JP7262261B2 - 温度膨張弁、および、温度膨張弁を用いた冷凍サイクルシステム - Google Patents

温度膨張弁、および、温度膨張弁を用いた冷凍サイクルシステム Download PDF

Info

Publication number
JP7262261B2
JP7262261B2 JP2019054434A JP2019054434A JP7262261B2 JP 7262261 B2 JP7262261 B2 JP 7262261B2 JP 2019054434 A JP2019054434 A JP 2019054434A JP 2019054434 A JP2019054434 A JP 2019054434A JP 7262261 B2 JP7262261 B2 JP 7262261B2
Authority
JP
Japan
Prior art keywords
valve
port
microbubble
inlet
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019054434A
Other languages
English (en)
Other versions
JP2020153479A (ja
Inventor
到 関谷
一郎 大河原
和樹 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP2019054434A priority Critical patent/JP7262261B2/ja
Priority to CN202010147209.6A priority patent/CN111721038A/zh
Publication of JP2020153479A publication Critical patent/JP2020153479A/ja
Application granted granted Critical
Publication of JP7262261B2 publication Critical patent/JP7262261B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/12Sound

Description

本発明は、例えば、エアコン、冷凍機などの冷凍サイクルシステムの冷媒循環回路に用いられ、蒸発器の出口側温度に感応して弁開度を自動調整して、冷凍サイクルシステムの冷媒循環回路の過熱度を制御するために用いる温度膨張弁、および、温度膨張弁を用いた冷凍サイクルシステムに関する。
より詳細には、冷凍サイクルシステム、例えば、空気調和機の冷媒循環回路の蒸発器の出口側配管側に付設された感温筒からの感温圧力と、蒸発器の蒸発圧力との差圧に応じて、ダイヤフラムが軸方向に変形することによって、ダイヤフラムに連結された弁体部材が軸方向に移動して、弁部が弁ポートの開度を制御するように構成した温度膨張弁、および、温度膨張弁を用いた冷凍サイクルシステムに関する。
従来、温度膨張弁として、例えば、特許文献1(特開2012-229886号公報)に開示されるような温度膨張弁が提案されている。
すなわち、図12は、従来の温度膨張弁の縦断面図、図13は、図12の従来の温度膨張弁の上面図、図14は、従来の温度膨張弁が接続される冷凍サイクルシステムの冷媒循環回路の概略図である。
図14に示したように、冷凍サイクルシステムの冷媒循環回路101は、循環配管102の内部に、冷媒が流れるようになっている。そして、冷媒を圧縮する圧縮器104を備えており、この圧縮器104において、冷媒が圧縮されるようになっている。
圧縮器104を通過することによって圧縮された冷媒は、圧縮器104から凝縮器106に流れるように構成されている。そして、圧縮された冷媒は、凝縮器106内で凝縮液化されるようになっている。
この凝縮器106の出口側配管(二次配管)108は、温度膨張弁110の入口側配管(一次配管)112と接続されている。
この凝縮器106内で凝縮液化され冷媒は、凝縮器106の出口側配管108から、温度膨張弁110の入口側配管112を介して、温度膨張弁110に導入されるようになっている。
温度膨張弁110では、凝縮器106内で凝縮液化され、温度膨張弁110に導入された冷媒が、減圧(膨張)されるように構成されている。
また、温度膨張弁110の出口側配管(二次配管)114は、蒸発器116の入口配管118に接続されている。
そして、温度膨張弁110において減圧(膨張)された冷媒は、蒸発器116の入口配管118を介して、蒸発器116内に導入され、冷媒を蒸発気化されるようになっている。
この蒸発器116内で蒸発気化された冷媒は、蒸発器116の出口側配管120を介して、再び、圧縮器104に導入されて、圧縮器104において、冷媒が圧縮され、前述したように、冷媒循環回路101の循環配管102内を、図14において矢印で示した方向に、冷媒が循環されるようになっている。
ところで、図12~図14に示したように、蒸発器116の出口側配管120側には、出口側配管120に付設されるように、略円筒形状の感温筒122が設けられている。この感温筒122の内部には、例えば、冷媒循環回路101の循環配管102内を流れる冷媒と同じ冷媒が封入されている。
そして、感温筒122には、キャピラリチューブ124を介して、後述するように、温度膨張弁110のダイヤフラム装置126に連結されている。
一方、図12に示したように、温度膨張弁110は、例えば、金属製の略円筒形状の弁ハウジング128を備えている。
なお、以下では、図12において上方側を、「上側」、「上方」と言い、図12において下方側を、「下側」、「下方」と言う。また、図12において右側を、「右側」と言い、図12において左側を、「左側」と言う。
そして、弁ハウジング128には、その内部に、軸方向の略中央部分に、弁ポート130が形成され、この弁ポート130の周囲が、弁座132を形成している。
また、弁ハウジング128の弁ポート130と反対側(図12において上側)には、円筒形状の入口側弁室131が画成される、弁ハウジング上方壁134が形成されている。
この弁ハウジング上方壁134の一方側の側部(図12において右側)に開口するように、弁ハウジング上方壁134には、入口側ポート136が形成されている。この入口側ポート136には、入口側継手部材を構成する入口側配管(一次配管)112が連結されている。
そして、入口側配管112は、凝縮器106の出口側配管108に連通するように連結されている。
一方、弁ハウジング128の弁ポート130側(図12において下側)には、円筒形状の出口側弁室138が画成される、弁ハウジング下方壁140が形成されている。
この弁ハウジング下方壁140の他方側の側部(図12において左側)に開口するように、弁ハウジング下方壁140には、出口側ポート142が形成されている。この出口側ポート142には、出口側継手部材を構成する出口側配管(二次配管)114が連結されている。
そして、この出口側配管114は、蒸発器116の入口配管118に連通するように連結されている。
従って、弁ポート130が、入口側ポート136と出口側ポート142との中間位置に、弁ハウジング128に形成されていることになる。
また、図12に示したように、弁ハウジング128の弁ハウジング上方壁134内には、弁ハウジング上方壁134がガイド面を構成するように、弁体部材144が、軸方向に移動(摺動)可能なように装着されている。
この弁体部材144は、摺動部を構成する大径の弁軸部材本体146を備えており、この弁軸部材本体146が、弁ハウジング上方壁134の内面を摺動するように構成されている。
また、弁軸部材本体146の弁ポート130側(図12において下側)には、弁軸部材本体146よりも小径の弁棒部材148が形成されている。そして、この弁棒部材148の外周と、弁ハウジング上方壁134との間の隙間に、前述した入口側弁室131が画成されるように構成されている。
一方、弁棒部材148の弁ポート130側(図12において下側)の端部には、弁ポート130を貫通して、弁ポート130よりも大径の弁部150が形成されている。
この弁部150の肩部面152と、弁ポート130の周囲に形成された弁座132とが、後述するように、離接することによって、開度(絞り)が制御されるように構成されている。
また、弁ハウジング128の弁ハウジング上方壁134には、弁ポート130と反対側(図12において上側)の端部に、開口部154が形成されており、この開口部154を閉塞するように、ダイヤフラム装置126が連結されるように装着されている。
すなわち、弁ハウジング128の開口部154の外周には、雄ネジ158が形成されている。
ダイヤフラム装置126の下蓋部材160の下側の円筒形状の装着部162の内周には、弁ハウジング128の雄ネジ158に対応して、雌ネジ164が形成されている。
これにより、ダイヤフラム装置126の下蓋部材160が、これらの弁ハウジング128の雄ネジ158に、下蓋部材160の雌ネジ164を螺着することによって、弁ハウジング128の上端部に装着されている、
一方、ダイヤフラム装置126は、下蓋部材160と対向するように、上蓋部材166が、下蓋部材160のフランジ部160aと上蓋部材166のフランジ部166aを固着することによって、ダイヤフラム装置126が構成されている。
そして、図12に示したように、下蓋部材160のフランジ部160aと上蓋部材166のフランジ部166aとの間に、ダイヤフラム168のフランジ部168aが挟着固定されている。
このダイヤフラム168を介して、ダイヤフラム装置126の上側には、上蓋部材166とダイヤフラム168によって囲まれた受圧室170が形成されている。
一方、ダイヤフラム装置126の下側には、下蓋部材160とダイヤフラム168によって囲まれた均圧室172が形成されている。
そして、上蓋部材166には、受圧室170に連通するように、キャピラリチューブ124が装着されており、このキャピラリチューブ124を介して、感温筒122に連結されている。
一方、弁軸部材本体146の弁ポート130と反対側(図12において上側)の先端には、ニードル部174が形成されている。
このニードル部174が、ダイヤフラム168の下方に固着された当接部材176の中央の当接穴部176a内に、ニードル部174の段部174aが、当接部材176の下方に延設された延設部176bに当接するように挿着されている。
また、ニードル部174の段部174aの外周には、押さえ部材178を介して、リング形状のシール部材180が介装されている。
このシール部材180を介して、ダイヤフラム装置126の下側に形成された均圧室172と、弁ハウジング128の入口側弁室131とが、気密に分離されている。
また、図示しないが、弁ハウジング上方壁134には、軸方向に延びるように、均圧路が形成され、この均圧路の一端が、ダイヤフラム装置126の下側に形成された均圧室172と連通している。
そして、この均圧路の他端が、図12~図14に示したように、弁ハウジング上方壁134の図12において手前側(図13において下側)に連結された均圧配管182に連通されている。
この均圧配管182は、図14に示したように、均圧経路184を介して、蒸発器116の出口側配管120に連結されている。
一方、弁ハウジング128の弁ハウジング下方壁140の下側に形成された取付け穴186には、過熱度設定部188が取り付けられるようになっている。
すなわち、過熱度設定部188は、調整スピンドル190を備えており、この調整スピンドル190の基端部192の外周に形成された雄ネジ192aと、弁ハウジング下方壁140の内周に形成された雌ネジ140aを螺合することによって、調整スピンドル190が軸方向に移動できるように構成されている。
また、図12に示したように、調整スピンドル190の上方の中央部分には、調整バネ収容凹部191が形成されている。一方、弁体部材144の弁部150の下端には、当接部150aが突設形成されている。
この弁部150の下端の当接部150aに当接するように、皿形状のリテーナー194が、調整スピンドル190の調整バネ収容凹部191との間に、圧縮状態の調整バネ196が介装されている。
一方、調整スピンドル190の上端には、シール部材を構成するOリング部材198が介装されている。このOリング部材198を介して、出口側弁室138と、取付け穴186の外部が気密に保持されるように構成されている。
このように構成することによって、調整バネ196のバネ力により、弁体部材144の弁部150が、弁ポート130を閉止(閉じる)方向に付勢されている。すなわち、弁部150の肩部面152と、弁ポート130の周囲に形成された弁座132とが、当接することによって、弁閉状態となるように構成されている。
そして、弁軸部材本体146の上方側の先端に形成されたニードル部174、ダイヤフラム168の下方に固着された当接部材176を介して、ダイヤフラム168が上方側に付勢されるように構成されている。
そして、調整スピンドル190を回して、調整スピンドル190を軸方向に上下に移動させることによって、調整バネ196のバネ力が調整されて、弁体部材144の弁部150への付勢力が調整されるように構成されている。
一方、取付け穴186には、調整スピンドル190の脱落を防止する止め輪部材200が取り付けられている。
また、取付け穴186の下端部の開口周辺には、リング状の凹部186aが形成され、凹部186aよりも、軸方向の上方側の内側周囲には、雌ネジ186bが形成されている。
凹部186a内には、例えば、ポリテトラフルオロエチレン(PTFE)製のリング状の封止部材202が配設されており、取付け穴186の下端部内には、蓋部材204が、その雄ネジ204aを、取付け穴186の雌ネジ186bに螺合することにより、取り付けられている。
これにより、蓋部材204を螺合することにより、封止部材202は僅かに押しつぶされて塑性変形し、凹部186a内に固着され、気密が保持されるように構成されている。
このように構成される従来の温度膨張弁110では、図14に示したように、ダイヤフラム装置126のダイヤフラム168を挟んで、下側に形成された均圧室172は、均圧配管182、均圧経路184を介して、蒸発器116の出口側配管120に連結されている。
従って、ダイヤフラム装置126の下側に形成された均圧室172内には、蒸発器116の出口側配管120の蒸発圧力が導入されるようになっている。
一方、ダイヤフラム装置126のダイヤフラム168を挟んで、上側に形成された受圧室170は、キャピラリチューブ124を介して、感温筒122に連結されている。
従って、受圧室170の内圧は、感温筒122によって感知された、蒸発器116の出口側配管120側の感知温度に応じて変化する感温圧力となっている。
そして、ダイヤフラム装置126のダイヤフラム168は、受圧室170内の感温圧力と、均圧室172内の蒸発器116の出口側配管120の蒸発圧力との圧力差(差圧)に応じて、軸方向に上下に変形することになる。
このダイヤフラム168の軸方向の変形が、ダイヤフラム168の下方に固着された当接部材176を介して、弁体部材144の弁軸部材本体146の上方側の先端に形成されたニードル部174を介して、弁軸部材本体146、弁棒部材148、弁部150に伝達されるように構成されている。
これにより、弁部150の肩部面152と、弁ポート130の周囲に形成された弁座132とが、離接することによって、開度(絞り)が制御されるように構成されている。
すなわち、温度膨張弁110は、蒸発器116の出口側配管120の感知温度が高くなると、弁部150が弁ポート130を開く(開放する)ように作用する。
逆に、蒸発器116の出口側配管120の感知温度が低くなると、弁部150が弁ポート130を閉じる(閉止する)ように作用するように構成されている。
また、蒸発器116における蒸発圧力が低くなると、弁部150が弁ポート130を開く(開放する)ように作用する。
逆に、蒸発器116における蒸発圧力が高くなると、弁部150が弁ポート130を閉じる(閉止する)ように作用するように構成されている。
これにより、感温筒122からの感温圧力と、蒸発器116の蒸発圧力との差圧に応じて、ダイヤフラム168が軸方向に変形することによって、ダイヤフラム168に連結された弁体部材144が軸方向に移動して、弁部150が弁ポート130の開度を制御するようになっている。
そして凝縮器106の出口側配管108から、入口側ポート136、弁ポート130、および、出口側ポート142を介して、蒸発器116の入口配管118に冷媒を流す開度を制御し、冷凍サイクル(空気調和機の冷媒循環回路101)の過熱度制御を行うように構成されている。
特開2012-229886号公報 特開2011-133139号公報
ところで、このような従来の温度膨張弁110では、凝縮器106内で凝縮液化された冷媒は、凝縮器106の出口側配管108から、温度膨張弁110の入口側配管112を介して、温度膨張弁110に導入されるようになっている。
しかしながら、温度膨張弁110に導入される冷媒中に、気泡が含まれている場合がある。その場合には、温度膨張弁110の入口側配管112を介して、温度膨張弁110に導入される冷媒中に含まれる気泡が、特に、弁体部材144の弁部150と、肩部面152と、弁ポート130の周囲に形成された弁座132とで形成される、絞り部を通過する際に、気泡が破裂して、騒音が生じ、静音性が阻害されることになる。
このため、特許文献2(特開2011-133139号公報)では、膨張弁において、騒音に低減を図るために、以下のような対策が提案されている。
図15は、特許文献2の膨張弁300を模式的に示す部分拡大断面図である。
図15に示したように、特許文献2の膨張弁300では、弁ケーシングを構成する弁本体302を備えている。また、圧縮器、凝縮器を通過することによって、圧縮、凝縮された高圧の冷媒が導入される入口ポート304を備えている。
さらに、弁本体302には、膨張弁300を通過することによって、減圧(膨張)された冷媒を、蒸発器に送り込むための出口ポート306が形成されている。
一方、弁本体302には、弁室308が形成されており、弁室308には、弁孔316の開度を制御するために、図示しないダイヤフラム装置のダイヤフラムの変形に伴って、軸方向に移動自在な弁部材312が設けられている。
そして、入口ポート304側に、多孔質金属体から成る細泡化部材314が設けられている。さらに、細泡化部材314の上流側に、例えば、プラスチックや金属などからなる網状のシートから構成される略円錐形状のストレーナ600が設けられている。
これにより、細泡化部材314によって、冷媒中に含まれる気泡が細分化されるとともに、整流された冷媒が、弁室308内に導入されるので、気泡の破裂に起因する騒音の発生を低減することができることが提案されている。
さらに、ストレーナ600を通過することによって、冷媒中の異物による多孔質金属体から成る細泡化部材314の目詰まりと、圧損の増大を抑制することが提案されている。
しかしながら、特許文献2の膨張弁300においては、冷媒が、網状のシートから構成される略円錐形状のストレーナ600、多孔質金属体から成る細泡化部材314を通過していくものである。
従って、膨張弁300の長年、長時間の使用で、冷媒中に含まれる異物が、細泡化部材314、ストレーナ600に堆積して目詰まりが発生して、冷媒の流路を閉塞して狭くなってしまい、圧損が生じて、流量制御特性に影響を及ぼすことになる。
その結果、冷凍サイクルシステム、例えば、空気調和機の空調効率が低下する原因にもつながることになってしまう。
本発明は、このような現状に鑑み、特許文献1に開示されたような、従来の温度膨張弁110において、長年、長時間の使用でも、冷媒中に含まれる気泡の細分化による騒音の低減が可能な温度膨張弁、および、温度膨張弁を用いた冷凍サイクルシステムを提供することを目的とする。
また、本発明は、特許文献1に開示されたような、従来の温度膨張弁110において、冷媒中に含まれる異物による、細泡化部材に堆積して目詰まりが発生するのを防止して、冷媒の流路を閉塞せず狭くならず、しかも、圧損が生じず、流量制御特性に影響を及ぼさない温度膨張弁、および、温度膨張弁を用いた冷凍サイクルシステムを提供することを目的とする。
本発明は、前述したような従来技術における課題及び目的を達成するために発明されたものであって、本発明の温度膨張弁は、
弁ハウジングとダイヤフラム装置とを備え、
前記弁ハウジングに、入口側ポートと出口側ポートを備え、
前記入口側ポートと出口側ポートを連通する弁室を、弁ハウジングに備え、
前記ダイヤフラム装置のダイヤフラムが、弁体部材の軸方向に変形することによって、
前記ダイヤフラムに連結された弁体部材が、弁ハウジング内で軸方向に移動して、
前記弁体部材と一体の弁部材が、弁ハウジング内部の弁室に備えられた弁ポートの開度を制御して、
前記入口側ポート、弁室、弁ポート、および、出口側ポートを介して、通過する冷媒の流量を調整するように構成され、
前記入口側ポートの開口部と対面する弁体部材の対面部分に、入口側ポートから導入される冷媒に含まれる気泡を細かくするための細泡化部材を備え、
前記弁室内において、細泡化部材の外周と弁ハウジングとが離間しており、
前記細泡化部材の外周と弁ハウジングとの間に、冷媒の通過する流路を備え
前記入口側ポートは前記軸方向の一方側に設けられ、
前記出口側ポートは前記軸方向の他方側に設けられ、
前記弁ポートは、前記入口側ポートと前記出口側ポートの間に設けられ、
前記弁室は、前記入口側ポートと前記弁ポートの間に設けられる円筒状の入口側弁室と、前記弁ポートと前記出口側ポートとの間に設けられる円筒状の出口側弁室と、を備え、
前記弁体部材は、前記入口側弁室から前記弁ポートを通って前記出口側弁室まで前記軸方向に延び、
前記細泡化部材の少なくとも一部は、前記弁ポートの開度に関わらず、前記入口側ポートにおける前記弁ポートに最も近い端縁の位置から前記弁ポートまでの前記軸方向の範囲内に位置し、
前記範囲内において、前記細泡化部材の外周の少なくとも一部と、前記弁ハウジングの内壁とが離間していることを特徴とする。
このように構成することによって、入口側ポートの開口部と対面する弁体部材の対面部分に、入口側ポートから導入される冷媒に含まれる気泡を細かくするための細泡化部材を備えている。
また、弁室内において、細泡化部材の外周と弁ハウジングとが離間しており、細泡化部材の外周と弁ハウジングとの間に、冷媒の通過する流路を備えている。
従って、入口側ポートから導入される冷媒中に含まれる気泡が、入口側ポートの開口部と対面する弁体部材の対面部分に備えられた細泡化部材に当接して、気泡が細分化されることになる。
しかも、細泡化部材の入口側ポートの開口部と対面する側の背面側には、多孔性ではない(すなわち、流体である冷媒を通過させない)中実の弁体部材が存在するので、細泡化部材を貫通することなく、弁ポート側に案内されることになる。
従って、長年、長時間の使用でも、冷媒中に含まれる気泡の細分化による騒音の低減が可能である。
また、細泡化部材の入口側ポートの開口部と対面する側の背面側には、多孔性ではない中実の弁体部材が存在するので、細泡化部材を貫通することがない。
従って、冷媒が細泡化部材を貫通しないので、細泡化部材に異物が堆積しにくく、仮に異物が堆積して細泡化部材が目詰まりした場合でも、冷媒の流路を閉塞することがない。
しかも、圧損が生じず、流量制御特性に影響を及ぼさない温度膨張弁を提供することができる。
また、本発明の温度膨張弁は、前記細泡化部材が、流体である冷媒が通過できない部材である弁体部材に密着状態で設けられていることを特徴とする。
このように構成することによって、細泡化部材が、流体である冷媒が通過できない部材である弁体部材に密着状態で設けられているので、冷媒が細泡化部材を貫通しないので、細泡化部材に異物が堆積しにくく、仮に異物が堆積して細泡化部材が目詰まりした場合でも、冷媒の流路を閉塞することがない。
また、本発明の温度膨張弁は、前記細泡化部材が、入口側ポートから流入した流体が、弁ポートに向かって流れる流路の一部または全部を閉塞する位置に配置されていないことを特徴とする。
このように構成することによって、前記細泡化部材が、入口側ポートから流入した流体が、弁ポートに向かって流れる流路の一部または全部を閉塞する位置に配置されていないので、仮に異物が堆積して細泡化部材が目詰まりした場合でも、細泡化部材によって、冷媒の流路を閉塞することがない。
また、本発明の温度膨張弁は、前記細泡化部材が、弁開時から弁閉時のいずれの位置においても、入口側ポートの開口部を弁体部材の軸方向と直交する方向で弁体部材に向かって投影した投影位置に少なくとも一部が位置するように配置されていることを特徴とする。
このように構成することによって、細泡化部材が、弁開時から弁閉時のいずれの位置においても、入口側ポートの開口部を弁体部材の軸方向と直交する方向で弁体部材に向かって投影した投影位置に少なくとも一部が位置するように配置されているので、弁開時から弁閉時のいずれの位置においても、冷媒中に含まれる気泡の細分化による騒音の低減が可能である。
また、細泡化部材に異物が堆積しにくく、仮に異物が堆積して細泡化部材が目詰まりした場合でも、冷媒の流路を閉塞することがない。
しかも、圧損が生じず、流量制御特性に影響を及ぼさない温度膨張弁を提供することができる。
また、本発明の温度膨張弁は、前記細泡化部材が、弁開時から弁閉時のいずれの位置においても、前記入口側ポートの開口部を弁体部材の軸線方向と直交する方向に細泡化部材に向かって投影したときの投影範囲が、全て細泡化部材上に位置するように備えられていることを特徴とする。
このように構成することによって、前記細泡化部材が、弁開時から弁閉時のいずれの位置においても、前記入口側ポートの開口部を弁体部材の軸線方向と直交する方向に細泡化部材に向かって投影したときの投影範囲が、全て細泡化部材上に位置するように備えられているので、冷媒中に含まれる気泡の細分化が確実に行われ、騒音の低減が向上する。
また、細泡化部材に異物が堆積しにくく、仮に異物が堆積して細泡化部材が目詰まりした場合でも、冷媒の流路を閉塞することがない。
しかも、圧損が生じず、流量制御特性に影響を及ぼさない温度膨張弁を提供することができる。
また、本発明の温度膨張弁は、前記細泡化部材が、入口側ポートの開口部と対面する弁体部材の外周全周に設けられていることを特徴とする。
このように構成することによって、細泡化部材が、入口側ポートの開口部と対面する弁体部材の外周全周に設けられているので、弁作動に途中で、弁体部材が回転したとしても、細泡化部材が、常に入口側ポートの開口部と対面することになる。
これにより、入口側ポートから導入される冷媒中に含まれる気泡が、細泡化部材に確実に当接して、冷媒中に含まれる気泡の細分化が確実に行われ、騒音の低減が向上する。
また、細泡化部材に異物が堆積しにくく、仮に異物が堆積して細泡化部材が目詰まりした場合でも、冷媒の流路を閉塞することがない。
しかも、圧損が生じず、流量制御特性に影響を及ぼさない温度膨張弁を提供することができる。
さらに、細泡化部材の入口側ポートの開口部と対面する側の背面側には、多孔性ではない(すなわち、流体である冷媒を通過させない)中実の弁体部材が存在するので、細泡化部材を貫通することなく、弁ポート側に案内されることになる。
従って、長年、長時間の使用でも、冷媒中に含まれる気泡の細分化による騒音の低減が可能である。
また、細泡化部材の入口側ポートの開口部と対面する側の背面側には、多孔性ではない中実の弁体部材が存在するので、細泡化部材を貫通することがない。
従って、冷媒が細泡化部材を貫通しないので、細泡化部材に異物が堆積しにくく、仮に異物が堆積して細泡化部材が目詰まりした場合でも、冷媒の流路を閉塞することがない。
しかも、圧損が生じず、流量制御特性に影響を及ぼさない温度膨張弁を提供することができる。
また、本発明の温度膨張弁は、
前記弁体部材が、円筒状の細泡化部材の中央の開口部と、弁部材の中央の開口部に差し込まれて、
前記細泡化部材が、弁体部材と弁部材とによって挟持固定されていることを特徴とする。
このように構成することによって、細泡化部材が、弁体部材を円筒状の細泡化部材の中央の開口部と、弁部材の中央の開口部に差し込み、細泡化部材を弁体部材と弁部材とによって挟持固定されている。
従って、例えば、カシメ加工、ナット、ネジなどの締結部材、溶着などによって、細泡化部材を弁体部材と弁部材とによって挟持固定して、細泡化部材を安定して、入口側ポートと対面する位置に保持できる。
これにより、入口側ポートから導入される冷媒中に含まれる気泡が、細泡化部材に確実に当接して、冷媒中に含まれる気泡の細分化が確実に行われ、騒音の低減が向上する。
また、細泡化部材に異物が堆積しにくく、仮に異物が堆積して細泡化部材が目詰まりした場合でも、冷媒の流路を閉塞することがない。
しかも、圧損が生じず、流量制御特性に影響を及ぼさない温度膨張弁を提供することができる。
また、本発明の温度膨張弁は、前記細泡化部材が、弁体部材の外周部に位置するように配置し、外周側からリング状の取り付け部材によって固定されていることを特徴とする。
このように構成することによって、細泡化部材が、弁体部材の外周部に位置するように配置し、外周側からリング状の取り付け部材によって固定されているので、取付けが容易で、コストを低減できるとともに、弁体部材の外周部に、細泡化部材を安定して、入口側ポートの開口部と対面する位置に保持できる。
これにより、入口側ポートから導入される冷媒中に含まれる気泡が、細泡化部材に確実に当接して、冷媒中に含まれる気泡の細分化が確実に行われ、騒音の低減が向上する。
また、細泡化部材に異物が堆積しにくく、仮に異物が堆積して細泡化部材が目詰まりした場合でも、冷媒の流路を閉塞することがない。
しかも、圧損が生じず、流量制御特性に影響を及ぼさない温度膨張弁を提供することができる。
また、本発明の温度膨張弁は、前記細泡化部材の外周面が、細泡化部材の軸方向に対して、傾斜したテーパー面、または、曲線形状から構成され、入口側ポートから導入される冷媒の案内面になるように構成されていることを特徴とする。
このように構成することによって、細泡化部材の外周面が、細泡化部材の軸方向に対して、傾斜したテーパー面、または、曲線形状から構成され、入口側ポートから導入される冷媒の案内面になるように構成されているので、この案内面に沿って、冷媒が弁ポート側に案内されることになる。
これにより、入口側ポートから導入される冷媒中に含まれる気泡が、細泡化部材に確実に当接して、冷媒中に含まれる気泡の細分化が確実に行われ、騒音の低減が向上する。
また、細泡化部材に異物が堆積しにくく、仮に異物が堆積して細泡化部材が目詰まりした場合でも、冷媒の流路を閉塞することがない。
しかも、圧損が生じず、流量制御特性に影響を及ぼさない温度膨張弁を提供することができる。
また、本発明の冷凍サイクルシステムは、前述のいずれかに記載の温温度膨張弁を、冷凍サイクルシステムの冷媒循環回路の凝縮器と蒸発器との間に配管接続されたことを特徴とする。
このように構成することによって、本発明の温度膨張弁は、特許文献1に開示されたような、従来の温度膨張弁110において、長年、長時間の使用でも、冷媒中に含まれる気泡の細分化による騒音の低減が可能である温度膨張弁、および、温度膨張弁を用いた冷凍サイクルシステムを提供することができる。
また、本発明は、特許文献1に開示されたような、従来の温度膨張弁110において、入口側ポートから導入される冷媒中に含まれる気泡が、細泡化部材に確実に当接して、冷媒中に含まれる気泡の細分化が確実に行われ、騒音の低減が向上することができ、また、細泡化部材に異物が堆積しにくく、仮に異物が堆積して細泡化部材が目詰まりした場合でも、冷媒の流路を閉塞することがなく、しかも、圧損が生じず、流量制御特性に影響を及ぼさない温度膨張弁を提供する、および、温度膨張弁を用いた冷凍サイクルシステムを提供することが可能となる。
本発明によれば、入口側ポートの開口部と対面する弁体部材の対面部分に、入口側ポートから導入される冷媒に含まれる気泡を細かくするための細泡化部材を備えている。
また、弁室内において、細泡化部材の外周と弁ハウジングとが離間しており、細泡化部材の外周と弁ハウジングとの間に、冷媒の通過する流路を備えている。
従って、入口側ポートから導入される冷媒中に含まれる気泡が、入口側ポートの開口部と対面する弁体部材の対面部分に備えられた細泡化部材に当接して、気泡が細分化されることになる。
しかも、細泡化部材の入口側ポートの開口部と対面する側の背面側には、多孔性ではない(すなわち、流体である冷媒を通過させない)中実の弁体部材が存在するので、細泡化部材を貫通することなく、弁ポート側に案内されることになる。
従って、長年、長時間の使用でも、冷媒中に含まれる気泡の細分化による騒音の低減が可能である。
また、細泡化部材の入口側ポートの開口部と対面する側の背面側には、多孔性ではない中実の弁体部材が存在するので、細泡化部材を貫通することがない。
従って、冷媒が細泡化部材を貫通しないので、細泡化部材に異物が堆積しにくく、仮に異物が堆積して細泡化部材が目詰まりした場合でも、冷媒の流路を閉塞することがない。
しかも、圧損が生じず、流量制御特性に影響を及ぼさない温度膨張弁を提供することができる。
図1は、本発明の温度膨張弁10の縦断面図である。 図2は、図1の本発明の温度膨張弁10の上面図である。 図3は、本発明の温度膨張弁10が接続される空気調和機の冷媒循環回路の概略図である。 図4は、図1の本発明の温度膨張弁10の部分拡大断面図である。 図5は、図4のA-A線での断面図である。 図6は、本発明の別の実施例の温度膨張弁10の縦断面図である。 図7は、図6本発明の温度膨張弁10の部分拡大断面図である。 図8は、図6の実施例の温度膨張弁10の細泡化部材500の取付け・固定方法を説明する概略図であり、図8(A)は、正面図、図8(B)は、側面図、図8(C)は、図8(A)のB-B線での断面図である。 図9は、リング状の取り付け部材53を示す概略図であり、図9(A)は、正面図、図9(B)は、側面図、図9(C)は上面図である。 図10は、リング状の取り付け部材53の別の実施例を示す概略図であって、図10(A)は、正面図、図10(B)は、側面図である。 図11は、本発明の別の実施例の温度膨張弁10の細泡化部材500の別の実施例を示す細泡化部材500の軸線方向の断面を示す概略図である。 図12は、従来の温度膨張弁の縦断面図である。 図13は、図12の従来の温度膨張弁の上面図である。 図14は、従来の温度膨張弁が接続される空気調和機の冷媒循環回路の概略図である。 図15は、特許文献2の膨張弁300を模式的に示す部分拡大断面図である。
以下、本発明の実施の形態(実施例)を図面に基づいてより詳細に説明する。
(実施例1)
図1は、本発明の温度膨張弁10の縦断面図、図2は、図1の本発明の温度膨張弁10の上面図、図3は、本発明の温度膨張弁10が接続される空気調和機の冷媒循環回路の概略図、図4は、図1の本発明の温度膨張弁10の部分拡大断面図、図5は、図4のA-A線での断面図である。
図1においては、符号10は、全体で本発明の温度膨張弁を示している。
図3に示したように、冷凍サイクルシステム、例えば、空気調和機の冷媒循環回路101は、循環配管102の内部に、冷媒が流れるようになっている。そして、冷媒を圧縮する圧縮器104を備えており、この圧縮器104において、冷媒が圧縮されるようになっている。
圧縮器104を通過することによって圧縮された冷媒は、圧縮器104から凝縮器106に流れるように構成されている。そして、圧縮された冷媒は、凝縮器106内で凝縮液化されるようになっている。
この凝縮器106の出口側配管(二次配管)108は、温度膨張弁10の入口側配管(一次配管)12と接続されている。
この凝縮器106内で凝縮液化され冷媒は、凝縮器106の出口側配管108から、温度膨張弁10の入口側配管12を介して、温度膨張弁10に導入されるようになっている。
温度膨張弁10では、凝縮器106内で凝縮液化され、温度膨張弁10に導入された冷媒が、減圧(膨張)されるように構成されている。
また、温度膨張弁10の出口側配管(二次配管)14は、蒸発器116の入口配管118に接続されている。
そして、温度膨張弁10において減圧(膨張)された冷媒は、蒸発器116の入口配管118を介して、蒸発器116内に導入され、冷媒を蒸発気化されるようになっている。
この蒸発器116内で蒸発気化された冷媒は、蒸発器116の出口側配管120を介して、再び、圧縮器104に導入されて、圧縮器104において、冷媒が圧縮され、前述したように、冷媒循環回路101の循環配管102内を、図1において矢印で示した方向に、冷媒が循環されるようになっている。
ところで、図1~図3に示したように、蒸発器116の出口側配管120側には、出口側配管120に付設されるように、略円筒形状の感温筒122が設けられている。この感温筒122の内部には、例えば、冷媒循環回路101の循環配管102内を流れる冷媒と同じ冷媒が封入されている。
そして、感温筒122には、キャピラリチューブ124を介して、後述するように、温度膨張弁10のダイヤフラム装置26に連結されている。
一方、図1に示したように、温度膨張弁10は、例えば、金属製の略円筒形状の弁ハウジング28を備えている。
なお、以下では、図1において上方側を、「上側」、「上方」と言い、図1において下方側を、「下側」、「下方」と言う。また、図1において右側を、「右側」と言い、図1において左側を、「左側」と言う。
そして、弁ハウジング28には、その内部に、軸方向の略中央部分に、弁ポート30が形成され、この弁ポート30の周囲が、弁座32を形成している。
また、弁ハウジング28の弁ポート30と反対側(図1において上側)には、円筒形状の入口側弁室31が画成される、弁ハウジング上方壁34が形成されている。
この弁ハウジング上方壁34の一方側の側部(図1において右側)に開口するように、弁ハウジング上方壁34には、入口側ポート36が形成されている。この入口側ポート36には、入口側継手部材を構成する入口側配管(一次配管)12が連結されている。
そして、入口側配管12は、凝縮器106の出口側配管108に連通するように連結されている。
一方、弁ハウジング28の弁ポート30側(図1において下側)には、円筒形状の出口側弁室38が画成される、弁ハウジング下方壁40が形成されている。
この弁ハウジング下方壁40の他方側の側部(図1において左側)に開口するように、弁ハウジング下方壁40には、出口側ポート42が形成されている。この出口側ポート42には、出口側継手部材を構成する出口側配管(二次配管)14が連結されている。
そして、この出口側配管14は、蒸発器116の入口配管118に連通するように連結されている。
従って、弁ポート30が、入口側ポート36と出口側ポート42との中間位置に、弁ハウジング28に形成されていることになる。
また、図1に示したように、弁ハウジング28の弁ハウジング上方壁34内には、弁ハウジング上方壁34がガイド面を構成するように、弁体部材44が、軸方向に移動(摺動)可能なように装着されている。
この弁体部材44は、摺動部を構成する大径の弁軸部材本体46を備えており、この弁軸部材本体46が、弁ハウジング上方壁34の内面を摺動するように構成されている。
また、弁軸部材本体46の弁ポート30側(図1において下側)には、弁軸部材本体46よりも小径の弁棒部材48が設けられている。そして、この弁棒部材48の外周と、弁ハウジング上方壁34との間の隙間に、前述した入口側弁室31が画成されるように構成されている。
一方、弁棒部材48の弁ポート30側(図1において下側)の端部には、弁ポート30を貫通して、弁ポート30よりも大径の弁部材50が形成されている。
この弁部材50の肩部面52と、弁ポート30の周囲に形成された弁座32とが、後述するように、離接することによって、開度(絞り)が制御されるように構成されている。
また、弁ハウジング28の弁ハウジング上方壁34には、の弁ポート30と反対側(図1において上側)の端部に、開口部54が形成されており、この開口部54を閉塞するように、ダイヤフラム装置26が連結されるように装着されている。
すなわち、弁ハウジング28の開口部54の外周には、雄ネジ58が形成されている。
ダイヤフラム装置26の下蓋部材60の下側の円筒形状の装着部62の内周には、弁ハウジング28の雄ネジ58に対応して、雌ネジ64が形成されている。
これにより、ダイヤフラム装置26の下蓋部材60が、これらの弁ハウジング28の雄ネジ58に、下蓋部材60の雌ネジ64を螺着することによって、弁ハウジング28の上端部に気密に装着されている。
一方、ダイヤフラム装置26は、下蓋部材60と対向するように、上蓋部材66が、下蓋部材60のフランジ部60aと上蓋部材66のフランジ部66aを固着することによって、ダイヤフラム装置26が構成されている。
そして、図1に示したように、下蓋部材60のフランジ部60aと上蓋部材66のフランジ部66aとの間に、ダイヤフラム68のフランジ部68aが溶接によって、気密に固定されている。
このダイヤフラム68を介して、ダイヤフラム装置26の上側には、上蓋部材66とダイヤフラム68によって囲まれた受圧室70が形成されている。
一方、ダイヤフラム装置26の下側には、下蓋部材60とダイヤフラム68によって囲まれた均圧室72が形成されている。
そして、上蓋部材66には、受圧室70に連通するように、キャピラリチューブ124が装着されており、このキャピラリチューブ124を介して、感温筒122に連結されている。
一方、弁軸部材本体46の弁ポート30と反対側(図1において上側)の先端には、ニードル部74が形成されている。
このニードル部74が、ダイヤフラム68の下方に固着された当接部材76の中央の当接穴部76a内に、ニードル部74の段部74aが、当接部材76の下方に延設された延設部76bに当接するように挿着されている。
また、ニードル部74の段部74aの外周には、押さえ部材78を介して、リング形状のシール部材80が介装されている。
このシール部材80を介して、ダイヤフラム装置26の下側に形成された均圧室72と、弁ハウジング28の入口側弁室31とが、気密に分離されている。
また、図示しないが、弁ハウジング上方壁34には、軸方向に延びるように、均圧路が形成され、この均圧路の一端が、ダイヤフラム装置26の下側に形成された均圧室72と連通している。
そして、この均圧路の他端が、図1~図3に示したように、弁ハウジング上方壁34の図1において手前側(図2において下側)に連結された均圧配管82に連通されている。
この均圧配管82は、図2、図3に示したように、均圧経路84を介して、蒸発器116の出口側配管120に連結されている。
一方、弁ハウジング28の弁ハウジング下方壁40の下側に形成された取付け穴86には、過熱度設定部88が取り付けられるようになっている。
すなわち、過熱度設定部88は、調整スピンドル90を備えており、この調整スピンドル90の基端部92の外周に形成された雄ネジ92aと、弁ハウジング下方壁40の内周に形成された雌ネジ40aを螺合することによって、調整スピンドル90が軸方向に移動できるように構成されている。
また、図1に示したように、調整スピンドル90の上方の中央部分には、調整バネ収容凹部91が形成されている。一方、弁体部材44の弁部材50の下端には、当接部50a(この実施例の場合には、カシメ部)が突設形成されている。
この弁部材50の下端の当接部50aに当接するように、上方に突設する突設部を有する皿形状のリテーナー94が、調整スピンドル90の調整バネ収容凹部91との間に、圧縮状態の調整バネ96によって介装されている。
一方、調整スピンドル90の上端には、シール部材を構成するOリング部材98が介装されている。このOリング部材98を介して、出口側弁室38と、取付け穴86の外部が気密に保持されるように構成されている。
このように構成することによって、調整バネ96のバネ力により、弁体部材44の弁部材50が、弁ポート30を閉止(閉じる)方向(図1では上方向)に付勢されている。すなわち、弁部材50の肩部面52と、弁ポート30の周囲に形成された弁座32とが、当接することによって、弁閉状態となるように構成されている。
そして、弁軸部材本体46の上方側の先端に形成されたニードル部74、ダイヤフラム68の下方に固着された当接部材76を介して、ダイヤフラム68が上方側に付勢されるように構成されている。
そして、調整スピンドル90を回して、調整スピンドル90を軸方向に上下に移動させることによって、調整バネ96のバネ力が調整されて、弁体部材44の弁部材50への付勢力が調整されるように構成されている。
一方、取付け穴86には、調整スピンドル90の脱落を防止する止め輪部材21が取り付けられている。
また、取付け穴86の下端部の開口周辺には、リング状の凹部86aが形成され、凹部86aよりも、軸方向の上方側の内側周囲には、雌ネジ86bが形成されている。
凹部86a内には、例えば、ポリテトラフルオロエチレン(PTFE)製のリング状の封止部材22が配設されており、取付け穴86の下端部内には、蓋部材24が、その雄ネジ24aを、取付け穴86の雌ネジ86bに螺合することにより、取り付けられている。
これにより、蓋部材24を螺合することにより、封止部材22は僅かに押しつぶされて塑性変形し、凹部86a内に固着され、気密が保持されるように構成されている。
このように構成される本発明の温度膨張弁10では、図3に示したように、ダイヤフラム装置26のダイヤフラム68を挟んで、下側に形成された均圧室72は、均圧配管82、均圧経路84を介して、蒸発器116の出口側配管120に連結されている。
従って、ダイヤフラム装置26の下側に形成された均圧室72内には、蒸発器116の出口側配管120の蒸発圧力が導入されるようになっている。
一方、ダイヤフラム装置26のダイヤフラム68を挟んで、上側に形成された受圧室70は、キャピラリチューブ124を介して、感温筒122に連結されている。
従って、受圧室70の内圧は、感温筒122によって感知された、蒸発器116の出口側配管120側の感知温度に応じて変化する感温圧力となっている。
そして、ダイヤフラム装置26のダイヤフラム68は、受圧室70内の感温圧力と、均圧室72内の蒸発器116の出口側配管120の蒸発圧力との圧力差(差圧)に応じて、軸方向に上下に変形することになる。
このダイヤフラム68の軸方向の変形が、ダイヤフラム68の下方に固着された当接部材76を介して、弁体部材44の弁軸部材本体46の上方側の先端に形成されたニードル部74を介して、弁軸部材本体46、弁棒部材48、弁部材50に伝達されるように構成されている。
これにより、弁部材50の肩部面52と、弁ポート30の周囲に形成された弁座32とが、離接することによって、開度(絞り)が制御されるように構成されている。
すなわち、温度膨張弁10は、蒸発器116の出口側配管120の感知温度が高くなると、弁部材50が弁ポート30を開く(開放する)ように作用する。
逆に、蒸発器116の出口側配管120の感知温度が低くなると、弁部材50が弁ポート30を閉じる(閉止する)ように作用するように構成されている。
また、蒸発器116における蒸発圧力が低くなると、弁部材50が弁ポート30を開く(開放する)ように作用する。
逆に、蒸発器116における蒸発圧力が高くなると、弁部材50が弁ポート30を閉じる(閉止する)ように作用するように構成されている。
これにより、感温筒122からの感温圧力と、蒸発器116の蒸発圧力との差圧に応じて、ダイヤフラム68が軸方向に変形することによって、ダイヤフラム68に連結された弁体部材44が軸方向に移動して、弁部材50が弁ポート30の開度を制御するようになっている。
そして凝縮器106の出口側配管108から、入口側ポート36、弁ポート30、および、出口側ポート42を介して、蒸発器116の入口配管118に冷媒を流す開度を制御し、冷凍サイクル(この実施例の場合には、例えば、空気調和機の冷媒循環回路101)の過熱度制御を行うように構成されている。
ところで、このように構成される本発明の温度膨張弁10では、長年、長時間の使用でも、冷媒中に含まれる気泡の細分化による騒音の低減が可能であるように構成されている。
また、細泡化部材500の入口側ポート36の開口部36aと対面する側と反対の面には、多孔性ではない中実の弁体部材44が存在するので、細泡化部材500を貫通することがないように構成されている。
従って、冷媒が細泡化部材500を貫通しないので、細泡化部材500に異物が堆積しにくく、仮に異物が堆積して細泡化部材500が目詰まりした場合でも、冷媒の流路を閉塞することがない。
しかも、圧損が生じず、流量制御特性に影響を及ぼさないように構成されている。
すなわち、図1、図4、図5に示したように、入口側ポート36の開口部36aと対面する弁体部材44の対面部分に、入口側ポート36から導入される冷媒に含まれる気泡を細かくするための細泡化部材500を備えるように構成されている。
また、図1、図4、図5に示したように、弁室(入口側弁室31)内において、細泡化部材500の外周と弁ハウジング28とが離間しており、細泡化部材500の外周と弁ハウジング28との間に、冷媒の通過する流路を備えている。
具体的には、図4~図5の拡大図に示したように、入口側ポート36の開口部36aと対面する弁体部材44の対面部分に、略円筒形状の細泡化部材500を備えている。
また、本発明の温度膨張弁10では、細泡化部材500が、流体である冷媒が通過できない部材である弁体部材44に密着状態で設けられている。
このように構成することによって、細泡化部材500が、流体である冷媒が通過できない部材である弁体部材44に密着状態で設けられているので、冷媒が細泡化部材500を貫通しないので、細泡化部材500に異物が堆積しにくく、仮に異物が堆積して細泡化部材500が目詰まりした場合でも、冷媒の流路を閉塞することがないように構成されている。
また、本発明の温度膨張弁10は、細泡化部材500が、入口側ポート36から流入した流体が、弁ポート30に向かって流れる流路の一部または全部を閉塞する位置に配置されていない。
このように構成することによって、図4~図5の矢印に示したように、細泡化部材500の外周と弁ハウジング28との間に形成された、冷媒の通過する流路が存在し、細泡化部材500が、入口側ポート36から流入した流体が、弁ポート30に向かって流れる流路の一部または全部を閉塞する位置に配置されていないので、仮に異物が堆積して細泡化部材500が目詰まりした場合でも、細泡化部材500によって、冷媒の流路を閉塞することがない。
また、本発明の温度膨張弁10は、図4に示したように、細泡化部材500が、弁開時から弁閉時のいずれの位置においても、入口側ポート36の開口部36aを弁体部材44の軸方向と直交する方向で弁体部材44に向かって投影した投影位置に少なくとも一部が位置するように配置されている。
すなわち、図4の部分拡大図に示したように、弁体部材44の軸線方向の断面において、入口側ポート36の開口部36aの上端部と下端部を、それぞれ弁体部材44の方向に向かって投影した投影線P、Pで挟まれる範囲内に、細泡化部材500が一部でも存在する状態である。
また、図5の部分拡大図に示したように、弁体部材44の水平方向の断面において、入口側ポート36の開口部36aの左右の幅方向の端部を、それぞれ弁体部材44の方向に向かって投影した投影線Q、Qで挟まれる範囲内に、細泡化部材500が一部でも存在する状態である。
このように構成することによって、細泡化部材500が、弁開時から弁閉時のいずれの位置においても、入口側ポート36の開口部36aを弁体部材44の軸方向と直交する方向で弁体部材44に向かって投影した投影位置に少なくとも一部が位置するように配置されているので、弁開時から弁閉時のいずれの位置においても、冷媒中に含まれる気泡の細分化による騒音の低減が可能である。
また、細泡化部材500に異物が堆積しにくく、仮に異物が堆積して細泡化部材500が目詰まりした場合でも、冷媒の流路を閉塞することがない。
しかも、圧損が生じず、流量制御特性に影響を及ぼさない温度膨張弁10を提供することができる。
また、本発明の温度膨張弁10は、細泡化部材500が、弁開時から弁閉時のいずれの位置においても、入口側ポート36の開口部36aを弁体部材44の軸線方向と直交する方向に細泡化部材500に向かって投影したときの投影範囲が、全て細泡化部材500上に位置するように配置されていても良い。
このように構成することによって、細泡化部材500が、弁開時から弁閉時のいずれの位置においても、入口側ポート36の開口部36aを弁体部材44の軸線方向と直交する方向に細泡化部材500に向かって投影したときの投影範囲が、全て細泡化部材500上に位置するように配置されているので、冷媒中に含まれる気泡の細分化が確実に行われ、騒音の低減が向上する。
また、細泡化部材500に異物が堆積しにくく、仮に異物が堆積して細泡化部材500が目詰まりした場合でも、冷媒の流路を閉塞することがない。
しかも、圧損が生じず、流量制御特性に影響を及ぼさない温度膨張弁10を提供することができる。
また、図4~図5の拡大図に示したように、この実施例の温度膨張弁10では、細泡化部材500が、入口側ポート36と対面する弁体部材44の弁棒部材48の外周に設けられている。
また、細泡化部材500が、弁棒部材48の小径部48aと、弁部材50との間に介装されている。
すなわち、この実施例の温度膨張弁10では、図4の拡大図に示したように、細泡化部材500が、弁棒部材48の弁部材50側の先端48bの取り付け部51によって、弁部材50とともに固定されている。
具体的には、この実施例の温度膨張弁10では、略円筒形状の細泡化部材500の中央の開口部を、弁棒部材48の小径部48aに挿着する。
そして、別体の弁部材50の中央の開口部50b内に、弁棒部材48の弁部材50側の先端48bを突出させることによって、カシメ加工によって、取り付け部51が形成されて、細泡化部材500が、取り付け部51によって、弁部材50とともに固定(挟持固定)されている。
なお、この場合、取り付け部51としては、カシメ加工に限定されるものではなく、例えば、ナット、ネジなどの締結部材、溶着などの公知の固定方法を採用することができる。
これにより、入口側ポート36から導入される冷媒中に含まれる気泡が、細泡化部材500に確実に当接して、冷媒中に含まれる気泡の細分化が確実に行われ、騒音の低減が向上する。
また、細泡化部材500に異物が堆積しにくく、仮に異物が堆積して細泡化部材500が目詰まりした場合でも、冷媒の流路を閉塞することがない。
しかも、圧損が生じず、流量制御特性に影響を及ぼさない温度膨張弁10を提供することができる。
また、細泡化部材500としては、特に限定されるものではないが、例えば、多孔質の焼結フィルター、デミスターフィルター、発泡部材、平板を積層したもの、湾曲板を積層したもの、2層のコイルばね、2層のパンチングメタルなど、これらを2種以上組み合わせるなど適宜変更することが可能である。
また、本発明の温度膨張弁10では、図4~図5に示したように、細泡化部材500の入口側ポート36の開口部36を弁体部材44の方向に投影した投影部分の大きさH1が、入口側ポート36の開口部36aを弁体部材44の方向に投影した開口投影部の大きさH2以上になるになるように備えられているのが望ましい。
このように構成することによって、細泡化部材500の入口側ポート36の開口部36を弁体部材44の方向に投影した投影部分の大きさが、入口側ポート36の開口部36aを弁体部材44の方向に投影した開口投影部の大きさ以上であるので、冷媒中に含まれる気泡の細分化が確実に行われ、騒音の低減が向上する。
また、細泡化部材500に異物が堆積しにくく、仮に異物が堆積して細泡化部材500が目詰まりした場合でも、冷媒の流路を閉塞することがない。
しかも、圧損が生じず、流量制御特性に影響を及ぼさない温度膨張弁10を提供することができる。
具体的には、本発明の温度膨張弁10では、図4に示したように、細泡化部材500の投影部分の高さH1が、入口側ポート36の開口部36aの開口投影部の高さH2に対して、
H1≧H2の関係にあるように構成されているのが望ましい。
従って、入口側ポート36の開口部36aの開口投影部の高さH2の全体にわたって、細泡化部材500が存在することになるので、冷媒中に含まれる気泡の細分化が確実に行われ、騒音の低減が向上する。
また、細泡化部材500に異物が堆積しにくく、仮に異物が堆積して細泡化部材500が目詰まりした場合でも、冷媒の流路を閉塞することがない。
しかも、圧損が生じず、流量制御特性に影響を及ぼさない温度膨張弁10を提供することができる。
また、本発明の温度膨張弁10では、図5に示したように、細泡化部材500の投影部分の水平方向の断面視での幅W1が、入口側ポート36の開口部36aの開口投影部の水平方向の断面視での幅W2に対して、
W1≧W2の関係にあるように構成されているのが望ましい。
従って、入口側ポート36の開口部36aの開口投影部の水平方向の断面視での幅W2全体にわたって、細泡化部材500が存在することになるので、冷媒中に含まれる気泡の細分化が確実に行われ、騒音の低減が向上する。
また、細泡化部材500に異物が堆積しにくく、仮に異物が堆積して細泡化部材500が目詰まりした場合でも、冷媒の流路を閉塞することがない。
しかも、圧損が生じず、流量制御特性に影響を及ぼさない温度膨張弁10を提供することができる。
また、本発明の温度膨張弁10は、細泡化部材500が、弁開時から弁閉時のいずれの位置においても、細泡化部材500の投影部分の高さH1と、入口側ポート36の開口部36aの開口投影部の高さH2とが重なり合っているのが望ましい。
このように構成することによって、細泡化部材500が、弁開時から弁閉時のいずれの位置においても、細泡化部材500の投影部分の高さH1と、入口側ポート36の開口部36aの開口投影部の高さH2とが重なり合っているので、弁開時から弁閉時のいずれの位置においても、細泡化部材500が存在することになるので、冷媒中に含まれる気泡の細分化が確実に行われ、騒音の低減が向上する。
また、細泡化部材500に異物が堆積しにくく、仮に異物が堆積して細泡化部材500が目詰まりした場合でも、冷媒の流路を閉塞することがない。
しかも、圧損が生じず、流量制御特性に影響を及ぼさない温度膨張弁10を提供することができる。
このように構成される本発明の温度膨張弁10では、図4~図5の矢印で示したように、入口側ポート36の開口部36aと対面する弁体部材44の対面部分に、入口側ポート36から導入される冷媒に含まれる気泡を細かくするための細泡化部材500を備えている。
従って、入口側ポート36から導入される冷媒中に含まれる気泡が、入口側ポート36の開口部36aと対面する弁体部材44の対面部分に備えられた細泡化部材500に当接して、気泡が細分化されることになる。
しかも、細泡化部材500の入口側ポート36の開口部36aと対面する側と背面側には、多孔性ではない(すなわち、流体である冷媒を通過させない)中実の弁体部材44が存在するので、細泡化部材500を貫通することなく、弁ポート30の側に案内されることになる。
従って、長年、長時間の使用でも、冷媒中に含まれる気泡の細分化による騒音の低減が可能である。
また、細泡化部材500の入口側ポート36の開口部36aと対面する側と背面側には、多孔性ではない中実の弁体部材44が存在するので、細泡化部材500を貫通することがない。
従って、冷媒が細泡化部材500を貫通しないので、細泡化部材500に異物が堆積しにくく、仮に異物が堆積して細泡化部材が目詰まりした場合でも、冷媒の流路を閉塞することがない。
しかも、圧損が生じず、流量制御特性に影響を及ぼさない温度膨張弁を提供することができる。
また、細泡化部材500が、弁開時から弁閉時のいずれの位置においても、入口側ポート36の開口部36aと対面する位置に配置されているので、弁開時から弁閉時のいずれの位置においても、冷媒中に含まれる気泡の細分化による騒音の低減が可能である。
さらに、細泡化部材500の入口側ポート36の開口部36を弁体部材44の方向に投影した投影部分の大きさが、入口側ポート36の開口部36aを弁体部材44の方向に投影した開口投影部の大きさ以上であるので、冷媒中に含まれる気泡の細分化が確実に行われ、騒音の低減が向上する。
また、細泡化部材500に異物が堆積しにくく、仮に異物が堆積して細泡化部材500が目詰まりした場合でも、冷媒の流路を閉塞することがない。
しかも、圧損が生じず、流量制御特性に影響を及ぼさない温度膨張弁10を提供することができる。
また、細泡化部材500が、入口側ポート36の開口部36と対面する弁体部材44の弁棒部材48の外周に設けられているので、弁作動に途中で、弁体部材44が回転したとしても、細泡化部材500が、常に入口側ポート36と対面することになる。
これにより、入口側ポート36から導入される冷媒中に含まれる気泡が、細泡化部材500に確実に当接して、冷媒中に含まれる気泡の細分化が確実に行われ、騒音の低減が向上する。
さらに、細泡化部材500が、弁棒部材48の小径部48aと、弁部材50との間に介装されているので、細泡化部材500を安定して、入口側ポート36の開口部36と対面する位置に保持できる。
これにより、入口側ポート36から導入される冷媒中に含まれる気泡が、細泡化部材500に確実に当接して、冷媒中に含まれる気泡の細分化が確実に行われ、騒音の低減が向上する。
また、細泡化部材500が、弁棒部材48の小径部48aと、弁部材50との間に、弁棒部材48の弁部材50の側の先端の取り付け部51によって弁部とともに固定されている。
従って、例えば、カシメ加工、ナット、ネジなどの締結部材、溶着などによって、弁棒部材48の小径部48aと、弁部材50との間に、細泡化部材500を安定して、入口側ポートと対面する位置に保持できる。
なお、本発明の温度膨張弁は、細泡化部材500が、入口側ポート36の開口部36aと対面する弁体部材44の外周全周に設けられているのが望ましい。
このように構成することによって、細泡化部材500が、入口側ポート36の開口部36aと対面する弁体部材の外周全周に設けられているので、弁作動に途中で、弁体部材44が回転したとしても、細泡化部材が、常に入口側ポートの開口部と対面することになる。
これにより、入口側ポート36から導入される冷媒中に含まれる気泡が、細泡化部材500に確実に当接して、冷媒中に含まれる気泡の細分化が確実に行われ、騒音の低減が向上する。
また、細泡化部材500に異物が堆積しにくく、仮に異物が堆積して細泡化部材500が目詰まりした場合でも、冷媒の流路を閉塞することがない。
しかも、圧損が生じず、流量制御特性に影響を及ぼさない温度膨張弁10を提供することができる。
さらに、細泡化部材500の入口側ポート36の開口部36aと対面する側と反対の面には、多孔性ではない(すなわち、流体である冷媒を通過させない)中実の弁体部材44が存在するので、細泡化部材500を貫通することなく、弁ポート30側に案内されることになる。
従って、長年、長時間の使用でも、冷媒中に含まれる気泡の細分化による騒音の低減が可能である。
また、細泡化部材500の入口側ポート36の開口部36aと対面する側と反対の面には、多孔性ではない中実の弁体部材44が存在するので、細泡化部材500を貫通することがない。
従って、冷媒が細泡化部材44を貫通しないので、細泡化部材500に異物が堆積しにくく、仮に異物が堆積して細泡化部材500が目詰まりした場合でも、冷媒の流路を閉塞することがない。
しかも、圧損が生じず、流量制御特性に影響を及ぼさない温度膨張弁10を提供することができる。
図6は、本発明の別の実施例の温度膨張弁10の縦断面図、図7は、図6本発明の温度膨張弁10の部分拡大断面図、図8は、図6の実施例の温度膨張弁10の細泡化部材500の取付け・固定方法を説明する概略図であり、図8(A)は、正面図、図8(B)は、側面図、図8(C)は、図8(A)のB-B線での断面図、図9は、リング状の取り付け部材53を示す概略図であり、図9(A)は、正面図、図9(B)は、側面図、図9(C)は上面図、図8(A)のB-B線での断面図、図10は、リング状の取り付け部材53の別の実施例を示す概略図であって、図10(A)は、正面図、図10(B)は、側面図である。
この実施例の温度膨張弁10は、図1~図4に示した実施例1の温度膨張弁10と基本的には同様な構成であり、同一の構成部材には、同一の参照番号を付して、その詳細な説明を省略する。
この実施例の温度膨張弁10では、図6に示したように、図1~図5の実施例1の温度膨張弁10とは相違して、弁体部材44が、弁棒部材48の小径部48aと弁部材50が一体となっている。
そして、図7~図9に示したように、細泡化部材500が、例えば、板形状、または、予め断面が湾曲した板形状であって、細泡化部材500が、弁棒部材48の小径部48aと、弁部材50との間に巻き付けて装着されている。
このように、弁棒部材48の小径部48aと、弁部材50との間に巻き付けて装着された細泡化部材500が、略リング状の板バネ形状の取り付け部材53によって、弁棒部材48の小径部48aと、弁部材50との間に固定されている。
すなわち、細泡化部材500が、弁体部材44の外周部を覆うように被覆し、外周側からリング状の取り付け部材53によって固定されている。
このように構成することによって、細泡化部材500が、弁体部材44の外周部を覆うように被覆し、外周側からリング状の取り付け部材53によって固定されているので、取付けが容易で、コストを低減できるとともに、弁体部材44の外周部に、細泡化部材500を安定して、入口側ポート36の開口部36aと対面する位置に保持できる。
これにより、入口側ポート36から導入される冷媒中に含まれる気泡が、細泡化部材500に確実に当接して、冷媒中に含まれる気泡の細分化が確実に行われ、騒音の低減が向上する。
また、細泡化部材500に異物が堆積しにくく、仮に異物が堆積して細泡化部材500が目詰まりした場合でも、冷媒の流路を閉塞することがない。
しかも、圧損が生じず、流量制御特性に影響を及ぼさない温度膨張弁10を提供することができる。
すなわち、図8~図9に示したように、取り付け部材53は、上下一対のリング部53a、53aと、これらのリング部53a、53aを結合する軸方向の結合部53bと、リング部53aにそれぞれ形成された切欠部53cとから構成されている。
そして、リング部53aにそれぞれ形成された切欠部53cを介して(押し広げて)、弁棒部材48の小径部48aと、弁部材50との間に巻き付けて装着された細泡化部材500を止めて取付け、固定することができるように構成されている。
なお、取り付け部材53は、図10に示したように、上下一対の別体の取り付け部材53から構成しても良い。
このように構成することによって、細泡化部材500が、弁棒部材48の小径部48aと、弁部材50との間に、リング状の取り付け部材53によって固定されているので、取付けが容易で、コストを低減できるとともに、弁棒部材48の小径部48aと、弁部材50との間に、細泡化部材500を安定して、入口側ポート36の開口部36aと対面する位置に保持できる。
これにより、入口側ポート36から導入される冷媒中に含まれる気泡が、細泡化部材500に確実に当接して、冷媒中に含まれる気泡の細分化が確実に行われ、騒音の低減が向上する。
しかも、冷媒中に含まれる異物による、細泡化部材500に堆積して目詰まりが発生するのを確実に防止して、冷媒の流路を閉塞せず狭くならず、しかも、圧損が生じず、流量制御特性に影響を及ぼさない効果的な温度膨張弁10を提供することができる。
(実施例3)
図11は、本発明の別の実施例の温度膨張弁10の細泡化部材500の別の実施例を示す細泡化部材500の軸線方向の断面を示す概略図である。
この実施例の温度膨張弁10では、図11(A)~図11(C)に示したように、細泡化部材500が、その厚さが、入口側ポート36から導入される冷媒の案内面500aになるように相違するように構成されている。
すなわち、本発明の温度膨張弁10は、細泡化部材500の外周面が、細泡化部材500の軸方向に対して、傾斜したテーパー面、または、曲線形状から構成され、入口側ポート36から導入される冷媒の案内面500aになるように構成されていることを特徴とする。
このように構成することによって、細泡化部材500の外周面が、細泡化部材500の軸方向に対して、傾斜したテーパー面、または、曲線形状から構成され、入口側ポート36から導入される冷媒の案内面500aになるように構成されているので、この案内面500aに沿って、冷媒が弁ポート30側に案内されることになる。
これにより、入口側ポート36から導入される冷媒中に含まれる気泡が、細泡化部材50に確実に当接して、冷媒中に含まれる気泡の細分化が確実に行われ、騒音の低減が向上する。
また、細泡化部材500に異物が堆積しにくく、仮に異物が堆積して細泡化部材が目詰まりした場合でも、冷媒の流路を閉塞することがない。
しかも、圧損が生じず、流量制御特性に影響を及ぼさない温度膨張弁10を提供することができる。
すなわち、図11(A)の細泡化部材500では、弁ポート30側に向かって、漸次その厚さが減少するテーパー形状となっている。
また、図11(B)の細泡化部材500では、弁ポート30側の厚さが厚く、細泡化部材500の高さ方向の中心部に向かって、漸次その厚さが減少するテーパー形状となっている。
図11(C)の細泡化部材500では、弁ポート30側の厚さが薄く、細泡化部材500の高さ方向の中心部に向かって、漸次その厚さが増大するテーパー形状となっている。
このように構成することによって、細泡化部材500が、その厚さが、入口側ポート36から導入される冷媒の案内面500aになるように相違するように構成されているので、この案内面500aに沿って、冷媒が弁ポート30側に案内されるので、冷媒中に含まれる異物が細泡化部材500に堆積して目詰まりが発生するのを抑制して、冷媒の流路を閉塞せず狭くならず、しかも、圧損が生じず、流量制御特性に影響を及ぼさない温度膨張弁10を提供することができる。
以上、本発明の好ましい実施の態様を説明してきたが、本発明はこれに限定されることはなく、例えば、上記実施例のような構造の温度膨張弁10に限定されず、その他の構造の温度膨張弁10にも適用可能であるなど本発明の目的を逸脱しない範囲で種々の変更が可能である。
本発明は、例えば、エアコン、冷凍機などの冷凍サイクルシステムの冷媒循環回路に用いられ、蒸発器の出口側温度に感応して弁開度を自動調整して、冷凍サイクルシステムの冷媒循環回路の過熱度を制御するために用いる温度膨張弁、および、温度膨張弁を用いた冷凍サイクルシステムに適用することができる。
より詳細には、冷凍サイクルシステム、例えば、空気調和機の冷媒循環回路の蒸発器の出口側配管側に付設された感温筒からの感温圧力と、蒸発器の蒸発圧力との差圧に応じて、ダイヤフラムが軸方向に変形することによって、ダイヤフラムに連結された弁体部材が軸方向に移動して、弁部が弁ポートの開度を制御するように構成した温度膨張弁、および、温度膨張弁を用いた冷凍サイクルシステムに適用することができる。
10 温度膨張弁
12 入口側配管(一次配管)
14 出口側配管(二次配管)
21 止め輪部材
22 封止部材
24 蓋部材
24a 雄ネジ
26 ダイヤフラム装置
28 弁ハウジング
30 弁ポート
31 入口側弁室
32 弁座
34 弁ハウジング上方壁
36 入口側ポート
36a 開口部
38 出口側弁室
40 弁ハウジング下方壁
40a 雌ネジ
42 出口側ポート
44 弁体部材
46 弁軸部材本体
48 弁棒部材
48a 小径部
48b 先端
50 弁部材
50a 当接部
50b 開口部
51 取り付け部
52 肩部面
53 部材
53a リング部
53b 結合部
53c 切欠部
54 開口部
58 雄ネジ
60 下蓋部材
60a フランジ部
62 装着部
64 雌ネジ
66 上蓋部材
66a フランジ部
68 ダイヤフラム
68a フランジ部
70 受圧室
72 均圧室
74 ニードル部
74a 段部
76 当接部材
76a 当接穴部
76b 延設部
78 押さえ部材
80 シール部材
82 均圧配管
84 均圧経路
86 取付け穴穴
86a 凹部
86b 雌ネジ
88 過熱度設定部
90 調整スピンドル
91 調整バネ収容凹部
92 基端部
92a 雄ネジ
94 リテーナー
96 調整バネ
98 Oリング部材
100 温度膨張弁
101 冷媒循環回路
102 循環配管
104 圧縮器
106 凝縮器
108 出口側配管(二次配管)
110 温度膨張弁
112 入口側配管(一次配管)
114 出口側配管(二次配管)
116 蒸発器
118 入口配管
120 出口側配管
122 感温筒
124 キャピラリチューブ
126 ダイヤフラム装置
128 弁ハウジング
130 弁ポート
131 入口側弁室
132 弁座
134 弁ハウジング上方壁
136 入口側ポート
138 出口側弁室
140 弁ハウジング下方壁
140a 雌ネジ
142 出口側ポート
144 弁体部材
146 弁軸部材本体
148 弁棒部材
150 弁部
150a 当接部
152 肩部面
154 開口部
158 雄ネジ
160 下蓋部材
160a フランジ部
162 装着部
164 雌ネジ
166 上蓋部材
166a フランジ部
168 ダイヤフラム
168a フランジ部
170 受圧室
172 均圧室
174 ニードル部
174a 段部
176 当接部材
176a 当接穴部
176b 延設部
178 押さえ部材
180 シール部材
182 均圧配管
184 均圧経路
186 取付け穴
186a 凹部
186b 雌ネジ
188 過熱度設定部
190 調整スピンドル
191 調整バネ収容凹部
192 基端部
192a 雄ネジ
194 リテーナー
196 調整バネ
198 Oリング部材
200 止め輪部材
202 封止部材
204 蓋部材
204a 雄ネジ
300 膨張弁
302 弁本体
304 入口ポート
306 出口ポート
308 弁室
310 弁孔
312 弁部材
314 細泡化部材
316 弁孔
500 細泡化部材
500 弁部
500a 案内面
600 ストレーナ
H1、H2 高さ
W1、W2 幅
P、Q 投影線

Claims (9)

  1. 弁ハウジングとダイヤフラム装置とを備え、
    前記弁ハウジングに、入口側ポートと出口側ポートを備え、
    前記入口側ポートと出口側ポートを連通する弁室を、弁ハウジングに備え、
    前記ダイヤフラム装置のダイヤフラムが、弁体部材の軸方向に変形することによって、
    前記ダイヤフラムに連結された弁体部材が、弁ハウジング内で軸方向に移動して、
    前記弁体部材と一体の弁部材が、弁ハウジング内部の弁室に備えられた弁ポートの開度を制御して、
    前記入口側ポート、弁室、弁ポート、および、出口側ポートを介して、通過する冷媒の流量を調整するように構成され、
    前記入口側ポートの開口部と対面する弁体部材の対面部分に、入口側ポートから導入される冷媒に含まれる気泡を細かくするための細泡化部材を備え、
    前記弁室内において、細泡化部材の外周と弁ハウジングとが離間しており、
    前記細泡化部材の外周と弁ハウジングとの間に、冷媒の通過する流路を備え
    前記入口側ポートは前記軸方向の一方側に設けられ、
    前記出口側ポートは前記軸方向の他方側に設けられ、
    前記弁ポートは、前記入口側ポートと前記出口側ポートの間に設けられ、
    前記弁室は、前記入口側ポートと前記弁ポートの間に設けられる円筒状の入口側弁室と、前記弁ポートと前記出口側ポートとの間に設けられる円筒状の出口側弁室と、を備え、
    前記弁体部材は、前記入口側弁室から前記弁ポートを通って前記出口側弁室まで前記軸方向に延び、
    前記細泡化部材の少なくとも一部は、前記弁ポートの開度に関わらず、前記入口側ポートにおける前記弁ポートに最も近い端縁の位置から前記弁ポートまでの前記軸方向の範囲内に位置し、
    前記範囲内において、前記細泡化部材の外周の少なくとも一部と、前記弁ハウジングの内壁とが離間していることを特徴とする温度膨張弁。
  2. 前記細泡化部材が、流体である冷媒が通過できない部材である弁体部材に密着状態で設けられていることを特徴とする請求項1に記載の温度膨張弁。
  3. 前記細泡化部材が、弁開時から弁閉時のいずれの位置においても、入口側ポートの開口部を弁体部材の軸方向と直交する方向で弁体部材に向かって投影した投影位置に少なくとも一部が位置するように配置されていることを特徴とする請求項1から2のいずれかに記載の温度膨張弁。
  4. 前記細泡化部材が、弁開時から弁閉時のいずれの位置においても、前記入口側ポートの開口部を弁体部材の軸線方向と直交する方向に細泡化部材に向かって投影したときの投影範囲が、全て細泡化部材上に位置することを特徴とする請求項3に記載の温度膨張弁。
  5. 前記細泡化部材が、入口側ポートの開口部と対面する弁体部材の外周全周に設けられていることを特徴とする請求項1から4のいずれかに記載の温度膨張弁。
  6. 前記弁体部材が、円筒状の細泡化部材の中央の開口部と、弁部材の中央の開口部に差し込まれて、
    前記細泡化部材が、弁体部材と弁部材とによって挟持固定されていることを特徴とする請求項1から4のいずれかに記載の温度膨張弁。
  7. 前記細泡化部材が、弁体部材の外周部を覆うように被覆し、外周側からリング状の取り付け部材によって固定されていることを特徴とする請求項1から6のいずれかに記載の温度膨張弁。
  8. 前記細泡化部材の外周面が、細泡化部材の軸方向に対して、傾斜したテーパー面、または、曲線形状から構成され、入口側ポートから導入される冷媒の案内面になるように構成されていることを特徴とする請求項1からのいずれかに記載の温度膨張弁。
  9. 請求項1から8のいずれかに記載の温度膨張弁を、冷凍サイクルシステムの冷媒循環回路の凝縮器と蒸発器との間に配管接続されたことを特徴とする冷凍サイクルシステム。
JP2019054434A 2019-03-22 2019-03-22 温度膨張弁、および、温度膨張弁を用いた冷凍サイクルシステム Active JP7262261B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019054434A JP7262261B2 (ja) 2019-03-22 2019-03-22 温度膨張弁、および、温度膨張弁を用いた冷凍サイクルシステム
CN202010147209.6A CN111721038A (zh) 2019-03-22 2020-03-05 温度膨胀阀及使用温度膨胀阀的冷冻循环系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019054434A JP7262261B2 (ja) 2019-03-22 2019-03-22 温度膨張弁、および、温度膨張弁を用いた冷凍サイクルシステム

Publications (2)

Publication Number Publication Date
JP2020153479A JP2020153479A (ja) 2020-09-24
JP7262261B2 true JP7262261B2 (ja) 2023-04-21

Family

ID=72558314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019054434A Active JP7262261B2 (ja) 2019-03-22 2019-03-22 温度膨張弁、および、温度膨張弁を用いた冷凍サイクルシステム

Country Status (2)

Country Link
JP (1) JP7262261B2 (ja)
CN (1) CN111721038A (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002323273A (ja) 2001-04-26 2002-11-08 Daikin Ind Ltd 膨張弁および空気調和機
WO2015063854A1 (ja) 2013-10-29 2015-05-07 三菱電機株式会社 膨張弁

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005226846A (ja) * 2004-02-10 2005-08-25 Daikin Ind Ltd 膨張弁及び冷凍装置
JP2012047393A (ja) * 2010-08-26 2012-03-08 Fuji Koki Corp 膨張弁
JP5550601B2 (ja) * 2011-04-27 2014-07-16 株式会社鷺宮製作所 温度膨張弁
JP5690705B2 (ja) * 2011-11-10 2015-03-25 株式会社鷺宮製作所 除湿弁
WO2014162520A1 (ja) * 2013-04-02 2014-10-09 三菱電機株式会社 冷凍サイクル装置
JP2018021717A (ja) * 2016-08-04 2018-02-08 株式会社不二工機 膨張弁

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002323273A (ja) 2001-04-26 2002-11-08 Daikin Ind Ltd 膨張弁および空気調和機
WO2015063854A1 (ja) 2013-10-29 2015-05-07 三菱電機株式会社 膨張弁

Also Published As

Publication number Publication date
CN111721038A (zh) 2020-09-29
JP2020153479A (ja) 2020-09-24

Similar Documents

Publication Publication Date Title
JP6367164B2 (ja) 圧力作動弁及び冷凍サイクル
EP1950510B1 (en) Expansion valve
US6702188B2 (en) Expansion valve
US8277200B2 (en) Variable displacement compressor with a discharge pressure compensated suction shutoff valve
JP2008138812A (ja) 差圧弁
JP2017198387A (ja) 膨張弁
JP2018021717A (ja) 膨張弁
CN111750167A (zh) 温度膨胀阀以及冷冻循环系统
KR20180085352A (ko) 팽창 밸브
WO2009104238A1 (ja) 圧力式膨張弁
JP7262261B2 (ja) 温度膨張弁、および、温度膨張弁を用いた冷凍サイクルシステム
JP2005164208A (ja) 膨張弁
JP2004093106A (ja) 膨張弁
KR20050011715A (ko) 팽창 밸브
JP3942848B2 (ja) 膨張弁ユニット
EP3940279A1 (en) Expansion valve
JP7074322B2 (ja) 膨張弁
CN111133240B (zh) 膨胀阀
JP6846875B2 (ja) 膨張弁
JP7074321B2 (ja) 膨張弁
JP7016155B2 (ja) 膨張弁
JP2018128209A (ja) 膨張弁
JP3842354B2 (ja) 温度膨張弁
JP2006105474A (ja) 温度式膨張弁
JP2004205085A (ja) 膨張弁

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220803

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220930

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20221019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230411

R150 Certificate of patent or registration of utility model

Ref document number: 7262261

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150