分子量、融点、軟化点、分子量分布、結晶化度などにより調整可能である。
対数減衰率ΔEの測定においては、市販の剛体振り子型物性試験器を用い、第1熱融着性樹脂層41に押し当てるエッジ部として円筒型のシリンダエッジ、初期の振幅を0.3degree、30℃から200℃の温度範囲で昇温速度3℃/分の条件で第1熱融着性樹脂層41に対して剛体振り子物性試験を行う。そして、140℃における対数減衰率に基づき、後述の第1熱融着性樹脂層41の発揮する潰れの抑制の基準を定めた。なお、対数減衰率ΔEを測定する第1熱融着性樹脂層41については、蓄電デバイス用外装材を15%塩酸に浸漬して、基材層及びバリア層を溶解させたサンプルを十分に乾燥させて測定対象とする。蓄電デバイス用外装材が後述の接着層5を備えている場合には、接着層5と熱融着性樹脂層4との積層体をサンプルとする。
また、蓄電デバイスから蓄電デバイス用外装材を取得して、第1熱融着性樹脂層41の対数減衰率ΔEを測定することもできる。蓄電デバイスから蓄電デバイス用外装材を取得して、第1熱融着性樹脂層41の対数減衰率ΔEを測定する場合、成形によって蓄電デバイス用外装材が引き伸ばされていない天面部からサンプルを切り出して測定対象とする。
また、本発明の蓄電デバイス用外装材においては、蓄電デバイス用外装材を構成している積層体の熱融着性樹脂層を対向させ、温度190℃、面圧2.0MPa、時間3秒間の条件で積層方向に加熱加圧した後において、2つの第1熱融着性樹脂層41の合計厚さの残存割合が約30%以上であることが好ましく、約32%以上であることが好ましく、約34%以上であることが好ましく、好ましい範囲としては30~60%、32~60%、34~60%、30~50%、32~50%、34~50%が挙げられる。なお、当該厚さの残存割合の上限は、例えば、60%程度、50%程度である。当該厚さの残存割合は、以下の方法により測定された値である。当該厚さの残存割合に設定するためには、例えば、第1熱融着性樹脂層41を構成する樹脂の種類、組成、分子量などを調整する。
<第1熱融着性樹脂層の厚さの残存割合の測定>
蓄電デバイス用外装材を長さ150mm×幅60mmに裁断して、試験サンプルを作製する。次に、試験サンプルの第1熱融着性樹脂層41同士を対向させる。次に、その状態で、幅7mmの金属板を用いて、試験サンプルの両側から積層方向に、温度190℃、面圧0.5MPa、時間3秒間の条件で加熱・加圧して、第1熱融着性樹脂層41を熱融着させる。次に、試験サンプルの熱融着させた部分を、ミクロトームを用いて積層方向に裁断して、露出した断面について、互いに熱融着している2つの第1熱融着性樹脂層41の合計厚さを測定する。熱融着させる前の試験サンプルについても、同様にして、ミクロトームを用いて積層方向に裁断して、露出した断面について、2つの第1熱融着性樹脂層41の厚さを測定する。熱融着前の2つの第1熱融着性樹脂層41の合計厚さに対する、熱融着後の2つの第1熱融着性樹脂層41の合計厚さの割合を算出して、2つの第1熱融着性樹脂層41の合計厚さの残存割合(%)を測定する。なお、熱融着部における2つの第1熱融着性樹脂層41の厚さは、蓄電デバイス用外装材の厚さが一定になっている箇所について測定する。
また、蓄電デバイスから蓄電デバイス用外装材を取得して、2つの第1熱融着性樹脂層41の合計厚さの残存割合を測定することもできる。蓄電デバイスから蓄電デバイス用外装材を取得して、2つの第1熱融着性樹脂層41の合計厚さの残存割合を測定する場合、成形によって蓄電デバイス用外装材が引き伸ばされていない天面部からサンプルを切り出して測定対象とする。
第1熱融着性樹脂層41を構成している樹脂については、熱融着可能であり、かつ、第1熱融着性樹脂層41の前記対数減衰率ΔEが0.25以下となることを限度として特に制限されない。
第1熱融着性樹脂層41を構成している樹脂は、ポリオレフィン、酸変性ポリオレフィンなどのポリオレフィン骨格を含む樹脂が好ましい。第1熱融着性樹脂層41を構成している樹脂がポリオレフィン骨格を含むことは、例えば、赤外分光法、ガスクロマトグラフィー質量分析法などにより分析可能である。また、第1熱融着性樹脂層41を構成している樹脂を赤外分光法で分析すると、無水マレイン酸に由来するピークが検出されることが好ましい。例えば、赤外分光法にて無水マレイン酸変性ポリオレフィンを測定すると、波数1760cm-1付近と波数1780cm-1付近に無水マレイン酸由来のピークが検出される。第1熱融着性樹脂層41が無水マレイン酸変性ポリオレフィンより構成された層である場合、赤外分光法にて測定すると、無水マレイン酸由来のピークが検出される。ただし、酸変性度が低いとピークが小さくなり検出されない場合がある。その場合は核磁気共鳴分光法にて分析可能である。
ポリオレフィンとしては、具体的には、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン等のポリエチレン;エチレン-αオレフィン共重合体;ホモポリプロピレン、ポリプロピレンのブロックコポリマー(例えば、プロピレンとエチレンのブロックコポリマー)、ポリプロピレンのランダムコポリマー(例えば、プロピレンとエチレンのランダムコポリマー)等のポリプロピレン;プロピレン-αオレフィン共重合体;エチレン-ブテン-プロピレンのターポリマー等が挙げられる。これらの中でも、ポリプロピレンが好ましい。共重合体である場合のポリオレフィン樹脂は、ブロック共重合体であってもよく、ランダム共重合体であってもよい。これらポリオレフィン系樹脂は、1種を単独で使用してもよく、2種以上を併用してもよい。
また、ポリオレフィンは、環状ポリオレフィンであってもよい。環状ポリオレフィンは、オレフィンと環状モノマーとの共重合体であり、前記環状ポリオレフィンの構成モノマーであるオレフィンとしては、例えば、エチレン、プロピレン、4-メチル-1-ペンテン、スチレン、ブタジエン、イソプレン等が挙げられる。また、環状ポリオレフィンの構成モノマーである環状モノマーとしては、例えば、ノルボルネン等の環状アルケン;シクロペンタジエン、ジシクロペンタジエン、シクロヘキサジエン、ノルボルナジエン等の環状ジエン等が挙げられる。これらの中でも、好ましくは環状アルケン、さらに好ましくはノルボルネンが挙げられる。
酸変性ポリオレフィンとは、ポリオレフィンを酸成分でブロック重合又はグラフト重合することにより変性したポリマーである。酸変性されるポリオレフィンとしては、前記のポリオレフィンや、前記のポリオレフィンにアクリル酸若しくはメタクリル酸等の極性分子を共重合させた共重合体、又は、架橋ポリオレフィン等の重合体等も使用できる。また、酸変性に使用される酸成分としては、例えば、マレイン酸、アクリル酸、イタコン酸、クロトン酸、無水マレイン酸、無水イタコン酸等のカルボン酸またはその無水物が挙げられる。
酸変性ポリオレフィンは、酸変性環状ポリオレフィンであってもよい。酸変性環状ポリオレフィンとは、環状ポリオレフィンを構成するモノマーの一部を、酸成分に代えて共重合することにより、または環状ポリオレフィンに対して酸成分をブロック重合又はグラフト重合することにより得られるポリマーである。酸変性される環状ポリオレフィンについては、前記と同様である。また、酸変性に使用される酸成分としては、前記のポリオレフィンの変性に使用される酸成分と同様である。
好ましい酸変性ポリオレフィンとしては、カルボン酸またはその無水物で変性されたポリオレフィン、カルボン酸またはその無水物で変性されたポリプロピレン、無水マレイン酸変性ポリオレフィン、無水マレイン酸変性ポリプロピレンが挙げられる。
第1熱融着性樹脂層41は、1種の樹脂単独で形成してもよく、また2種以上の樹脂を組み合わせたブレンドポリマーにより形成してもよい。
表面を構成している第1熱融着性樹脂層41は、ポリオレフィンを含んでいることが好ましい。例えば、本開示の蓄電デバイス用外装材10において、熱融着性樹脂層4が第1熱融着性樹脂層41及び第2熱融着性樹脂層42を備えている場合、表面を構成している第1熱融着性樹脂層41がポリオレフィンを含んでおり、第2熱融着性樹脂層42が、酸変性ポリオレフィンを含んでいることが好ましい。また、本開示の蓄電デバイス用外装材10において、接着層5を備えている場合、表面を構成している第1熱融着性樹脂層41がポリオレフィンを含んでおり、接着層5は酸変性ポリオレフィンを含んでいることが好ましい。また、接着層5が酸変性ポリオレフィンを含んでおり、第1熱融着性樹脂層がポリオレフィンを含んでおり、第2熱融着性樹脂層がポリオレフィンを含んでいることが好ましく、接着層5が酸変性ポリプロピレンを含んでおり、第1熱融着性樹脂層がポリプロピレンを含んでおり、第2熱融着性樹脂層がポリプロピレンを含んでいることがより好ましい。
また、第1熱融着性樹脂層41は、必要に応じて滑剤などを含んでいてもよい。第1熱融着性樹脂層41が滑剤を含む場合、蓄電デバイス用外装材の成形性を高め得る。滑剤としては、特に制限されず、公知の滑剤を用いることができる。滑剤は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。
滑剤としては、特に制限されないが、好ましくはアミド系滑剤が挙げられる。滑剤の具体例としては、基材層1で例示したものが挙げられる。滑剤は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。
第1熱融着性樹脂層41の表面に滑剤が存在する場合、その存在量としては、特に制限されないが、蓄電デバイス用外装材の成形性を高める観点からは、好ましくは10~50mg/m2程度、さらに好ましくは15~40mg/m2程度が挙げられる。なお、第1熱融着性樹脂層41の表面に滑剤が存在している場合にも、当該滑剤を含めて、第1熱融着性樹脂層41が蓄電デバイス用外装材10の表面を構成する。
第1熱融着性樹脂層41の表面に存在する滑剤は、第1熱融着性樹脂層41を構成する樹脂に含まれる滑剤を滲出させたものであってもよいし、第1熱融着性樹脂層41の表面に滑剤を塗布したものであってもよい。
また、第1熱融着性樹脂層41の厚みとしては、熱融着性樹脂層が熱融着して蓄電デバイス素子を密封する機能を発揮すれば特に制限されない。
第1熱融着性樹脂層41を熱融着させた際の潰れを効果的に抑制し、絶縁性を高める観点から、第1熱融着性樹脂層41の厚みとしては、好ましくは約100μm以下、約85μm以下、約60μm以下が挙げられ、また、5μm以上、10μm以上、20μm以上、30μm以上、40μm以上が挙げられ、好ましい範囲としては、5~100μm程度、5~85μm程度、5~60μm程度、10~100μm程度、10~85μm程度、10~60μm程度、20~100μm程度、20~85μm程度、20~60μm程度、30~100μm程度、30~85μm程度、30~60μm程度、40~100μm程度、40~85μm程度、40~60μm程度が挙げられる。
具体的には、第1熱融着性樹脂層41を熱融着させた際の潰れを効果的に抑制し、絶縁性を高める観点から、熱融着性樹脂層4が第1熱融着性樹脂層41の単層により構成されている場合、第1熱融着性樹脂層41の厚みとしては、好ましくは約100μm以下、約85μm以下、約60μm以下、約25μm以下が挙げられ、また、5μm以上、10μm以上、20μm以上、30μm以上、40μm以上が挙げられ、好ましい範囲としては、5~100μm程度、5~85μm程度、5~60μm程度、5~25μm程度、10~100μm程度、10~85μm程度、10~60μm程度、10~25μm程度、20~100μm程度、20~85μm程度、20~60μm程度、20~25μm程度、30~100μm程度、30~85μm程度、30~60μm程度、40~100μm程度、40~85μm程度、40~60μm程度が挙げられる。
また、第1熱融着性樹脂層41を熱融着させた際の潰れを効果的に抑制し、絶縁性を高めつつ、蓄電デバイス用外装材による密封性を高める観点から、熱融着性樹脂層4が第1熱融着性樹脂層41および第2熱融着性樹脂層42を備えている場合、第1熱融着性樹脂層41の厚みとしては、好ましくは約85μm以下、約60μm以下、約25μm以下が挙げられ、また、5μm以上、10μm以上、20μm以上、30μm以上、40μm以上が挙げられ、好ましい範囲としては、5~85μm程度、5~60μm程度、5~25μm程度、10~85μm程度、10~60μm程度、10~25μm程度、20~85μm程度、20~60μm程度、20~25μm程度、30~85μm程度、30~60μm程度、40~85μm程度、40~60μm程度が挙げられる。
熱融着性樹脂層4が第2熱融着性樹脂層42を備えている場合、第2熱融着性樹脂層42を構成している樹脂は、ポリオレフィン、酸変性ポリオレフィンなどのポリオレフィン骨格を含む樹脂が好ましい。これらの樹脂については、第1熱融着性樹脂層41について説明した樹脂と同じである。第2熱融着性樹脂層42を構成している樹脂がポリオレフィン骨格を含むことは、例えば、赤外分光法、ガスクロマトグラフィー質量分析法などにより分析可能である。また、第2熱融着性樹脂層42を構成している樹脂を赤外分光法で分析すると、無水マレイン酸に由来するピークが検出されることが好ましい。例えば、赤外分光法にて無水マレイン酸変性ポリオレフィンを測定すると、波数1760cm-1付近と波数1780cm-1付近に無水マレイン酸由来のピークが検出される。第2熱融着性樹脂層42が無水マレイン酸変性ポリオレフィンより構成された層である場合、赤外分光法にて測定すると、無水マレイン酸由来のピークが検出される。ただし、酸変性度が低いとピークが小さくなり検出されない場合がある。その場合は核磁気共鳴分光法にて分析可能である。
第2熱融着性樹脂層42は、ポリオレフィンを含んでいることが好ましい。特に、熱融着性樹脂層4が第1熱融着性樹脂層41及び第2熱融着性樹脂層42を備えている場合であって、後述の接着層5を備えている場合、第2熱融着性樹脂層42は、ポリオレフィンを含んでいることが好ましい。また、前述の通り、本開示の蓄電デバイス用外装材10において、熱融着性樹脂層4が第1熱融着性樹脂層41及び第2熱融着性樹脂層42を備えている場合であって、後述の接着層5を備えていない場合、表面を構成している第1熱融着性樹脂層41がポリオレフィンを含んでおり、第2熱融着性樹脂層42が、酸変性ポリオレフィンを含んでいることが好ましい。
第2熱融着性樹脂層42の厚みとしては、熱融着性樹脂層4が熱融着して蓄電デバイス素子を密封する機能を発揮すれば特に制限されない。
第1熱融着性樹脂層41を熱融着させた際の潰れを効果的に抑制し、絶縁性を高めつつ、蓄電デバイス用外装材による密封性を高める観点から、第2熱融着性樹脂層42の厚みは、第1熱融着性樹脂層41の厚みよりも大きいことが好ましい。第1熱融着性樹脂層41は、熱融着性に優れるよう、高温で流れやすい樹脂が好ましく用いられる。このような厚みの関係を備えさせることにより、熱融着性樹脂層4を構成する一部であり、且つ流れやすい樹脂で構成される第1熱融着性樹脂層41を薄くすることで、蓄電デバイス用外装材の絶縁性を高くすることができる。第1熱融着性樹脂層41を構成する樹脂のMFRや融点や分子量などを適宜調整することで、第1熱融着性樹脂層41を高温で流れやすい樹脂層とすることが可能である。
第1熱融着性樹脂層41を熱融着させた際の潰れを効果的に抑制し、絶縁性を高めつつ、蓄電デバイス用外装材による密封性を高める観点から、第2熱融着性樹脂層42の厚みとしては、好ましくは約100μm以下、約85μm以下、約60μm以下が挙げられ、また、5μm以上、10μm以上、20μm以上、30μm以上、40μm以上が挙げられ、好ましい範囲としては、5~100μm程度、5~85μm程度、5~60μm程度、10~100μm程度、10~85μm程度、10~60μm程度、20~100μm程度、20~85μm程度、20~60μm程度、30~100μm程度、30~85μm程度、30~60μm程度、40~100μm程度、40~85μm程度、40~60μm程度が挙げられる。
熱融着性樹脂層4は、第1熱融着性樹脂層41及び第2熱融着性樹脂層42に加えて、さらに第3熱融着性樹脂層、第4熱融着性樹脂層などの他の熱融着性樹脂層を第2熱融着性樹脂層42のバリア層3側に備えていてもよい。他の熱融着性樹脂層を構成する樹脂としては、第1熱融着性樹脂層41で記載したものと同じものが例示される。また、他の熱融着性樹脂層の厚みとしては、それぞれ、第2熱融着性樹脂層42で記載した厚みと同様の厚みが例示される。
熱融着性樹脂層4の総厚みとしては、好ましくは約100μm以下、約85μm以下、約60μm以下が挙げられ、また、5μm以上、10μm以上、20μm以上、30μm以上、40μm以上が挙げられ、好ましい範囲としては、5~100μm程度、5~85μm程度、5~60μm程度、10~100μm程度、10~85μm程度、10~60μm程度、20~100μm程度、20~85μm程度、20~60μm程度、30~100μm程度、30~85μm程度、30~60μm程度、40~100μm程度、40~85μm程度、40~60μm程度が挙げられる。
[接着層5]
本開示の蓄電デバイス用外装材において、接着層5は、バリア層3(又は耐腐食性皮膜)と熱融着性樹脂層4を強固に接着させるために、これらの間に必要に応じて設けられる層である。
接着層5は、バリア層3と熱融着性樹脂層4とを接着可能である樹脂によって形成される。接着層5の形成に使用される樹脂としては、例えば接着剤層2で例示した接着剤と同様のものが使用できる。なお、接着層5の形成に使用される樹脂としては、ポリオレフィン骨格を含んでいることが好ましく、前述の第1熱融着性樹脂層41で例示したポリオレフィン、酸変性ポリオレフィンが挙げられる。接着層5を構成している樹脂がポリオレフィン骨格を含むことは、例えば、赤外分光法、ガスクロマトグラフィー質量分析法などにより分析可能であり、分析方法は特に問わない。また、接着層5を構成している樹脂を赤外分光法で分析すると、無水マレイン酸に由来するピークが検出されることが好ましい。例えば、赤外分光法にて無水マレイン酸変性ポリオレフィンを測定すると、波数1760cm-1付近と波数1780cm-1付近に無水マレイン酸由来のピークが検出される。ただし、酸変性度が低いとピークが小さくなり検出されない場合がある。その場合は核磁気共鳴分光法にて分析可能である。
接着層5は、熱可塑性樹脂や、熱硬化性樹脂の硬化物によって形成することができ、熱可塑性樹脂によって形成されることが好ましい。
バリア層3と熱融着性樹脂層4とを強固に接着する観点から、接着層5は、酸変性ポリオレフィンを含むことが好ましい。酸変性ポリオレフィンとしては、カルボン酸またはその無水物で変性されたポリオレフィン、カルボン酸またはその無水物で変性されたポリプロピレン、無水マレイン酸変性ポリオレフィン、無水マレイン酸変性ポリプロピレンが特に好ましい。
さらに、蓄電デバイス用外装材の厚みを薄くしつつ、成形後の形状安定性に優れた蓄電デバイス用外装材とする観点からは、接着層5は、酸変性ポリオレフィンと硬化剤を含む樹脂組成物の硬化物であることがより好ましい。酸変性ポリオレフィンとしては、好ましくは、前記のものが例示できる。
前記の通り、本開示の蓄電デバイス用外装材10において、接着層5を備えている場合、表面を構成している第1熱融着性樹脂層41がポリオレフィンを含んでおり、接着層5は酸変性ポリオレフィンを含んでいることが好ましい。
また、接着層5は、酸変性ポリオレフィンと、イソシアネート基を有する化合物、オキサゾリン基を有する化合物、及びエポキシ基を有する化合物からなる群より選択される少なくとも1種とを含む樹脂組成物の硬化物であることが好ましく、酸変性ポリオレフィンと、イソシアネート基を有する化合物及びエポキシ基を有する化合物からなる群より選択される少なくとも1種とを含む樹脂組成物の硬化物であることが特に好ましい。また、接着層5は、ポリウレタン、ポリエステル、及びエポキシ樹脂からなる群より選択される少なくとも1種を含むことが好ましく、ポリウレタン及びエポキシ樹脂を含むことがより好ましい。ポリエステルとしては、例えばアミドエステル樹脂が好ましい。アミドエステル樹脂は、一般的にカルボキシル基とオキサゾリン基の反応で生成する。接着層5は、これらの樹脂のうち少なくとも1種と前記酸変性ポリオレフィンを含む樹脂組成物の硬化物であることがより好ましい。なお、接着層5に、イソシアネート基を有する化合物、オキサゾリン基を有する化合物、エポキシ樹脂などの硬化剤の未反応物が残存している場合、未反応物の存在は、例えば、赤外分光法、ラマン分光法、飛行時間型二次イオン質量分析法(TOF-SIMS)などから選択される方法で確認することが可能である。
また、バリア層3と接着層5との密着性をより高める観点から、接着層5は、酸素原子、複素環、C=N結合、及びC-O-C結合からなる群より選択される少なくとも1種を有する硬化剤を含む樹脂組成物の硬化物であることが好ましい。複素環を有する硬化剤としては、例えば、オキサゾリン基を有する硬化剤、エポキシ基を有する硬化剤などが挙げられる。また、C=N結合を有する硬化剤としては、オキサゾリン基を有する硬化剤、イソシアネート基を有する硬化剤などが挙げられる。また、C-O-C結合を有する硬化剤としては、オキサゾリン基を有する硬化剤、エポキシ基を有する硬化剤、ポリウレタンなどが挙げられる。接着層5がこれらの硬化剤を含む樹脂組成物の硬化物であることは、例えば、ガスクロマトグラフ質量分析(GCMS)、赤外分光法(IR)、飛行時間型二次イオン質量分析法(TOF-SIMS)、X線光電子分光法(XPS)などの方法で確認することができる。
イソシアネート基を有する化合物としては、特に制限されないが、バリア層3と接着層5との密着性を効果的に高める観点からは、好ましくは多官能イソシアネート化合物が挙げられる。多官能イソシアネート化合物は、2つ以上のイソシアネート基を有する化合物であれば、特に限定されない。多官能イソシアネート系硬化剤の具体例としては、ペンタンジイソシアネート(PDI)、イソホロンジイソシアネート(IPDI)、ヘキサメチレンジイソシアネート(HDI)、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、これらをポリマー化やヌレート化したもの、これらの混合物や他ポリマーとの共重合物などが挙げられる。また、アダクト体、ビュレット体、イソシアヌレート体などが挙げられる。
接着層5における、イソシアネート基を有する化合物の含有量としては、接着層5を構成する樹脂組成物中、0.1~50質量%の範囲にあることが好ましく、0.5~40質量%の範囲にあることがより好ましい。これにより、バリア層3と接着層5との密着性を効果的に高めることができる。
オキサゾリン基を有する化合物は、オキサゾリン骨格を備える化合物であれば、特に限定されない。オキサゾリン基を有する化合物の具体例としては、ポリスチレン主鎖を有するもの、アクリル主鎖を有するものなどが挙げられる。また、市販品としては、例えば、日本触媒社製のエポクロスシリーズなどが挙げられる。
接着層5における、オキサゾリン基を有する化合物の割合としては、接着層5を構成する樹脂組成物中、0.1~50質量%の範囲にあることが好ましく、0.5~40質量%の範囲にあることがより好ましい。これにより、バリア層3と接着層5との密着性を効果的に高めることができる。
エポキシ基を有する化合物としては、例えば、エポキシ樹脂が挙げられる。エポキシ樹脂としては、分子内に存在するエポキシ基によって架橋構造を形成することが可能な樹脂であれば、特に制限されず、公知のエポキシ樹脂を用いることができる。エポキシ樹脂の重量平均分子量としては、好ましくは50~2000程度、より好ましくは100~1000程度、さらに好ましくは200~800程度が挙げられる。なお、本開示において、エポキシ樹脂の重量平均分子量は、標準サンプルとしてポリスチレンを用いた条件で測定された、ゲル浸透クロマトグラフィ(GPC)により測定された値である。
エポキシ樹脂の具体例としては、トリメチロールプロパンのグリシジルエーテル誘導体、ビスフェノールAジグリシジルエーテル、変性ビスフェノールAジグリシジルエーテル、ノボラックグリシジルエーテル、グリセリンポリグリシジルエーテル、ポリグリセリンポリグリシジルエーテルなどが挙げられる。エポキシ樹脂は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。
接着層5における、エポキシ樹脂の割合としては、接着層5を構成する樹脂組成物中、0.1~50質量%の範囲にあることが好ましく、0.5~40質量%の範囲にあることがより好ましい。これにより、バリア層3と接着層5との密着性を効果的に高めることができる。
ポリウレタンとしては、特に制限されず、公知のポリウレタンを使用することができる。接着層5は、例えば、2液硬化型ポリウレタンの硬化物であってもよい。
接着層5における、ポリウレタンの割合としては、接着層5を構成する樹脂組成物中、0.1~50質量%の範囲にあることが好ましく、0.5~40質量%の範囲にあることがより好ましい。これにより、電解液などのバリア層の腐食を誘発する成分が存在する雰囲気における、バリア層3と接着層5との密着性を効果的に高めることができる。
なお、接着層5が、イソシアネート基を有する化合物、オキサゾリン基を有する化合物、及びエポキシ樹脂からなる群より選択される少なくとも1種と、前記酸変性ポリオレフィンとを含む樹脂組成物の硬化物である場合、酸変性ポリオレフィンが主剤として機能し、イソシアネート基を有する化合物、オキサゾリン基を有する化合物、及びエポキシ基を有する化合物は、それぞれ、硬化剤として機能する。
第1熱融着性樹脂層41を熱融着させた際の潰れを効果的に抑制し、蓄電デバイス用外装材による密封性を高める観点から、接着層5と熱融着性樹脂層4の合計厚みとしては、好ましくは約50μm以上、より好ましくは約60μm以上、さらに好ましくは約70μm以上であり、また、好ましくは約120μm以下、より好ましくは約100μm以下であり、好ましい範囲としては、50~120μm程度、50~100μm程度、60~120μm程度、60~100μm程度、70~120μm程度、70~100μm程度が挙げられる。
また、第1熱融着性樹脂層41の厚みと、第2熱融着性樹脂層42の厚みの好ましい比は、第1熱融着性樹脂層41の厚みを1.0として、第2熱融着性樹脂層42の厚みは、好ましくは1.5~6.0程度、より好ましくは1.7~5.5程度、さらに好ましくは2.0~5.0程度である。また、接着層5の厚みと、第1熱融着性樹脂層41の厚みと、第2熱融着性樹脂層42の厚みの好ましい比は、第1熱融着性樹脂層41の厚みを1.0として、接着層5の厚みが0.5~3.0程度であり第2熱融着性樹脂層42の厚みが1.5~6.0程度であることが好ましく、接着層5の厚みが0.7~2.3程度であり第2熱融着性樹脂層42の厚みが1.7~5.5程度であることがより好ましく、接着層5の厚みが1.0~2.0程度であり第2熱融着性樹脂層42の厚みが2.0~5.0程度であることがさらに好ましい。
また、第1熱融着性樹脂層41の厚みと、第2熱融着性樹脂層42の厚みの好ましい比の具体例としては、第1熱融着性樹脂層41の厚みを1.0として、第2熱融着性樹脂層42の厚みが、例えば2.0、2.7、3.0、4.0、5.0、6.0などが挙げられる。また、接着層5の厚みと、第1熱融着性樹脂層41の厚みと、第2熱融着性樹脂層42の厚みの好ましい具体例としては、第1熱融着性樹脂層41の厚みを1.0として、接着層5の厚みが1.0であり第2熱融着性樹脂層42の厚みが2.0であるもの、接着層5の厚みが1.7であり第2熱融着性樹脂層42の厚みが2.7であるもの、接着層5の厚みが1.3であり第2熱融着性樹脂層42の厚みが3.0であるもの、接着層5の厚みが2.0であり第2熱融着性樹脂層42の厚みが5.0であるものなどが挙げられる。
第1熱融着性樹脂層41を熱融着させた際の潰れを効果的に抑制し、絶縁性を高めつつ、蓄電デバイス用外装材による密封性を高める観点から、接着層5の厚みは、第1熱融着性樹脂層41の厚みよりも大きくてもよい。例えば、熱融着性樹脂層4が第1熱融着性樹脂層41の単層により構成されており、かつ、バリア層3と第1熱融着性樹脂層41との間に接着層5を有している場合、接着層5の厚みは、第1熱融着性樹脂層41の厚み以上であることが好ましい。第1熱融着性樹脂層41は、熱融着性に優れるよう、接着層5よりも高温で流れやすい樹脂が好ましく用いられる。このような厚みの関係を備えさせることにより、熱融着性樹脂層4を構成する一部であり、且つ流れやすい樹脂で構成される第1熱融着性樹脂層41を薄くすることで、蓄電デバイス用外装材の絶縁性を高くすることができる。第1熱融着性樹脂層41を構成する樹脂のMFRや融点や分子量などを適宜調整することで、第1熱融着性樹脂層41を高温で流れやすい樹脂層とすることが可能である。
また、本開示の蓄電デバイス用外装材10において、熱融着性樹脂層4が第1熱融着性樹脂層41及び第2熱融着性樹脂層42を備えている場合、第2熱融着性樹脂層42の厚みは、接着層5の厚み以上であることが好ましい。第2熱融着性樹脂層42は、接着に寄与する接着層5と比較して水分バリア性が良好であるため、このような厚みの関係を備えさせることにより蓄電デバイス用外装材の水分バリア性を向上させることができる。
熱融着性樹脂層の熱融着後に高い絶縁性を発揮する観点から、第2熱融着性樹脂層42の厚みが接着層5の厚みよりも大きく、かつ、接着層5の厚みが第1熱融着性樹脂層41の厚みよりも大きいことが好ましい。
接着層5の厚みは、好ましくは、約60μm以下、約50μm以下、約40μm以下、約30μm以下、約20μm以下、約10μm以下、約8μm以下、約5μm以下、約3μm以下が挙げられ、また、好ましくは、約0.1μm以上、約0.5μm以上、約5μm以上、約10μm以上、約20μm以上が挙げられ、当該厚みの範囲としては、好ましくは、0.1~60μm程度、0.1~50μm程度、0.1~40μm程度、0.1~30μm程度、0.1~20μm程度、0.1μm~10μm程度、0.1~8μm程度、0.1~5μm程度、0.1~3μm程度、0.5~60μm程度、0.5~50μm程度、0.5~40μm程度、0.5~30μm程度、0.5~20μm程度、0.5μm~10μm程度、0.5~8μm程度、0.5~5μm程度、0.5~3μm程度、5~60μm程度、5~50μm程度、5~40μm程度、5~30μm程度、5~20μm程度、5μm~10μm程度、5~8μm程度、10~60μm程度、10~50μm程度、10~40μm程度、10~30μm程度、10~20μm程度が挙げられる。より具体的には、接着剤層2で例示した接着剤や、酸変性ポリオレフィンと硬化剤との硬化物である場合、好ましくは1~10μm程度、より好ましくは1μm以上10μm未満、さらに好ましくは1~8μm程度、さらに好ましくは1~5μm程度、さらに好ましくは1~3μm程度が挙げられる。また、第1熱融着性樹脂層41で例示した樹脂を用いる場合であれば、好ましくは2~60μm程度、2~50μm程度、10~60μm程度、10~50μm程度、20~60μm程度、20~50μm程度が挙げられる。なお、接着層5が接着剤層2で例示した接着剤や、酸変性ポリオレフィンと硬化剤を含む樹脂組成物の硬化物である場合、例えば、当該樹脂組成物を塗布し、加熱等により硬化させることにより、接着層5を形成することができる。また、第1熱融着性樹脂層41で例示した樹脂を用いる場合、例えば、熱融着性樹脂層4と接着層5との押出成形により形成することができる。
本開示の蓄電デバイス用外装材10において、バリア層3の基材層1側とは反対側の好ましい積層構成の具体例としては、バリア層3側から順に、厚さ20~60μm程度の接着層5と、厚さ20~50μmの第1熱融着性樹脂層41とが積層された積層構成;厚さ20~60μm程度の接着層5と、厚さ20~40μmの第1熱融着性樹脂層41とが積層された積層構成;厚さ5~30μm程度の接着層5と、厚さ30~80μm程度の第2熱融着性樹脂層42と、厚さ5~25μm程度の第1熱融着性樹脂層41とが積層された積層構成;厚さ5~20μm程度の接着層5と、厚さ40~80μm程度の第2熱融着性樹脂層42と、厚さ5~25μm程度の第1熱融着性樹脂層41とが積層された積層構成などが挙げられる。
[表面被覆層6]
本開示の蓄電デバイス用外装材は、意匠性、耐電解液性、耐傷性、成形性などの向上の少なくとも一つを目的として、必要に応じて、基材層1の上(基材層1のバリア層3とは反対側)に、表面被覆層6を備えていてもよい。表面被覆層6は、蓄電デバイス用外装材を用いて蓄電デバイスを組み立てた時に、蓄電デバイス用外装材の最外層側に位置する層である。
表面被覆層6は、例えば、ポリ塩化ビニリデン、ポリエステル、ポリウレタン、アクリル樹脂、エポキシ樹脂などの樹脂により形成することができる。
表面被覆層6を形成する樹脂が硬化型の樹脂である場合、当該樹脂は、1液硬化型及び2液硬化型のいずれであってもよいが、好ましくは2液硬化型である。2液硬化型樹脂としては、例えば、2液硬化型ポリウレタン、2液硬化型ポリエステル、2液硬化型エポキシ樹脂などが挙げられる。これらの中でも2液硬化型ポリウレタンが好ましい。
2液硬化型ポリウレタンとしては、例えば、ポリオール化合物を含有する主剤と、イソシアネート化合物を含有する硬化剤とを含むポリウレタンが挙げられる。好ましくはポリエステルポリオール、ポリエーテルポリオール、およびアクリルポリオール等のポリオールを主剤として、芳香族系又は脂肪族系のポリイソシアネートを硬化剤とした二液硬化型のポリウレタンが挙げられる。また、ポリオール化合物としては、繰り返し単位の末端の水酸基に加えて、側鎖にも水酸基を有するポリエステルポリオールを用いることが好ましい。表面被覆層6がポリウレタンにより形成されていることで蓄電デバイス用外装材に優れた電解液耐性が付与される。
表面被覆層6は、表面被覆層6の表面及び内部の少なくとも一方には、該表面被覆層6やその表面に備えさせるべき機能性等に応じて、必要に応じて、前述した滑剤や、アンチブロッキング剤、艶消し剤、難燃剤、酸化防止剤、粘着付与剤、耐電防止剤等の添加剤を含んでいてもよい。添加剤としては、例えば、平均粒子径が0.5nm~5μm程度の微粒子が挙げられる。添加剤の平均粒子径は、レーザ回折/散乱式粒子径分布測定装置で測定されたメジアン径とする。
添加剤、無機物及び有機物のいずれであってもよい。また、添加剤の形状についても、特に制限されず、例えば、球状、繊維状、板状、不定形、鱗片状などが挙げられる。
添加剤の具体例としては、タルク、シリカ、グラファイト、カオリン、モンモリロナイト、マイカ、ハイドロタルサイト、シリカゲル、ゼオライト、水酸化アルミニウム、水酸化マグネシウム、酸化亜鉛、酸化マグネシウム、酸化アルミニウム、酸化ネオジウム、酸化アンチモン、酸化チタン、酸化セリウム、硫酸カルシウム、硫酸バリウム、炭酸カルシウム、ケイ酸カルシウム、炭酸リチウム、安息香酸カルシウム、シュウ酸カルシウム、ステアリン酸マグネシウム、アルミナ、カーボンブラック、カーボンナノチューブ、高融点ナイロン、アクリレート樹脂、架橋アクリル、架橋スチレン、架橋ポリエチレン、ベンゾグアナミン、金、アルミニウム、銅、ニッケルなどが挙げられる。添加剤は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。これらの添加剤の中でも、分散安定性やコストなどの観点から、好ましくはシリカ、硫酸バリウム、酸化チタンが挙げられる。また、添加剤には、表面に絶縁処理、高分散性処理などの各種表面処理を施してもよい。
表面被覆層6を形成する方法としては、特に制限されず、例えば、表面被覆層6を形成する樹脂を塗布する方法が挙げられる。表面被覆層6に添加剤を配合する場合には、添加剤を混合した樹脂を塗布すればよい。
表面被覆層6の厚みとしては、表面被覆層6としての上記の機能を発揮すれば特に制限されず、例えば0.5~10μm程度、好ましくは1~5μm程度が挙げられる。
2.蓄電デバイス用外装材の製造方法
蓄電デバイス用外装材の製造方法については、本開示の蓄電デバイス用外装材が備える各層を積層させた積層体が得られる限り、特に制限されず、少なくとも、基材層1、バリア層3、及び熱融着性樹脂4がこの順となるように積層する工程を備える方法が挙げられる。前記の通り、バリア層3としては、前述した所定の組成を満たすアルミニウム合金箔を用いることができる。また、熱融着性樹脂層4は、単層又は複層により構成されており、熱融着性樹脂層4のうち、積層体の表面を構成している第1熱融着性樹脂層41は、剛体振り子測定における140℃での対数減衰率ΔEが0.25以下である。
本開示の蓄電デバイス用外装材の製造方法の一例としては、以下の通りである。まず、基材層1、接着剤層2、バリア層3が順に積層された積層体(以下、「積層体A」と表記することもある)を形成する。積層体Aの形成は、具体的には、基材層1上又は必要に応じて表面が化成処理されたバリア層3に接着剤層2の形成に使用される接着剤を、グラビアコート法、ロールコート法などの塗布方法で塗布、乾燥した後に、当該バリア層3又は基材層1を積層させて接着剤層2を硬化させるドライラミネート法によって行うことができる。
次いで、積層体Aのバリア層3上に、熱融着性樹脂層4を積層させる。バリア層3上に熱融着性樹脂層4を直接積層させる場合には、積層体Aのバリア層3上に、熱融着性樹脂層4をサーマルラミネート法、押出ラミネート法などの方法により積層すればよい。また、バリア層3と熱融着性樹脂層4の間に接着層5を設ける場合には、例えば、(1)積層体Aのバリア層3上に、接着層5及び熱融着性樹脂層4を押出しすることにより積層する方法(共押出しラミネート法、タンデムラミネート法)、(2)別途、接着層5と熱融着性樹脂層4が積層した積層体を形成し、これを積層体Aのバリア層3上にサーマルラミネート法により積層する方法や、積層体Aのバリア層3上に接着層5が積層した積層体を形成し、これを熱融着性樹脂層4とサーマルラミネート法により積層する方法、(3)積層体Aのバリア層3と、予めシート状に製膜した熱融着性樹脂層4との間に、溶融させた接着層5を流し込みながら、接着層5を介して積層体Aと熱融着性樹脂層4を貼り合せる方法(サンドイッチラミネート法)、(4)積層体Aのバリア層3上に、接着層5を形成させるための接着剤を溶液コーティングし、乾燥させる方法や、さらには焼き付ける方法などにより積層させ、この接着層5上に予めシート状に製膜した熱融着性樹脂層4を積層する方法などが挙げられる。
表面被覆層6を設ける場合には、基材層1のバリア層3とは反対側の表面に、表面被覆層6を積層する。表面被覆層6は、例えば表面被覆層6を形成する上記の樹脂を基材層1の表面に塗布することにより形成することができる。なお、基材層1の表面にバリア層3を積層する工程と、基材層1の表面に表面被覆層6を積層する工程の順番は、特に制限されない。例えば、基材層1の表面に表面被覆層6を形成した後、基材層1の表面被覆層6とは反対側の表面にバリア層3を形成してもよい。
上記のようにして、必要に応じて設けられる表面被覆層6/基材層1/必要に応じて設けられる接着剤層2/バリア層3/必要に応じて設けられる接着層5/熱融着性樹脂層4をこの順に備える積層体が形成されるが、必要に応じて設けられる接着剤層2及び接着層5の接着性を強固にするために、さらに、加熱処理に供してもよい。
蓄電デバイス用外装材において、積層体を構成する各層には、必要に応じて、コロナ処理、ブラスト処理、酸化処理、オゾン処理などの表面活性化処理を施すことにより加工適性を向上させてもよい。例えば、基材層1のバリア層3とは反対側の表面にコロナ処理を施すことにより、基材層1表面へのインクの印刷適性を向上させることができる。
3.蓄電デバイス用外装材の用途
本開示の蓄電デバイス用外装材は、正極、負極、電解質等の蓄電デバイス素子を密封して収容するための包装体に使用される。すなわち、本開示の蓄電デバイス用外装材によって形成された包装体中に、少なくとも正極、負極、及び電解質を備えた蓄電デバイス素子を収容して、蓄電デバイスとすることができる。
具体的には、少なくとも正極、負極、及び電解質を備えた蓄電デバイス素子を、本開示の蓄電デバイス用外装材で、前記正極及び負極の各々に接続された金属端子を外側に突出させた状態で、蓄電デバイス素子の周縁にフランジ部(熱融着性樹脂層同士が接触する領域)が形成できるようにして被覆し、前記フランジ部の熱融着性樹脂層同士をヒートシールして密封させることによって、蓄電デバイス用外装材を使用した蓄電デバイスが提供される。なお、本開示の蓄電デバイス用外装材により形成された包装体中に蓄電デバイス素子を収容する場合、本開示の蓄電デバイス用外装材の熱融着性樹脂部分が内側(蓄電デバイス素子と接する面)になるようにして、包装体を形成する。
本開示の蓄電デバイス用外装材は、電池(コンデンサー、キャパシター等を含む)などの蓄電デバイスに好適に使用することができる。また、本開示の蓄電デバイス用外装材は、一次電池、二次電池のいずれに使用してもよいが、好ましくは二次電池である。本開示の蓄電デバイス用外装材が適用される二次電池の種類については、特に制限されず、例えば、リチウムイオン電池、リチウムイオンポリマー電池、全固体電池、鉛蓄電池、ニッケル・水素蓄電池、ニッケル・カドミウム蓄電池、ニッケル・鉄蓄電池、ニッケル・亜鉛蓄電池、酸化銀・亜鉛蓄電池、金属空気電池、多価カチオン電池、コンデンサー、キャパシター等が挙げられる。これらの二次電池の中でも、本開示の蓄電デバイス用外装材の好適な適用対象として、リチウムイオン電池及びリチウムイオンポリマー電池が挙げられる。
以下に実施例及び比較例を示して本開示を詳細に説明する。但し本開示は実施例に限定されるものではない。
<アルミニウム合金箔の製造>
表1に示す各組成(残部はAlおよび不可避不純物)からなるアルミニウム合金の鋳塊を用意した。表1に示す条件で均質化処理を施し、次いで仕上がり温度330℃での熱間圧延にて厚さ3mmの板材とした。その後、冷間圧延、中間焼鈍、最終冷間圧延を経て、厚み40μm、幅1200mmのアルミニウム合金箔の試料を作製した。なお、中間焼鈍の方法については表1に示した。表1の冷間圧延の項目では、中間焼鈍直前の板厚および前記板厚までの冷間圧延率を示している。
作製したアルミニウム合金箔に対して以下の試験または測定を行い、その結果を表1及び表2に示す。
・アルミニウム合金箔の引張強さ、破断伸び
引張強さ、破断伸びのいずれも引張試験にて測定した。引張試験は、JIS Z2241:2011に準拠し、圧延方向に対して0°方向の伸びを測定できるように、JIS5号試験片を試料から採取し、万能引張試験機(島津製作所社製 AGS-X 10kN)で引張り速度2mm/minにて試験を行った。伸びは破断伸びであり、以下の方法で算出した。まず試験前に試験片の長手中央に試験片の垂直方向に2本の線を標点距離である50mm間隔でマークする。試験後にアルミニウム合金箔の破断面をつき合わせてマーク間の距離を測定した。そのマーク間の距離から標点距離(50mm)を引いて伸び量(mm)を算出し、伸び量を標点間距離(50mm)で除して伸び率(%)を求めた。なお、アルミニウム合金箔の伸びは、破断時の全伸び(伸び計の弾性伸びと塑性伸びとを合わせたもの)であり、伸び計標点距離に対する百分率で表したものである。
・平均結晶粒径
アルミニウム合金箔の表面に対して、20容量%過塩素酸+80容量%エタノール混合溶液を用い、電圧20Vで電解研磨を行った。次いで、バーカー氏液中にて電圧30Vの条件で陽極酸化処理した。処理後の供試材について、光学顕微鏡にて結晶粒を観察した。撮影した写真からJIS G0551で規定された切断法により平均結晶粒径を算出した。
・L1(HAGB長さ)/L2(LAGB長さ)
箔表面を電解研磨し、次いでSEM-EBSD装置にて結晶方位の解析を行い、結晶粒間の方位差が15°以上の大角粒界(HAGB)と、方位差2°以上15°未満の小角粒界(LAGB)を観察した。倍率×500で視野サイズ170×340μmを4視野測定し、視野内の単位面積あたりのHAGBの長さ(L1)とLAGBの長さ(L2)を求め、その比を算出した。算出した比はL1/L2として表2に示した。
・結晶方位
Copper方位は{112}<111>、R方位は{123}<634>を代表方位とした。それぞれの方位密度は、以下の方法により得た。X線回折法にて、{111}、{200}、{220}の不完全極点図を測定し、その結果を用いて結晶方位分布関数(ODF;Orientation Distribution Function)を求め、Copper方位とR方位の方位密度を得た。
・表面分析
箔表面のMg濃度はXPS(X-ray Photoelectron Spectroscopy)にて見積もった。最表面から深さ8nmまでの表面部において、ナロースキャン測定で得られたナロースペクトルを波形分離し、各元素の原子濃度を定量した。尚、Mg量の定量ではMg2pスペクトルを用いた。分析条件の詳細は以下の通りである。
測定装置:アルバックファイ社製PHI5000-VersaProbeIII
入射X線:Al Kα 単色化X線、hν=1486.6ev
X線源出力:100W、20kV、5.8mA
パスエネルギー:26eV
ステップ:0.05eV
分析領域(ビーム径):100μm×1.4mm
検出角度:45°
光電子取込角度:45度
測定領域:100μφでX方向に1.4mm
ピークシフト補正:C1sピークにおいて、C-Cのピークが285.0eVとなるように補正
帯電中和:Arイオンと電子線によるデュアルビームで帯電中和
・酸化皮膜厚み測定
酸化皮膜厚さはFE-EPMA(Electron Probe Micro Analyzer)装置にて測定した。元々厚みの分かっている酸化皮膜サンプルにて得られたX線強度の検量線を用いて試料の酸化皮膜厚みを算出した。使用したFE-EPMAは日本電子社のJXA-8530Fであった。分析条件は加速電圧10kV、照射電流100nA、ビーム径50μmであった。
・突き刺し強さ
厚さ40μmのアルミニウム合金箔に対し、直径1.0mm、先端形状半径0.5mmの針を50mm/minの速度で突き刺し、針が箔を貫通するまでの最大荷重(N)を突き刺し強さとして測定した。ここでは突き刺し強さが9.0N以上の場合を耐突き刺し性が良好と判定し、表2にて“〇”(good)と示した。突き刺し強さが9.0N未満の場合を耐突き刺し性に劣ると判定し、表2にて“×”(poor)と示した。
・限界成形高さ
成形高さは角筒成形試験にて評価した。試験は万能薄板成形試験器(ERICHSEN社製 モデル142/20)にて行い、厚さ40μmのアルミニウム合金箔を図12に示す形状を有する角型ポンチ(一辺の長さD=37mm、角部の面取り径R=4.5mm)を用いて行った。試験条件として、シワ抑え力は10kN、ポンチの上昇速度(成形速度)の目盛は1とし、そして箔の片面(ポンチが当たる面)に鉱物油を潤滑剤として塗布した。箔に対し装置の下部から上昇するポンチが当たり、箔が成形されるが、3回連続成形した際に割れやピンホールがなく成形できた最大のポンチの上昇高さをその材料の限界成形高さ(mm)と規定した。ポンチの高さは0.5mm間隔で変化させた。ここでは成形高さが7.0mm以上の場合を成形性が良好と判定し、表2にて“○”(good)と示した。成形高さが7.0mm未満の場合を成形性に劣ると判定し、表2にて“×”(poor)と示した。
・腐食性の評価
ヘキサフルオロリン酸リチウム152gをプロピレンカーボネート/ジエチレンカーボネート=1/1(体積比)の溶液1Lに溶解し、1モル/Lの電解液を作製した。次に200mLの二極ビーカーセルの正極に実施例1~13及び比較例14~18で使用した各アルミニウム合金箔をセットし、負極に金属リチウムをセットし、前述の電解液を投入した。この状態で、0.1Vの電位差を1時間及び3時間印加した。その後、アルミニウム合金箔の表面を顕微鏡による目視により観察した。図8及び図9の顕微鏡写真(観察倍率200倍)に示すように、表面が腐食したもの(図9)を耐腐食性に劣ると判定し、表2にて“×”(poor)と示した。表面が変化しなかったもの(図8)を耐腐食性が良好と判定し、表2にて“○”(good)と示した。またごく一部分で表面が変化したものついては、実用上問題ないが耐食性はやや低いと判定し、表2にて“△”(fair)と示した。腐食したアルミニウム合金箔表面(判定:×)には、アルミニウムとリチウムとの化合物が生成し、体積膨張により表面が盛り上がっている様子が観察された。各供試材の結果を表2に示す。
<蓄電デバイス用外装材の製造>
(実施例1,2,4及び比較例1,2)
基材層としてポリエチレンテレフタレートフィルム(12μm)/接着剤層(2液硬化型ウレタン接着剤(ポリオール化合物と芳香族イソシアネート化合物)、厚さ3μm)/二軸延伸ナイロンフィルム(厚さ15μm)が順に積層された積層フィルムを用意した。次に、基材層の二軸延伸ナイロンフィルム(厚さ15μm)の上に、両面に耐酸性皮膜を形成した前記のアルミニウム合金箔(表1の組成を有し、厚さ40μm)からなるバリア層をドライラミネート法により積層させた。具体的には、両面に耐酸性皮膜(クロメート処理によって形成された皮膜であり、クロム量が30mg/m2)を形成したアルミニウム合金箔の一方面に、2液硬化型ウレタン接着剤(ポリオール化合物と芳香族イソシアネート化合物)を塗布し、アルミニウム合金箔上に接着剤層(硬化後の厚み3μm)を形成した。次いで、アルミニウム合金箔上の接着剤層と二軸延伸ナイロンフィルムを積層した後、エージング処理を実施することにより、基材層/接着剤層/バリア層の積層体を作製した。
次に、得られた積層体のバリア層の上に、接着層としての無水マレイン酸変性ポリプロピレン(厚さ40μm)と、第1熱融着性樹脂層としてのポリプロピレン(厚さ40μm)とを共押出しすることにより、バリア層上に接着層/第1熱融着性樹脂層を積層させた。次に、得られた積層体をエージングし、加熱することにより、ポリエチレンテレフタレートフィルム(12μm)/接着剤層(3μm)/二軸延伸ナイロンフィルム(15μm)/接着剤層(3μm)/バリア層(40μm)/接着層(40μm)/第1熱融着性樹脂層(40μm)がこの順に積層された蓄電デバイス用外装材を得た。実施例1,2,4及び比較例1,2の第1熱融着性樹脂層は、それぞれ、表3に記載の140℃における対数減衰率ΔE(剛体振り子型物性試験器を用いて測定された値)を有している。
(実施例3及び比較例3)
基材層としてポリエチレンテレフタレートフィルム(12μm)/接着剤層(2液硬化型ウレタン接着剤(ポリオール化合物と芳香族イソシアネート化合物)、厚さ3μm)/二軸延伸ナイロンフィルム(厚さ15μm)が順に積層された積層フィルムを用意した。次に、基材層の二軸延伸ナイロンフィルム(厚さ15μm)の上に、両面に耐酸性皮膜を形成した前記のアルミニウム合金箔(表1の組成を有し、厚さ40μm)からなるバリア層をドライラミネート法により積層させた。具体的には、両面に耐酸性皮膜(クロメート処理によって形成された皮膜であり、クロム量が30mg/m2)を形成したアルミニウム合金箔の一方面に、2液硬化型ウレタン接着剤(ポリオール化合物と芳香族イソシアネート化合物)を塗布し、アルミニウム合金箔上に接着剤層(硬化後の厚み3μm)を形成した。次いで、アルミニウム合金箔上の接着剤層と二軸延伸ナイロンフィルムを積層した後、エージング処理を実施することにより、基材層/接着剤層/バリア層の積層体を作製した。
次に、上記で得られた各積層体のバリア層の上に、接着層(厚さ20μm)としての無水マレイン酸変性ポリプロピレンと、第2熱融着性樹脂層(厚さ20μm)としてのランダムポリプロピレンと、第1熱融着性樹脂層(厚さ10μm)としてのランダムポリプロピレンとを共押出しすることにより、バリア層の上に接着層/第2熱融着性樹脂層/第1熱融着性樹脂層とを積層させ、ポリエチレンテレフタレートフィルム(12μm)/接着剤層(3μm)/二軸延伸ナイロンフィルム(15μm)/接着剤層(3μm)/バリア層(40μm)/接着層(20μm)/第2熱融着性樹脂層(20μm)/第1熱融着性樹脂層(10μm)がこの順に積層された蓄電デバイス用外装材を得た。実施例3及び比較例3の第1熱融着性樹脂層は、それぞれ、表3に記載の140℃における対数減衰率ΔE(剛体振り子型物性試験器を用いて測定された値)を有している。
なお、蓄電デバイス用外装材の両面には、それぞれ、滑剤としてエルカ酸アミドを存在させて、滑剤層を形成した。
<アルミニウム合金箔の耐腐食性の評価>
実施例1~4及び比較例1~3で使用した各アルミニウム合金箔を、長さ45mm×幅15mmの長方形に裁断した。次に、アルミニウム合金箔の表面及び裏面の一方の面に1cmφの露出部が形成されるように、アルミニウム合金箔の表面及び裏面に長さ50mm×幅20mmの長方形のポリエチレンフィルムをアルミニウム合金箔に重ねて熱溶着し取付け被覆して、試験サンプルとした。なお、試験サンプルにおける耐腐食性の評価は、アルミニウム合金箔ALが露出した1cmφの部分で行い、試験サンプルの電解液に浸漬されない端部については、作用極に接続するために露出させた。次に、図6の模式図に示すように、試験サンプルALを作用極、金属リチウムLi(直径15mm×厚み0.35mmの円盤状)を対極にセットし、電解液(1mol/lのLiPF6と、エチレンカーボネート、ジエチルカーボネート及びジメチルカーボネート(容量比1:1:1)の混合液とからなる)に浸漬させた。この状態で、20℃の環境下、電圧0.1Vで1時間印加した後、アルミニウム合金箔の表面を観察した。図9のように表面が腐食したものを評価C、図8のように変化しなかったものを評価Aとし、結果を表3に示す。腐食したアルミニウム合金箔表面はリチウムとの化合物が生成し、体積膨張により表面が盛り上がっている様子が観察される。
<成形性の評価>
上記で得られた各蓄電デバイス用外装材を長さ(MD)90mm×幅(TD)150mmの長方形に裁断して試験サンプルとした。蓄電デバイス用外装材のMDが、アルミニウム合金箔の圧延方向(RD)に対応し、蓄電デバイス用外装材のTDが、アルミニウム合金箔のTDに対応する。試験サンプルを25℃の環境下にて、31.6mm(MD)×54.5mm(TD)の矩形状の口径を有する成形金型(雌型、表面は、JIS B 0659-1:2002附属書1(参考) 比較用表面粗さ標準片の表2に規定される、最大高さ粗さ(Rzの呼び値)が3.2μmである。コーナーR2.0mm、稜線R1.0mm)と、これに対応した成形金型(雄型、表面は、JIS B 0659-1:2002附属書1(参考) 比較用表面粗さ標準片の表2に規定される、最大高さ粗さ(Rzの呼び値)が1.6μmである。コーナーR2.0mm、稜線R1.0mm)を用いて、押さえ圧(面圧)0.25MPaで0.5mmの成形深さから0.5mm単位で成形深さを変えて、それぞれ10個のサンプルについて冷間成形(引き込み1段成形)を行った。このとき、雄型側に熱融着性樹脂層側が位置するよう、雌型上に試験サンプルを載置して成形をおこなった。また、雄型及び雌型のクリアランスは、0.3mmとした。冷間成形後のサンプルについて、暗室の中にてペンライトで光を当てて、光の透過によって、アルミニウム合金箔にピンホールやクラックが生じているか否かを確認した。アルミニウム合金箔にピンホール、クラックが10個のサンプル全てにおいて発生しない最も深い成形深さを限界成形深さPmmとした。限界成形深さが4.0mm以上であった場合を評価A、3.5mmであった場合を評価B、3.0mm以下であった場合を評価Cとした。結果を表3に示す。
<第1熱融着性樹脂層の対数減衰率ΔEの測定>
上記で得られた各蓄電デバイス用外装材を、幅(TD:Transverse Direction)15mm×長さ(MD:Machine Direction)45mmの長方形に裁断して試験サンプル(蓄電デバイス用外装材10)とした。なお、蓄電デバイス用外装材のMDが、アルミニウム合金箔の圧延方向(RD)に対応し、蓄電デバイス用外装材のTDが、アルミニウム合金箔のTDに対応しており、アルミニウム合金箔の圧延方向(RD)は圧延目により判別できる。アルミニウム合金箔の圧延目により蓄電デバイス用外装材のMDが特定できない場合は、次の方法により特定することができる。蓄電デバイス用外装材のMDの確認方法として、蓄電デバイス用外装材の熱融着性樹脂層の断面を電子顕微鏡で観察し海島構造を確認し、熱融着性樹脂層の厚み方向と垂直な方向の島の形状の径の平均が最大であった断面と平行な方向をMDと判断することができる。具体的には、熱融着性樹脂層の長さ方向の断面と、当該長さ方向の断面と平行な方向から10度ずつ角度を変更し、長さ方向の断面と垂直な方向までの各断面(合計10の断面)について、それぞれ、電子顕微鏡写真で観察して海島構造を確認する。次に、各断面において、それぞれ、個々の島の形状を観察する。個々の島の形状について、熱融着性樹脂層の厚み方向とは垂直方向の最左端と、当該垂直方向の最右端とを結ぶ直線距離を径yとする。各断面において、島の形状の当該径yが大きい順に上位20個の径yの平均を算出する。島の形状の当該径yの平均が最も大きかった断面と平行な方向をMDと判断する。剛体振り子測定による対数減衰率ΔEの測定方法を説明するための模式図を図10に示す。剛体振り子型物性試験器(型番:RPT-3000W 株式会社エー・アンド・デイ社製)を用い、振り子30のフレームにはFRB-100、エッジ部の円筒型シリンダエッジ30aにはRBP-060、冷熱ブロック31にはCHB-100、また、振動変位検出器32、錘33を使用し、初期の振幅を0.3degreeとした。冷熱ブロック31上に試験サンプルの測定面(第1熱融着性樹脂層)を上方に向けて載置し、測定面上に振り子30付き円筒型シリンダエッジ30aの軸線方向が試験サンプルのMDの方向に直交するように設置した。また、測定中の試験サンプルの浮きや反りを防ぐために、試験サンプルの測定結果に影響のない箇所にテープを貼りつけて冷熱ブロック31上に固定した。円筒型シリンダエッジ30aを、第1熱融着性樹脂層の表面に接触させた。次に、冷熱ブロック31を用いて昇温速度3℃/分にて30℃から200℃の温度範囲で第1熱融着性樹脂層の対数減衰率ΔEの測定を行った。試験サンプル(蓄電デバイス用外装材10)の第1熱融着性樹脂層の表面温度が140℃となった状態での対数減衰率ΔEを採用した。(一度測定した試験サンプルは使用せず、新たに裁断したものを用いて3回(N=3)測定した平均値を用いた。)第1熱融着性樹脂層については、上記で得られた各蓄電デバイス用外装材を15%塩酸に浸漬して、基材層及びアルミニウム箔を溶解させ、接着層と熱融着性樹脂層のみとなった試験サンプルを十分に乾燥させて対数減衰率ΔEの測定を行った。140℃における対数減衰率ΔEをそれぞれ表3に示す。なお、対数減衰率ΔEは、以下の式によって算出される。
ΔE=[ln(A1/A2)+ln(A2/A3)+...+ln(An/An+1)]/n
A:振幅
n:波数
<第1熱融着性樹脂層の厚さの残存割合の測定>
上記で得られた各蓄電デバイス用外装材を長さ150mm×幅60mmに裁断して、試験サンプル(蓄電デバイス用外装材10)を作製した。次に、同じ蓄電デバイス用外装材から作製した試験サンプルの第1熱融着性樹脂層同士を対向させた。次に、その状態で、幅7mmの金属板を用いて、試験サンプルの両側から積層方向に、温度190℃、表1に記載の各面圧(MPa)、時間3秒間の条件で加熱・加圧して、第1熱融着性樹脂層を熱融着させた。次に、試験サンプルの熱融着させた部分を、ミクロトームを用いて積層方向に裁断して、露出した断面について、互いに熱融着している2つの第1熱融着性樹脂層の厚さを測定した。熱融着させる前の試験サンプルについても、同様にして、ミクロトームを用いて積層方向に裁断して、露出した断面について、2つの第1熱融着性樹脂層の厚さを測定した。熱融着前の2つの第1熱融着性樹脂層の合計厚さに対する、熱融着後の2つの第1熱融着性樹脂層の合計厚さの割合を算出して、2つの第1熱融着性樹脂層の合計厚さの残存割合(%)をそれぞれ測定した。結果を表3に示す。
<蓄電デバイス用外装材の絶縁性評価>
上記で得られた各蓄電デバイス用外装材を長さ(MD)120mm×幅(TD)60mmの長方形に裁断して、熱融着性樹脂層同士を合わせてMD方向に折り、シール幅3mmでシール(条件:190℃、2MPa、3秒間)した後、幅(TD)15mmに断裁して、試験サンプルとした。ヘキサフルオロリン酸リチウム152gをプロピレンカーボネート/ジエチレンカーボネート=1/1(体積比)1Lに溶解し、1モル/Lの電解液を作製した。次に200mLの二極ビーカーセルの正極に15mm幅の試験サンプルを、シール部を開くようにセットし、負極に金属リチウムをセットし、前述の電解液を投入した。この際、試験サンプルの熱融着性樹脂層同士が対向するようにして、試験サンプルをMDの方向に折り曲げ、折り曲げた部分をヒートシールした。次に、ヒートシール部を破壊しないようにして、試験サンプル端部を180°方向に開いた。次に、試験サンプルの端部をワニ口クリップで噛み込み、試験サンプルのアルミニウム合金箔にまでワニ口クリップを到達させ、ワニ口クリップとアルミニウム合金箔とを電気的に接続した。この状態で、1Vの電位差を12時間および24時間印加した後、ヒートシール部においてリチウムアルミニウム合金(黒色異物)の発生を目視により観察した。これにより、試験サンプルのヒートシール部に形成されている樹脂溜まりの脇からクラックが発生し、電解液が浸透して腐食が発生(黒色異物が発生)するか否かを評価することができる。12時間以内で黒色異物が発生したものをC、12時間超24時間未満で黒色異物が発生したものをB、24時間の時点で黒色異物が発生しなかったものをAと判定した。結果を表3に示す。
Figure 0007276632000005
Figure 0007276632000006
Figure 0007276632000007
実施例1~4の蓄電デバイス用外装材は、少なくとも、基材層、バリア層、及び熱融着性樹脂層をこの順に備える積層体から構成されており、バリア層は、Fe:0.2質量%以上2.0質量%以下、Mg:0.1質量%以上5.0質量%以下の組成を満たすアルミニウム合金箔を含み、前記熱融着性樹脂層は、単層又は複層により構成されており、前記熱融着性樹脂層のうち、前記積層体の表面を構成している第1熱融着性樹脂層は、剛体振り子測定における140℃での対数減衰率ΔEが0.25以下である。実施例1~4の蓄電デバイス用外装材は、成形性に優れ、電解液が付着した状態で通電が生じた場合のアルミニウム合金箔の腐食が効果的に抑制され、さらには絶縁性が高められている。
以上の通り、本開示は、以下の態様の発明を提供する。
項1. 少なくとも、基材層、バリア層、及び熱融着性樹脂層をこの順に備える積層体から構成されており、
前記バリア層は、Fe:0.2質量%以上2.0質量%以下、Mg:0.1質量%以上5.0質量%以下の組成を満たすアルミニウム合金箔を含み、
前記熱融着性樹脂層は、単層又は複層により構成されており、
前記熱融着性樹脂層のうち、前記積層体の表面を構成している第1熱融着性樹脂層は、剛体振り子測定における140℃での対数減衰率ΔEが0.25以下である、蓄電デバイス用外装材。
項2. 前記アルミニウム合金箔の組成は、Mn:0.1質量%以下を満たす、項1に記載の蓄電デバイス用外装材。
項3. 前記アルミニウム合金箔の組成は、Si:0.5質量%以下を満たす、項1または2に記載の蓄電デバイス用外装材。
項4. 前記アルミニウム合金箔は、JIS Z2241:2011の規定に準拠して、JIS5号試験片について測定される、引張強さが100MPa以上であり、破断伸びが10%以上である、項1~3のいずれか1項に記載の蓄電デバイス用外装材。
項5. 前記第1熱融着性樹脂層の厚みが、5μm以上25μm以下である、項1~4のいずれか1項に記載の蓄電デバイス用外装材。
項6. 前記積層体の前記第1熱融着性樹脂層同士を対向させ、温度190℃、面圧2.0MPa、時間3秒間の条件で積層方向に加熱加圧した後において、前記対向させた2つの前記第1熱融着性樹脂層の合計厚さの残存割合が30%以上である、項1~5のいずれか1項に記載の蓄電デバイス用外装材。
項7. 前記第1熱融着性樹脂層を構成する樹脂が、ポリオレフィン骨格を含む、項1~6のいずれか1項に記載の蓄電デバイス用外装材。
項8. 前記バリア層と前記熱融着性樹脂層との間に、接着層を備えている、項1~7のいずれか1項に記載の蓄電デバイス用外装材。
項9. 前記接着層と前記熱融着性樹脂層の合計厚みが、50μm以上である、項8に記載の蓄電デバイス用外装材。
項10. 前記接着層の厚みが、前記第1熱融着性樹脂層の厚み以上である、項8又は9に記載の蓄電デバイス用外装材。
項11. 前記熱融着性樹脂層が、前記積層体の表面側から順に、前記第1熱融着性樹脂層及び第2熱融着性樹脂層を備えており、
前記第2熱融着性樹脂層の厚みが、前記接着層の厚み以上である、項8~10のいずれか1項に記載の蓄電デバイス用外装材。
項12. 前記第2熱融着性樹脂層の厚みが、前記第1熱融着性樹脂層の厚みよりも大きい、項8~11のいずれか1項に記載の蓄電デバイス用外装材。
項13. 前記接着層の厚さが、50μm以下である、項8~12のいずれか1項に記載の蓄電デバイス用外装材。
項14. 前記第1熱融着性樹脂層の表面に滑剤が存在している、項1~13のいずれか1項に記載の蓄電デバイス用外装材。
項15. 前記アルミニウム合金箔は、後方散乱電子回折法により測定される単位面積あたりの大角粒界の長さL1と小角粒界の長さL2との比が、L1/L2>3.0の関係を充足する、項1~14のいずれか1項に記載の蓄電デバイス用外装材。
項16. 前記アルミニウム合金箔の組成は、Mg:0.1質量%以上1.5質量%以下を満たし、
前記アルミニウム合金箔の少なくとも一方の表面に5.0原子パーセント以上のMgを含み、かつ、前記アルミニウム合金箔の少なくとも一方の表面に厚みが80Å以上の酸化皮膜を有する、項15に記載の蓄電デバイス用外装材。
項17. 前記アルミニウム合金箔の組成は、Mg:0.1質量%以上1.5質量%以下を満たし、
前記アルミニウム合金箔は、引張強さが110MPa以上180MPa以下、破断伸び10%以上である、項15または16に記載の蓄電デバイス用外装材。
項18. 前記アルミニウム合金箔の組成は、Mg:1.5質量%超5.0質量%以下を満たし、
前記アルミニウム合金箔の少なくとも一方の表面に15.0原子パーセント以上のMgを含み、かつ、前記アルミニウム合金箔の少なくとも一方の表面に厚みが120Å以上の酸化皮膜を有する、項15に記載の蓄電デバイス用外装材。
項19. 前記アルミニウム合金箔の組成は、Mg:1.5質量%超5.0質量%以下を満たし、
前記アルミニウム合金箔は、引張強さが180MPa以上、破断伸び15%以上である、項15または18に記載の蓄電デバイス用外装材。
項20. 前記アルミニウム合金箔は、集合組織のCopper方位、R方位のそれぞれの方位密度が15以下である、項15~19のいずれか1項に記載の蓄電デバイス用外装材。
項21. 前記アルミニウム合金箔は、平均結晶粒径が25μm以下である、項15~20のいずれか1項に記載の蓄電デバイス用外装材。
項22. 前記アルミニウム合金箔は、不可避不純物中としてMn:0.1質量%以下を含む、項15~21のいずれか1項に記載の蓄電デバイス用外装材。
項23. 前記アルミニウム合金箔の組成は、Si:0.5質量%以下を満たす、項15~22のいずれか1項に記載の蓄電デバイス用外装材。
項24. 少なくとも正極、負極、及び電解質を備えた蓄電デバイス素子が、項1~23のいずれか1項に記載の蓄電デバイス用外装材により形成された包装体中に収容されている、蓄電デバイス。
項25. 少なくとも、基材層、バリア層、及び熱融着性樹脂層がこの順となるように積層して積層体を得る工程を備えており、
前記バリア層は、Fe:0.2質量%以上2.0質量%以下、Mg:0.1質量%以上5.0質量%以下の組成を満たすアルミニウム合金箔を含み、
前記熱融着性樹脂層は、単層又は複層により構成されており、
前記熱融着性樹脂層のうち、前記積層体の表面を構成している第1熱融着性樹脂層は、剛体振り子測定における140℃での対数減衰率ΔEが0.25以下である、蓄電デバイス用外装材の製造方法。
1 基材層
2 接着剤層
3 バリア層
4 熱融着性樹脂層
5 接着層
6 表面被覆層
10 蓄電デバイス用外装材
41 第1熱融着性樹脂層
42 第2熱融着性樹脂層

Claims (33)

  1. 少なくとも、基材層、バリア層、及び熱融着性樹脂層をこの順に備える積層体から構成されており、
    前記バリア層は、Fe:1.0質量%以上2.0質量%以下、Mg:0.1質量%以上5.0質量%以下の組成を満たすアルミニウム合金箔を含み、
    前記アルミニウム合金箔は、Si、Fe、Mg、及びAl以外の他の成分が、個々に0.10質量%以下かつ合計で0.40質量%以下であり、
    前記熱融着性樹脂層は、単層又は複層により構成されており、
    前記熱融着性樹脂層のうち、前記積層体の表面を構成している第1熱融着性樹脂層は、剛体振り子測定における140℃での対数減衰率ΔEが0.25以下である、蓄電デバイス用外装材。
  2. 少なくとも、基材層、バリア層、及び熱融着性樹脂層をこの順に備える積層体から構成されており、
    前記バリア層は、Fe:0.2質量%以上2.0質量%以下、Mg:0.1質量%以上5.0質量%以下の組成を満たすアルミニウム合金箔を含み、
    前記アルミニウム合金箔は、Si、Fe、Mg、及びAl以外の他の成分が、個々に0.10質量%以下かつ合計で0.40質量%以下であり、
    前記熱融着性樹脂層は、単層又は複層により構成されており、
    前記熱融着性樹脂層のうち、前記積層体の表面を構成している第1熱融着性樹脂層は、剛体振り子測定における140℃での対数減衰率ΔEが0.25以下であり、
    前記アルミニウム合金箔は、後方散乱電子回折法により測定される単位面積あたりの大角粒界の長さL1と小角粒界の長さL2との比が、L1/L2>3.0の関係を充足し、
    前記アルミニウム合金箔の組成は、Mg:0.1質量%以上1.5質量%以下を満たし、
    前記アルミニウム合金箔の少なくとも一方の表面に5.0原子パーセント以上のMgを含み、かつ、前記アルミニウム合金箔の少なくとも一方の表面に厚みが80Å以上の酸化皮膜を有する、蓄電デバイス用外装材。
  3. 少なくとも、基材層、バリア層、及び熱融着性樹脂層をこの順に備える積層体から構成されており、
    前記バリア層は、Fe:0.2質量%以上2.0質量%以下、Mg:0.1質量%以上5.0質量%以下の組成を満たすアルミニウム合金箔を含み、
    前記アルミニウム合金箔は、Si、Fe、Mg、及びAl以外の他の成分が、個々に0.10質量%以下かつ合計で0.40質量%以下であり、
    前記熱融着性樹脂層は、単層又は複層により構成されており、
    前記熱融着性樹脂層のうち、前記積層体の表面を構成している第1熱融着性樹脂層は、剛体振り子測定における140℃での対数減衰率ΔEが0.25以下であり、
    前記アルミニウム合金箔は、後方散乱電子回折法により測定される単位面積あたりの大角粒界の長さL1と小角粒界の長さL2との比が、L1/L2>3.0の関係を充足し、
    前記アルミニウム合金箔の組成は、Mg:0.1質量%以上1.5質量%以下を満たし、
    前記アルミニウム合金箔は、引張強さが110MPa以上180MPa以下、破断伸びが10%以上である、蓄電デバイス用外装材。
  4. 少なくとも、基材層、バリア層、及び熱融着性樹脂層をこの順に備える積層体から構成されており、
    前記バリア層は、Fe:0.2質量%以上2.0質量%以下、Mg:0.1質量%以上5.0質量%以下の組成を満たすアルミニウム合金箔を含み、
    前記アルミニウム合金箔は、Si、Fe、Mg、及びAl以外の他の成分が、個々に0.10質量%以下かつ合計で0.40質量%以下であり、
    前記熱融着性樹脂層は、単層又は複層により構成されており、
    前記熱融着性樹脂層のうち、前記積層体の表面を構成している第1熱融着性樹脂層は、剛体振り子測定における140℃での対数減衰率ΔEが0.25以下であり、
    前記アルミニウム合金箔は、後方散乱電子回折法により測定される単位面積あたりの大角粒界の長さL1と小角粒界の長さL2との比が、L1/L2>3.0の関係を充足し、
    前記アルミニウム合金箔の組成は、Mg:1.5質量%超5.0質量%以下を満たし、
    前記アルミニウム合金箔の少なくとも一方の表面に15.0原子パーセント以上のMgを含み、かつ、前記アルミニウム合金箔の少なくとも一方の表面に厚みが120Å以上の酸化皮膜を有する、蓄電デバイス用外装材。
  5. 少なくとも、基材層、バリア層、及び熱融着性樹脂層をこの順に備える積層体から構成されており、
    前記バリア層は、Fe:0.2質量%以上2.0質量%以下、Mg:0.1質量%以上5.0質量%以下の組成を満たすアルミニウム合金箔を含み、
    前記アルミニウム合金箔は、Si、Fe、Mg、及びAl以外の他の成分が、個々に0.10質量%以下かつ合計で0.40質量%以下であり、
    前記熱融着性樹脂層は、単層又は複層により構成されており、
    前記熱融着性樹脂層のうち、前記積層体の表面を構成している第1熱融着性樹脂層は、剛体振り子測定における140℃での対数減衰率ΔEが0.25以下であり、
    前記アルミニウム合金箔は、後方散乱電子回折法により測定される単位面積あたりの大角粒界の長さL1と小角粒界の長さL2との比が、L1/L2>3.0の関係を充足し、
    前記アルミニウム合金箔は、集合組織のCopper方位、R方位のそれぞれの方位密度が15以下である、蓄電デバイス用外装材。
  6. 前記アルミニウム合金箔の組成は、Mn:0.1質量%以下を満たす、請求項1~5のいずれか1項に記載の蓄電デバイス用外装材。
  7. 前記アルミニウム合金箔の組成は、Si:0.5質量%以下を満たす、請求項1~5のいずれか1項に記載の蓄電デバイス用外装材。
  8. 前記アルミニウム合金箔は、JIS Z2241:2011の規定に準拠して、JIS5号試験片について測定される、引張強さが100MPa以上であり、破断伸びが10%以上である、請求項1~5のいずれか1項に記載の蓄電デバイス用外装材。
  9. 前記第1熱融着性樹脂層の厚みが、5μm以上25μm以下である、請求項1~5のいずれか1項に記載の蓄電デバイス用外装材。
  10. 前記積層体の前記第1熱融着性樹脂層同士を対向させ、温度190℃、面圧2.0MPa、時間3秒間の条件で積層方向に加熱加圧した後において、前記対向させた2つの前記第1熱融着性樹脂層の合計厚さの残存割合が30%以上である、請求項1~5のいずれか1項に記載の蓄電デバイス用外装材。
  11. 前記第1熱融着性樹脂層を構成する樹脂が、ポリオレフィン骨格を含む、請求項1~5のいずれか1項に記載の蓄電デバイス用外装材。
  12. 前記バリア層と前記熱融着性樹脂層との間に、接着層を備えている、請求項1~5のいずれか1項に記載の蓄電デバイス用外装材。
  13. 前記接着層と前記熱融着性樹脂層の合計厚みが、50μm以上である、請求項12に記載の蓄電デバイス用外装材。
  14. 前記接着層の厚みが、前記第1熱融着性樹脂層の厚み以上である、請求項12に記載の蓄電デバイス用外装材。
  15. 前記熱融着性樹脂層が、前記積層体の表面側から順に、前記第1熱融着性樹脂層及び第2熱融着性樹脂層を備えており、
    前記第2熱融着性樹脂層の厚みが、前記接着層の厚み以上である、請求項12に記載の蓄電デバイス用外装材。
  16. 前記第2熱融着性樹脂層の厚みが、前記第1熱融着性樹脂層の厚みよりも大きい、請求項15に記載の蓄電デバイス用外装材。
  17. 前記接着層の厚さが、50μm以下である、請求項12に記載の蓄電デバイス用外装材。
  18. 前記第1熱融着性樹脂層の表面に滑剤が存在している、請求項1~5のいずれか1項に記載の蓄電デバイス用外装材。
  19. 前記アルミニウム合金箔は、後方散乱電子回折法により測定される単位面積あたりの大角粒界の長さL1と小角粒界の長さL2との比が、L1/L2>3.0の関係を充足する、請求項1に記載の蓄電デバイス用外装材。
  20. 前記アルミニウム合金箔の組成は、Mg:0.1質量%以上1.5質量%以下を満たし、
    前記アルミニウム合金箔の少なくとも一方の表面に5.0原子パーセント以上のMgを含み、かつ、前記アルミニウム合金箔の少なくとも一方の表面に厚みが80Å以上の酸化皮膜を有する、請求項1,3,4,又は5に記載の蓄電デバイス用外装材。
  21. 前記アルミニウム合金箔の組成は、Mg:0.1質量%以上1.5質量%以下を満たし、
    前記アルミニウム合金箔は、引張強さが110MPa以上180MPa以下、破断伸びが10%以上である、請求項1,2,4,又は5に記載の蓄電デバイス用外装材。
  22. 前記アルミニウム合金箔の組成は、Mg:1.5質量%超5.0質量%以下を満たし、
    前記アルミニウム合金箔の少なくとも一方の表面に15.0原子パーセント以上のMgを含み、かつ、前記アルミニウム合金箔の少なくとも一方の表面に厚みが120Å以上の酸化皮膜を有する、請求項1,2,3,又は5に記載の蓄電デバイス用外装材。
  23. 前記アルミニウム合金箔の組成は、Mg:1.5質量%超5.0質量%以下を満たし、
    前記アルミニウム合金箔は、引張強さが180MPa以上、破断伸びが15%以上である、請求項2~5,19のいずれか1項に記載の蓄電デバイス用外装材。
  24. 前記アルミニウム合金箔は、集合組織のCopper方位、R方位のそれぞれの方位密度が15以下である、請求項2~5,19のいずれか1項に記載の蓄電デバイス用外装材。
  25. 前記アルミニウム合金箔は、平均結晶粒径が25μm以下である、請求項2~5のいずれか1項に記載の蓄電デバイス用外装材。
  26. 前記アルミニウム合金箔は、不可避不純物としてMn:0.1質量%以下を含む、請求項2~5,19のいずれか1項に記載の蓄電デバイス用外装材。
  27. 前記アルミニウム合金箔の組成は、Si:0.5質量%以下を満たす、請求項2~5,19のいずれか1項に記載の蓄電デバイス用外装材。
  28. 少なくとも正極、負極、及び電解質を備えた蓄電デバイス素子が、請求項1~5のいずれか1項に記載の蓄電デバイス用外装材により形成された包装体中に収容されている、蓄電デバイス。
  29. 少なくとも、基材層、バリア層、及び熱融着性樹脂層がこの順となるように積層して積層体を得る工程を備えており、
    前記バリア層は、Fe:1.0質量%以上2.0質量%以下、Mg:0.1質量%以上5.0質量%以下の組成を満たすアルミニウム合金箔を含み、
    前記アルミニウム合金箔は、Si、Fe、Mg、及びAl以外の他の成分が、個々に0.10質量%以下かつ合計で0.40質量%以下であり、
    前記熱融着性樹脂層は、単層又は複層により構成されており、
    前記熱融着性樹脂層のうち、前記積層体の表面を構成している第1熱融着性樹脂層は、剛体振り子測定における140℃での対数減衰率ΔEが0.25以下である、蓄電デバイス用外装材の製造方法。
  30. 少なくとも、基材層、バリア層、及び熱融着性樹脂層がこの順となるように積層して積層体を得る工程を備えており、
    前記バリア層は、Fe:0.2質量%以上2.0質量%以下、Mg:0.1質量%以上5.0質量%以下の組成を満たすアルミニウム合金箔を含み、
    前記アルミニウム合金箔は、Si、Fe、Mg、及びAl以外の他の成分が、個々に0.10質量%以下かつ合計で0.40質量%以下であり、
    前記熱融着性樹脂層は、単層又は複層により構成されており、
    前記熱融着性樹脂層のうち、前記積層体の表面を構成している第1熱融着性樹脂層は、剛体振り子測定における140℃での対数減衰率ΔEが0.25以下であり、
    前記アルミニウム合金箔は、後方散乱電子回折法により測定される単位面積あたりの大角粒界の長さL1と小角粒界の長さL2との比が、L1/L2>3.0の関係を充足し、
    前記アルミニウム合金箔の組成は、Mg:0.1質量%以上1.5質量%以下を満たし、
    前記アルミニウム合金箔の少なくとも一方の表面に5.0原子パーセント以上のMgを含み、かつ、前記アルミニウム合金箔の少なくとも一方の表面に厚みが80Å以上の酸化皮膜を有する、蓄電デバイス用外装材の製造方法。
  31. 少なくとも、基材層、バリア層、及び熱融着性樹脂層がこの順となるように積層して積層体を得る工程を備えており、
    前記バリア層は、Fe:0.2質量%以上2.0質量%以下、Mg:0.1質量%以上5.0質量%以下の組成を満たすアルミニウム合金箔を含み、
    前記アルミニウム合金箔は、Si、Fe、Mg、及びAl以外の他の成分が、個々に0.10質量%以下かつ合計で0.40質量%以下であり、
    前記熱融着性樹脂層は、単層又は複層により構成されており、
    前記熱融着性樹脂層のうち、前記積層体の表面を構成している第1熱融着性樹脂層は、剛体振り子測定における140℃での対数減衰率ΔEが0.25以下であり、
    前記アルミニウム合金箔は、後方散乱電子回折法により測定される単位面積あたりの大角粒界の長さL1と小角粒界の長さL2との比が、L1/L2>3.0の関係を充足し、
    前記アルミニウム合金箔の組成は、Mg:0.1質量%以上1.5質量%以下を満たし、
    前記アルミニウム合金箔は、引張強さが110MPa以上180MPa以下、破断伸びが10%以上である、蓄電デバイス用外装材の製造方法。
  32. 少なくとも、基材層、バリア層、及び熱融着性樹脂層がこの順となるように積層して積層体を得る工程を備えており、
    前記バリア層は、Fe:0.2質量%以上2.0質量%以下、Mg:0.1質量%以上5.0質量%以下の組成を満たすアルミニウム合金箔を含み、
    前記アルミニウム合金箔は、Si、Fe、Mg、及びAl以外の他の成分が、個々に0.10質量%以下かつ合計で0.40質量%以下であり、
    前記熱融着性樹脂層は、単層又は複層により構成されており、
    前記熱融着性樹脂層のうち、前記積層体の表面を構成している第1熱融着性樹脂層は、剛体振り子測定における140℃での対数減衰率ΔEが0.25以下であり、
    前記アルミニウム合金箔は、後方散乱電子回折法により測定される単位面積あたりの大角粒界の長さL1と小角粒界の長さL2との比が、L1/L2>3.0の関係を充足し、
    前記アルミニウム合金箔の組成は、Mg:1.5質量%超5.0質量%以下を満たし、
    前記アルミニウム合金箔の少なくとも一方の表面に15.0原子パーセント以上のMgを含み、かつ、前記アルミニウム合金箔の少なくとも一方の表面に厚みが120Å以上の酸化皮膜を有する、蓄電デバイス用外装材の製造方法。
  33. 少なくとも、基材層、バリア層、及び熱融着性樹脂層がこの順となるように積層して積層体を得る工程を備えており、
    前記バリア層は、Fe:0.2質量%以上2.0質量%以下、Mg:0.1質量%以上5.0質量%以下の組成を満たすアルミニウム合金箔を含み、
    前記アルミニウム合金箔は、Si、Fe、Mg、及びAl以外の他の成分が、個々に0.10質量%以下かつ合計で0.40質量%以下であり、
    前記熱融着性樹脂層は、単層又は複層により構成されており、
    前記熱融着性樹脂層のうち、前記積層体の表面を構成している第1熱融着性樹脂層は、剛体振り子測定における140℃での対数減衰率ΔEが0.25以下であり、
    前記アルミニウム合金箔は、後方散乱電子回折法により測定される単位面積あたりの大角粒界の長さL1と小角粒界の長さL2との比が、L1/L2>3.0の関係を充足し、
    前記アルミニウム合金箔は、集合組織のCopper方位、R方位のそれぞれの方位密度が15以下である、蓄電デバイス用外装材の製造方法。
JP2022577312A 2021-06-29 2022-06-29 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス Active JP7276632B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023071743A JP2023109762A (ja) 2021-06-29 2023-04-25 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2021108024 2021-06-29
JP2021108024 2021-06-29
PCT/JP2022/026108 WO2023277109A1 (ja) 2021-06-29 2022-06-29 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023071743A Division JP2023109762A (ja) 2021-06-29 2023-04-25 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス

Publications (3)

Publication Number Publication Date
JPWO2023277109A1 JPWO2023277109A1 (ja) 2023-01-05
JP7276632B1 true JP7276632B1 (ja) 2023-05-18
JPWO2023277109A5 JPWO2023277109A5 (ja) 2023-06-07

Family

ID=84691895

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2022577312A Active JP7276632B1 (ja) 2021-06-29 2022-06-29 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス
JP2023071743A Pending JP2023109762A (ja) 2021-06-29 2023-04-25 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023071743A Pending JP2023109762A (ja) 2021-06-29 2023-04-25 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス

Country Status (5)

Country Link
EP (1) EP4366042A1 (ja)
JP (2) JP7276632B1 (ja)
KR (1) KR20240024792A (ja)
CN (1) CN117581414A (ja)
WO (1) WO2023277109A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020085462A1 (ja) * 2018-10-24 2020-04-30 大日本印刷株式会社 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス
WO2020085189A1 (ja) * 2018-10-24 2020-04-30 大日本印刷株式会社 アルミニウム合金箔、蓄電デバイス用外装材、その製造方法、及び蓄電デバイス
JP2021075778A (ja) * 2018-12-26 2021-05-20 三菱アルミニウム株式会社 電池用の包材用アルミニウム合金箔

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005163077A (ja) 2003-12-01 2005-06-23 Mitsubishi Alum Co Ltd 包装材用高成形性アルミニウム箔及びその製造方法
JP4380728B2 (ja) 2007-05-16 2009-12-09 ソニー株式会社 積層型包装材料、電池用外装部材および電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020085462A1 (ja) * 2018-10-24 2020-04-30 大日本印刷株式会社 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス
WO2020085189A1 (ja) * 2018-10-24 2020-04-30 大日本印刷株式会社 アルミニウム合金箔、蓄電デバイス用外装材、その製造方法、及び蓄電デバイス
JP2021075778A (ja) * 2018-12-26 2021-05-20 三菱アルミニウム株式会社 電池用の包材用アルミニウム合金箔

Also Published As

Publication number Publication date
JPWO2023277109A1 (ja) 2023-01-05
KR20240024792A (ko) 2024-02-26
EP4366042A1 (en) 2024-05-08
WO2023277109A1 (ja) 2023-01-05
CN117581414A (zh) 2024-02-20
JP2023109762A (ja) 2023-08-08

Similar Documents

Publication Publication Date Title
JP7205547B2 (ja) アルミニウム合金箔、蓄電デバイス用外装材、その製造方法、及び蓄電デバイス
JP7036295B2 (ja) 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス
JP6555454B1 (ja) 電池用包装材料、その製造方法、電池及びアルミニウム合金箔
JP7104136B2 (ja) 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス
JP7151484B2 (ja) 電池用包装材料、その製造方法及び電池
WO2020085464A1 (ja) 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス
JP2023011625A (ja) 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス
JP7276632B1 (ja) 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス
JP7239083B1 (ja) 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス
US20230223620A1 (en) Outer packaging for electrical storage devices, method for manufacturing said outer packaging, and electrical storage device
JP2023005826A (ja) 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス
JP7279872B1 (ja) 蓄電デバイス、及び、蓄電デバイスの製造方法
JP7332072B1 (ja) 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス
JP7193046B1 (ja) 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス
WO2023058701A1 (ja) 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス
WO2021162059A1 (ja) 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221215

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221215

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20221215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230417

R150 Certificate of patent or registration of utility model

Ref document number: 7276632

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150