JP7261814B2 - 無線の植込まれた装置用のミッドフィールド電源 - Google Patents

無線の植込まれた装置用のミッドフィールド電源 Download PDF

Info

Publication number
JP7261814B2
JP7261814B2 JP2020554854A JP2020554854A JP7261814B2 JP 7261814 B2 JP7261814 B2 JP 7261814B2 JP 2020554854 A JP2020554854 A JP 2020554854A JP 2020554854 A JP2020554854 A JP 2020554854A JP 7261814 B2 JP7261814 B2 JP 7261814B2
Authority
JP
Japan
Prior art keywords
transmitter
signal
antenna
circuit
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020554854A
Other languages
English (en)
Other versions
JP2021521761A (ja
Inventor
アレクサンダー イェー
フイ チャン
トーマス バーピー エルズワース
エリア ジュンコ
ステファン ジェームス シュレンベルク
カール ランス ボーリング
Original Assignee
ニュースペラ メディカル インク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/220,815 external-priority patent/US10561842B2/en
Application filed by ニュースペラ メディカル インク filed Critical ニュースペラ メディカル インク
Publication of JP2021521761A publication Critical patent/JP2021521761A/ja
Priority to JP2023007318A priority Critical patent/JP2023055762A/ja
Application granted granted Critical
Publication of JP7261814B2 publication Critical patent/JP7261814B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/07Endoradiosondes
    • A61B5/076Permanent implantations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/37211Means for communicating with stimulators
    • A61N1/37217Means for communicating with stimulators characterised by the communication link, e.g. acoustic or tactile
    • A61N1/37223Circuits for electromagnetic coupling
    • A61N1/37229Shape or location of the implanted or external antenna
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/375Constructional arrangements, e.g. casings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/378Electrical supply
    • A61N1/3787Electrical supply from an external energy source
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers without distortion of the input signal
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3036Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers
    • H03G3/3042Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers in modulators, frequency-changers, transmitters or power amplifiers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3966Radiopaque markers visible in an X-ray image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0204Operational features of power management
    • A61B2560/0214Operational features of power management of power generation or supply
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/025Digital circuitry features of electrotherapy devices, e.g. memory, clocks, processors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/37205Microstimulators, e.g. implantable through a cannula
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/273Adaptation for carrying or wearing by persons or animals

Description

(関連出願の相互参照)
この特許出願は、2018年4月12日に出願された米国仮特許出願第62/656,637号(弁護士整理番号4370.028PV2)に対する優先権の利益を主張し、これは参照によりその全体が本明細書に組み込まれ、また
この特許出願は、2018年12月14日に出願された米国特許出願第16/220,815号(弁護士整理番号4370.028US1)に対する優先権の利益を主張し、これは参照によりその全体が本明細書に組み込まれ、また
この特許出願は、2018年4月12日に出願された米国仮特許出願第62/656,675号(弁護士整理番号4370.030PRV)に対する優先権の利益を主張し、これは参照によりその全体が本明細書に組み込まれ、また
この特許出願は、2018年7月20日に出願された米国仮特許出願第62/701,062号(弁護士整理番号4370.031PRV)に対する優先権の利益を主張し、これは参照によりその全体が本明細書に組み込まれ、また
この特許出願は、2018年11月7日に出願された米国仮特許出願第62/756,648号(弁護士整理番号4370.033PRV)に対する優先権の利益を主張し、これは参照によりその全体が本明細書に組み込まれる。
植込み型電子機器のための様々な無線給電方法は、近接場またはファーフィールドのカップリングに基づいている。これらの方法および他の方法はいくつかの不利益を被っている。例えば、近視野または遠視野の技術を使用して、植込まれた装置の電力収集構造は、典型的には大きくなり得る(例えば、典型的にはセンチメートル以上のオーダー)。近接場での通信では、体外のコイルは同様に大きく、かさばり、多くの場合柔軟性がない可能性がある。そのような制約は、患者の日常生活への外部装置の組み込みにおいて困難を呈する。さらに、近接場の信号の固有の指数関数的な減衰は、見かけの深さを超えて(例えば、1センチメートルを超える深さ)、植込まれた装置の小型化を制限する。一方、ファーフィールドの信号の放射特性は、エネルギー伝達効率を制限する可能性がある。
無線ミッドフィールドテクノロジーを使用して、外部供給源から植込まれたセンサまたは治療送達装置に信号を提供できる。ミッドフィールドベースの装置には、従来の近接場またはファーフィールド装置に比べて様々な利点がある。例えば、ミッドフィールド装置は、比較的大きな植込まれたパルス発生器、およびパルス発生器を刺激電極に電気的に接続する、1つまたは複数のリードを必要としない場合がある。ミッドフィールド装置は、比較的小さな受信アンテナを有することができるため、より大きな装置に比べて簡単な植込み手順を提供できる。より単純なインプラント手順は、インプラントまたは外植片に関連する感染または他の合併症の低コストおよび低リスクに対応することができる。
ミッドフィールド給電技術を使用することの別の利点は、患者の体外に供給することができる電池または電源を含み、したがって電池駆動の植込み型装置の低電力の消費、および高効率の回路の要件を緩和することができる。ミッドフィールド給電技術を使用することの別の利点は、植込み型装置を電池駆動の装置よりも物理的に小さくすることができることを含むことができる。したがって、ミッドフィールド給電技術は、潜在的に低い製造コストおよび植込みコストと共に、より良好な患者の許容度および快適性を可能にするよう促すことができる。
医療機器の治療の分野はかなりの進歩を遂げているが、体内の標的位置に刺激または他の治療をもたらす治療装置に対する必要性は存在している。植込み型治療送達装置および/または植込み型診断(例えば、センサ)装置との効率的な無線での電力およびデータ通信がさらに必要とされている。本発明者らは、解決されるべき問題が、1つまたは複数の外部ミッドフィールド送信機、外部ミッドフィールド送信機の制御および保護回路、外部送信機からミッドフィールド信号を受信できる小型の植込み型装置、および植込み型装置を使用して電気刺激を提供するための駆動および制御回路を提供することを含み得ることを認識していた。解決されるべき問題は、植込み型装置に低侵襲の植込み手順を提供することを含み得る。例では、解決されるべき問題は、植込み型装置の製造、および植込み型装置の様々な回路および挙動特性の調整を含むことができる。本主題は、これらおよび他の問題に対する解決策を提供する。
例では、ミッドフィールド送信機は、層状構造を含み得、例えば送信機の第1の層に設けられた少なくとも第1の導電面と、送信機の第2の層に設けられた1つまたは複数のストリップラインと、送信機の第3の層に設けられた第3の導電面とを含み得、第3の導電面は、第2の層を通って延びる1つまたは複数のビアを使用して第1の導電面に電気的に連結される。例では、ミッドフィールド送信機は、第1の導電面と第2の導電面との間に介在する第1の誘電部材、および第2の導電面と第3の導電面との間に介在する異なる第2の誘電部材を含み得る。
例では、ミッドフィールド送信機は、送信機の第1の層に設けられた第1の導電性部分と、送信機の第2の層に設けられた1つまたは複数のストリップラインと、送信機の第3の層に設けられた第3の導電性部分とを含む第2の導電性部分と、第2の層を通って延びる1つまたは複数のビアを使用して第1の導電面に電気的に連結され得る第3の導電面とを含み得る。送信機の共振特性に影響を与えるために、それぞれの誘電部材を第1の層と第2の層の間、および第2の層と第3の層の間に挿入することができる。例では、第1の導電性部分は、誘電部材、エアギャップ、またはスロットによって離間された内側ディスク領域および外側環状領域を含む。第1の導電性部分の外側環状領域は、1つまたは複数のビアを使用して、第3の層上の第3の導電性部分に電気的に連結することができる。例では、送信機は、第1の導電性部分の第1の領域に連結された第1のコンデンサノードおよび第1の導電性部分の第2の領域に連結された第2のコンデンサノードを有する可変コンデンサなどの調整装置を任意選択で含むまたは使用することができる。
ドライバーおよび保護回路は、ミッドフィールド送信機に含める、または連結することができる。例では、無線送信機装置で使用するための信号プロセッサは、RF駆動信号を受信し、条件付きでアンテナまたは別の装置に出力信号を提供するように構成された第1の制御回路を含む。信号プロセッサは、アンテナ出力信号に関する情報および/またはRF駆動信号に関する情報に基づいて制御信号を生成するように構成された第2の制御回路をさらに含むことができる。例では、信号プロセッサは、RF駆動信号を第1の制御回路に提供するように構成された利得回路をさらに含むことができ、利得回路は、第2の制御回路からの制御信号に基づいてRF駆動信号の振幅を変更するように構成される。例では、第1の制御回路は、アンテナの負荷状態を示す反射電圧信号を受信し、次に、反射電圧信号に基づいてアンテナ出力信号の位相または振幅を変更するように構成される。例では、第1の制御回路は、反射電圧信号が指定された反射信号の大きさまたは閾値を超えたときにアンテナ出力信号を減衰させるように構成される。
例では、本主題は、無線電力送信機であって、アンテナに連結された信号発生器を含む無線電力送信機、およびアンテナの共振周波数に影響を与えるように構成されたチューナー回路を構成するための方法を含むことができる。この方法は、第1の周波数を有する第1の駆動信号であって、信号発生器によって提供される第1の駆動信号でアンテナにエネルギー供給すること、チューナー回路のパラメータの値を掃引して、アンテナをそれぞれの複数の例で複数の異なる共振周波数に調整すること、および複数の異なる共振周波数のそれぞれについて、アンテナが第1の駆動信号によってエネルギー供給されたときにアンテナによって反射されるそれぞれの電力の量を検出することを含むことができる。例では、この方法は、アンテナに反射される検出された最小電力量に対応するチューナー回路の特定のパラメータの値を識別すること、身体組織内で無線伝搬波を使用して電力/またはデータを植込まれた装置へ通信するためにチューナー回路の特定のパラメータの値を使用するように無線電力送信機をプログラミングすることを含むことができる。
例では、本主題は、リモートミッドフィールド送信機から発信された伝搬無線電力信号を受信するように構成された第1のアンテナ、第1のアンテナに連結され、それぞれの第1および第2の電圧レベルを有する少なくとも第1および第2の収集された電力信号を提供するように構成された整流回路、および整流回路に連結され、第1および第2の収集された電力信号のうちの選択されたものを電気刺激出力回路にルーティングするように構成されたマルチプレクサ回路を含むことができる、ミッドフィールド受信機装置を含むことができる。
例では、本主題は、無線植込み型装置を植込むための方法を含むことができる。植込む方法は、例えば、ガイドワイヤを含む孔針で組織を突き刺すこと、ガイドワイヤを少なくとも部分的に組織内に残して、孔針を取り除くこと、ガイドワイヤの露出部分上に拡張器およびカテーテルを配置して、ガイドワイヤを拡張器内に少なくとも部分的に配置すること、拡張器とカテーテルをガイドワイヤに沿って組織に押し込むこと、ガイドワイヤと拡張器を組織から取り除くこと、植込み型装置をカテーテルの管腔に挿入すること、プッシュロッドを使用して、植込み型装置をカテーテルを通して組織に押し込むこと、およびカテーテルを取り外し、植込み型装置を組織に残すことを含むことができる。
例では、本主題は、複数の電極が露出した細長い本体部分と、電極に電気信号を提供するように電気的に連結された回路を含む回路ハウジングとを含む植込み型装置を含むことができる。植込み型装置は、回路ハウジングと細長い本体部分との間のフルストコニカルコネクタであって、その遠位端で本体部分に、およびその近位端で回路ハウジングに取り付けられたフルストコニカルコネクタ、およびその中にアンテナを含み、回路ハウジングの近位端で回路ハウジングに接続されたアンテナハウジングを含むことができる。植込み型装置は、アンテナハウジングの近位端でアンテナハウジングに接続されたプッシュロッドインターフェースをさらに含むことができる。
例では、本主題は、誘電体材料を植込み型装置の一部に分配するための方法を含むことができる。分配するための方法は、針を冷却装置上またはその近くに配置することにより、中空針の一部を誘電体材料の自由流動温度未満に冷却すること、誘電体材料を針に流し込み、中空針の冷却部分に流すこと、植込み型装置のコアハウジングの穴に中空針を配置すること、中空針を誘電体材料の自由流動温度またはそれ以上の温度に温めること、および中空針を穴に保持して、誘電体材料が針を自由に流れるようにすることを含むことができる。
例では、本主題は、植込み型受信機装置のインピーダンス特性を調整するための第1の方法を含むことができる。調整のための第1の方法は、アンテナアセンブリが取り付けられる導電性接触パッドの観点から植込み型装置の回路基板のインピーダンスを判定することインピーダンスがインピーダンス値の目標範囲内にないことを判定することに応答して、回路基板の他の回路から導電性材料を除去することを含み得る。例では、調整方法は、インピーダンスがインピーダンス値の目標範囲内にあると判定することに応答して、アンテナアセンブリを接触パッドに電気的に接続して回路基板アセンブリを作成すること、および回路基板を密閉エンクロージャに密封することを含むことができる。この方法は、外部電力ユニットからの送信が材料を通って移動してアンテナアセンブリのアンテナに入射するように、材料の近くまたは少なくとも部分的に材料内に回路基板アセンブリを提供することまたは配置することであって、材料は、植込み型装置が植込まれる組織の誘電率を含む、配置すること、外部電力ユニットからの送信を受信すること、および受信した送信の電力を示す応答を生成することをさらに含むことができる。
例では、本主題は、植込み型装置のインピーダンスを調整するための第2の方法を含むことができる。調整のための第2の方法は、植込み型装置の回路基板から導電性材料を除去して、回路基板のインピーダンスを調整すること、回路基板のインピーダンスが指定された周波数範囲内にあることを確認した後、また導電性材料を除去した後、植込み型装置の回路ハウジング内の回路基板を密閉すること、および回路基板を回路ハウジングに密閉した後、アンテナを回路ハウジングのフィードスルーに取り付けることを含むことができる。
この概要は、本願の主題の概要を提供することを意図している。本明細書で論じられる本発明の排他的または網羅的な説明を提供することを意図するものではない。詳細な説明は、本特許出願に関するさらなる情報を提供するために含まれる。
図面は必ずしも一定の縮尺で描かれておらず、同様の数字は様々な図において同様の構成要素を説明していることがある。異なる文字の接尾辞を有する類似の数字は、類似の構成要素の異なる事例を表し得る。図面は、全体的に例として、しかし限定としてではなく、本文書で論じられている様々な実施形態を示している。
無線通信経路を使用するシステムの実施形態の概略図を全体的に示す。 ミッドフィールド供給源装置の実施形態のブロック図を全体的に示す。 信号を受信するように構成されたシステムの一部の実施形態のブロック図を全体的に示す。 複数のサブ波長構造を有するミッドフィールドアンテナの実施形態の概略図を全体的に示す。 外部ミッドフィールド供給源装置の回路の実施形態の図を全体的に示す。 植込み型ミッドフィールド受信機装置の回路の実施形態の図を全体的に示す。 第1の植込み型装置の実施形態の図を全体的に示す。 回路ハウジングの実施形態の概略図を全体的に示す。 細長い植込み型装置の例を全体的に示す。 組織内に植込まれた図8由来の植込み型装置を含むシステムの例を全体的に示す。 第1の送信機に関する第1の層の例の上面図を全体的に示す。 層状をした第1の送信機の第1の層に重ねられた第2の層の上面図を全体的に示す。 層状をした第1の送信機に関する例の斜視図を全体的に示す。 図12由来の層状をした第1の送信機の側面断面図を全体的に示す。 全体的に、例示的な送信機が駆動信号によって励起されたときの例示的な送信機の表面電流のパターンを示す例を示している。 全体的に、送信機の最適な電流の分布の例を示している。 概して異なる励起信号に応答するミッドフィールド送信機の異なる偏波の例を示している。 概して異なる励起信号に応答するミッドフィールド送信機の異なる偏波の例を示している。 概して異なる励起信号に応答するミッドフィールド送信機の異なる偏波の例を示している。 組織内の信号または場の侵入を示す例を全体的に示す。 植込まれた受信機の変化する角度または回転に関して、植込まれた受信機への第1の送信機の直交送信機ポートのカップリング効率間の関係を示すチャートの例を全体的に示す。 層状をした送信機の異なる第1の層に重ねられた、図11の例から得る第2の層の上面図を全体的に示す。 励起された装置の異なる表面電流パターンを示す例を概して示している。 励起された装置の異なる表面電流パターンを示す例を概して示している。 層状をした第2の送信機の例の上面図を全体的に示す。 図20由来の層状をした第2の送信機の斜視図を全体的に示す。 層状をした第3の送信機の例の斜視図を全体的に示す。 図22由来の層状の第3の送信機の側面断面図を全体的に示す。 スロットおよび容量性要素を備える第1の層を示す、層状ミッドフィールド送信機の一部の例を全体的に示す。 層状をした送信機の断面概略図の例を全体的に示す。 ミッドフィールド送信機の一部を含むことができる双方向カプラを含む図を示している。 調整可能な負荷を備えた双方向カプラの例を含む図を示している。 ミッドフィールド送信機の調整コンデンサの値を更新するためのプロセスを示す第1のフローチャートを示している。 ミッドフィールド送信機の調整コンデンサの値を更新するためのプロセスを示す第2のフローチャートを示している。 調整コンデンサを備えた送信機の一部を示している。 ある範囲の周波数、および送信機に連結された調整可能なコンデンサの異なる静電容量の値についての信号伝達効率情報を示す第1のチャートを示している。 送信機に連結された調整可能なコンデンサのある範囲の周波数にわたる異なる静電容量の値についての反射情報を示す第2のチャートを示している。 送信機に連結された調整可能なコンデンサのある範囲の周波数にわたる異なる静電容量の値についての信号伝達効率情報を示す第3のチャートを示している。 周波数の範囲にわたって、送信機に連結された調整可能なコンデンサの異なる静電容量の値について、電圧定在波比(VSWR)情報を使用して判定されるような反射係数情報を示す第4のチャートを示す。 全体的に、外部供給源が組織の近くにあるかどうかを識別し、それが組織の近くにある場合、次に植込み型装置を探索するかどうかを識別することを含む例を示す。 全体的に、調整コンデンサ掃引からの情報を使用して、外部供給源が組織の近くまたは隣接している可能性を判定することを示すチャートの例を示している。 全体的に、外部供給源の複数の異なる使用状態に対するクロスポート透過係数を示すチャートの例を示している。 全体的に、外部供給源に使用または含めることができる送信機回路の第1の例を示している。 全体的に、外部供給源に使用または含めることができる送信機回路の第2の例を示している。 全体的に、障害イベントおよびリセット中の送信機保護回路の挙動の例を示している。 全体的に、障害イベント中のリセットなしの送信機保護回路の挙動の例を示している。 全体的に、保護回路がない場合の反射電力信号の例を示している。 全体的に、高VSWRイベント中の送信機保護回路の挙動の例を示している。 全体的に、送信機保護回路の一部の立ち上がり時間の挙動の例を示している。 全体的に、送信機保護回路の一部の立ち下がり時間の挙動の例を示している。 全体的に、VSWRイベント後の送信機保護回路の挙動の例を示している。 全体的に、VSWR保護回路がない場合の送信機の挙動の例を示している。 全体的に、植込み型ミッドフィールド受信機装置用の受信機回路の一部を含むことができる例を示している。 全体的に、多段整流回路およびマルチプレクサ回路を含む例を示している。 全体的に、多段整流回路の例を示す概略図を示している。 全体的に、出力用に選択された第2の段を備えた図48の例からの多段整流回路を含む例を示している。 全体的に、出力用に選択された第3の段を備えた図48の例からの多段整流回路を含む例を示している。 全体的に、第1の整流回路の例を示している。 全体的に、第2の整流回路の例を示している。 全体的に、第3の整流回路の例を示している。 植込み型装置の側面図の例を全体的に示す。 装置を組織に植込むためのプロセスの部分の一般的な側面図を示している。 装置を組織に植込むためのプロセスの部分の一般的な側面図を示している。 装置を組織に植込むためのプロセスの部分の一般的な側面図を示している。 装置を組織に植込むためのプロセスの部分の一般的な側面図を示している。 装置を組織に植込むためのプロセスの部分の一般的な側面図を示している。 装置を組織に植込むためのプロセスの部分の一般的な側面図を示している。 装置を組織に植込むためのプロセスの部分の一般的な側面図を示している。 装置を組織に植込むためのプロセスの部分の一般的な側面図を示している。 装置を組織に植込むためのプロセスの部分の一般的な側面図を示している。 装置を組織に植込むためのプロセスの部分の一般的な側面図を示している。 装置を組織に植込むためのプロセスの部分の一般的な側面図を示している。 装置を組織に植込むためのプロセスの部分の一般的な側面図を示している。 装置を組織に植込むためのプロセスの部分の一般的な側面図を示している。 装置を組織に植込むためのプロセスの部分の一般的な側面図を示している。 例として、カテーテルおよびプッシュロッドが完全に取り外された後に植込まれたままにされた植込み型装置の別の実施形態の図を示す。 例として、縫合糸が引っ張られ、植込み型装置が組織の表面に向かって移動し始めた後の植込み型装置の実施形態の図を示す。 例として、植込み型装置の一部の分解図を示している。 例として、回路ハウジングの実施形態のそれぞれの図を示している。 例として、回路ハウジングの実施形態のそれぞれの図を示している。 例として、アンテナコアの実施形態のそれぞれの図を示している。 例として、アンテナコアの実施形態のそれぞれの図を示している。 例として、回路ハウジングと植込み型装置のアンテナコアとの間のカップリングの実施形態の図を示している。 例として、コアハウジングおよびプッシュロッドインターフェースのそれぞれの図を示している。 例として、コアハウジングおよびプッシュロッドインターフェースのそれぞれの図を示している。 例として、コアハウジングおよびプッシュロッドインターフェースのそれぞれの図を示している。 例として、プッシュロッドの実施形態の斜視図を示す。 例として、プッシュロッドの植込み型装置インターフェースの実施形態の分解図を示している。 例として、プッシュロッドの近位部分の実施形態の図を示している。 例として、部分的に管腔内に配置された縫合糸を備えたプッシュロッドの実施形態の斜視図を示す。 例として、植込み型装置インターフェースと係合するプッシュロッドインターフェースの実施形態の斜視図を示す。 例として、誘電体コアの実施形態の側面図を示す。 例として、図85の誘電体コアの例の端面の図を示す。 例として、フィードスルーがアンテナの近くのくぼみに配置された後の植込み型装置の一部の実施形態の側面図を示す。 例として、スリーブを備えた植込み型装置の一部の実施形態の側面図を示している。 例として、回路ハウジングの実施形態の断面図を示す。 例として、回路ハウジングを密閉する実施形態のそれぞれの図を示している。 例として、回路ハウジングを密閉する実施形態のそれぞれの図を示している。 例として、誘電体材料をアンテナハウジング内に配置する実施形態のそれぞれの斜視図を示す。 例として、誘電体材料をアンテナハウジング内に配置する実施形態のそれぞれの斜視図を示す。 例として、誘電体コアの実施形態のそれぞれの斜視図を示す。 例として、誘電体コアの実施形態のそれぞれの斜視図を示す。 例として、誘電体コアの実施形態のそれぞれの斜視図を示す。 例として、アンテナを備えた誘電体コアの例を示している。 例として、アンテナを備えた誘電体コアの例を示している。 例として、アンテナを備えた誘電体コアの例を示している。 例として、回路基板の実施形態の側面図を示している。 植込み型装置用の回路基板の実施形態を示している。 植込み型装置用の回路基板の実施形態を示している。 回路基板にはんだ付けされた、またはそうでなければ電気的に接続された電気および/または電子部品を含む装置の実施形態を示す。 第2の導電性材料がはんだ付けされるか、さもなければキャップのそれぞれのフィードスルーに電気的に接続された後の装置の実施形態を示す。 回路基板および電気および/または電子部品がエンクロージャ内に配置された後の図103の装置を含む装置の実施形態を示す。 第2の導電性材料がはんだ付けされるか、さもなければキャップのそれぞれのフィードスルーに電気的に接続された後の図7の装置を含む装置の実施形態を示す。 例として、植込み型装置用の回路基板の図を示している。 例として、インピーダンスを測定するためのシステムの実施形態の図を示している。 例として、回路基板のインピーダンスを測定するためのシステムの実施形態の図を示している。 例として、導電性静電容量調整タブが取り外された回路基板の実施形態の図を示している。 例として、導電性パッチを含む回路基板の実施形態の図を示している。 例として、導電性パッチの一部が除去された、図100の回路基板の実施形態の図を示している。 例として、植込み型装置の場連結共振テストのためのシステムの実施形態の図を示している。 例として、アンテナの周波数応答を試験するためのそれぞれのシステムの図を示している。 例として、アンテナの周波数応答を試験するためのそれぞれのシステムの図を示している。 例として、回路基板の実施形態の図を示している。 例として、接続回路上に折り畳まれたカバー部分を備えた図115の回路基板の実施形態の図を示す。 本明細書に記載の1つまたは複数の方法を実行することができるか、本明細書に記載の1つまたは複数のシステムもしくは装置と共に使用することができる機械の実施形態のブロック図を示す。
異なる神経-電極界面の例を含む以下の説明では、詳細な説明の一部をなす添付の図面を参照する。図面は、例示として、本発明を実施することができる特定の実施形態を示す。また、これらの実施形態は、本明細書では「実施例」と呼ばれる。そのような例は、示されるまたは説明されるものに加えて要素を含むことができる。しかし、本発明者らはまた、図示または記載されている要素のみが提供されている例を企図している。本発明者らは、特定の例(または1つもしくは複数のその態様)に関して、または本明細書に示されまたは説明されている他の例(または1つもしくは複数のその態様)に関して、示されまたは説明されている要素(または1つもしくは複数のその態様)を任意に組み合わせまたは置換して使用する例を企図している。本明細書で一般的に説明されるのは、植込み型装置および植込み型装置を組み立てる方法である。
植込み型システムおよび装置
本明細書のセクションの見出しは、上記のもの(「植込み型システムおよび装置」)と同様に、見出しにより示されるトピックに対応する資料に読者を概して導くために設けられている。しかし、特定の見出しの下での議論は、単一のタイプの構成にのみ適用されると解釈されるべきではない。代わりに、本明細書の様々なセクションまたはサブセクションで論じられた様々な特徴は様々な方法および順序で組み合わせることができる。例えば、植込み型システムおよび装置の特徴および利点についてのいくつかの議論は、本セクションの「植込み型システムおよび装置」の見出しの本文および対応する図に見出すことができる。
ミッドフィールド給電技術は、使用者の皮膚の外面などの組織表面上またはその近傍に配置された外部供給源から、深く植込まれた電気刺激装置に電力を供給することができる。使用者は臨床的な患者または他の使用者であり得る。ミッドフィールド給電技術は、植込み型パルス発生器に対して1つまたは複数の利点を有することができる。例えば、パルス発生器は、1つまたは複数の比較的大型の植込み型バッテリおよび/または1つもしくは複数のリードシステムを有することができる。対照的に、ミッドフィールド装置は、比較的少量の電力を受け取って蓄積するように構成することができる比較的小型の電池を含むことができる。ミッドフィールド装置は、単一の植込み型パッケージに一体化された1つまたは複数の電極を含み得る。したがって、いくつかの例では、ミッドフィールド給電装置は、他の従来の装置よりも簡単な植込み処置を提供することができ、それはより低いコストおよびより低い感染または他のインプラント合併症の危険性につながり得る。1つまたは複数の利点は、植込み型装置に伝達される電力量から得ることができる。ミッドフィールド装置からのエネルギーを集束させる能力は、植込まれた装置に伝達される電力量の増加を可能にし得る。
ミッドフィールド給電技術を使用する利点は、患者の外部に設けられる主要な電池または電源を含むことができ、したがって、従来の電池式植込み型装置の低電力の消費および高効率の回路という要件を、緩和することができる。ミッドフィールド給電技術を使用することの別の利点は、植込み型装置を電池駆動の装置よりも物理的に小さくすることができることを含むことができる。したがって、ミッドフィールド給電技術は、製造および/または患者の組織への植込みのための潜在的に低いコストと共に、より優れた患者の許容度および快適さを可能にするよう促すことができる。
外部のミッドフィールドカプラまたは供給源装置から1つまたは複数の植込まれた神経刺激装置および/または1つもしくは複数の植込まれたセンサ装置へ電力および/またはデータを通信することなどの、ミッドフィールド送信機および受信機を使用して電力および/またはデータを通信することを含む、現在の満たされていない必要性がある。満たされていない必要性はさらに、1つまたは複数の植込まれた神経刺激装置および植込まれたセンサ装置から外部ミッドフィールドカプラまたは供給源装置へデータを通信することを含むことができる。
1つまたは複数の例では、複数の装置を患者の組織に植込むことができ、治療を送達するように、および/または患者および/または治療に関する生理学的情報を感知するように構成することができる。複数の植込み型装置は、1つまたは複数の外部装置と通信するように構成することができる。1つまたは複数の例では、1つまたは複数の外部装置は、同時にまたは時分割多重(例えば、「ラウンドロビン」)方式などで、複数の植込まれた装置に電力および/またはデータ信号を供給するように構成される。供給された電力および/またはデータ信号は、信号をインプラントに効率的に伝送するために、外部装置により操作または指示されることができる。本開示は特に電力信号またはデータ信号に言及することがあるが、そのような言及は一般に電力およびデータ信号の一方または両方を任意に含むものとして理解されるべきである。
本明細書に記載されるいくつかの実施形態は、以下の利点のうちの1つ、いくつか、またはすべてを含むので有利であり得る。(i)(a)電力および/またはデータ信号をミッドフィールドカプラ装置から植込み型装置にミッドフィールド無線周波数(RF)信号によって通信し、(b)植込み型装置に連結された1つまたは複数の電極を介して治療用信号を発生および供給し、治療用信号は情報成分を含み、治療用信号を供給することに付随する信号を発生し、(c)治療用信号に基づいて、ミッドフィールドカプラ装置に連結された電極を使用して、信号を受信し、(d)ミッドフィールドカプラ装置または他の装置において、受信した信号からの情報成分を復号してそれに反応するように構成されるシステム;(ii)電力および/またはデータ信号を植込まれた標的装置に送信するためなどのために、組織表面でエバネセント場を変調し、それによって組織内に伝播場を生じるRF信号を供給するように構成される動的構成可能アクティブミッドフィールドトランシーバ(例えば、組織内への信号の侵入を示す図16の例を参照);(iii)ミッドフィールドトランシーバからミッドフィールド電力信号を受信するように構成されたアンテナを含み、受信したミッドフィールド電力信号の一部を使用して電気刺激電極に信号パルスを供給するように構成された治療送達回路を含む植込み型装置であって、信号パルスが治療用パルスおよびデータパルスを含み、データパルスは治療用パルスとインターリーブされるか、それに埋め込むことができる植込み型装置;(iv)装置の動作ステータスに関する情報、または装置によって提供される、以前に提供されたか同時か計画された将来の治療に関する情報を含む装置自体に関する治療用信号の情報を符号化するように構成される植込み型装置;(v)組織表面で電気信号を感知するように構成された電極を含むミッドフィールドトランシーバ;(vi)通信ループまたはフィードバックループを可能にするように一緒に構成された調整可能な無線信号源および受信機;(vii)組織表面またはその近くの存在を検出または判定するように構成された外部ユニット;および/または(ix)外部ユニットが植込まれた装置と通信していないと判定した場合、または外部ユニットが組織および/または植込まれた装置に近接している可能性が低いと判定した場合に動作を阻害する保護回路を備えた外部ユニット。
1つまたは複数の例では、これらの利点および他の利点の1つまたは複数は、外部組織表面またはその近傍でエバネセント場を操作して、組織に植込まれた1つまたは複数の標的装置に電力および/またはデータを無線で伝送するシステムを使用して実現できる。1つまたは複数の例では、これらの利点のうちの1つまたは複数は、本明細書に記載されているように、体内に植込まれた、または体内に植込まれることが可能な装置を使用して実現できる。1つまたは複数の例では、これらの利点のうちの1つまたは複数は、ミッドフィールド給電および/または通信装置(例えば、送信装置および/または受信装置またはトランシーバ装置)を使用して実現することができる。
システムは、複数の異なる組の信号(例えば、RF信号)を提供するように構成された信号発生器システムを含むことができる。いくつかの実施形態では、各々の組は2つ以上の別々の信号を含むことができる。システムはまた、複数の励起ポートを含むミッドフィールド送信機を含み得、ミッドフィールド送信機はRF信号発生器システムに連結され、ミッドフィールド送信機は励起ポートを介してそれぞれ異なる時間に複数の異なるセットのRF信号を送信するように適合される。励起ポートは、各々の組のRF信号から別々の信号を各々受信するように適合させることができる。送信されたRF信号の組の各々は、外部組織表面に対して実質的に平行である無視できない磁場(H磁場)成分を含み得る。1つまたは複数の例では、送信RF信号の各セットは、組織表面またはその近傍でエバネセント場を異なるように操作して、誘導的な近接場でのカップリングまたは放射性のファーフィールド伝送の代わりに、ミッドフィールドの信号を介して、組織に植込まれた1つまたは複数の標的装置に電力および/またはデータ信号を送信するように適合または選択される。
1つまたは複数の例では、とりわけ、上記の利点のうちの1つまたは複数は、少なくとも部分的には、受信機回路が組織内に植込まれるときのように、外部供給源装置からミッドフィールド電力信号を受信するように構成されたアンテナ(例えば、電界または磁界ベースのアンテナ)を含む受信機回路を含む植込み型治療送達装置(例えば神経刺激を与えるように構成される装置)を使用して実現できる。植込み型治療送達装置は治療送達回路を含むことができる。治療送達回路は受信機回路に連結することができる。治療送達回路は、治療送達装置の本体に一体的に連結されてもよく、または治療送達装置の本体から離れて(例えば、その上に配置されずに)配置されてもよい1つまたは複数のエネルギー送達部材(例えば電気刺激電極)に信号パルスを供給するように構成でき、それは、外部供給源装置(例えば、本明細書では外部装置、外部供給源、外部ミッドフィールド装置、ミッドフィールド送信機装置、ミッドフィールドカプラ、ミッドフィールド給電装置、給電装置などと、装置の構成および/または使用状況に応じて呼ばれることもある)から、受信したミッドフィールド電力信号の一部を使用することなどによる。信号パルスは、1つまたは複数の電気刺激療法パルスおよび/またはデータパルスを含み得る。1つまたは複数の例では、とりわけ、上述の利点のうちの1つまたは複数は、少なくとも部分的に、外部の組織表面に配置されるように構成された電極対を含む外部送信機および/または受信機(例えば、トランシーバー)装置を使用して実現でき、電極対は、組織を介して電気信号を受信するように構成されている。電気信号は、治療送達装置によって組織に送達された電気刺激療法に対応し得る。復調器回路は、電極対に連結することができ、治療送達装置によって発生したデータ信号を回復するなどのために、受信した電気信号の一部を復調するように構成することができる。
ミッドフィールドワイヤレスカプラを使用することを含む1つまたは複数の例では、組織はエネルギーをトンネルする誘電体として作用することができる。伝搬モードのコヒーレント干渉は、例えば高屈折率材料において回折の限界にさらされるスポットサイズで、焦点面における場を、対応する真空波長未満に制限することができる。1つまたは複数の例では、そのような高エネルギー密度領域に配置された受信機(例えば組織内に植込まれたもの)は、従来の近接場植込み型受信機よりも1桁またはそれ以上の桁小さくても、組織のさらなる深部に植込んでもよい(例えば深さ1cm超)。1つまたは複数の例では、本明細書で説明される送信機供給源は、様々な標的位置に電磁エネルギーを供給するように構成でき、例えば1つまたは複数の深く植込まれた装置を含む。例では、約数ミリメートルを超える位置決めの精度で、エネルギーをある位置に供給することができる。すなわち、送信された電力またはエネルギー信号は、組織における信号の約1波長以内にある標的位置に向けられるか集束され得る。そのようなエネルギー集束は、従来の誘導手段を介して利用可能な集束よりも実質的に正確であり、受信機に適切な電力を供給するのに十分である。近接場でのカップリング(誘導連結およびその共振増強導関数)を使用する他のワイヤレス給電手法では、組織の外側(例えば、供給源の近く)のエバネセント成分が組織の内側でエバネセントのままであり、これでは有効な深さの貫通が可能にならない。近接場でのカップリングとは異なり、ミッドフィールド供給源からのエネルギーは主に伝搬モードで運ばれ、その結果、エネルギー輸送の深さは近接場の固有の減衰ではなく、環境による損失によって制限される。これらの特性を用いて実施されるエネルギー伝達は、近接場システムよりも少なくとも2~3桁効率的であり得る。
本明細書で論じられるシステム、装置、および方法のうちの1つまたは複数を使用して、患者の障害を治療することを促すことができる。脛骨神経または脛骨神経の任意の分枝、例えば非限定的に後脛骨神経、仙骨神経叢に由来する1つまたは複数の神経または神経の分枝、例えば非限定的にS1~S4、脛骨神経、および/または陰部神経を刺激することなどにより、便失禁または尿失禁(例えば過活動膀胱)の障害を治療できる。尿失禁は、骨盤底の筋肉、骨盤底の筋肉を神経支配する神経、内尿道括約筋、外尿道括約筋、および陰部神経または陰部神経の枝のうちの1つまたは複数を刺激することによって治療することができる。
本明細書で論じられるシステム、装置、および方法の1つまたは複数は、舌(筋肉)の基底部、横隔神経、肋間神経、副神経、および頸神経C3~C6である舌下神経の神経または神経枝のうちの1つまたは複数を刺激することによって、睡眠時無呼吸および/またはいびきを治療する補助のため使用できる。睡眠時無呼吸および/またはいびきを治療することは、(酸素飽和度を測定することなどによって)呼吸の減少、障害、または停止を感知するためにインプラントにエネルギーを供給することを含むことができる。
本明細書で論じるシステム、装置、および方法の1つまたは複数は、バートリン腺、スケイン腺、および膣の内壁の1つまたは複数を刺激することなどによって、膣の乾燥を治療するのを補助するために使用することができる。本明細書で論じられるシステム、装置、および方法の1つまたは複数は、後頭神経、眼窩上神経、C2頸神経、またはそれらの分枝、および前頭神経、またはその枝の1つまたは複数を刺激することなどによって、片頭痛または他の頭痛を治療するのを補助するために使用することができる。本明細書で論じられるシステム、装置、および方法の1つまたは複数は、星状神経節および交感神経鎖のC4~C7の1つまたは複数を刺激することなどによって、心的外傷後ストレス障害、ほてり、および/または複雑な局所疼痛症候群を治療するのを補助するために使用することができる。
本明細書で論じられるシステム、装置、および方法の1つまたは複数は、脊髄口蓋神経節神経ブロック、三叉神経、または三叉神経の枝の1つまたは複数を刺激することなどによって、神経痛(例えば三叉神経痛)を治療するのを補助するために使用することができる。本明細書で論じられるシステム、装置、および方法の1つまたは複数は、口渇(例えば、薬物療法、化学療法または放射線療法による癌の治療の副作用により引き起こされるもの、シェーグレン病、または他の口渇の原因によるもの)を、耳下腺、顎下腺、舌下腺、頬、口唇、および/または舌粘膜の組織内の口腔における口腔内粘膜下組織、軟口蓋、硬口蓋の外側部分、および/または口底、および/または舌の筋線維の間、フォンエブネル腺、舌咽神経(CN IX)、例えばCN IXの分枝、例えば耳咽頭神経節、顔面神経(CN VII)、例えばCN VIIの分岐、例えば顎下神経節、およびT1~T3の枝、例えば上頸神経節の1つまたは複数を刺激することなどにより、治療するのを補助するために使用することができる。
本明細書で論じられるシステム、装置、および方法の1つまたは複数は、切断された神経の近位部分からの電気出力を感知し、切断された神経の遠位部分に電気入力を送達すること、および/または切断された神経の遠位部分からの電気出力を感知すること、および切断された神経の近位部分に電気の入力を送達することなどによって、切断された神経を治療するのを補助するために使用することができる。本明細書で論じられるシステム、装置、および方法の1つまたは複数は、脳性麻痺の患者において罹患した1つもしくは複数の筋肉、または1つもしくは複数の神経支配、1つもしくは複数の筋肉を刺激することなどによって、脳性麻痺を治療するのを補助するために使用することができる。本明細書で論じられるシステム、装置、および方法の1つまたは複数は、骨盤内臓神経(S2~S4)またはその任意の枝、陰部神経、海綿体神経、および下下腹神経叢の1つまたは複数を刺激することなどによって、勃起不全を治療するのを補助するために使用することができる。
本明細書で論じられるシステム、装置、および方法の1つまたは複数は、子宮および膣の1つまたは複数を刺激することなどによって月経痛を治療するのを補助するために使用することができる。本明細書で論じられるシステム、装置、および方法の1つまたは複数は、1つまたは複数のPHおよび血流を感知すること、あるいは避妊、受精、出血、または疼痛における補助のために電流または薬物を送達することなどによって、子宮内装置として使用できる。本明細書で論じられるシステム、装置、および方法の1つまたは複数は、女性生殖器、例えば外部および内部、例えばクリトリスまたは他の女性の感覚活性部分を刺激することによって、または男性生殖器を刺激することなどによって、人間の覚醒を刺激するために使用できる。
本明細書で論じられるシステム、装置、および方法の1つまたは複数は、頸動脈洞、左右の頸部迷走神経、または迷走神経の分岐の1つまたは複数を刺激することなどによって、高血圧を治療するのを補助するために使用することができる。本明細書で論じられるシステム、装置、および方法の1つまたは複数は、三叉神経またはその分岐、前部篩骨神経、および迷走神経の1つまたは複数を刺激することなどによって、発作性上室性頻拍を治療するのを補助するために使用することができる。本明細書で論じられるシステム、装置、および方法の1つまたは複数は、声帯、および反対側の声帯の活動を感知すること、または声帯、左および/または右の再発性喉頭神経、および迷走神経を神経支配している神経を刺激することによって、声帯の1つまたは複数を単に刺激することなどによって、声帯機能障害を治療するのを補助するために使用することができる。
本明細書で論じられるシステム、装置、および方法の1つまたは複数は、創傷を治癒するための微小循環およびタンパク質合成の強化、ならびに結合組織および/または真皮組織の完全性の回復の1つまたは複数を行うように組織を刺激することなどによって、組織の修復を促すために使用できる。本明細書で論じられるシステム、装置、および方法の1つまたは複数は、例えば迷走神経またはその分岐を刺激すること、ノルエピネフリンおよび/またはアセチルコリンの放出を阻止すること、および/またはノルエピネフリンおよび/またはアセチルコリンの受容体に干渉することの1つまたは複数などによって、喘息または慢性閉塞性肺疾患を治療するのを補助するために使用することができる。
本明細書で論じられるシステム、装置、および方法の1つまたは複数は、エピネフリン/NE放出、および/または副交感神経支配、交感神経支配を低下させるなど、腫瘍の近くまたは腫瘍内の1つまたは複数の神経を調節するべく刺激することなどによって、癌を治療するのを補助するために使用することができる。本明細書で論じられるシステム、装置、および方法の1つまたは複数は、グルコースレベルまたはケトンレベルなどの糖尿病のパラメータを検出する人体内部のセンサに給電すること、およびそのようなセンサのデータを使用してインスリンポンプからの外因性インスリンの送達を調整することなどによって、糖尿病を治療するのを補助するために使用することができる。本明細書で論じられるシステム、装置、および方法の1つまたは複数は、グルコースのレベルまたはケトンのレベルなどの糖尿病のパラメータを検出する人体内部のセンサに給電すること、およびミッドフィールドカプラを使用して膵島β細胞からのインスリン放出を刺激することなどによって、糖尿病を治療するのを補助するために使用することができる。
本明細書で論じられるシステム、装置、および方法の1つまたは複数は、神経学的状態、障害または疾患(例えば、パーキンソン病(例えば、脳の内部または核を刺激することによる)、アルツハイマー病、ハンチントン病、認知症、クロイツフェルト-ヤコブ病、てんかん(例えば、左頸部迷走神経または三叉神経の刺激による)、心的外傷後ストレス障害(PTSD)(例えば、左頸部迷走神経の刺激による)、または本態性振戦、例えば視床の刺激による)、神経痛、鬱病、ジストニア(例えば脳の内部または核の刺激による)、幻肢(例えば切断された神経の刺激、例えば切断神経の終末)、ドライアイ(例えば涙腺を刺激することによる)、不整脈(例えば心臓を刺激することによる)、胃腸障害、例えば肥満、胃食道逆流、および/または胃不全麻痺を、C1~C2後頭神経または視床下部の深部脳刺激(DBS)、食道、胃に至る括約筋近傍の筋肉、および/または胃の下部、および/または脳卒中(例えば、運動皮質の硬膜下刺激による)を刺激することなどにより、治療するのを補助するために使用することができる。本明細書で論じる1つまたは複数の例を使用して、刺激を継続的に、要求に応じて(例えば、医師、患者、または他の使用者によって要求されるときに)、または定期的に与えることができる。
刺激を与える際には、植込み型装置を組織界面、すなわち、皮膚の表面から5センチメートル以上下に配置することができる。1つまたは複数の例では、植込み型装置は、約2センチメートルから4センチメートル、約3センチメートル、約1センチメートルから5センチメートル、1センチメートル未満、約2センチメートル、または皮膚の表面より下の他の距離に配置することができる。植込みの深さは、植込まれた装置の使用に依存し得る。例えば、鬱病、高血圧、てんかん、および/またはPTSDを治療するために、植込み型装置は、皮膚の表面の下約2センチメートルから約4センチメートルの間に位置することができる。別の例では、睡眠時無呼吸、不整脈(例えば徐脈)、肥満、胃食道逆流、および/または胃不全麻痺を治療するために、植込み型装置を皮膚の表面の約3センチメートルより下に配置することができる。さらに別の例では、パーキンソン病、本態性振戦、および/またはジストニアを治療するために、植込み型装置を皮膚の表面の約1センチメートルから約5センチメートル下に配置することができる。さらに他の例は、線維筋痛症、卒中、および/または片頭痛を治療するなどのために、皮膚の表面の約1センチメートルから約2センチメートル下に、喘息を治療するために約2センチメートルで、またドライアイを治療するために約1センチメートル以下に、植込み型装置を配置することを含む。
本明細書に含まれる多くの実施形態は刺激(例えば、電気刺激)を与えるための装置または方法を説明しているが、実施形態は、刺激に加えてまたは代わりに、他の形態の変調(例えば除神経)をもたらすように適合され得る。さらに、本明細書に含まれる多くの実施形態は、治療を送達するための電極の使用に言及しているが、他のエネルギー送達部材(例えば、超音波トランスデューサまたは他の超音波エネルギー送達部材)、または他の治療部材または物質(例えば、化学物質、薬物、極低温流体、高温流体または蒸気、またはその他の流体を送達するための流体送達装置または部材)を他の実施形態で使用または送達することができる。
図1は、無線通信経路を使用するシステム100の実施形態の概略図を全体的に示す。システム100は、ミッドフィールドカプラまたは外部ユニットまたは外部電力ユニットと呼ばれることもあると呼ばれることもあるミッドフィールド送信機供給源などの外部供給源102の例を含み、外部供給源102は、空気104と身体組織のようなより高い屈折率の材料106との間の界面105またはその上方に配置することができる。外部供給源102は、電源の電流(例えば、面内供給源電流)を生成することができる。供給源の電流は、電界と磁界を生成できる。磁場は、供給源102の表面および/またはより高屈折率の材料106の表面(例えば、外部供給源102に面するより高屈折率の材料106の表面)に対して平行である無視できない成分を含むことができる。いくつかの実施形態によれば、外部供給源102は、2015年11月26日に公開された「MIDFIELD COUPLER」と題された、その全体が参照により本明細書に組み込まれる、WIPO公開番号WO/2015/179225に含まれるミッドフィールドカプラおよび外部供給源に関連して説明されている構造的特徴および機能を含み得る。
例では、外部供給源102は、少なくとも一対の外向きの電極121および122を含み得る。電極121および122は、例えば界面105において組織表面に接触するように構成することができる。1つまたは複数の例では、外部供給源102は、外部供給源102を高屈折率材料106に隣接して維持し、任意選択で電極121および122を組織の表面と物理的に接触させて維持する、スリーブ、ポケット、または他の衣服または付属品と共に使用するように構成される。1つまたは複数の例では、スリーブ、ポケット、または他の衣服または付属品は、導電性繊維または布地を含むか使用することができ、電極121および122は、導電性繊維または布地を介して組織表面と物理的に接触することができる。
1つまたは複数の例では、2つよりも多い外向き電極を使用することができ、ファーフィールド信号情報(例えば、送達された治療用信号または近接場信号に対応する信号の情報)を感知するために使用する最適な電極対または電極群を選択するように、供給源102に搭載またはそれを補助するプロセッサ回路を構成できる。そのような実施形態では、電極はアンテナとして機能することができる。1つまたは複数の例では、供給源102は、三角形として配置された3つの外向き電極、または長方形として配置された4つの外向き電極を含み、電極の任意の2つ以上を感知用に選択でき、および/または感知または診断のために電気的に群化、または互いに連結できる。1つまたは複数の例では、プロセッサ回路は、ファーフィールド信号を感知するための最適な構成を特定するために複数の異なる電極の組み合わせの選択をテストするように構成することができる(プロセッサ回路の例は、とりわけ図2Aに提示されている)。
図1は、高屈折率材料106内または血管内に植込まれるように構成された多極治療送達装置を含むことができるような、植込み型装置110の実施形態を示す。1つまたは複数の例では、植込み型装置110は、以下でさらに詳細に論じる、図5由来の回路500の全部または一部を含む。1つまたは複数の例では、植込み型装置110は組織-空気界面105の下の組織に植込まれる。図1において、植込み型装置110は、細長い本体と、細長い本体の一部に沿って軸方向に間隔を置いて配置されている複数の電極E0、E1、E2、およびE3とを含む。植込み型装置110は、植込み型装置110と外部供給源102との間の通信を可能にすることができる受信機および/または送信機回路(図1には示さず。例えば、特に図2A、図2B、および図4を参照)を含む。
様々な電極E0~E3は、神経標的または筋肉標的、またはその近くなどで、患者の組織に電気刺激療法を送達するように構成することができる。1つまたは複数の例では、少なくとも1つの電極をアノードとして使用するために選択することができ、少なくとも1つの他の電極を、カソードとして使用するために選択して電気刺激ベクトルを定義することができる。1つまたは複数の例では、電極E1はアノードとしての使用のために選択され、電極E2はカソードとしての使用のために選択される。合わせると、E1とE2の組み合わせは、電気刺激ベクトルV12を定義する。同時または異なる時点など、同じまたは異なる組織標的に神経電気刺激療法を提供するために、様々なベクトルを独立して構成することができる。
1つまたは複数の例では、供給源102はアンテナ(例えば図3参照)を含み、植込み型装置110はアンテナ108(例えば電界ベースまたは磁界ベースのアンテナ)を含む。アンテナは、実質的に同じ周波数で信号を送信および受信するように(例えば、長さ、幅、形状、材料などにおいて)構成することができる。植込み型装置110は、アンテナ108を介して外部供給源102に電力信号および/またはデータ信号を送信するように構成することができ、外部供給源102によって送信された電力および/またはデータ信号を受信することができる。外部供給源102および植込み型装置110は、RF信号の送信および/または受信に使用することができる。送信/受信(T/R)スイッチを使用して、外部供給源102の各RFポートを送信(送信データまたは電力)モードから受信(受信データ)モードに切り替えることができる。T/Rスイッチを同様に使用して、植込み型装置110を送信モードと受信モードとの間で切り替えることができる。T/Rスイッチの例については、とりわけ図4を参照されたい。
1つまたは複数の例では、外部供給源102の受信端子は、植込み型装置110からの受信信号の位相および/または振幅を検出する、1つまたは複数の構成要素に接続することができる。位相および振幅の情報は、植込み型装置110から受信した信号と実質的に同じ相対的な位相になるように、送信信号の位相をプログラムするために、使用することができる。これを成し遂げるのを補助するために、外部供給源102は、図4の実施形態に示されるように、位相整合および/または振幅整合ネットワークを含むかまたは使用することができる。位相整合および/または振幅整合ネットワークは、図3の実施形態に示すように、複数のポートを含むミッドフィールドアンテナと共に使用するように構成することができる。
図1を再び参照すると、1つまたは複数の例では、植込み型装置110は、外部供給源102からミッドフィールド信号131を受信するように構成され得る。ミッドフィールド信号131は電力および/またはデータ信号成分を含むことができる。いくつかの実施形態では、電力信号構成要素は、その中に植込まれた1つまたは複数のデータ構成要素を含むことができる。1つまたは複数の例では、ミッドフィールド信号131は、植込み型装置110によって使用される構成データを含む。構成データは、とりわけ、治療用信号周波数、パルス幅、振幅、または他の信号波形パラメータなどの治療用信号パラメータを定義することができる。1つまたは複数の例では、植込み型装置110は、電気刺激療法を治療標的190に送達するように構成できる。例えば、神経標的(例えば、神経、または他の組織、例えば静脈、結合組織、または当該組織内またはその近くにある1つまたは複数のニューロンを含む他の組織)、筋肉標的、または他の組織標的を含むことができる。治療標的190に送達される電気刺激療法は、外部供給源102から受信した電力信号の一部を使用して提供することができる。治療標的190の例は、神経組織または神経標的、例えば、脊椎、脳組織、筋肉組織、異常な組織(例えば、腫瘍または癌性組織)の頸部、胸部、腰部、または仙骨領域またはその付近の神経組織または神経標的、交感神経系または副交感神経系に対応する標的、末梢神経束または末梢神経線維またはその近傍の標的、失禁、尿意切迫感、過活動膀胱、便失禁、便秘、疼痛、神経痛、骨盤の疼痛、運動障害または他の疾患もしくは障害、深部脳刺激(DBS)治療の標的またはいずれかの他の状態、疾患もしくは障害(本明細書で同定された他の状態、疾患もしくは障害など)を治療すべく選択される他の標的またはその近傍を含み得る。
電気刺激療法を提供することは、ミッドフィールド信号131を介して受信された電力信号の一部を使用することと、植込み型装置110に連結された電極または電極対(例えば、2つ以上のE0~E3)に電流信号を提供して、標的目標190を刺激することとを含み得る。電極に提供された電流信号の結果として、近接場信号132が発生され得る。近接場信号132から生じる電位差は、治療送達位置から遠隔で検出することができる。とりわけ治療用信号の特性、治療送達電極の種類または配置、および周囲の任意の生物学的組織の特性を含む、様々な要因が、電位差を検出できる場所、および検出できるかどうかに、影響を及ぼし得る。そのような遠隔的に検出された電位差は、ファーフィールド信号133とみなすことができる。ファーフィールド信号133は、近接場信号132の減衰部分を表すことができる。すなわち、近接場信号132およびファーフィールド信号133は、植込み型装置110および治療標的190またはその近傍の領域に関連するとみなされる近接場信号132、および植込み型装置110および治療標的190からより遠位の他の領域に関連するとみなされるファーフィールド信号133などと、同じ信号または場から発生することができる。1つまたは複数の例では、植込み型装置110に関する情報、または植込み型装置110によって提供される以前提供されたまたは将来の計画されている治療に関する情報は、ファーフィールド信号133を介して、治療用信号に符号化し、外部供給源102によって検出および復号することができる。
1つまたは複数の例では、装置110は、一連の電気刺激パルスを組織標的(例えば、神経標的)に提供するように構成することができる。例えば、装置110は、治療を施すために、同じまたは異なる電気刺激ベクトルを使用するなどのことをして、時間において隔てられた複数の電気刺激パルスを提供することができる。1つまたは複数の例では、複数の信号を含む治療を複数の異なるベクトルに並行して施すことができ、あるいは連続するまたは一連の電気刺激パルスを同じ神経標的に与えるような順序で提供することができる。したがって、たとえ1つのベクトルが患者の反応を引き出すために他のベクトルよりも至適であったとしても、(1)標的が非刺激期間中に休息期間を経る可能性がある、および/または(2)至適な標的の近くおよび/または隣接する領域を刺激することが、いくらかの患者の利益を引き出すことができることから、治療全体は既知の最適なベクトルのみを刺激するよりも効果的であり得る。
システム100は、空気104と高屈折率材料106との間の界面105またはその近傍にセンサ107を含むことができる。センサ107は、とりわけ、1つまたは複数の電極、光学センサ、加速度計、温度センサ、力センサ、圧力センサ、または表面筋電図(EMG)装置を含むことができる。センサ107は、複数のセンサ(例えば、2つ、3つ、4つ、または4つより多いセンサ)を含み得る。使用されるセンサの種類に応じて、センサ107は、装置110の近くおよび/または源102の近くで電気、筋肉、または他の活動をモニタするように構成することができる。例えば、センサ107は、組織表面における筋肉活動をモニタするように構成することができる。特定の閾値活動レベルを超える筋肉活動が検出された場合、電源102および/または装置110の電力レベルを調整することができる。1つまたは複数の例では、センサ107をソース102に連結または一体化することができ、他の例では、センサ107を(例えば、有線または無線の電気的連結または接続を使用して)分離して、供給源102および/または装置110と通信することができる。
システム100は、供給源102およびセンサ107のうちの1つまたは複数から分離することができ、またはそれらと通信可能に連結することができるファーフィールドセンサ装置130を含むことができる。ファーフィールドセンサ装置130は、2つ以上の電極を含み得、装置110によって送達された治療に対応するファーフィールド信号133などのファーフィールド信号を感知するように構成され得る。ファーフィールドセンサ装置130は、例えば界面105において組織表面と接触するように構成された少なくとも一対の外向き電極123および124を含むことができる。1つまたは複数の例では、3つ以上の電極を使用することができ、ファーフィールドセンサ装置130に搭載された、またはファーフィールドセンサ装置130の補助のプロセッサ回路は、ファーフィールド信号133の感知に使用するための2つ以上の電極の様々な組み合わせを選択できる。1つまたは複数の例では、ファーフィールドセンサ装置130は、高屈折率材料106に隣接しているファーフィールドセンサ装置130を維持し、任意選択で電極123および124を組織の表面と物理的に接触させて維持する、スリーブ、ポケット、または他の衣服または付属品と共に使用するように構成され得る。1つまたは複数の例では、スリーブ、ポケット、または他の衣服または付属品は、導電性繊維または布地を含むか使用することができ、電極123および124は、導電性繊維または布地を介して組織表面と物理的に接触することができる。ファーフィールドセンサ装置130の少なくとも一部の例は、図2Bに関連して本明細書でさらに説明される。
1つまたは複数の例では、外部供給源102は、電力信号および/またはデータ信号を含むミッドフィールド信号131を植込み型装置110に供給する。ミッドフィールド信号131は、様々なまたは調整可能な振幅、周波数、位相、および/または他の信号特性を有する信号(例えば、RF信号)を含む。植込み型装置110は、ミッドフィールド信号131を受信することができ、植込み型装置110の受信機回路の特性に基づいて、アンテナで受信信号を変調し、それによって後方散乱信号または後方散乱通信を発生することができる、後述のものなどのアンテナを含むことができる。1つまたは複数の例では、植込み型装置110は、植込み型装置110自体の特性に関する情報、ミッドフィールド信号131の受信部分に関する植込み型装置によって提供される治療に関する情報、ミッドフィールド信号131の受信部分についての情報、植込み型装置110によって施される治療についての情報、および/または他の情報など、後方散乱信号112内の情報を符号化できる。後方散乱信号112は、外部供給源102および/またはファーフィールドセンサ装置130のアンテナによって受信することができ、あるいは別の装置によって受信することができる。1つまたは複数の例では、生物学的信号は、グルコースセンサ、電位(例えば筋電図センサ、心電図(ECG)センサ、抵抗、または他の電気的センサ)、光センサ、温度センサ、圧力センサ、酸素センサ、モーションセンサなどの植込み型装置110のセンサによって感知することができる。検出された生物学的信号を表す信号は、後方散乱信号112上に変調することができる。他のセンサについては、とりわけ図47に関してなど、本明細書の他の箇所で論じる。そのような実施形態では、センサ107は、グルコース、温度、ECG、EMG、酸素または他のモニタ、例えば後方散乱信号に変調されたデータを受信、復調、解釈、および/または格納する対応するためのもの、などの対応するモニタ装置を含むことができる。
1つまたは複数の例では、外部供給源102および/または植込み型装置110は、外部供給源102と植込み型装置110との間の通信を容易にするように構成された光トランシーバを含むことができる。外部供給源102は、フォトレーザーダイオードまたはLEDなどの光源を含むことができ、または光検出器を含むことができ、あるいは光源と光検出器の両方を含むことができる。植込み型装置110は、フォトレーザーダイオードまたはLEDなどの光源を含むことができ、または光検出器を含むことができ、あるいは光源と光検出器の両方を含むことができる。例では、外部供給源102および/または植込み型装置110は、その光源または光検出器に隣接して、石英、ガラス、または他の半透明材料で作られたものなどの窓を含むことができる。
例では、光通信は、外部供給源102と植込み型装置110との間の電磁カップリングとは別個であるか、それを補足することができる。光通信は、パルス位置変調(PPM)を使用するなど、様々なプロトコルに従って変調された光パルスを使用して提供することができる。例では、植込み型装置110に搭載された光源および/または光検出器は、外部供給源102とのミッドフィールドカップリングを介して少なくとも部分的に受信された電力信号によって給電され得る。
例では、外部供給源102の光源は、皮膚を通して、皮下組織へ、植込み型装置110内の光用の窓(例えば、石英の窓)を通して通信信号を送ることができる。通信信号は、植込み型装置110に搭載された光検出器で受信することができる。植込み型装置110に設けられた光源を用いて、植込み型装置110からの、または植込み型装置110に関する様々な測定情報、治療の情報、または他の情報を符号化し、送信することができる。植込み型装置110から放出された光信号は、同じ光用の窓、皮下組織、および皮膚組織を通って進むことができ、外部供給源102に搭載された光検出器で受信することができる。例では、光源および/または光検出器は、それぞれ、波長約670~910nm(例えば、670nm~800nm、700nm~760nm、670nm~870nm、740nm~850nm、800nm~910nm、それらの重複範囲、または列挙された範囲内の任意の値)の範囲内などの可視または赤外範囲の電磁波を放射および/または受信するように構成することができる。
例では、外部供給源102は、装置のリセット、記憶、使用者のアクセス、および他の機能を容易にするための様々な回路を含むことができる。例えば、外部供給源102は、外部供給源102に提供される駆動または感知回路から電力を除去するために使用できるような、装置レベルの電源スイッチを提供するためのラッチスイッチを含むことができる。例では、外部供給源102は、手動リセットを実行するために、または装置構成モードまたは学習モードに入るためにアクティブ化され得るリードスイッチ(例えば、磁気リードスイッチ)を含むことができる。例では、外部供給源102は、装置の状態を検出し、それに応じて装置の挙動を変更するための環境センサ(例えば、サーミスタ、湿度または水分センサなど)を含むことができる。例えば、サーミスタからの情報を使用して、装置の過熱を防ぐための障害状態を示すことができる。
図2Aは、例として、外部供給源102などのミッドフィールド供給源装置のブロック図および実施形態を示す。外部供給源102は、互いにデータ通信している様々な構成要素、回路、または機能要素を含むことができる。図2Aの例では、外部供給源102は、プロセッサ回路210、1つまたは複数の感知電極220(例えば、電極121および122を含む)、復調回路230、位相整合または振幅整合ネットワーク400、ミッドフィールドアンテナ300、および/または1つもしくは複数のフィードバック装置などの構成要素を含み、例えばオーディオスピーカー251、ディスプレイインターフェース252、および/または触覚フィードバック装置253を含むまたは使用することができる。ミッドフィールドアンテナ300は、図3の実施形態において以下でさらに説明され、ネットワーク400は、図4の実施形態において以下でさらに説明される。プロセッサ回路210は、外部供給源102の構成要素、回路、および/または機能要素の様々な機能および活動を調整するように構成することができる。
ミッドフィールドアンテナ300は、外部組織表面に対して実質的に平行である無視できないHフィールド成分を有するRF信号を含むことができるなど、ミッドフィールド励起信号を提供するように構成することができる。1つまたは複数の例では、RF信号は、電力および/またはデータ信号をそれぞれの異なる標的装置(例えば、植込み型装置110、または本明細書で論じられている任意の1つまたは複数の他の植込み型装置)に送信するなど、組織表面またはその近傍のエバネセント場を操作するように適合または選択できる。ミッドフィールドアンテナ300は、復調器回路230によって復調することができる後方散乱または他の無線信号情報を受信するようにさらに構成することができる。復調信号は、プロセッサ回路210によって解釈され得る。
ミッドフィールドアンテナ300は、ダイポールアンテナ、ループアンテナ、コイルアンテナ、スロットまたはストリップアンテナ、または他のアンテナを含むことができる。アンテナ300は、約400MHzから約4GHzの間(例えば、400MHzから1GHzの間、400MHzから3GHzの間、500MHzから2GHzの間、1GHzから3GHzの間、500MHzから1.5GHzの間、1GHzから2GHzの間、2GHzから3GHzの間、それらの重複範囲、または列挙された範囲内の任意の値)の範囲の信号を受信するような形状およびサイズにすることができる。ダイポールアンテナを組み込んだ実施形態では、ミッドフィールドアンテナ300は、2つのほぼ直線状の導体を備えたまっすぐなダイポール、折り返したダイポール、短いダイポール、ケージ形ダイポール、ボウネクタイ形ダイポールまたは蝙蝠の羽形ダイポールを含むことができる。
復調回路230は感知電極220に連結することができる。1つまたは複数の例では、感知電極220は、例えば治療標的190に送達することができるなど、植込み型装置110によって提供される治療に基づいて、ファーフィールド信号133を受信するように構成することができる。治療は、復調器回路230によってファーフィールド信号133から抽出することができる植込み型または間欠的データ信号成分を含むことができる。例えば、データ信号成分は、背景の雑音または他の信号から識別され、復調回路230によって処理されてプロセッサ回路210によって解釈され得る情報信号を発生することができる振幅変調または位相変調信号成分を含むことができる。情報信号の内容に基づいて、プロセッサ回路210は、患者、介護者、または他のシステムもしくは個人に警告するようにフィードバック装置のうちの1つに指令することができる。例えば、指定された治療の送達が成功したことを示す情報の信号に応答して、プロセッサ回路210は、可聴フィードバックを患者に提供するようにオーディオスピーカー251に指令でき、ディスプレイインターフェース252に患者に視覚またはグラフィック情報を提供するように指令でき、および/または触覚刺激を患者に提供するよう触覚フィードバック装置253に指示することができる。1つまたは複数の例では、触覚フィードバック装置253は、振動するか別の機械的信号を提供するように構成されたトランスデューサを含む。
図2Bは、ファーフィールド信号を受信するように構成されたシステムの一部のブロック図を全体的に示す。システムは、供給源102の電極121および122、あるいはファーフィールドセンサ装置130の電極123および124を含むことができるなど、感知電極220を含むことができる。図2Bの例では、感知電極220として集合的に表され、個々にSE0、SE1、SE2、およびSE3として表される4つの感知電極がある。しかし、他の数の感知電極220が使用され得る。感知電極は、マルチプレクサ回路261に通信可能に連結することができる。マルチプレクサ回路261は、ファーフィールド信号情報を感知する際に使用するために、電極対、または電極群を選択することができる。1つまたは複数の例では、マルチプレクサ回路261は、受信信号の検出された最高信号対雑音比に基づいて、あるいは振幅、周波数成分、および/またはその他の信号特性などの信号の質の別の相対指標に基づいて、電極対または群を選択する。
マルチプレクサ回路261からの感知された電気信号は、信号から情報を抽出するために様々な処理を受けることができる。例えば、マルチプレクサ回路261からのアナログ信号は、バンドパスフィルタ262によってフィルタリングすることができる。バンドパスフィルタ262は、対象の感知信号の既知のまたは予想される変調周波数を中心とすることができる。バンドパスフィルタ処理された信号はその後、低雑音増幅器263によって増幅することができる。増幅された信号は、アナログ-デジタル変換回路(ADC)264によりデジタル信号に変換することができる。デジタル信号は、本明細書でさらに説明されるように、植込み型装置110によって通信された情報信号を検索または抽出するなどのために、様々なデジタル信号プロセッサ265によってさらに処理され得る。
図3は、サブ波長構造3010、3020、3030、および3040を含む複数の励起可能な構造を有するミッドフィールドアンテナ300の実施形態の概略図を全体的に示す。ミッドフィールドアンテナ300は、実質的に平面のあるミッドフィールド平面構造を含むことができる。1つまたは複数のサブ波長構造3010~3040は平面の構造に形成することができる。図3の例では、アンテナ300は、第1のサブ波長構造3010、第2のサブ波長構造3020、第3のサブ波長構造3030、および第4のサブ波長構造3040を含む。さらに少ない数または追加のサブ波長構造を使用することができる。サブ波長構造は、それぞれに連結された1つまたは複数のRFポート(例えば、第1から第4のRFポート3110、3120、3130、および3140)によって個々にまたは選択的に励起することができる。
「サブ波長構造」は、外部供給源102によってレンダリングおよび/または受信される場の波長に対して規定された寸法を有するハードウェア構造を含むことができる。例えば、空気中の信号波長に対応する所与のλに対して、λ未満の1つまたは複数の次元を含む供給源の構造は、サブ波長構造とみなすことができる。サブ波長構造の様々な設計または構成を使用することができる。サブ波長構造のいくつかの例は、平面構造のスロット、または実質的に平面の材料の導電シートのストリップまたはパッチを含み得る。ミッドフィールドアンテナと励起可能な構造の様々な例については、本書の他の場所で説明している。いくつかの例では、励起可能な構造は、ストリップラインまたはマイクロストリップを含む、または使用する。
例では、ミッドフィールドアンテナ300およびその関連する駆動回路(本明細書の他の場所で説明される)は、組織が比較的高い誘電率を有する媒体として機能する、組織または組織に隣接するエバネセント場を操作または影響する信号を提供するように構成され、組織は、誘電率が比較的高い媒体として機能する(例えば、組織は高κ媒体である)。すなわち、アンテナ300からのエネルギーは、空気を通してではなく、組織または他の高κ媒体を通して向けることができる。ミッドフィールドアンテナ300からの送信効率は、アンテナ300が組織によって適切に負荷をかけられているときに最大になり得、組織によって負荷がかけられていないとき、効率は意図的に低くなり得る。
図4は、位相整合または振幅整合ネットワーク400を全体的に示す。例では、ネットワーク400はアンテナ300を含むことができ、アンテナ300は、例えば図3に示す第1から第4のRFポート311、312、313、および314を介して複数のスイッチ404A、404B、404C、および404Dに電気的に連結することができる。スイッチ404A~Dはそれぞれ、それぞれの位相および/または振幅検出器406A、406B、406C、および406D、ならびにそれぞれの可変利得増幅器408A、408B、408C、および408Dに電気的に連結されている。各増幅器408A~Dはそれぞれの移相器410A、410B、410C、および410Dに電気的に連結され、各移相器410A~410Dは、外部供給源102を使用して送信されるRF入力信号414を受信する、共通の電力分割器412に電気的に連結されている。
1つまたは複数の例では、スイッチ404A~Dは、受信回線(「R」)または送信回線(「T」)のいずれかを選択するように構成することができる。ネットワーク400のスイッチ404A~Dの数は、ミッドフィールド供給源402のポートの数と等しくてよい。ネットワーク400の例では、ミッドフィールド供給源402は4つのポート(例えば、図3の例のアンテナ300の4つのサブ波長構造に対応する)を含むが、1、2、3、4、5、6、7、8、またはそれより多い任意の数のポート(およびスイッチ)を使用できる。
位相および/または振幅検出器406A~Dは、ミッドフィールド供給源402のそれぞれの各ポートで受信された信号の位相(Φ1、Φ2、Φ3、Φ4)および/または電力(P1、P2、P3、P4)を検出するように構成される。1つまたは複数の例で、位相および/または振幅検出器406A~Dは1つまたは複数のモジュール(信号の位相または振幅の判定などの動作を実行するように構成された電気または電子部品を含むことができるハードウェアモジュール)に実装でき、例えば位相検出器モジュールおよび/または振幅検出器モジュールを含む。検出器406A~Dは、外部供給源102で受信された信号の位相および/または振幅を表す1つまたは複数の信号を発生するように構成されたアナログおよび/またはデジタル構成要素を含むことができる。
増幅器408A~Dは、移相器410A~Dからそれぞれの入力(例えば、Φk、Φ1+Φk、Φ2+Φk、Φ3+Φk、またはΦ4+Φkだけ位相シフトされたPk)を受信することができる。増幅器の出力Oは、一般に、RF入力信号414が(図4の実施形態では)4×Mの振幅を有するときの電力分割器の出力Mに、増幅器の利得を乗じたものPi×Pkである。P1、P2、P3、および/またはP4の値が変化するにつれて、Pkを動的に設定することができる。Φkは定数であり得る。1つまたは複数の例では、移相器410A~Dは、検出器406A~Dから受信した位相情報に基づいてポートの相対位相を動的にまたは反応的に構成することができる。
1つまたは複数の例では、ミッドフィールド供給源402からの送信電力要件はPttである。電力分割器412に供給されるRF信号は4×Mの電力を有する。増幅器408Aの出力は約M×P1×Pkである。したがって、ミッドフィールドカプラから送信される電力は、M×(P1×Pk+P2×Pk+P3×Pk+P4×Pk)=Pttとなる。Pkについて解くと、Pk=Ptt/(M×(P1+P2+P3+P4))が得られる。
各RFポートにおける信号の振幅は、それに連結されたミッドフィールドカプラのそれぞれのポートにおいて受信された信号と同じ相対的な(スケーリングされた)振幅で送信することができる。増幅器408A~Dの利得は、ミッドフィールドカプラからの信号の送信と受信との間のあらゆる損失を考慮するようにさらに改良することができる。受信効率η=Pir/Pttを考えると、式中Pirは植込まれた受信機で受信された電力である。特定の位相および振幅の同調が与えられた場合の効率(例えば最大効率)は、植込まれた供給源から外部ミッドフィールド供給源で受信された振幅から推定することができる。この推定は、η≒(P1+P2+P3+P4)/Pitとして得ることができる。式中、Pitは植込まれた供給源からの信号の元の電力である。植込み型装置110から送信された電力の大きさについての情報は、データ信号として外部供給源102に通信することができる。1つまたは複数の例では、増幅器408A~Dで受信された信号の振幅は、1つまたは複数のプログラムされた動作を実行するために植込み型装置が確実に電力を受け取るように、判定した効率に従ってスケーリングされ得る。推定されたリンク効率η、およびPir’の植込み電力(例えば、振幅)要件を考えると、Pkは、Pk=Pir’/[η(P1+P2+P3+P4)]としてスケーリングすることができ、それは植込みがプログラムされた機能を実行するのに十分な電力を受け取ることを保証するのを促すためなどである。
それぞれ位相入力および利得入力などの、移相器410A~Dおよび増幅器408A~Dのための制御信号は、図4には示されていない処理回路によって提供され得る。回路は、図4に提供された図を過度に複雑にしたり曖昧にしたりしないように省略されている。同じまたは異なる処理回路を使用して、受信構成と送信構成との間でスイッチ404A~Dの1つまたは複数の状態を更新することができる。処理回路の例については、図2Aのプロセッサ回路210およびその関連の説明を参照されたい。
様々な初期化回路および保護回路をネットワーク400に追加するか、ネットワーク400と共に使用することができる。例えば、送信機回路3700を含む図37の例は、不十分なアンテナの負荷またはアンテナの不整合な状態を識別および補償するために使用することができる第1の保護回路3720および第2の保護回路3760を含む。
図5は、本明細書で説明される実施形態の1つまたは複数に従って、植込み型装置110の回路500の実施形態、または標的装置の図表を全体的に示しており、例えば細長い装置を含むことができ、例えば任意選択で血管の内側に配置することができる。回路500は、アンテナ108に電気的に接続することができるような1つまたは複数のパッド536を含む。回路500は、回路500の入力インピーダンスに基づいてアンテナ108のインピーダンスを設定するための調整可能整合ネットワーク538を含むことができる。アンテナ108のインピーダンスは、例えば環境変化により変化する可能性がある。調整可能整合ネットワーク538は、アンテナ108のインピーダンスの変化に基づいて、回路500の入力インピーダンスを調整することができる。1つまたは複数の例では、調整可能整合ネットワーク538のインピーダンスは、アンテナ108のインピーダンスに整合することができる。1つまたは複数の例では、調整可能整合ネットワーク538のインピーダンスは、アンテナ108に入射する信号の一部をアンテナ108から反射させてそれにより後方散乱信号を発生させるように設定することができる。
送受信(T/R)スイッチ541は、(例えば、電力および/またはデータ信号を受信することができる)受信モードから、(例えば、信号を他の装置、つまり植込まれるか外部のものに送信できる)送信モードに、回路500を切り替えるために使用することができる。能動送信機は、2.45GHzまたは915MHzの工業・科学・医療用の(ISM)帯域、あるいはインプラントからデータを転送するための402MHzの医療用インプラント通信サービス(MICS)帯域で動作することができる。あるいは、入射無線周波数(RF)エネルギーを外部装置に後方散乱させる弾性表面波(SAW)装置を使用してデータを送信することができる。
回路500は、植込まれた装置において受け取った電力の量を検出するための電力計542を含み得る。電力計542からの電力を示す信号は、受け取った電力が回路がある特定の機能を実行するのに適切である(例えば、特定の閾値を超える)かどうかを判断するために、デジタルコントローラ548によって使用され得る。電力計542によって発生された信号の相対的な値を使用して、回路500に電力を供給するために使用される外部装置(例えば、供給源102)が、電力および/またはデータを標的装置へ伝送するのに適切な場所にあるかどうかを使用者または機械に示すことができる。
1つまたは複数の例では、回路500は受信データ信号を復調するための復調器544を含むことができる。復調は、変調された搬送波信号からの信号が有する元の情報を抽出することを含むことができる。1つまたは複数の例では、回路500は、受信したAC電力信号を整流するための整流器546を含むことができる。
回路(例えば、状態論理、ブール論理など)をデジタルコントローラ548に統合することができる。デジタルコントローラ548は、電力計542、復調器544、および/またはクロック550のうちの1つまたは複数からの入力に基づいてなど、受信機装置の様々な機能を制御するように構成され得る。1つまたは複数の例では、デジタルコントローラ548は、どの電極(例えば、E0~E3)を電流シンク(アノード)として構成し、どの電極を電流源(カソード)として構成するかを制御することができる。1つまたは複数の例では、デジタルコントローラ548は、電極を介して生成される刺激パルスの大きさを制御することができる。
チャージポンプ552を使用して、神経系の刺激に適し得るものなど、整流された電圧をより高い電圧レベルに上昇させることができる。チャージポンプ552は、整流した電圧を上昇させるために電荷を蓄積するために、1つまたは複数の個別の構成要素を使用することができる。1つまたは複数の例では、個別の構成要素は、パッド554に連結することができるものなど、1つまたは複数のコンデンサを含む。1つまたは複数の例では、これらのコンデンサは、組織の損傷を回避するのを補助するためなどに、刺激している間に電荷を平衡化するのに使用することができる。
刺激ドライバ回路556は、電極アレイなどへの様々な出力534を通じて、プログラム可能な刺激を与えることができる。刺激ドライバ回路556は、アレイの電極の正しい位置決めについて試験するために使用することができるものなどのインピーダンス測定回路を含むことができる。刺激ドライバ回路556は、電極を電流供給源、電流シンク、または短絡信号経路にするように、デジタル制御装置によってプログラムすることができる。刺激ドライバ回路556は、電圧ドライバまたは電流ドライバとすることができる。刺激ドライバ回路556は、外部供給源102から受信したミッドフィールド電力信号の少なくとも一部を使用するなどして、電気刺激信号パルスを1つまたは複数の電極に提供するように構成された治療送達回路を含むまたは使用することができる。1つまたは複数の例では、刺激ドライバ回路556は、最大約100kHzまでの周波数でパルスを供給することができる。100kHz付近の周波数のパルスは神経遮断に有用であり得る。
回路500は、不揮発性メモリ回路を含むことができるなどのメモリ回路558をさらに含むことができる。メモリ回路558は、他の植込み関連データの中でも、装置の同定、神経記録、および/またはプログラミングパラメータの記憶を含むことができる。
回路500は、増幅器555、および電極から信号を受信するためのアナログデジタル変換器(ADC)557を含むことができる。電極は、体内の神経信号から電気を感知することができる。神経信号は増幅器555によって増幅することができる。これらの増幅された信号は、ADC557によってデジタル信号に変換することができる。これらのデジタル信号は外部装置に伝達することができる。増幅器555は、1つまたは複数の例では、トランスインピーダンス増幅器とすることができる。
デジタルコントローラ548は変調器/電力増幅器562にデータを提供することができる。変調器/電力増幅器562はデータを搬送波に変調する。電力増幅器562は、送信される変調波形の大きさを増大させる。
変調器/電力増幅器562は、発振器/位相同期ループ(PLL)560によって駆動することができる。PLLは発振器を精密に保つように調整する。発振器は、クロック550とは異なるクロックを任意に使用することができる。発振器は、データを外部装置に送信するために使用されるRF信号を発生するように構成することができる。発振器の典型的な周波数の範囲は、約10kHzから約2600MHz(例えば、10kHzから1000MHz、500kHzから1500kHz、10kHzから100kHz、50kHzから200kHz、100kHzから500kHz、100kHzから1000kHz、500kHzから2MHz、1MHzから2MHz、1MHzから10MHz、100MHzから1000MHz、500MHzから800MHz、それらの重複している範囲、または列挙された範囲内の任意の値)である。他の周波数を使用することができる。例えば、用途に応じさせることができる。クロック550はデジタルコントローラ548のタイミングのために使用される。クロック550の典型的な周波数は、約1キロヘルツから約1メガヘルツの間(例えば、1kHzから100kHzの間、10kHzから150kHzの間、100kHzから500kHzの間、400kHzから800kHzの間、500kHzと1MHzの間、750kHzと1MHzの間、それらの重複している範囲、または列挙された範囲内の任意の値)である。用途に応じて他の周波数を使用することができる。速いクロックは一般に、遅いクロックよりも多くの電力を消費する。
神経から感知された信号の戻り経路は任意選択である。そのような経路は、増幅器555、ADC557、発振器/PLL560、および変調器/電力増幅器562を含むことができる。これらの各品目およびそれらへの接続は、任意選択で除去できる。
1つまたは複数の例では、回路500の他の構成要素の中でも、デジタルコントローラ548、増幅器555、および/または刺激ドライバ回路556は、状態機械装置の一部を構成することができる。状態機械装置は、パッド536を介して電力およびデータ信号を無線で受信し、それに応じて、出力534の1つまたは複数を介して電気刺激信号を解放または提供するように構成することができる。1つまたは複数の例では、そのような状態機械装置は、利用可能な電気刺激設定またはベクトルに関する情報を保持する必要はなく、代わりに、状態機械装置は、供給源102からの指示の受信後および/またはそれに応答して、電気刺激イベントを実行または提供できる。
例えば、状態機械装置は、指定された時間に、または何らかの指定された信号特性(例えば、振幅、持続時間など)を有するときなどに、神経電気刺激療法の信号を送達するための指示を受信するように構成され得る。また、状態機械装置は、指定された時間におよび/または指定された信号特性を用いて、治療用信号を開始または送達することによって応答することができる。その後、装置は、治療を終了するため、信号特性を変更するため、または他の何らかのタスクを実行するための後続の指示を受信することができる。したがって、装置は、実質的に受動的であるように任意に構成してもよく、受信した指示(例えば、同時に受信した指示)に応答するように構成してもよい。
回路ハウジングアセンブリ
このセクションは、治療装置の実施形態および/または特徴、組織内に植込み型装置(例えば、治療装置)を配置するための誘導機構、および/または組織内に位置するときに植込み型装置が感知できるほどには確実に移動しないよう促すための固定機構を説明する。1つまたは複数の例は、様々な障害の治療のための治療装置に関する。
いくつかの実施形態によれば、システムは、遠位部分と近位部分とを有する細長い部材を備える植込み型装置を含む。装置は、複数の電極と、回路ハウジングと、複数の電極に電気エネルギーを供給するように構成された回路ハウジング内の回路と、アンテナハウジングと、アンテナハウジング内のアンテナ(例えば、ヘリカルアンテナ)とを含む。複数の電極は、細長い部材の遠位部分に沿って配置または位置決めされている。回路ハウジングは、細長い部材の近位部に取り付けられている。回路は、回路ハウジング内に気密に封止されるか、内部に収容される。アンテナハウジングは、細長い部材に取り付けられた回路ハウジングの端部とは反対側の回路ハウジングの近位端で、回路ハウジングに取り付けられている。
システムは、電力または電気信号またはエネルギーを植込み型装置に供給するように構成された外部ミッドフィールド電源を任意選択で含み得る。植込み型装置は、アンテナを介して外部供給源のアンテナに情報(例えばデータ信号)を通信するように適合されてもよい。1つ、2つ以上、またはすべての電極は、遠位部分ではなく細長い部材の近位部分または中央部分に任意に配置されてもよい。回路ハウジングは、任意選択で、細長い部材の遠位部分または中央部分に取り付けることができる。アンテナハウジングは、回路ハウジングに取り付けられていなくてもよく、回路ハウジングの近位端に取り付けられていなくてもよい。アンテナハウジングは、セラミック材料のような、人間の組織の誘電率と空気の誘電率との間の誘電率を有する誘電材料を任意に含み得る。セラミック材料は任意にアンテナを覆ってもよい。細長い部材は、任意選択で可撓性および/または円筒形であり得る。電極は、任意選択的に円筒形状であり、細長い部材の周囲に配置されてもよい。
細長い部材は、任意選択で、部材の近位端から細長い部材の遠位部分まで細長い部材を通って延びるチャネル、およびチャネルに位置する形状記憶金属ワイヤを含むことができ、形状記憶金属ワイヤは細長い部材に湾曲を付与すする向きに事前に成形されている。形状記憶金属は、必要に応じて、S3孔の形状に一致させ、概して仙骨神経の曲がりかたに一致するように成形され得る。アンテナは一次アンテナであってもよく、装置はさらに、アンテナハウジングに取り付けられたハウジングに二次アンテナを含んでもよく、二次アンテナは一次アンテナとの近接場カップリングを提供するように成形および配置される。装置は、任意選択で、以下の1つまたは複数に取り付けられた1つまたは複数の縫合糸を含み得る。(1)アンテナハウジングの近位部分、(2)回路ハウジングの近位部分、および(3)アンテナハウジングの近位端に取り付けられた取り付け構造。アンテナは、回路ハウジングの近位部分に配置された回路の導電ループに任意に連結されてもよい。アンテナと導電性ループとの間にセラミック材料があってもよい。
植込み型センサおよび/または刺激装置、例えば神経刺激装置の変位量を減らすことが、現在望まれている。さらなる小型化は、より容易に侵襲性のさらに低い植込み処置を可能にし、植込み型装置の表面積を減少させ、それによりひいては植込み後の感染の可能性を低下させ、慢性の外来患者の設定において患者に快適さを提供し得る。いくつかの例では、小型化した装置は、カテーテルまたはカニューレを使用して注入でき、さらに植込み処置の侵襲性を減少させ得る。
例では、植込み型神経刺激装置の構成は、パルス発生器を植込んだ従来のリードとは異なる。植込み型刺激装置は、リードのない設計を含むことができ、遠隔の供給源(例えば、植込み型装置の遠位に配置されたミッドフィールド供給源)から電力を供給することができる。
例では、植込み型刺激装置を製造する方法は、回路ハウジングの両端に電気的接続を形成することを含むことができ、例えば気密封止された回路ハウジングであり得る。方法は、フィードスルーアセンブリと回路基板のパッドとの間に電気的接続を形成することを含むことができる。例では、フィードスルーアセンブリはキャップ状構造を含み、その内部に電気的構成要素および/または電子的構成要素を設けることができる。回路基板のパッドの表面は、フィードスルーアセンブリのフィードスルーの端部の表面に対して略垂直であり得る。この方法は、例えば、植込み型刺激装置または液体にさらされる可能性がある、または電気および/または電子部品に悪影響を及ぼす可能性がある他の環境要素にさらされる可能性がある他の装置の一部となり得るなど、気密回路ハウジングを形成するのに有用であり得る。
図6は、第1の植込み型装置600の実施形態の図を全体的に示す。例では、第1の植込み型装置600は、図1の植込み型装置110の例のものと同じまたは類似することができる構成要素またはアセンブリ含むまたは備える。例えば、装置600は、本体部分602と、複数の電極604と、回路ハウジング606と、アンテナハウジング610とを含むことができる。例では、本体部分602は、植込み型装置110の本体部分を含むまたは備える。アンテナハウジング610は、アンテナ108を封入またはカプセル化することができる。植込み型装置600は、患者からの電気的(または他の)活動情報を感知するように、あるいは電極604の1つまたは複数を使用するなどして患者に電気刺激療法を送達するように構成することができる。
本体部分602は、可撓性または剛性の材料で作ることができる。1つまたは複数の例では、本体部分602は生体適合性材料を含み得る。本体部分602は、他の材料の中でも、白金、イリジウム、チタン、セラミック、ジルコニア、アルミナ、ガラス、ポリウレタン、シリコーン、エポキシ、および/またはそれらの組み合わせを含むことができる。本体部分602は、その上または少なくとも部分的にその中に1つまたは複数の電極604を含む。電極604は、図6の例に示されるように、リング状の電極である。図6の例では、電極604は本体部分に沿って実質的に均一に分布している、すなわち実質的に等しい空間が隣接する電極間に設けられている。他の電極構成を追加的または代替的に使用することができる。
本体部分602は、回路ハウジング606を含むか、それに連結することができる。例では、回路ハウジング606は、本体部分602の第1の端部601で本体部分602に連結されている。図6の例では、本体部分602の第1の端部601は、本体部分602の第2の端部603の反対側にある。
回路ハウジング606は、電気および/または電子部品712(例えば、図7参照)および/またはその中に収容される相互接続のための気密封止を設けることができる。電極604は、本明細書に図示および説明されるように、1つまたは複数のフィードスルーおよび1つまたは複数の導体を使用して、回路ハウジング606の回路にそれぞれ電気的に接続することができる。すなわち、回路ハウジング606は、電子部品712(例えば、回路ハウジング606の内部に設けられた、または回路ハウジング606によって封入された電気部品および/または電子部品)のための気密筐体を設けることができる。
例では、アンテナハウジング610は、回路ハウジング606の第1の側端部711(例えば、図7参照)で回路ハウジング606に取り付けられている。アンテナ108をアンテナハウジング610の内側に設けることができる。例では、アンテナ108は、電力および/またはデータ信号を装置600で受信および/またはそれから送信するために使用される。第1の側端部711は回路ハウジング606の第2の側端部713の反対側にある。例では、第2の側端部713は、電極604を含むなどの電極アセンブリまたは他のアセンブリを電気的に接続することができる端部である。
アンテナハウジング610は、様々な方法で、または様々な接続手段を使用して、回路ハウジング606に連結することができる。例えば、アンテナハウジング610を回路ハウジング606にろう付けすることができる(例えば、金または他の導電性もしくは非導電材料を使用して)。アンテナハウジング610は、エポキシ、テコタン、または他の実質的に無線周波数(RF)に透過性の材料(例えば、装置600との通信に使用される周波数で)および保護材料を含むことができる。
1つまたは複数の例では、アンテナハウジング610はジルコニアまたはアルミナなどのセラミック材料を含むことができる。ジルコニアの誘電率は、典型的な体の筋肉組織の誘電率に似ている。筋肉組織の誘電率と同様の誘電率を有する材料を使用することで、アンテナ108の回路インピーダンスが安定するのを促すことができ、アンテナ108が異なる種類の組織によって囲まれるときのインピーダンスの変化を減少させることができる。
外部送信機から装置600などへの電力伝送効率は、アンテナまたはハウジング材料の選択によって影響を受ける可能性がある。例えば、アンテナハウジング610がセラミック材料を含む場合のように、アンテナ108が低めの誘電率の組織によって包囲または封入されると、装置600の電力伝送効率を高めることができる。例では、アンテナ108は、フィードスルーを有する単一のセラミック構造として構成することができる。
図7は、回路ハウジング606の実施形態の概略図を全体的に示す。図示の回路ハウジング606は、様々な電気および/または電子部品712A、712B、712C、712D、712E、712F、および712Gを含み、例えば回路基板714に電気的に接続することができる。部品712A~Gおよび回路基板714は、筐体722内に配置されている。例では、筐体722は回路ハウジング606の一部を構成する。
部品712A~Gの1つまたは複数は、1つまたは複数のトランジスタ、抵抗器、コンデンサ、インダクタ、ダイオード、中央処理装置(CPU)、フィールドプログラマブルゲートアレイ(FPGA)、ブール論理ゲート、マルチプレクサ、スイッチ、レギュレータ、増幅器、電源、チャージポンプ、発振器、位相同期ループ(PLL)、変調器、復調器、無線機(受信および/または送信無線機)、および/またはアンテナ(例えば、とりわけ螺旋形アンテナ、コイルアンテナ、ループアンテナ、あるいはパッチアンテナ)などを含み得る。回路ハウジング606の部品712A~Gは、とりわけ、電極604を使用して身体に送達することができるような、刺激療法信号を提供するように構成された刺激療法生成回路、遠隔装置から電力および/またはデータを受信するよう構成される受信機回路、遠隔装置にデータを提供するように構成された送信機回路、および/または電極604のどれが1つまたは複数のアノードまたはカソードとして構成されるかを選択するように構成される電極選択回路を形成するように配置または構成することができる。
筐体722は、白金およびイリジウム合金(例えば、90/10、80/20、95/15など)、純粋な白金、チタン(例えば、市販の純粋な、6Al/4Vまたは他の合金)、ステンレス鋼、あるいはセラミック材料(例えば、ジルコニアまたはアルミナなど)、あるいは他の気密性の生体適合性材料を含み得る。回路ハウジング606および/または筐体722は、その中の回路に気密の空間を備えることができる。筐体722の側壁の厚さは約数十マイクロメートルであり得、例えば約10、20、30、40、50、60、70、80、90、100、110マイクロメートルなど、またはその間の何らかの厚さであり得る。筐体722の外径は、10ミリメートル未満のオーダーであり得、例えば約1、1.5と、2、2.5と、3、3.5ミリメートルなど、またはその間の何らかの外径であり得る。筐体の長さはミリメートルのオーダーであり得、例えば2、3、4、5、6、7、8、9、10、11、12、13ミリメートルなど、またはその間の何らかの長さを含むことができる。金属材料が筐体722に使用される場合、筐体722を電極アレイの一部として使用することができ、刺激のために選択可能な電極604の数を効果的に増やすことができる。
気密性であるというよりむしろ、筐体722は、埋め戻して、その中への水分の侵入を防ぐことができる。埋め戻し材料は、エポキシ、パリレン、テコタン、または他の材料もしくは材料の組み合わせなどの非導電性の防水材料を含むことができる。
図7の例では、回路ハウジング606は第1のエンドキャップ716Aおよび第2のエンドキャップ716Bを含むことができる。例では、キャップ716Aおよび716Bは、筐体722に、または少なくとも部分的にその中に配置される。キャップ716Aおよび716Bは、筐体722の実質的に反対側などの開口部を覆うように設けることができる。キャップ716Aは回路ハウジング606の第1の側端部711の一部を形成し、キャップ716Bは回路ハウジング606の第2の側端部713の一部を形成する。キャップ716A~Bのそれぞれは、1つまたは複数の導電性フィードスルーを含む。図7の例では、第1のエンドキャップ716Aは第1のフィードスルー718Aを含み、第2のエンドキャップ716Bは第2のフィードスルー718Bおよび第3のフィードスルー718Cを含む。導電性フィードスルー718A~Cは、それに接続された導体への電気経路を備える。
細長い植込み型アセンブリ
本明細書の他の箇所で同様に論じられているように、植込み型装置に電力を供給するために外部ワイヤレス電力送信機を使用することは、特に植込み型装置が深く植込まれているときには困難であり得る。本明細書で論じる実施形態は、例えば、延長された長さの特性を有する植込み型装置を使用することで、そのような困難を克服するのを促すことができる。いくつかの実施形態では、無線電力送信機(例えば、患者の体外)と植込み型装置のアンテナとの間の距離は、植込み型装置の電極を植込んだ深さよりも短い。いくつかの実施形態は、回路ハウジング間などの、植込み型装置の長さを延ばすことができる細長い部分を含むことができる。
本発明者らは、神経刺激パルスを組織に供給する装置の動作する深さを増加させる必要性を認識した。実施形態は、植込み型装置(例えば植込み型神経刺激装置)が、(a)治療パルスを深部神経(例えば胴体の中心または頭部内の深部、例えば10センチメートルを超える深さの神経)に送達すること、および/または(b)他の無線技術を使用して現在利用可能なものよりも深い位置から生じる刺激を必要とする血管構造内の深部に治療パルスを送達することを可能にし得る。例では、身体内部のいくつかの構造は、皮膚の表面から約10cm以内にある場合もあるが、それにもかかわらず、以前の技術を使用して到達可能ではない場合がある。これは、植込みの経路が直線状ではない場合、または植込みの経路が曲がっている、または他の障害物があるために、装置の電極が構造に到達できない場合があるためである可能性がある。
本発明者らは、他の問題の中でも特に、この植込みの深さの問題に対する解決策が、近位回路(例えば近位回路ハウジングに配置され一般に通信および/または電力トランシーバ回路を含む回路)を少なくとも2つの回路部分に分離すること、および2つの回路部分の間に細長い(例えば、可撓性、剛性、または半剛性)部分を設けることによって、様々な深さで機能するように構成された植込み型装置を含み得ることを認識してきた。回路のより近位の部分(例えば、他の回路部分に対する)は、電力受信および/または信号調整回路を含むことができる。回路のより遠位の部分(例えば、他の回路部分に対してより遠位)は、刺激波発生回路を含み得る。以下の論述では、より近位のハウジングを第1の回路ハウジングとして指定し、より遠位のハウジングを第2の回路ハウジングとして指定する。
電気的に敏感な無線周波数(RF)受信および/または後方散乱送信回路の部品は、近位の第1の回路ハウジングに提供またはパッケージングすることができる。例では、受信されたRF電力信号は、アセンブリの同じ部分または他の部分に配置された回路による使用などのために、第1の回路ハウジングで、直流(DC)に整流され得る。後方散乱送信回路を任意に設けることができる。例では、第1の回路ハウジングは、上述のミッドフィールド給電装置を含むなど、ミッドフィールド給電装置、近接場無線通信などの外部電力送信機によって給電されるのに十分な最小距離内に維持することができる。
図8は、細長い植込み型装置800の例を全体的に示す。例では、細長い植込み型装置800は、図1の植込み型装置110または図6の第1の植込み型装置600の例のものと同じまたは類似することができる構成要素またはアセンブリ含むまたは備える。植込み型装置800は、細長い部分2502、第1の回路ハウジング606A、第2の回路構成ハウジング606B、およびコネクタ2504を含み得る。図8の例では、コネクタ2504は円錐台形であるが、他の形状または構成も同様に使用することができる。第2の回路ハウジング606Bは任意選択であり、細長い部分2502は円錐台形コネクタ2504に直接接続することができる。例では、第1の回路ハウジング606Aは、ワイヤレス電力信号を受信するため、および/または外部装置との間でデータをやり取りするためなどの通信回路を含む。第2の回路ハウジング606B内の様々な回路は、特定用途向け集積回路(ASIC)、設置面積の大きなコンデンサ、抵抗器、および/または治療用信号またはパルスを生成するように構成された他の構成要素を含むことができ、電極604に電気的に接続できる。
細長い部分2502は、第1および第2の回路ハウジング606Aおよび606Bを分離する。細長い部分2502は、それを通ってまたはその上を延びる導電材料2512Aおよび2512B(例えば、1つまたは複数の導体)を任意選択で含むことができる。例では、導電材料2512Aおよび2512Bは、第1の回路ハウジング606Aの導電性フィードスルーを回路ハウジング606Bの導電性フィードスルーに電気的に接続することができる。例では、導電性材料2512Aおよび2512Bは、様々な出力信号を伝送するように構成される。
導電材料2512Aおよび2512Bは、銅、金、白金、イリジウム、ニッケル、アルミニウム、銀、それらの組み合わせまたは合金などを含むことができる。細長い部分2502および/または導電材料2512Aおよび2512Bのコーティングは、装置が患者の体に植込まれたときに身体組織を含むことができるなど、周囲環境から導電材料2512Aおよび2512Bを電気的に絶縁することができる。コーティングは、誘電、例えばエポキシおよび/または他の誘電材料を含むことができる。細長い部分2502は、生体適合性材料などの誘電材料を含み得る。誘電材料は、Tecothane、Med 4719などを含むことができる。
例では、細長い部分2502は、装置が植込まれるように構成されていると予想される材料(例えば、身体組織)に対して摩擦を増強または増大させる材料から形成するか、それでコーティングすることができる。例では、材料はシリコーンを含む。追加的にまたは代替的に、粗面の仕上げを細長い部分2502の表面または表面の一部に施すことができる。摩擦を増大させる材料および/または表面の仕上げは、植込み型装置を植込むことができる生体組織に対するインプラントの摩擦を増大させ得る。摩擦が増大すると、植込み型装置が組織内でその位置を維持するのを促すことができる。1つまたは複数の例では、突出部(例えば、隆起部、フィン、棘部など)などの他の小規模な特徴を追加して、一方向の摩擦を増大させることができる。摩擦を増大させることは、植込み型装置が植込まれている間に(例えば、軸方向または他の方向に)動く可能性が低くなるように、長期的な固定を改善するのに役立ち得る。
第1の回路ハウジング606Aの寸法2506A(例えば、幅、断面積、または直径)は、回路ハウジング606Bの対応する寸法2506B(例えば、幅)とほぼ同じであり得る。細長い部分2502は第1の寸法2508(例えば幅)を含むことができ、これは第1の回路ハウジング606Aの寸法2506Aおよび第2の回路ハウジング606Bの寸法2506B各々とほぼ同じである。植込み型装置800の遠位部分の第2の寸法2510(例えば、幅)は、寸法2506A、2506B、および2508よりも小さくすることができる。
例では、植込み型装置800の遠位部分は、本体部分602、1つまたは複数の電極604、および円錐台形コネクタ2504の遠位側に連結された他の構成要素を含む。植込み型装置800の近位部分は、第1および第2の回路ハウジング606Aおよび606B、細長い部分2502、アンテナ108、ならびに円錐台形コネクタ2504の近位側の他の構成要素を含む。図示の寸法2506Aおよび2506B、2508、および2510は、装置800の構成要素の長さ2514に対して略垂直である。
円錐台形コネクタ2504は、植込み型装置800の近位部分に連結された近位側面2516を含む。円錐台形コネクタ2504は、植込み型装置800の遠位部分に連結された遠位側面2518を含む。遠位側面2518は近位側面2516の反対側にある。遠位側面2518の幅または直径の寸法は、本体部分602の対応する寸法2510とほぼ同じであり得る。近位側面2516の幅または直径の寸法は、対応する寸法2506Aおよび/または2506Bとほぼ同じであり得る。
1つまたは複数の例では、装置800の長さ2514は、約50ミリメートルから約数百ミリメートルの間であり得る。1つまたは複数の例では、細長い部分2502は、約10ミリメートルから約数百ミリメートルの間であり得る。例えば、細長い部分2502は、約10ミリメートルから約100ミリメートルの間であり得る。1つまたは複数の例では、寸法2510は約1ミリメートル(mm)から約1と1/3mmであり得る。1つまたは複数の例では、寸法2506Aと2506Bは約1.5ミリメートルの間と約2.5ミリメートルの間にすることができる。1つまたは複数の例では、寸法2506Aおよび2506Bは、約1から2/3ミリメートルおよび約2から1/3ミリメートルであり得る。1つまたは複数の例では、寸法2508は、約1ミリメートルから約2.5ミリメートルの間であり得る。1つまたは複数の例では、寸法2508は、約1ミリメートルから約2と1/3ミリメートルの間であり得る。
図9は、組織2604内に植込まれた植込み型装置800を含むシステム900の例を全体的に示す。図示のシステム900は、植込み型装置800、組織2604、外部電力ユニット902、およびワイヤ2606(例えば、プッシュロッド、縫合糸、または植込み型装置800を植込むまたは除去するための他の構成要素)を含む。例では、外部電力ユニット902は外部供給源102を含む。
装置800の細長い部分2502は、植込み型装置800の電極604が組織2604の奥深くまで到達することを可能にし、アンテナが組織表面および外部電力ユニット902に十分に接近することを可能にする。装置800は、細長い部分が伸びる(例えば、一部分が伸張可能である、および/または細長くなることができる)および/または撓む(例えば、装置の長さに沿って1つまたは複数の軸の周りで回転することができる)ことを示すように、細長い部分が曲がった状態で示されている。
1つまたは複数の例では、外部電力ユニット902は、本明細書に記載の外部供給源102などのミッドフィールド電力装置を含むことができる。細長い植込み型装置の他の構成も同様に使用して、外部電力ユニット902に信号を受信または発することができる。例では、図8の例からの細長い部分2502は省くことができ、様々な植込み型装置回路を単一の回路ハウジングに含めることができる。
層状のミッドフィールド送信機システムおよび装置
例では、図1の例の外部供給源102に対応するものなどのミッドフィールド送信機装置は、1つまたは複数の同調要素を有する層状構造を含むことができる。ミッドフィールド送信機は、電力および/またはデータ信号を植込み型標的装置に送信するなど、組織表面でエバネセント場を変調し、それによって組織内に伝播の場を生成するように、RF信号を提供するように構成される動的に構成可能な能動的トランシーバであり得る。
例では、ミッドフィールド送信機装置は、送信機とアンテナの機能の組み合わせを含む。装置は、バックプレーンまたは接地面を備えたスロットまたはパッチアンテナを含むことができ、1つまたは複数のストリップラインまたはマイクロストリップまたは電気信号によって励起することができる他の機能を含むことができる。例では、装置は、励起することができ、それによって、例えば1つまたは複数の対応するストリップラインまたはマイクロストリップの励起に応答して、信号を発生させることができる1つまたは複数の導電板を含む。例では、外部供給源102は、アンテナ300を構成する励起可能な特徴を備えた層状構造を含み、アンテナは、図4に示されるネットワーク400に連結される。例では、本明細書で論じられる様々な送信機の1つまたは複数の層は、可撓性送信機装置を提供するために、1つまたは複数の可撓性基板または可撓性層を含むことができる。
図10は、第1の層1001Aを含む、層状をした第1の送信機1000の例の上面図を全体的に示す。第1の送信機1000の様々な特徴は円形として示されているが、送信機およびその様々な要素または層の他の形状またはプロファイルを同様に使用することができる。第1の層1001Aは、図面に示されるように、および/または本明細書に記載されるように、様々な層の特徴をもたらすためにエッチングまたは切断され得る導電板を含む。
図10の例では、第1の層1001Aは、導電性の外側領域1005を導電性の内側領域1015から分離するために円形スロット1010でエッチングされた銅基板を含む。この例では、外側領域1005は、円形スロット1010によって、内側領域1015を含む実質的にディスク形状の特徴から分離されたリング状または環状の特徴を含む。すなわち、図10の例において、導電性内側領域1015は、外側領域1005を構成する導電性環状部から電気的に絶縁されている。第1の送信機1000を、図10に示すものとは異なる装置の層に設けることができるといった、1つまたは複数のストリップライン特徴を使用して励起すると、導電性内側領域1015は同調電界を生成し、外側環状部はまたは外側領域1005は基準電圧またはグラウンドに連結することができる。すなわち、導電性内側領域1015は、第1の層1001Aまたは基板の表面に設けられるエミッタの少なくとも一部を含む。
図10の例は、第1の送信機1000によって送信される場に影響を与えるために、第1の層1001Aに対する様々な物理的な寸法および位置を有する調整機能を含む。エッチングされた円形スロット1010に加えて、この例は、円形スロット1010から第1の層1001Aの中心に向かって延びる4つの半径方向スロット、すなわちアーム1021A、1021B、1021C、および1021Dを含む。図示されているのと同じ形状または別の形状を有するなど、より少ないまたは追加の調整機能を、装置の共振周波数に影響を与えるために同様に使用することができる。すなわち、直線状の放射状スロットが示されているが、1つまたは複数の異なる形状のスロットを使用することができる。
第1の層1001Aの直径およびスロット1010の寸法は、装置の共振周波数を調整または選択するように調整することができる。図10の例では、1つまたは複数のアーム1021A~1021Dの長さが増加すると、それに応じて共振または中心動作周波数が減少する。第1の層1001Aに隣接または近接する1つまたは複数の層の誘電特性はまた、共振特性または透過特性を調整する、またはそれに影響を及ぼすために、使用することができる。
図10の例では、アーム1021A~1021Dは実質的に同じ長さである。例では、アームは異なる長さを有することができる。直交する対のアームは、実質的に同じまたは異なる長さの特性を有することができる。例では、第1および第3のアーム1021Aおよび1021Cは第1の長さの特性を有し、第2および第4のアーム1021Bおよび1021Dは異なる第2の長さの特性を有することができる。設計者は、アームの長さを調整して、装置の共振を調整できる。第1の層1001Aのアーム長さ、スロットの幅、または他の特性を変更することはまた、層が励起されるとき、層の周りの電流の分布のパターンの対応する変化をもたらす可能性がある。
例では、例えば送信機の動作周波数をさらに調整するために、1つまたは複数の場所でスロット1010を橋渡しするために1つまたは複数の容量性要素を設けることができる。すなわち、第1の送信機1000を調整するために、以下でさらに議論されるように、コンデンサのそれぞれの板を外側領域1005および内側領域1015に電気的に連結することができる。
第1の層1001Aの寸法は様々であり得る。例では、最適な半径は、所望の動作周波数、近くのまたは隣接する誘電材料の特性、および励起信号特性によって決まる。例では、第1の層1001Aの公称半径は約25から45mmであり、スロット1010の公称半径は約20から40mmである。例では、第1の層1001Aを備える送信機装置は、スロットの半径を減少させることおよび/またはアームの長さを増加させることなどによって、装置の効率を犠牲にして、より小さくすることができる。
図11は、層状をした第1の送信機1000の第1の層1001Aに重ねられた第2の層1101の上面図を全体的に示す。第2の層1101は、例えばそれらの間に挿入された誘電材料を使用して、第1の層1001Aから離間している。例では、第2の層1101は第1の送信機1000を励起するように構成された複数のストリップラインを含む。図11の例は、第1の層1001Aの導電性内側領域1015の4つの領域にそれぞれ対応する、第1から第4のストリップライン1131A、1131B、1131C、および1131Dを含む。図11の例では、ストリップライン1131A~1131Dは、アーム1021A~1021Dのそれぞれに対して約45度に向けられている。異なる向きまたはオフセット角を使用することができる。図11の例は円形装置の周りに等間隔で離間したストリップライン1131A~1131Dを示しているが、他の不均等な間隔を使用することができる。例では、装置は、追加のストリップラインまたはわずか1つのストリップラインを含むことができる。
第2の層1101に設けられる第1から第4のストリップライン1131A~1131Dは、第1の層1001Aから電気的に絶縁することができる。すなわち、ストリップラインは、導電性環状外側領域1005およびディスク形状の導電性内側領域1015から物理的に離間することができ、誘電体材料を、第1の送信機1000の第1および第2の層1001Aおよび1101の間に挿入することができる。
図11の例では、第1から第4のストリップライン1131A~1131Dは、それぞれの第1から第4のビア1132A~1132Dに連結されている。第1から第4のビア1132A~1132Dは、第1の層1001Aから電気的に絶縁することができるが、いくつかの例では、第1から第4のビア1132A~1132Dは、第1の層1001Aを貫通して延びることができる。例では、ビアは、図3の例に示されているRFポート311、312、313、および314のそれぞれのものを含むことができるか、それらに連結することができる。
例では、第1から第4のストリップライン1131A~1131Dのうちの1つまたは複数は、例えば図11の例には示されていないそれぞれの他のビアを使用して、第1の層1001Aの導電性内側領域1015に電気的に連結され得る。そのような電気的接続は、装置を使用してミッドフィールド信号を発生するのに不要であるが、接続は、装置の調整または性能の強化をするのに有用であり得る。
第1の層1001Aの導電性内側領域1015に隣接し、それを覆って延びる層に、第1から第4のストリップライン1131A~1131Dなどの励起マイクロストリップおよび/またはストリップラインを設けることによって様々な利点が与えられる。例えば、第1の送信機1000全体の大きさを減らすことができる。第1の送信機1000の大きさまたは厚さをさらに小さくするために、第1の層1001Aと第2の層1101との間に様々な異なる誘電材料を使用することができる。
図12は、層状をした第1の送信機1000に関する例の斜視図を全体的に示す。図13は、層状の第1の送信機1000の側面断面図を全体的に示す。例は、図12および図13のそれぞれの下側に、第1の送信機1000の第1の層1001Aを含む。図の上部に、第1の送信機1000は第3の層1201を含む。第3の層1201は、第1の送信機1000のためのシールドまたはバックプレーンを提供する導電層であり得る。1つまたは複数のストリップラインを含むなど、第2の層1101は、第1の層1001Aと第3の層1201との間に介在させることができる。第1の層1001Aと第2の層1101との間に1つまたは複数の誘電層(図示せず)を介在させることができ、第2の層1101と第3の層1201との間に1つまたは複数の他の誘電層を介在させることができる。
図12および図13の例は、第1の層1001Aの外側領域1005を第3の層1201と電気的に連結するビアを含む。すなわち、グラウンドビア1241A~1241Hは、接地面(例えば、第3の層1201)を第1の層1001Aの1つまたは複数の特徴または領域と連結するように設けることができる。この例では、上述のように、第1~第4のストリップライン1131A~1131Dのそれぞれは、各信号励起源ビア1132A~1132Dに連結されている。信号励起源ビア1132A~1132Dは、第1の層1001Aおよび第3の層1201から電気的に絶縁することができる。
図12および図13の例では、図示の装置の送信側は下向きである。すなわち、第1の送信機1000が使用され、組織表面に、または組織表面に隣接して配置されるとき、装置の組織に面する側は、図示されるように図面において下向きの方向である。
接地面として第3の層1201を設けることは、様々な利益を与える。例えば、他の電子装置または回路を第3の層1201の上部に設けることができ、実質的に、送信機に過度に干渉することなく、動作させることができる。例では、植込み型または他の装置(例えば植込み型装置110、または本明細書に記載のその他の植込み型装置)との無線通信などのために、他の無線回路(例えばミッドフィールド送信機の範囲外で動作する)を、第3の層1201上に設けることができる。例では、第1の送信機1000と背中合わせの関係などになるように第2の送信機を設けることができ、第3の層1201の接地面を使用して第1の送信機1000から分離することができる。
図14Aは、一般に、第1の送信機1000が駆動信号によって、または第1から第4のストリップライン1131A~1131Dにそれぞれ提供される複数の駆動信号によって励起されるときに生じる表面電流パターン1400Aを示す例を示す。様々な駆動信号は、第1の送信機1000で様々な表面電流を生成するために、互いに対して位相および/または振幅において調整することができる。図14Aの例では、表面電流パターンは、組織の界面の近くに配置された送信機を使用して提供される場合、組織内部の伝播または非定常な場を生じさせるエバネセント場に影響を与える、振動性の最適な分布を厳密に模倣する。
送信機の最適な電流分布の例は、一般に、図14Bのパターン1400Bによって示されている。すなわち、第1の送信機1000が、パターン1400Bに対応する特定の電流のパターンを誘導または提供する信号で励起され、その1つの代表的な例が表面電流パターン1400Aに示されている場合、対応する最適なエバネセント場を、組織の界面またはその近くなどで生じさせることができる。
例では、最適または目標の電流のパターンを提供する(例えば、第1から第4のストリップライン1131A~1131Dに提供される)励起信号は、反対方向のマイクロストリップ(例えば、図11の例の第2および第4のストリップライン1131Bおよび1131Dを提供する振動性の信号を含む。例では、励起信号はストリップラインの1つまたは複数の他のペア(例えば、図11の例では、第1および第3のストリップライン1131Aおよび1131C)に提供される信号をさらに含む。このタイプまたはモードの励起は、最適な電流のパターンを生成し、深く植込まれた受信機に信号を効率的に送るために使用することができる。例では、植込み型装置110などの植込み型受信機は、電流信号方向1401と平行に配向されたループ受信機を含む。すなわち、ループ受信機は、信号方向1401を示す矢印によって示されるように、振動電流分布の突出した方向と平行に、組織に設置することができる。別の言い方をすれば、ループ受信機の法線は、現在の信号方向1401に対して直交するように向けることができる。
図15A、図15B、および図15Cは、全体的に、異なる励起信号または励起信号パターンに応答する、第1の送信機1000などのミッドフィールド送信機の異なる偏波の例を示している。例では、送信機の偏光方向は、ストリップラインの1つまたは複数または送信機の他の励起特徴に提供される励起信号の位相および/または大きさを調整することによって、変更することができる。励起信号を調整することは、送信機の導電性部分にわたる電流の分布を変化させ、例えば信号転送効率を最適化するために、送信機を受信機との整列に向かって偏らせるために使用することができる。
例では、最適な励起信号の構成は、植込み型装置110からの情報を使用して判定することができる。例えば、外部供給源102は、第1の送信機1000または他の送信機の励起可能な特徴に与えられる1つまたは複数の送信信号の信号位相および/または重み付けを変更することができる。例では、植込み型装置110は、内蔵の電力計を使用して、受信した信号の強度を測定し、信号位相変化の影響を判断するなどして、強度に関する情報を外部供給源102に通信することができる。例では、外部供給源102は、反射電力特性を監視して、カップリング効率に対する信号位相変化の影響を判定することができる。したがって、システムは、時間の経過とともに最大転送効率に向かって収束するように構成でき、直交ポートまたは他のポート間の位相およびポートの重み付けについて、正と負の両方向の調整を使用し得る。
図15Aの例は、送信機の左右の象限における第1の電流分布1501の例を示している。この例では、上部および下部ストリップラインは第1の対の励起信号を受信し、左右の直交するストリップラインは使用されなくてもよい。
図15Bの例は、図15Aの第1の電流分布1501の例に対して約45度回転する第2の電流分布1502の例を示している。図15Bでは、第1から第4のストリップライン1131A~1131Dの4つすべてが、互いに対する位相オフセットなどで、異なる励起信号によって励起され得る。
図15Cの例は、図15Aの第1の電流分布1501の例に対して約90度回転する第3の電流分布1503の例を示している。図15Cでは、左右のストリップラインは、第2の対の励起信号を受信し、上下の直交するストリップラインは使用されずともよい。
したがって、図15Aから図15Cは、エバネセント場の方向または特性を変更するために使用することができる異なる電流分布のパターンを示し、これは次に、植込み型装置110の方向において、組織内部の伝播場の方向または大きさに影響を及ぼし得る。したがって、外部送信機の電流分布パターンの変化は、植込み型装置110、または外部供給源102からの信号を受信するように構成された他の装置とのカップリング効率の変化に対応することができる。
図16は、組織1606内の信号または場の侵入を示す例を全体的に示す。第1の送信機1000または本明細書で論じられる他の送信機の例の1つまたは複数に対応するものなどの送信機は、この例では1602と示され、図の上部に提示される。送信機1602と組織1606との間の空隙1604でエバネセント場を操作するために送信機1602を作動させると、送信機1602から離れて組織1606内に図の下部に向かって延びる伝播の場(図の漸進的なローブによって示されるものして)が生成される。
図17は、植込まれた受信機の変化する角度または回転に関して、植込まれた受信機への第1の送信機の直交送信機ポートのカップリング効率間の関係を示すチャート1700の例を全体的に示す。この例は、直交ポート(例えば、第1から第4のストリップライン1131A~1131D)に提供される入力信号または励起信号の重み付けすることが、植込まれた受信機の変化した位置および回転を補償するために使用され得ることを示す。送信機が標的装置の位置におけるそのような変動を補償することができるとき、標的装置が最初に構成された位置から離れた場合でも、一貫した電力が標的装置に供給され得る。
図17の例では、第1の曲線1701は、第1の対の反対向きの(例えば、上/下、または左/右)ストリップラインが、振動性の信号によって励起されるときの、Sパラメータ、または送信機および受信機における信号の電圧比を示す。第2の曲線1702は、反対向きストリップラインの第2の対が振動性の信号によって励起されたときのSパラメータを示す。図17の例では、ストリップラインの第1および第2の対は直交対である。この例は、直交する対に提供される信号が、建設的な干渉などを通じて、異なる注入角度で一貫した電力供給を達成するために最適に重み付けされ得ることを示す。
図17の例はさらに、本明細書で論じる送信機およびそれらの等価物を使用して、例えば送信機または外部供給源102自体を動かすことなく、伝搬の場を効果的に操縦または方向付けることができることを示す。例えば、植込み型装置110の位置の回転での変化は、例えば一貫した信号が確実に植込み型装置110に伝達されるように、様々なストリップラインに提供される信号を、異なる位相で重み付けすることによって、補償することができる。例では、重み付けは、植込み型装置110自体からのフィードバックを使用して得ることができるように、感知または測定された信号伝達効率に基づいて調整することができる。励起信号の重み付けを調整することは、送信機の電流の分布の方向を変えることができ、それは次に、身体組織の外側のエバネセント場の特性を変えることができ、これにより、組織内の電界の伝播方向または大きさに影響を与える可能性がある。
図18は、層状をした送信機の異なる第1の層1001Bに重ねられた、図11の例から得る第2の層1101の上面図を全体的に示す。すなわち、図11と比較して、図18の例は、アーム1021A~1021Dを含む第1の層1001Aの代わりに、異なる第1の層1001Bを含む。異なる第1の層1001Bは、導電性の外側領域を導電性の内側領域から分離するために円形スロット1810でエッチングされた基板を含む。エッチングされた円形スロット1810に加えて、この例は、「X」のパターンに配置され、装置の中心軸で交差するように構成された一対の線形スロット1811を含む。図18の例では、一対の直線状スロット1811は、基板または層の両側縁部まで延びている。したがって、この例は、異なる第1の層1001Bに、電気的に分離された8つの領域を含む。それは、4つの等しい大きさのセクタ、またはパイの一部の形状の領域、および4つの等しい大きさの環の領域を含む。線形スロット1811が互いに正確に直交して配置されていない場合など、同じサイズではなく異なるサイズの領域を同様に使用することができる。
異なる第1の層1001Bを有する装置が励起されると(例えば、第2の層1101のストリップラインを使用して)、異なる第1の層1001Bを横切ってまたはその上に生じる電流密度は、層の内側セクタ部分よりも層の外側の環状部分に比較的集中させることができる。図19Aおよび図19Bは、全体的に、異なる第1の層1001Bを含むまたは使用する励起装置について、それぞれ異なる表面電流パターン1900Aおよび1900Bを示す例を示す。装置の励起を提供する駆動信号は、異なる表面電流を生成するために、互いに対して位相および/または振幅で調整または調節することができる。
図19Aの例では、表面の電流のパターンは、振動性の最適分布を厳密に模倣して、組織内の伝播の場を生じるエバネセント場を調節する。図示の矢印密度によって示されるように、電流密度は、異なる第1の層1001Bの内側セクタ部分よりも外側環部分に集中することができる。図19Aの例の装置が第1の励起信号または信号パターンによって励起されるとき、装置は、破線セグメント1901および1902によって示され、隣接する垂直方向のローブの対に近似し、異なる第1の層1001Bにおいて、太字の矢印1903および1904によって示される方向に対応する、振動電流分布を有することができる。植込み型装置110などの受信機は、植込み型装置110が、第1の受信機の向きの矢印1909によって示されるようなローブの方向に直交して配向された受信機アンテナ法線を含む場合、図19Aに示される方法で励起される異なる第1の層1001Bを含む送信機と最も強く連結することができる。
異なる第1の層1001Bに誘導される電流経路の方向または向きは、励起信号の変化に対応して変化する可能性がある。図19Bの例では、表面の電流の第2のパターンは、振動性の最適分布を厳密に模倣して、組織内の伝播の場を生じるエバネセント場を調節する。図示の矢印密度によって示されるように、電流密度は、異なる第1の層1001Bの内側セクタ部分よりも外側環部分に集中することができる。図19Bの例の装置が第2の励起信号または信号パターンによって励起されるとき、装置は、破線セグメント1911および1912によって示され、隣接する垂直方向のローブの対に近似し、異なる第1の層1001Bにおいて、太字の矢印1913および1914によって示される方向に対応する、振動電流分布を有することができる。植込み型装置110などの受信機は、植込み型装置110が、第1の受信機の向きの矢印1919によって示されるようなローブの方向に直交して配向された受信機アンテナ法線を含む場合、図19Bに示される方法で励起される異なる第1の層1001Bを含む送信機と最も強く連結することができる。
異なる第1の層1001Bを含むまたは使用する装置は、その動作周波数または共振を、図11の例からのアーム1021A~1021Dの長さに基づくのではなく、外側環の領域特性に部分的に基づいて判定することができる。図18の実施形態を使用する送信機から、植込み型ミッドフィールド受信機への全信号転送効率は、図11の実施形態を使用する送信機からの効率と同様であるが、図18の実施形態の外側の環状部分における相対的に大きな電流密度は、相対的に大きい操縦性(すなわち、送信の場の操縦性)を可能にでき、したがって受信機が送信機に対して軸外にあるときなど、植込み型装置110との通信のための、潜在的により良好なアクセスおよび送信特性を可能にできる。さらに、図18の実施形態を使用すると比吸収率(SAR)を下げることができ、ポート間の望ましくない連結を減らすことができる。外部供給源102の他の送信機の構成および幾何学的配置を同様に使用して、図示の実施形態について本明細書で企図されているのと同じ電流分布および操縦可能の場を達成することができる。
他の送信機の構成を追加的または代替的に使用することができる。図20は、例えば、層状をした第2の送信機2000の例の上面図を全体的に示す。第2の送信機2000は、第1の送信機1000と、外形およびその層状構造において類似している。第2の送信機2000は、第1から第4のパッチ様特徴2051A~2051Dを含む第1の層2001からオフセットされた第2の層に、ストリップライン励起要素2031A~2031Dを含む。図21は、層状をした第2の送信機2000の斜視図を全体的に示す。
図20の例では、第1の層2001は、様々な層の特徴をもたらすためにエッチングまたは切断することができる導電板を含む。第1の層2001は、エッチングされていくつかの個別の領域を形成する銅の基板を含む。図20の例では、エッチングは層を四分円に部分的に分離する。本明細書で論じられる他のいくつかの例とは異なり、エッチングされた部分は、物理的に孤立した内側領域を作成しない。代わりに、図20の例は、個別の領域を部分的に電気的に分離するために使用されるビア2060のパターンを含む。ビア2060は、接地面として機能する他の層に連結されている。図示の例では、ビア2060は、四分円に対応し、四分円を画定する「X」のパターンで配置されている。例では、ビア2060は、第1の層2001と第2の層2003との間に延在し、ビア2060は、1つまたは複数のストリップラインを含む別の層から電気的に絶縁することができる。ビア2060の配置は、第1の層2001を、それぞれのストリップラインまたは他の励起手段などによって実質的に独立して励起可能であることができる象限に分割する。
第1の層2001のエッチングされた部分は、第1の層の外側部分から装置の中心に向かって延びる様々な線形スロットまたはアームを含む。例では、第2の送信機2000の直径およびそのスロットまたはアームの寸法は、装置の共振周波数を調整または選択するように調整することができる。第1の層2001に隣接または近接する1つまたは複数の層の誘電特性はまた、第2の送信機2000の伝送特性を調整または影響を与えるために使用することができる。
図20の例では、「X」のパターンで提供されたビア2060およびビアの壁を使用して、異なる励起領域を分離することができ、例えば送信機と正確に位置合わせされていない植込み型装置を標的とするために、伝搬の場の操縦を容易にすることができる。第1から第4のストリップライン励起要素2031A~2031Dなどの、ストリップラインにそれぞれ提供される励起信号の様々な特性を調整することによって、信号の操作をもたらすことができる。例えば、励起信号の振幅および位相の特性は、特定の送信局在化を達成するために選択され得る。
本発明者らは、ビア2060などのビアが他の利点をもたらすことを認識してきた。例えば、ビアの壁は、励起要素との間でいくらかの信号反射を引き起こす可能性があり、それがひいては、より多くの表面電流をもたらすことができ、それによって組織に伝達される信号の効率を高めることができる。
図22は、層状をした第3の送信機2200の例の斜視図を全体的に示す。例は、図の下側に、第3の送信機2200の第1の層2201を含む。図の上部において、第3の送信機2200は第2の層2202を含む。第1の層2201と第2の層2202は誘電層を用いて分離することができる。第1の層2201は、第1の層2201の外側領域2205を第1の層2201の内側領域2215から分離または電気的に絶縁するスロット2210を含むことができる。スロット2210は、環状の外側領域2205(例えば、外側の環状領域)をディスク形状の内側の領域2215(例えば、内側のディスク領域)から分離する。例では、第2の層2202は、第3の送信機2200のためのシールドまたはバックプレーンを提供する導電層とすることができる。例では、スロット2210および/またはディスク形状の内側領域2215の円周は、第3の送信機2200を使用して送信される信号の波長よりも短い。
図22の例は、第2の層2202に配置することができるような、第1の層2201の内側領域2215を駆動回路と電気的に連結するビア2230A~2230Dを含む。グラウンドビア(図示せず)を使用して、外側領域2205を第2の層2202と電気的に連結することができる。すなわち、図22の例は、追加の層およびストリップラインを使用せずに励起可能である第1の層2201の内側領域2215を有する送信機を含むことができる。例では、第1の層2201は、スロット2210から装置の中心に向かって延びる1つまたは複数のアームを追加することなどによって、調整または変更することができる。しかし、円形スロット2210は一般に、そのような追加の特徴を使用することなく適切な動作共鳴または周波数が達成され得るように十分に大きくされ得る。
図23は、層状の第3の送信機2200の側面断面図を全体的に示す。図23の例は、第3の送信機2200の第1の層2201と第2の層2202との間に誘電層2203を設けることができることを一般的に示している。例では、回路アセンブリ2250を第3の送信機2200に隣接して設けることができ、はんだバンプ2241、2242を使用するなどして、第3の送信機2200と連結することができる。はんだバンプを使用することは、確立されたはんだリフロープロセスを使用することによって組み立てを容易にするのに便利であり得る。他の電気的接続も同様に使用することができる。例えば、最上層および最下層は、層の相互接続を容易にするために縁部のめっきおよび/またはパッドを含むことができる。そのような例では、最上層は任意に最下層よりも小さくすることができ(例えば最上層は最下層よりも小さい直径を有することができる)、アセンブリの光学的検証を促す。例では、第3の送信機2200は、スロット2210のところでまたはそれに隣接して、第1の層2201と連結された1つまたは複数の容量性同調要素2301を含むことができる。例では、容量性調整要素2301は、スロット2210の反対側の導電性表面に連結することができる。容量性調整要素2301は、送信機の調整特性を調整するために固定または可変の静電容量を提供することができる。
図24は、スロット2410を有する第1の層を示す層状ミッドフィールド送信機2400の一部の例を全体的に示す。例では、スロットは、送信機層の第2の導電領域2415(例えば、内部導電領域に対応する)から第1の導電領域2405(例えば、外部導電領域に対応する)を分離する。送信機2400の動作周波数を調整するためにアームまたはラジアルスロットを追加することに加えて、またはその代わりに、第1および第2の導電領域2405および2415を橋渡しするように、容量性要素をスロット2410の対向する導電性の側面にわたって連結することができる。図24の例では、第1および第2の容量要素2401および2402は、スロット2410に沿った異なる位置で、第1および第2の導電領域2405および2415を橋渡しする。
このような橋渡しおよびチューニング用の容量性要素は、一般にピコファラッドの範囲にあるが、必要な動作周波数に応じて他の値を使用することもできる。例では、第1および第2の容量性要素2401および2402のうちの1つまたは複数は、制御信号によって設定することができる静電容量の値を有するなど、調整可能または可変のコンデンサを含む。制御信号は、ミッドフィールド送信機に必要なチューニング周波数に基づいて更新または調整できる。
調整可能または可変コンデンサ要素、または他の固定コンデンサは、本明細書の図10~図24に示されるいくつかの異なる実施形態のうちの1つまたは複数を含むなど、外部供給源102の様々な実施形態に適用または実装することができる。図10を参照すると、例えば、可変コンデンサ要素は、送信機の周りの複数の場所、例えば、スロット1010の周りのいくつかの場所、または、円形スロット1010から第1の層1001Aの中心に向かって延びる4つの放射状スロットまたはアーム1021A、1021B、1021C、および1021Dのうちの1つまたは複数に沿った1つまたは複数の場所に提供され得る。例では、可変コンデンサ要素は、アーム1021A~1021Dによって分割された4つの象限のそれぞれに1つの可変コンデンサ要素を含むなど、スロット1010の周りの異なる位置に設けられる。
図25は、層状をした送信機の断面概略図の例を全体的に示す。概略図は、概して、本明細書に示される例のうちの任意の1つまたは複数のうちの一部分に対応することができる。図25の例では、底部層2501は銅のような導電性の第1の層であり、例えば図10の例の第1の層1001Aに対応することができる。すなわち、図25の底部層2501は、図10の例におけるエッチングされた第1の層1001Aであり得る。
底部層2501から上方に移動すると、図25は第1の誘電層2502を含む。この第1の誘電層2502は、好ましくはDkが約3~13の低損失誘電材料を含むことができる。導電性の第1の層2502の上方に、第2の誘電層2503を設けることができる。導電性の第2の層2503は、本明細書で論じられるストリップラインまたは他の励起特徴のうちの1つまたは複数を含むことができる。
導電性の第2の層2503の上方に、第2の誘電層2506を設けることができる。第1の誘電層2502および第2の誘電層2506は、同じまたは異なる材料を含むことができ、同じまたは異なる誘電特性または特性を有することができる。例では、第1および第2の誘電体層2502および2506は、異なる誘電特性を有することができ、そのような特性は、装置が信号発生器を使用して励起されるときに特定の装置共振特性を達成するように選択される。
図25の例では、第2の誘電層2506は誘電材料の多層を含むことができる。第2の誘電層が厚くなるにつれて、導電性の第2の層2503と導電性の第3の層2505との間の距離が増加する。導電性の第3の層2505はバックプレーンまたはグラウンドを含むことができる。導電性の第2の層2503と第3の層2505との間の距離が増加すると、それに応じて送信機の帯域幅が増加することができる。より大きな帯域幅は、より大きなデータスループット、周波数ホッピングのためのより広い動作周波数範囲を可能にし得、また許容公差を増大させることにより製造可能性を改善し得る。
図25に示すように、1つまたは複数のビアが層状アセンブリを通って垂直に延びることができる。例えば、第1のビア2511は装置の垂直方向の高さを完全に貫通して延びることができ、一方で第2のビア2512は装置を部分的に貫いて延びることができる。ビアは、異なる層と様々な駆動回路またはグラウンドとの間に電気通信をもたらすためなどで、様々な導電層にて終端することができる。
導電性の第3の層2505の上方に、他の様々な層を設けることができる。例えば、様々な電子装置を送信機と一体化するために使用することができるなど、多層の銅および/または誘電体を設けることができる。そのような装置は、信号増幅器、センサ、トランシーバ、ラジオ、または他の装置、あるいはそのような装置、例えば抵抗器、コンデンサ、トランジスタなどを含む構成要素の1つまたは複数を含むことができる。外部供給源102のためのそのような他の構成要素または回路は、本明細書の他の場所で説明されている。
送信機の調整
例えばミッドフィールド送信機を含む外部供給源102は、植込み型装置110または他のミッドフィールド受信機への信号転送効率を高めるように調整または調節することができる。双方向カプラまたはサーキュレータを使用するなど、信号転送特性を監視できる。また、送信機の電力または駆動信号特性を断続的または定期的に更新して、転送効率を高めることができる。例では、ミッドフィールド送信機の調整は、送信機と受信機のアンテナの間のカップリング効率を判定するために使用できるような、反射電力測定に基づいて容量性調整要素の値を調整することを含む。例では、ミッドフィールド送信機の調整は、植込まれたまたは他のミッドフィールド受信機から受信したデータ信号に基づいて容量性調整要素の値を調整することを含み、データ信号は、受信機で受信した信号の質または量に関する情報を含む。
図26Aは、ミッドフィールド送信機の一部を含むことができる双方向カプラ2601を含む図を示している。双方向カプラ2601は、入力ポートP1、送信ポートP2、連結ポートP3、および分離ポートP4を含む複数のポートを含む。入力ポートP1は、信号発生器2611(例えば、ミッドフィールド送信機装置または外部供給源102の信号発生器構成要素)から、テスト信号または電力信号などの信号を受信する。例では、信号発生器2611は、約300MHzから3GHzの間の周波数を有するAC信号を提供するように構成される。
連結ポートP3は、信号発生器2611から入力ポートP1によって受信される信号の一部を受信する。図26Aの例では、連結ポートP3は、負荷2631で終端されている。例では、負荷2631は、固定の値の抵抗器(例えば、50オームの抵抗器)などの、指定された整合インピーダンスを有する基準の負荷を含む。送信ポートP2は、信号発生器2611から入力ポートP1によって受信された信号の別の部分を送信する。換言すれば、送信ポートP2は、入力ポートP1で受信された信号から連結ポートP3で提供されるいずれかの信号を差し引いたもの、および他のいずれかの損失を差し引いたものに対応する信号を送信する。例では、送信ポートP2は、アンテナポート2621、または図3の例の第1から第4のRFポート311、312、313、および314のうちの1つなどのミッドフィールド送信機の他の励起ポートと連結される。
分離ポートP4は、受信機回路2641に連結することができる。受信回路2641は、監視または分析回路を含むことができる。例では、受信機回路2641は、分離ポートP4から受信された信号を監視し、送信ポートP2からの送信電力信号の効率を判定するために使用できるような反射電力に関する情報を提供するように構成される。例では、分離ポートP4は、RFダイオード検出器回路またはスイッチに連結されている。スイッチは、植込み型装置110から後方散乱通信を受信するためなど、RFダイオード検出器とミキサー回路との間で切り替えるように構成することができる。
図26Aの例では、入力ポートP1は、信号発生器2611またはミッドフィールド送信機装置の他のトランシーバ回路部分から増幅されたテスト信号を受信する。送信機側の信号特性が受信機装置とよく整合している場合、テスト信号からのエネルギーの比較的大きな部分が双方向カプラ2601を介して送信ポートP2に供給され、テスト信号のエネルギーの比較的小さな部分が、分離ポートP4で供給される。ただし、送信機と受信機の装置が十分に一致していない場合は、テスト信号からのエネルギーの比較的大きな部分が分離ポートP4で提供される。したがって、分離ポートP4での信号特性を監視および使用して、伝送の質または電力伝送効率を評価したり、障害状態を検出したりすることができる。例では、信号周波数などの入力ポートP1に提供されるテスト信号の特性を変更して、信号伝送効率を高めることができる。
図26Bは、調整可能な負荷2602を備えた双方向カプラ2601の例を含む図を示している。図26Bの例は、植込まれたミッドフィールド受信機装置との通信などのために後方散乱信号を受信または使用するように構成されたミッドフィールド送信機の一部を含むことができる。少なくとも部分的には、標的受信機に対する外部送信機の位置の変化により、外部送信機の供給源と受信機の間に干渉または干渉の変化が生じる可能性がある。このような干渉は、後方散乱通信の有効性を損なう可能性がある。例では、キャンセル信号を導入して、そのような干渉を軽減または処理するのを補助することができる。例えば、外部送信機は、調整された自己干渉キャンセル信号を生成するように構成されて、キャリア信号を、双方向カプラ2601の送信機側から受信機側への自己干渉または漏れ信号から分離するのを補助することができる。
図26Bの例では、双方向カプラ2601は、入力ポートP1で(例えば、信号発生器2611から)RF供給源信号を受信することができ、対応する信号を送信ポートP2に提供する(例えば、ミッドフィールド送信機の出力ポートまたはアンテナポート2621に提供する)および連結ポートP3へ提供することができる。連結ポートP3は、調整可能な負荷2602に給電することができ、調整可能な負荷2602は、指定された公称インピーダンスに調整することができる。
図26Bの例では、調整可能な負荷2602は、様々な異なる周波数で公称約50オームに調整され、特定の動作周波数は、コンデンサC1、C2、およびC3のうちの1つまたは複数の静電容量を調整することによって選択することができる。他の公称インピーダンス設定値も同様に使用できる。例では、調整可能な負荷2602が連結ポートP3に不整合であるようにコンデンサを調整することができ、反射を生成して、送信ポートP2からの受信信号(例えば、後方散乱信号)に追加することができる。
例では、漏れ信号は、分離ポートP4に存在することができる(例えば、入力ポートP1で提供される入力信号に基づく)。反復アルゴリズムを使用して、分離ポートP4を介して受信機回路2641(例えば、IQ受信機回路)で受信される信号の電力を最小化して、漏れ信号を軽減し、後方散乱通信の効率を改善することができる。例えば、コンデンサC1、C2、および/またはC3によって提供される静電容量は、使用中に調整されて、位相が実質的に反対であり、漏れ信号と大きさが等しいキャンセル信号を提供することができる。したがって、調整可能な負荷2602および双方向カプラ2601は、外部供給源102によって使用されて、動的な制御された反射またはキャンセル信号を生成することができ、それはノイズを最小限に抑え、使用の変化または干渉状態などの下で、後方散乱信号から情報を抽出するのに用いることができる。
図26Aおよび図26Bの例は、双方向カプラ2601を含むが、他の例は、同様に、他の要素を含むか、他の要素を使用して、ミッドフィールド送信機とミッドフィールド受信機との間のカップリング効率に関する情報を判定することができる。例えば、サーキュレータを使用して、ミッドフィールド送信機のRFポートを励起源と受信機回路の両方に連結することができ、例えば、ミッドフィールド受信機での受信電力信号に関する情報を含むことができる後方散乱または他の信号を受信するように構成することができる。電力信号または信号転送効率に関する情報の符号化または復号化を後方散乱信号または他のデータ信号に含めるなどの循環装置および後方散乱処理は、2016年10月20日に出願されたPCT特許出願PCT/US2016/057952号(例えば、‘952出願の図105および対応する部分)、および2016年9月21日に出願された米国仮出願第62/397,620号(例えば、‘620出願の図9および対応する部分)で論じられており、それぞれ参照によりその全体が本明細書に組み込まれる。
図27は、例として、ミッドフィールド送信機の調整コンデンサの値を更新するためのプロセスを示す第1のフローチャートを示している。例では、プロセスはレベル検出アルゴリズムまたはレベル発見アルゴリズムに似ているが、発見される「レベル」は、ミッドフィールド送信機の可変または調整可能なコンデンサの静電容量の値である。本明細書で論じられる例では、調整可能なコンデンサは、本明細書の他の場所で論じられるような容量性調整要素、例えば、図23の例からの1つまたは複数の容量性調整要素2301、および/または図24の例の第1または第2の容量性要素2401および2402に対応する。容量性調整要素は、図示された送信機の他のものまたは他の図示されていない実施形態に同様に適用することができる。
図27の例は、反射電力信号に関する情報を使用して、調整コンデンサの静電容量の値を調整することを含む。例では、反射電力信号に関する情報は、双方向カプラ2601の例の分離ポートP4で監視される信号に含まれるか、反射電力信号に関する情報は、サーキュレータからのフィードバック信号を使用して判定される。
図27の静電容量の値発見の例は、ステップ2701で、外部供給源102の一部を含むようなミッドフィールド送信機内の第1の調整コンデンサ(本明細書では「調整可能なコンデンサ」、「容量性要素」、「容量性調整要素」または同様の装置と呼ばれることもある)の基準値を適用することから始めることができる。すなわち、ステップ2701で、制御信号を調整可能なコンデンサ回路に提供して、調整可能なコンデンサに基準値に対応する静電容量を提供させることができる。基準値は、保存された静電容量の値、指定された初期または開始静電容量の値、以前に使用された静電容量の値、または他の静電容量の値にすることができる。例では、静電容量の値は約0.1pFから10pFの間である。ステップ2702において、この例は、調整可能なコンデンサの静電容量を増加させることを含む。増分の大きさは固定または可変であり得、特定のユースケースの状況に応じて異なる場合がある。例では、増分の大きさは約0.1pFである。静電容量の増分(または減分)は、線形または非線形にすることができる。
ステップ2702での静電容量の増加に続いて、ステップ2703は、調整可能なコンデンサを備えた更新された送信機の構成を使用してテスト信号を送信することを含む。ステップ2703でのテスト信号の送信は、例えば、双方向カプラ2601からの送信ポートP2を使用するなど、ミッドフィールド送信機のRFポートにテスト信号を提供することを含むことができる。
ステップ2704において、この例は、反射電力特性の測定を含むことができる。反射電力特性の測定は、例えば、双方向カプラ2601の分離ポートP4での電力レベルの測定を含むことができる。ステップ2704での測定の結果に基づいて、調整可能なコンデンサの増加した静電容量を適用することができ、または静電容量を以前の(または他の)静電容量の値に戻すことができる。例えば、反射電力が以前に測定または指定された最小反射電力値よりも小さい場合、例はステップ2705に進むことができ、調整可能なコンデンサの増加した静電容量を適用して、送信機から受信機へのさらなる送信に使用することができる。言い換えれば、ステップ2704での測定または判定が、より少ない量の電力が反射されていることを示している場合、より多くの電力が受信機装置で受信されていると見なされる。ステップ2705に続いて、この例は、指定された期間の間、または静電容量の値のさらなる更新またはチェックをトリガーする割り込みまたは他の表示が受信されるまで、増加した静電容量の値を使用することができる。さらなる更新は、例えば、ステップ2702に戻り、静電容量の値を増加させることによって開始することができる。他の例では、さらなる更新はステップ2712に進み、静電容量の値の減少を引き起こすことができる。
ステップ2704に戻ると、測定された反射電力が以前に測定または指定された最小反射電力値よりも大きい場合、例はステップ2706に進む。この場合、増加した静電容量は、反射されるより大きな量の電力に対応し、伝送効率は、ステップ2702で静電容量が変化する前の効率よりも低いと判定される。したがって、調整可能なコンデンサの値は、さらに調整するため、または他の信号転送で使用するために、以前の静電容量の値(または他のデフォルト値)に戻すことができる。
ステップ2712で、調整可能なコンデンサの静電容量の値を減少させることができ、ステップ2713で、減少した静電容量の値で更新された送信機の構成を使用してテスト信号を送信することができる。ステップ2713でのテスト信号の送信は、例えば、双方向カプラ2601からの送信ポートP2を使用するなど、ミッドフィールド送信機のRFポートにテスト信号を提供することを含むことができる。
ステップ2713から、この例は、反射電力特性を測定しながら、ステップ2714に続くことができる。反射電力特性の測定は、例えば、双方向カプラ2601の分離ポートP4での電力レベルの測定を含むことができる。ステップ2714での測定の結果に基づいて、調整可能なコンデンサの減少した静電容量を使用することができ、または静電容量を以前の静電容量の値(または他のデフォルト値)に戻すことができる。例えば、反射電力が以前に測定された値または最小反射電力値よりも小さい場合、例は、信号送信のために現在の減少した静電容量の値を使用することができ、および/または例はステップ2712に進むことができる。言い換えれば、ステップ2714での測定または判定が、より少ない量の電力が反射されていることを示す場合、より多くの電力が受信機装置で受け取られると想定され、減少した静電容量の値を指定された期間、または割り込みまたはその他の指示を受信してさらに更新をトリガーするまで、適用することができる。さらなる更新は、例えば、ステップ2712に戻り、静電容量の値をさらに減少させることによって開始することができる。他の例では、さらなる更新は、ステップ2702に進み、静電容量の値の増加をトリガーすることができる。
ステップ2714に戻ると、測定された反射電力が以前に測定された、または指定された最小反射電力値よりも大きい場合、例はステップ2716に進む。この場合、静電容量の減少は反射される電力の量が多いことに対応し、伝送効率は静電容量が変化する前の効率よりも低いと判断される。したがって、調整可能なコンデンサの値は、さらに調整するため、または他の信号転送で使用するために、以前の静電容量の値(または他のデフォルト値)に戻すことができる。
図28は、例として、ミッドフィールド送信機の調整コンデンサの値を更新するためのプロセスを示す第2のフローチャートを示している。図28の例は、植込まれたミッドフィールド受信機装置でまたはそれによって受信されるような電力信号に関する情報を使用して、調整コンデンサの静電容量の値を調整することを含む。例では、電力信号に関する情報は、ミッドフィールド送信機に連結された受信機回路を使用して受信できるような、植込まれたまたは他のミッドフィールド受信機装置から受信されたデータ信号の一部を含む。言い換えれば、図28の例は、植込まれたミッドフィールド装置に搭載された回路を使用して、植込まれたミッドフィールド装置で受信された電力信号の値を測定し、次に、測定値に関する情報を送信機に送り返すことを含むことができ、例えば変調および符号化された後方散乱信号を使用するか、データ通信に別のチャネルを使用する。送信機によって受信された情報は、例えば、電力信号の送信および受信効率を向上させるなど、送信信号の特性を更新または調整するために使用することができる。
図28の例は、図27で上で論じた例と同様の、調整コンデンサの可変静電容量のためのレベル検出または値発見アルゴリズムを含む。図28の静電容量の値の発見例は、ステップ2801で、ミッドフィールド送信機の第1の調整コンデンサに基準値を適用することから始めることができる。すなわち、ステップ2801で、調整可能なコンデンサを更新して、基準値に対応する静電容量を提供することができる。基準値は、保存された静電容量の値、指定された初期または開始静電容量の値、以前に使用された静電容量の値、または他の静電容量の値にすることができる。例では、静電容量の値は約0.1pFから10pFの間である。ステップ2802で、この例は、調整可能なコンデンサの静電容量を増加させることを含む。増分の大きさは固定または可変であり得、特定のユースケースの状況に応じて異なる場合がある。例では、増分の大きさは約0.1pFである。
ステップ2802での静電容量の増加に続いて、例は、調整可能なコンデンサを備えた更新された送信機の構成を使用してテスト信号を送信することを含むステップ2803に進むことができる。ステップ2803でのテスト信号の送信は、例えば、双方向カプラ2601からの送信ポートP2を使用するなど、ミッドフィールド送信機のRFポートにテスト信号を提供することを含むことができる。
ステップ2804で、この例は、受信機装置での受信電力特性の測定を含むことができる。受信電力特性の測定には、例えば、植込まれた装置で受信された電力信号の大きさの測定が含まれ得る。ステップ2804での測定値に基づいて、調整可能なコンデンサの増加した静電容量を適用することができ、または静電容量を以前の静電容量の値(または他のデフォルト値)に戻すことができる。例えば、受信電力が以前に測定された値または最小受信電力値よりも小さい場合、例はステップ2806に進むことができる。この場合、増加した静電容量は、反射または失われるより多くの電力に対応し、伝送効率は、ステップ2802での静電容量の増加前の効率よりも低い。したがって、調整可能なコンデンサの値は、さらなる調整のために、または他の信号転送で使用するためなど、ステップ2806で以前の静電容量の値(または他のデフォルト値)に戻すことができる。この例は、以下で説明するステップ2812に進むことができる。
ステップ2804に戻ると、測定された受信電力が以前に測定されたまたは指定された最小受信電力値よりも大きい場合、例はステップ2805に進み、調整可能なコンデンサの増加した静電容量を適用して、送信機から受信機へのさらなる送信に使用することができる。ステップ2805に続いて、この例は、指定された期間の間、または割り込みまたは他の指示が受信されてさらなる更新をトリガーするまで、増加した静電容量の値を使用することができる。さらなる更新は、例えば、ステップ2802に戻り、静電容量の値をさらに増加させることによって開始することができる。他の例では、さらなる更新はステップ2812に進み、静電容量の値の減少を引き起こすことができる。
ステップ2812で、調整可能なコンデンサの静電容量の値を減少させることができ、ステップ2813で、減少した静電容量の値で更新された送信機の構成を使用してテスト信号を送信することができる。ステップ2813でのテスト信号の送信は、例えば、双方向カプラ2601からの送信ポートP2を使用するなど、ミッドフィールド送信機のRFポートにテスト信号を提供することを含むことができる。
ステップ2813から、例は、受信電力特性を測定することでステップ2814に続くことができる。ステップ2814での測定の結果に基づいて、調整可能なコンデンサの減少した静電容量を適用することができ、または静電容量を以前の静電容量の値(または他のデフォルト値)に戻すことができる。例えば、受信電力が以前に測定された値または最小反射電力値よりも小さい場合、例はステップ2816に進む。この場合、静電容量の減少は、伝達効率の低下などにより、インプラントで受信される電力量が少なくなることに対応する。したがって、調整可能なコンデンサの値は、さらなる調整のために、または他の信号転送で使用するために、以前の(または他の)静電容量の値に戻すことができる。
ステップ2814に戻ると、測定された受信電力が以前に測定または指定された最小反射電力値よりも大きい場合、例は、ステップ2812の調整または調節前など、送信機から受信機へのさらなる送信のために調整可能なコンデンサの減少した静電容量を使用することを含むことができる。すなわち、ステップ2814に続いて、この例は、指定された期間の間、または割り込みまたは他の指示が受信されてさらなる更新をトリガーするまで、減少した静電容量の値を使用または適用することができる。さらなる更新は、例えば、ステップ2812に戻り、静電容量の値をさらに減少させることによって開始することができる。他の例では、さらなる更新はステップ2802に進み、静電容量の値の増加をトリガーすることができる。
図27および図28に記載されている静電容量の値発見アルゴリズムまたはプロセスは、装置が最初に使用されるときに実行することができ、または定期的または断続的に実行することができる。既知の良好な静電容量の値は、送信機に搭載されたメモリ回路で指定、プログラム、および/または保存でき、特定の装置が最初電源を入れたまたは調整その他の不使用期間後に、開始点として(例えば、ステップ2701および/または2801で)使用できる。
図29は、例として、調整コンデンサまたは可変コンデンサ回路2915を備えた送信機2900の一部を示している。図示された部分は、本明細書で論じられた、または本明細書で例示された送信機の例のいずれか1つまたは複数に同様に適用できる1つまたは複数の特徴を含むことができる。
例示的な送信機2900は、(図示の観点において)最上層2901、中間層2902、および最下層2903を含むいくつかの層を含むことができ、上部、中間、および下部の層2901、2902、および2903間に1つまたは複数の他の層(図示せず)が挿入される。この例では、様々な回路を最上層2901上に配置することができる。例えば、駆動回路、処理回路、および可変コンデンサ回路2915を最上層2901に設けることができる。
最上層2901は、トレースまたは構成要素を最上層2901から送信機2900内の他の1つまたは複数の層に電気的に接続するキャスタレーション特徴、ビア、スルーホール、または他の導電性部分を含むことができる。例では、最上層2901は、その周囲に提供され、他の層の1つまたは複数に連結されたビアまたは他の導体と一致するキャスタレーション特徴(図示せず)を含む。例えば、可変コンデンサ回路2915は、中間層2902を通って延びるビアと連結され、さらに、最下層2903の異なる導電性部分と連結する一対のキャスタレーション特徴に連結することができる。
例では、最下層2903はスロット2910を含み、可変コンデンサ回路2915のそれぞれの端子は、ビアを使用してスロット2910のそれぞれの側の導電性部分に連結することができる。最上層2901上の他のキャスタレーション特徴は、中間層2902のストリップライン、接地面、または他の特徴、層、または装置に連結することができる。図29の例では、中間層2902または別の介在層に設けられるようなストリップライン2921を、第1のビア2922を使用して最上層の駆動回路に連結することができる。
例では、ミッドフィールド送信機から植込み受信機への電力信号転送の効率は、複数の異なる送信機調整設定のそれぞれなど、複数の周波数にわたって監視することができる。監視された情報は、特定の周波数で最大の信号転送効率を提供する送信機の調整を識別または判定するために使用できる。例では、送信機の一部を構成する調整可能なコンデンサの複数の異なる静電容量の値をテストするための回路を含むことができるなど、送信機に搭載されている回路を使用して、異なる送信機の調整をテストすることができる。
図30は、例として、ある範囲の周波数、および送信機に連結された調整可能なコンデンサの異なる静電容量の値についての信号伝達効率情報を示す第1のチャートを示している。この例では、ミッドフィールド送信機は組織から約14.6ミリメートル離れているため、送信機は組織によって弱い負荷をかけられている。言い換えれば、組織は送信機の調整にほとんど影響を与えない。y軸は、ミッドフィールド送信機から受信機への相対的なエネルギーまたは電圧伝達比を表し、x軸は動作周波数または駆動周波数を表す。一般に、使用する送信周波数は指定または既知であり、送信機は静電容量の値発見アルゴリズムを実行して(例えば、図27および図28の例を参照、ただし他の手法を使用することもできる)、送信機と受信機の間の電力伝送効率を最大化するなど、送信機を受信機と最適に一致するように調整するのに使用する静電容量の値を特定する。
図30の例では、異なるトレースは、ミッドフィールド送信機で使用される可変または調整可能なコンデンサの異なる値に対応する。第1のトレース3001は、調整可能なコンデンサの最大静電容量の値(例えば、5pF)に対応し、第2のトレース3002は、調整可能なコンデンサの最小静電容量の値(例えば、0.5pF)に対応する。図30の例では、目標または所望の動作周波数は890MHzであり得る。したがって、送信機または他の回路は、値発見プロセスを実行して、ミッドフィールド送信機システムの応答または効率を最大化する調整可能なコンデンサの値を識別することができる。この例では、890MHzでの最大効率は、第2のトレース3002よりも第1のトレース3001に近くなっている。例では、最大効率は、約4pFの静電容量の値に対応するなど、図の第3の曲線に対応する。
図31は、例として、ある範囲の周波数、および送信機に連結された調整可能なコンデンサの異なる静電容量の値についての反射の情報を示す第2のチャートを示している。この例では、ミッドフィールド送信機は組織から約14.6ミリメートル離れており、送信機は組織によって弱い負荷をかけられている。図31の例は、送信機での反射比を分析または使用して、最大効率のために送信機を調整する値発見プロセスを表すか、使用することができる。この例では、図表の値が小さいほど、特定の周波数での送信機と受信機のマッチングが優れていることを示している。言い換えると、トレースの谷間は、複数の異なる容量性の調整の値各々など、エネルギーが送信機を最もよく離れることができる周波数を表す。
図31の例では、目標または所望の動作周波数は900MHzであり得る。送信機または他の回路は、値発見プロセスを実行して、システムの反射特性を最小化する調整可能なコンデンサの値を識別できる。つまり、目的の周波数での応答曲線の最小値を識別する。この例では、最大効率は、約3pFの静電容量の値に対応するなど、チャートの左から7番目付近の曲線に対応できる。
例では、図31の例からの送信機が組織に接近し、組織から14.6ミリメートル未満離れている場合、図示の曲線は左にシフトし、より低い周波数でより高い効率を示す。したがって、送信機から組織までの距離が変化すると、それに応じて負荷状態が変化し、送信機を調整または調節して最大の効率を維持することができる。
図32は、例として、ある範囲の周波数、および送信機に連結された調整可能なコンデンサの異なる静電容量の値についての信号伝達効率情報を示す第3のチャートを示している。この例では、ミッドフィールド送信機は組織から約2ミリメートル離れており、送信機は組織によって比較的強く負荷をかけられる。この例では、900MHzでの転送効率を最大化するために、調整可能なコンデンサの最小の静電容量の値が選択されている。
図30の例と比較したような図32の例では、効率曲線は、組織の負荷効果などのために、比較的低い周波数へと、左にシフトする。この例では、送信機と受信機のシステムの無線信号転送効率を最大化するために、調整可能なコンデンサに最小量の静電容量(例えば、0.5pF)が使用される。
図33は、例として、周波数の範囲にわたって、送信機に連結された調整可能なコンデンサの異なる静電容量の値について、電圧定在波比(VSWR)の情報を使用して判定されるような、反射係数情報を示す第4のチャートを示す。この例では、ミッドフィールド送信機は組織から約2ミリメートル離れており、送信機は組織によって比較的強く負荷をかけられる。この例では、900MHzでの転送効率を最大化するために、調整可能なコンデンサの最大の静電容量の値(例えば、5pF)が選択されている。
図33の例は、送信機での反射率を分析または使用する値発見プロセスを表す、または使用することができる。この例では、図表の値が小さいほど、特定の周波数での送信機と受信機のマッチングが優れていることを示している。言い換えると、トレースの谷間は、複数の異なる容量性の調整の値各々で、エネルギーが送信機を最もよく離れることができる周波数を表す。最大静電容量の値に対応する曲線には、900MHzの目標動作周波数に最も近い谷間が含まれているため、その最大静電容量の値を選択して使用できる。
しかし、図33は、十分な量のデータが収集されない限り、反射係数情報を使用して転送効率についての判定を行うことは人を誤らせる可能性があることを示している。例えば、図33の様々なトレースは、「ダブルディップ」挙動を示し、約810MHz~880MHzという周波数の範囲で最初の谷間を示し、約905MHz~970MHzという周波数の範囲で別の谷間を示す。近くの組織によって負荷をかけられる送信機を含む例では、値発見アルゴリズムを構成して、特定の谷間が真の最小値を表すかどうか、特定の使用状態でシステムに異なるさらに小さな最小値が存在するかどうかを確認するべきである。あるいは、値発見アルゴリズムは、利用可能な静電容量(または他の)調整値の全範囲にわたってより包括的な探索を実行するように構成できる。これは、時間がかかり、エネルギーを大量に消費する可能性がある。
例では、容量性調整要素の値の対応する掃引の有無などの周波数の掃引からの情報を使用して、外部供給源102が組織の近くまたは隣接している可能性を判定することができる。例では、外部供給源102が組織の近くにある可能性を判定することは、植込み型装置110の探索に先行する。
図34は、一般に、外部供給源102が組織の近くにあるかどうかを識別し、それが組織の近くにある場合、植込み型装置110を探索するかどうかを識別することを含む例を示す。ステップ3401で、外部供給源102は、励起信号を使用して、励起信号を1つまたは複数の励起信号周波数で1つまたは複数のミッドフィールド送信機要素に提供することによって、または周波数掃引を使用することなどによって、ミッドフィールド送信機を励起することができる。例では、ステップ3401での励起は、外部供給源102のデフォルトまたは基準調整の構成を使用することを含む。ステップ3402で、外部供給源102は、VWSRまたは反射係数を監視して、外部供給源102からの伝送効率を識別することができる。ステップ3403で、外部供給源102からの処理回路は、ステップ3402からの反射信号を分析して、反射信号が、外部供給源102付近の組織の存在などにより外部供給源102の負荷を示すことができる谷間または他の特性を含むかどうかを判定することができる。図31および図33の例に示されるような反射信号における谷間の存在または特性などの反射に関する情報に基づいて、外部供給源102は、組織の近くにあると判定することができる。反射信号に谷間または他の特性が存在しない場合、ステップ3404で、例は、外部供給源102の待機モードまたはスタンバイモードの開始を含むことができる。しかし、谷間または他の特性が反射信号で識別される場合、例はステップ3405に続くことができる。
ステップ3405で、この例は、励起信号を使用して外部供給源102を励起し、外部供給源102に対して利用可能な調整パラメータを掃引することを含む。例では、調整パラメータを掃引することは、本明細書の他の場所で論じられるように、調整可能なコンデンサの掃引の値を含む。ステップ3406において、VWSRまたは反射信号は、ステップ3405で使用される異なる調整パラメータのそれぞれについて監視され得る。ステップ3407で、外部供給源102のプロセッサは、最大の伝送効率または最小の反射に対応する調整パラメータを識別することができる。図31および図33の例では、最大の伝送効率に対応する調整パラメータは、特定の周波数の範囲での最も深い谷間に対応する。
ステップ3408で、ステップ3407で識別された調整パラメータの値を分析して、それが指定された調整パラメータ範囲内にあるかどうかを判定することができる。例えば、使用可能な最大の静電容量の値が使用のため識別され、その最大値が指定された調整パラメータの範囲外にある場合、外部供給源102は組織に十分に近くない可能性があり、例は、組織が発見されなかったことを示すことによって、ステップ3409に続くことができる。同様に、VWSRまたは反射係数のディップまたは谷間が、例えば880MHzから940MHzの周波数掃引で観察されない場合、外部供給源102は組織が発見されなかったと見なすことができ、外部供給源102はステップ3404で待機モードに入ることができる。しかし、VWSRのディップまたは谷間に対応する静電容量の値が指定された調整パラメータ範囲内にある場合、外部供給源102は、組織が発見されたと見なせ、ステップ3410で植込み型装置110との通信を試みながら処理することができる。
したがって、図34の例を使用して、送信機または外部供給源102に反射して戻される最小量の電力に対応する調整パラメータを識別することができる。その結果、外部供給源102に搭載されたプロセッサを使用して、外部供給源102がさらなる処理供給源を消費し、植込み型装置110の探索モードに入る必要があるかどうかを判定することができる。このように動作することは、外部供給源102が電池の消耗を減らし、不必要な放出を減らすのを補助することができる。
図35は、一般に、外部供給源102が組織の近くにあるまたは隣接している可能性を判定するために、調整コンデンサ掃引からの情報を使用することを示すチャート3500の例を示す。チャートには、x軸に調整コンデンサの状態(様々な静電容量の値に対応)が含まれ、y軸に反射係数が含まれている。図35の例は、約902MHzの励起中心周波数に対応するが、他の周波数も同様に使用することができ、同様の結果が期待される。図35の例は、異なる掃引の例に対応する複数のトレースまたは曲線を含み、外部供給源102は、シミュレートされた組織および金属板から異なる距離に配置されている。
例では、チャート3500は、オープンエアで、すなわち、組織から離れて、また金属板から離れて使用される外部供給源102の基準反射特性を示す第1の曲線3501を含む。第1の曲線3501は、22のコンデンサの状態(例えば約5pFなどの特定の静電容量の値に対応する)で最小値または谷間を示す。オープンエアのコンデンサ状態を基準として使用して、外部供給源102は、検査状態で使用するための調整コンデンサ状態の閾値を設定することができる。例えば、外部供給源102が組織のためにテストしていて、結果として生じるコンデンサの状態が閾値以上にまで下がる場合、外部供給源102は、組織の近くにない可能性が高く、したがって処理、バッテリ、または他の供給源を使用して、植込み型装置110を見つける、または通信することを試みるべきであるということを認識するよう構成し得る。他方、外部供給源102が組織のために検証し、結果として生じるコンデンサの状態が閾値を下回る場合、外部供給源102は、外部供給源102が組織に隣接している可能性がより高く、植込み型装置110との通信を試みるためにさらなる装置供給源を利用可能にすることができることを認識するように構成することができる。
例では、第2の曲線3502Aおよび3502Bは、それぞれ、金属板から第1の距離を備え、組織から同じ第1の距離を備える外部供給源102に対応することができる。第2の曲線3502Aおよび3502Bに対応するそのような負荷構成の外部供給源102について、約19の調整コンデンサの状態を識別することができる。すなわち、外部供給源102は、外部供給源の調整可能なコンデンサが状態19に対応する静電容量の値(例えば、約3pFの静電容量の値に対応する)に調整されるときに、最大の伝達効率を有することができる。
図35の例では、第3の曲線3503Aおよび3503Bは、それぞれ、金属板および組織から2番目に短い距離を備える外部供給源102に対応することができる。第3の曲線3503Aおよび3503Bに対応するそのような負荷構成の外部供給源102について、約17の調整コンデンサ状態を識別することができる。すなわち、外部供給源102は、外部供給源の調整可能なコンデンサが状態17に対応する静電容量の値(例えば、約2pFの静電容量の値に対応する)に調整されるときに、最大の伝達効率を有することができる。同様に、第4の曲線3504Aおよび3504Bは、それぞれ、金属板および組織から3番目および最小の距離を備える外部供給源102に対応することができる。第4の曲線3504Aおよび3504Bに対応するそのような負荷構成の外部供給源102について、約13の調整コンデンサの状態を識別することができる。すなわち、外部供給源102は、外部供給源の調整可能なコンデンサが状態13に対応する静電容量の値(例えば、約1pFの静電容量の値に対応する)に調整されるときに、最大の伝達効率を有することができる。
チャート3500は、一般に、最小反射係数および最小のコンデンサの状態(例えば、外部供給源102の調整可能なコンデンサの最小の静電容量の値に対応する)が最大転送効率を示すことを示している。さらに、特定の最小値でのより低いコンデンサの状態およびより低い静電容量の値は、外部供給源102が組織に対してより近く配置されていることに対応する。しかし、図35の例に示されるように、外部供給源102が金属板などの他の導電性材料の近くでまたは隣接して使用される場合、組織の識別は混乱する、または損なわれる可能性がある。この問題に対処するために、様々な信号処理および装置構成手法を適用できる。例では、外部供給源102が使用または励起され、それが組織に隣接していない場合と比較して、外部供給源102が使用または励起され、それが組織に隣接している場合、異なる送信信号プロファイルを観察することができる。言い換えれば、送信機の反対方向のポートまたは放出構造の間の連結の表示を利用して、外部供給源102が組織の近くにあるか組織が近くにないかを判定することができる。
例では、組織を探索する際金属板または他の混乱効果を補うことは、送信機の第1の位置にある1つのポートからの送信と、同じ送信機の同じ偏波を有する反対方向のポートからの受信を含む、または使用することができる。図11の例からの第1の送信機1000を含む例では、金属板または他の混乱効果を補うことは、第1の駆動信号を第1のストリップライン1131Aに提供し、第3のストリップライン1131Cに連結されるセンサまたは受信機回路を使用して応答または反射信号を受信することを含み得る。そのような技術の例は、図36を参照して説明される。
図36は、一般に、外部供給源102の複数の異なる使用状態に対するクロスポート透過係数を示すチャート3600の例を示している。チャートには、x軸に調整コンデンサの状態(様々な静電容量の値に対応)が含まれ、y軸にクロスポート透過係数が含まれている。図36の例は、約902MHzの励起中心周波数に対応するが、他の周波数も同様に使用することができ、同様の結果が期待される。図36の例は、異なる掃引の例に対応する複数のトレースまたは曲線を含み、外部供給源102は、シミュレートされた組織および金属板から異なる間隔または距離に配置されている。外部供給源102が金属板に隣接して配置される場合、第2、第3、および第4の曲線3602A、3603A、および3604Aの様々なピークによって示されるように、送信機の反対方向のポート間に比較的高度のカップリングがある。しかし、外部供給源102が金属板に隣接して配置される場合、第2、第3、および第4の曲線3602B、3603B、および3604Bのよりミュートまたはプラトーの外形によって示されるように、送信機の反対方向のポート間に比較的高度のカップリングがある。
チャート3600は、オープンエアで使用され、すなわち、組織から離れて、また金属板から離れて使用される外部供給源102の基準反射特性を示す第1の曲線3601を含む。第1の曲線3601は、23のコンデンサの状態(例えば約5pFなどの特定の静電容量の値に対応する)で最小値または谷間を示す。例では、オープンエアのコンデンサ状態を基準として使用して、検査状態で使用するための調整コンデンサ状態の閾値を設定することができる。例えば、外部供給源102が組織のために検証して、結果として生じるコンデンサの状態が閾値以上になる場合、外部供給源102は、それが組織の近くにない可能性が高く、したがって処理、バッテリ、または他の供給源を使用して、植込み型装置110を見つけたり、通信したりすることを試みる必要があるということを認識するよう構成し得る。他方、外部供給源102が組織のために検証し、結果として生じるコンデンサの状態が閾値を下回る場合、外部供給源102は、外部供給源102が組織に隣接している可能性がより高く、植込み型装置110との通信を試みるためにさらなる装置供給源を利用可能にし得ることを認識するように構成することができる。
例では、第1の曲線3601に特徴的な波形の形状または形態を基準状態として使用することができる。例えば、勾配、ピーク、幅、大きさ、または他の特性のうちの1つまたは複数の特性を使用することができる。測定された応答からのデータは、基準状態または基準特性と比較でき、例えば、好ましいコンデンサの状態を選択するために調整できる。
例では、第2の曲線3602Aおよび3602Bは、それぞれ、金属板および組織から第1の距離を提供される外部供給源102に対応することができる。第2の曲線3602Aおよび3602Bに対応するそのような負荷構成の外部供給源102について、約22の調整コンデンサ状態を識別することができる。すなわち、外部供給源102は、外部供給源の調整可能なコンデンサが状態22に対応する静電容量の値に調整されるときに、最大の転送効率を有することができる。図35の例では、最小の谷間における第2の曲線3502Aおよび3502Bの反射係数の差は、約0.08単位である。しかし、図36の例では、クロスポートカップリング係数の差は約0.1単位である。
図36の例では、第2の曲線3602Aおよび3602Bのピーク挙動に特徴的な形態は、第1の曲線3601のピーク挙動に特徴的な形態とは異なる。すなわち、金属板に対応する第2の曲線3602Aは、第1の曲線3601に比べて狭いピーク特性を有し、組織に対応する第2の曲線3602Bは、第1の曲線3601に比べて広いまたはあまり目立たないピーク特性を有する。これは、静電容量掃引曲線の形態特性を使用して、装置の配置を識別し、不適切または障害状態での使用から組織の近くで使用できることを示している。
図36の例では、第3の曲線3603Aおよび3603Bは、それぞれ、金属板および組織から2番目に短い距離を提供する外部供給源102に対応することができる。第3の曲線3603Aおよび3603Bに対応するそのような負荷構成の外部供給源102について、約19の調整コンデンサ状態を識別することができる。図35の例では、最小の谷間での第3の曲線3503Aおよび3503Bの反射係数の差は、約0.08単位である。しかし、図36の例では、クロスポートカップリング係数の差は約0.15単位である。
図36の例では、第3の曲線3603Aおよび3603Bのピーク挙動に特徴的な形態は、第1の曲線3601のピーク挙動に特徴的な形態とは異なる。すなわち、金属板に対応する第3の曲線3603Aは、第1の曲線3601と比較してより狭いピーク特性を有し、一方、組織に隣接する外部供給源102の使用に対応する第3の曲線3603Bは、第1の曲線3601と比較してより広いまたはより目立たないピーク特性を有する。
同様に、第4の曲線3604Aおよび3604Bは、それぞれ、金属板および組織から3番目および最小の距離を提供する外部供給源102に対応することができる。第4の曲線3604Aおよび3604Bに対応するそのような負荷構成の外部供給源102について、約16の調整コンデンサ状態を識別することができる。図35の例では、最小の谷間における第4の曲線3504Aおよび3504Bの反射係数の差は、約0.08単位である。しかし、図36の例では、クロスポートカップリング係数の差は約0.2単位である。
図36の例では、第4の曲線3604Aおよび3604Bのピーク挙動に特徴的な形態は、第1の曲線3601のピーク挙動に特徴的な形態とは異なる。すなわち、金属板に対応する第4の曲線3604Aは、第1の曲線3601と比較してより狭いピーク特性を有し、一方、組織に隣接する外部供給源102の使用に対応する第4の曲線3604Bは、第1の曲線3601と比較してより広いまたはより目立たないピーク特性を有する。
例では、クロスポートカップリングの相対的な違いに関する情報を使用して、外部供給源102が組織の近くにあるかどうかを判断し、組織の存在を外部供給源102の近くの他の材料の存在から区別することができる。別の例では、信号の形態またはピーク特性に関する情報を使用して、外部供給源102が組織の近くにあるかどうかを判断し、組織の存在を外部供給源102の近くの他の材料の存在から区別するのに寄与することができる。
例では、外部供給源102は、外部供給源102が組織の近くまたは隣接して適切に配置されたときに、学習モードを使用して1つまたは複数の既知の良好なコンデンサの状態の基準を確立するようにプログラムすることができる。例では、参照は、様々な励起信号の形態特性、反射係数、および/または1つまたは複数の励起周波数などのクロスポート透過係数に関する情報を含むことができる。次に、外部供給源102をテストモードで使用して、実際の負荷状態が基準と一致するか、または近似するかどうかを判定することができる。テスト中の状態が、指定された許容誤差で基準に適合してはいない場合、外部供給源102は、その装置供給源を使用して、植込み型装置110を探したり、通信を試みたりすることを阻害することができる。しかし、テスト中の状態が基準に適合している場合、外部供給源102は、電力および/またはデータを植込み型装置110に通信しようと試みることができる。
送信機保護回路
図37は、一般に、外部供給源102に使用または含まれ得る送信機回路3700の例を示している。送信機回路3700は、駆動および分割回路3710、第1の保護回路3720、および第2の保護回路3760を含むことができる。図37の例では、第1の保護回路3720は、アンテナ300と、駆動および分割回路3710との間に連結されている。本明細書のいくつかの例および説明では、第1および第2の保護回路3720および3760は、送信機または送信機によって処理される信号の1つまたは複数の態様を制御するために使用できるため、それぞれ第1および第2の制御回路と呼ばれる。
送信機回路3700およびその様々な保護回路は、増幅器の安全な動作範囲内の出力負荷に対して所望の設定点に出力電力を維持しながら、出力負荷の不整合による損傷などから回路の増幅器を保護するように構成された出力電力制御を含む。出力負荷の不整合は、意図された患者の公称の環境とは実質的に異なる環境(例えば、組織に隣接している、または組織のインターフェースから指定された距離にある)にアンテナがある場合、またはRF出力パスのいずれかに障害が存在する場合に発生する可能性がある。図37の例では、第1の保護回路3720は、4つの内部制御ループ(高速ループ)、すなわち第1、第2、第3、および第4のチャネルドライバ3721、3731、3741、および3751を含み、これらはそれぞれ、シャットダウンするか、高い不整合が検出された場合は、その中のいずれかの順方向パス増幅器を減衰させるように構成される。第2の保護回路3760は、自動レベル制御(ALC)モードで実質的に連続的に動作し、変化する増幅器駆動、温度、および負荷状態の下で目標のRF出力電力を供給するように構成され、指定された安全な動作状態外で発生する可能性のある負荷の不整合に対する電力出力電力を削減するように構成された外部ループ(メインループ)を含む。つまり、十分に整合している負荷の場合、メインループはRF出力電力を目的のレベルに維持するのに役立ち得るが、負荷が整合していない場合は、メインループを使用してRF出力電力を増幅器回路の安全なレベルに、逆方向電力特性に応じて低減できる。
例では、送信機回路3700は、チャネルドライバの1つ、2つ、または3つがシャットダウンされたとき(例えば、検出された不整合状態のために)、低減されたRF出力電力で動作を維持するように構成され得る。この場合、残りのアクティブチャネルドライバはメインループを駆動し、負荷状態に見合った目標電力レベルでRF出力を供給し続けることができる。
外部供給源102は、一般に、アンテナ300が組織の近くまたは隣接して配置されたときに最適な使用および効率のために構成される。外部供給源102が代わりに金属の表面またはオープンエアに配置されている場合、アンテナの不整合および装置の出力での強い反射が存在する可能性がある。このような使用例は、不整合の状態を特定して軽減できない限り、外部供給源102に損傷を与える可能性がある。したがって、送信機回路3700は、例えば、外部供給源102が組織から離れて配置されている場合に、外部供給源102の増幅器回路を保護するように構成される。送信機回路3700はまた、外部供給源102が組織から離れて配置され、したがって、植込まれた装置に関して使用されていないときに、偶発的な放射線(したがって、電池を消費)を低減するように構成される。例では、送信機回路3700は、1つまたは複数の反射電力特性を検出し、検出された反射電力特性から不整合状態が存在するかどうかを識別し、回路で使用される1つまたは複数の増幅器の利得または減衰特性を変更することによって応答する。言い換えれば、送信機回路3700は、出力負荷の不整合による損傷に対する保護を提供する。
その損傷防止機能と実質的に同時に、送信機回路3700は、公称動作状態下で一定の出力電力を維持するように構成される。送信機回路3700によって駆動されるようなアンテナが、意図された患者の公称環境とは実質的に異なる環境で使用される場合、またはRF出力またはアンテナ励起経路のいずれかに障害が存在する場合、出力負荷の不整合が発生する可能性がある。例では、送信機回路3700は、重大なアンテナ不整合状態が検出されたときに1つまたは複数の順方向経路増幅器を減衰またはシャットダウンすることができる比較的高速または迅速応答の内部制御ループ(例えば、第1の保護回路3720を参照)を含む。送信機回路3700は、自動レベル制御モードで実質的に連続的に動作して、変化する順方向信号駆動および負荷状態の下で目標RF出力電力を供給することができる外部ループ(例えば、第2の保護回路3760を参照)をさらに含み、負荷の不整合状態が検出されたときに出力電力を削減するために使用される。
駆動および分割回路3710は、RF信号を生成し、RF信号を利得回路3715に提供するRF信号発生器3714を含むことができる。利得回路3715は、以下でさらに説明するように、第2の保護回路3760から制御信号Vcを受信する制御信号入力を有する。利得回路3715は、減衰または利得の有無にかかわらず、RF信号をスプリッタ3716にパスすることができる。スプリッタ3716は、RF信号を1つまたは複数の出力チャネルに配分することができる。図37の例では、スプリッタ3716は、RF信号を4つの異なる出力チャネル、つまりOUT1、OUT2、OUT3、およびOUT4に提供する。例では、利得回路3715は、その減衰を、外部供給源102の起動中の最大減衰から、指定された動作減衰レベル、または減衰なしにランプするように構成される。ランプ時間または他のランプ特性は、第2の保護回路3760または他の場所のランプ回路によって指定することができる。
例では、駆動および分割回路3710は、位相調整回路3717を含む。位相調整回路3717をスプリッタ3716に連結して、出力チャネルの1つまたは複数から情報を受信することができる。図37の例では、位相調整回路3717は、スプリッタ3716からの4つの出力チャネルのうちの3つから情報を受信して処理する。例では、位相調整回路3717は、示されるような増幅器、移相器、電力分割器、および/またはスイッチ回路のうちの1つまたは複数を含む、図4のネットワーク400由来の同じまたは類似の要素を含むまたは使用する。位相調整回路3717およびスプリッタ3716に続いて、駆動および分割回路3710は、それぞれの異なるチャネルOUT1、OUT2、OUT3、およびOUT4における異なるRF駆動信号を第1の保護回路3720に提供する。
第1の保護回路3720は、1つまたは複数の異なるチャネルでRF駆動信号を受信するように構成され、エラー状態が識別されると、RF駆動信号が増幅および/またはアンテナ300のポートに送信されるのを防止または阻害する。第1の保護回路3720は、それぞれ第1、第2、第3、および第4のチャネルドライバ3721、3731、3741、および3751を含み、これらはそれぞれ、駆動および分割回路3710からの出力チャネルOUT1、OUT2、OUT3、およびOUT4に連結される。チャネルドライバは、実質的に同一の回路の別個の例であり得る。図37の例は、第1のチャネルドライバ3721の概略の詳細を含む。第2、第3、および第4のチャネルドライバ3731、3741、および3751は、第1のチャネルドライバ3721について説明したものと実質的に同じまたは類似の構成要素を含むと理解できるが、これらの他のドライバ例の詳細は、簡潔にするために図面から省略されている。第1、第2、第3、および第4のチャネルドライバ3721、3731、3741、および3751の出力は、それぞれの異なるポートに連結されて、アンテナ300に信号を供給することができる。
例では、第1、第2、第3、および第4のチャネルドライバ3721、3731、3741、および3751のそれぞれは、それぞれのイネーブルノードEN1、EN2、EN3、およびEN4それぞれで、同じまたは異なるチャネル固有のイネーブル信号を受信するように構成することができる。例では、第1、第2、第3、および第4のチャネルドライバ3721、3731、3741、および3751のそれぞれは、それぞれの障害ノードFLT1、FLT2、FLT3、およびFLT4で、それぞれのチャネル固有の障害信号を提供するように構成することができる。例では、チャネルのイネーブルノードからの情報を同じチャネルの障害ノードからの情報と一緒に使用して、同じまたは異なるチャネルドライバの動作特性を更新することができる。
例では、第1、第2、第3、および第4のチャネルドライバ3721、3731、3741、および3751のそれぞれは、ノードRES_DETでグローバル入力信号を受信するように構成することができる。グローバル入力信号は、双方向カプラ3722のP3およびP4ポートでRF検出器コンデンサを放電するように構成することができ、それにより、検出器出力電圧をゼロ(または別の基準)に設定する。例では、グローバル入力が障害リセットとして使用される。
図37の例では、第1のチャネルドライバ3721は、第1のチャネルOUT1を介して第1のRF駆動信号を受信する。第1のチャネルドライバ3721は、信号がアンテナ300に提供される前など、第1のRF駆動信号の特性を変更するために使用できる様々な増幅器、減衰器、または他の処理回路を含むことができる。例では、第1のチャネルドライバ3721は、第1のチャネルOUT1での入力からアンテナ300のポートでの出力までの信号経路に沿って、第1の増幅器DRV、第2の増幅器PA、および双方向カプラ3722を含む。例では、双方向カプラ3722は、図26Aおよび図26Bの例からの双方向カプラ2601と同じであるか、類似している。他の例では、サーキュレータ回路など、双方向カプラ以外の構成要素を使用することができる。
例では、双方向カプラ3722の入力ポート(P1)は、第2の増幅器PAから第1のRF駆動信号の増幅(または減衰)バージョンを受信でき、双方向カプラ3722の送信ポート(P2)は、アンテナ300への駆動信号を提供できる。双方向カプラ3722の連結ポート(P3)を順方向ノードVfwd1に連結でき、双方向カプラ3722の分離ポート(P4)を逆方向ノードVrev1に連結できる。第2、第3、および第4のチャネルドライバ3731、3741、および3751のそれぞれは、それぞれの他の順方向ノードVfwd2、Vfwd3、およびVfwd4に連結され、それぞれの他の逆方向ノードVrev2、Vrev3、およびVrev4に連結されるそれぞれの双方向カプラを含むことができる。
ノードVfwd1は、第1のチャネルドライバ3721からアンテナ300に提供される順方向信号に関する情報を含むことができる。順方向信号は、アンテナ300に提供される信号の電力レベルに比例することができ、したがって、送信機回路3700の1つまたは複数の他の部分または構成要素が動作していることの検証として使用することができる。ノードVrev1は、アンテナ300から感知された逆方向信号に関する情報を含むことができる。逆方向信号は、アンテナ300での反射電力に比例することができ、したがって、外部供給源102が組織に対して適切に配置されているかどうか(例えば、供給源と組織表面との間の指定された最適なスタンドオフまたは間隔距離)、および、アンテナ300が適切に負荷をかけられていることを示すために使用できる。
例では、Vrev1の逆方向信号を第1のチャネルドライバ3721内で使用して、第2の増幅器PAの利得特性を更新することができる。ノードVrev1での逆方向信号によって示されるような検出された反射電力レベルは、比較回路3723を使用するなど、指定された閾値反射電力レベルREF1と比較することができる。反射電力が指定された閾値反射電力レベルREF1よりも大きい場合、比較回路3723は、障害ノードFLT1で障害信号を提供することによって障害状態を示すことができる。障害信号は、例えば、第2の増幅器PAを無効にすることによって、第2の増幅器PAの動作を中断または阻害するために使用することができる。図37の例では、第2の増幅器PAは、障害状態が障害ノードFLT1に示されているかどうか、およびイネーブル信号が第1のチャネルイネーブルノードEN1に存在するかどうかに応じて条件付きで動作するように構成される。換言すれば、第1のチャネルドライバ3721は、ノードVrev1での逆方向信号によって示されるように、検出された負荷不整合状態下でRF駆動信号の増幅を停止するように構成することができる。
例では、第1のチャネルドライバ3721において、双方向カプラ3722は、ダイオード検出器D1およびD2と組み合わせて、PAの順方向および逆方向の出力電力に比例する出力電圧を提供する。ダイオード検出器は、高速アタック/低速減衰であり得、減衰時定数は、逆方向検出器と順方向検出器でそれぞれ、R1*C1とR2*C2によって設定される。より長い積分器時定数と併せてより長い検出器時定数を使用して、包絡線変調RFをサポートすることができ、その場合、第2の保護回路3760は、RF包絡線のピーク値で動作するように構成することができる。スイッチS1およびS2は、論理信号RES_DETに従って検出器の出力電圧をゼロに設定して、最適なPA出力電力のランプアップを保証できる。例では、PA負荷不整合障害が発生した場合、U1のFLT1出力がハイになり、D3およびR3を介して逆検出器Vrev1をハイにラッチする。これは、障害リセット表示を受信するまでなど、障害が発生したときに論理ハイ状態を維持するのに寄与する。RF OUT1~RF OUT4からの出力FLT1~FLT4は、制御論理によって割り込みとして処理され、制御論理は、障害ステータスの偶発的な損失を防ぐために、特定の状態下でのみ障害をリセットできるのを確実にする。
第1のチャネルドライバ3721は、急速に発生する負荷不整合状態からPAを保護するように構成された回路をさらに含む。そのような回路は、例えば、コンパレータU1、D3、R3、および論理ゲートU2を含むことができる。逆検出器VrevがREF1で判定されたPA安全動作閾値を超えると、U1の出力はハイ状態に移行し、論理ゲートU2を介してPA ENラインをローにプルダウンすることで、PAをシャットダウンするように構成できる。論理ゲートU2は、制御信号EN入力によって設定され、障害状態(FLT)が存在しない場合にのみPAが確実に有効になるように構成されている。図37の例では、障害が存在する場合、および/またはEN入力がアクティブでない場合、PAは無効になる。ダイオードD3およびR3は、U1の出力をハイ状態に維持し、そのため負荷障害状態の後にPAを無効にするラッチ機能を提供するように構成できる。例えば、この結果は、Vrevに接続されているU1の非反転入力をハイにプルすることで提供でき、RES_DETの入力を介してローにリセットされるまでそのままである。例では、U1の出力をPA障害(FLT)インジケータとして使用できる。
例では、第2の保護回路3760は、順方向ノードVfwd1~Vfwd4および逆方向ノードVrev1~Vrev4に連結されている。すなわち、第2の保護回路3760は、第1から第4のチャネルドライバ3721、3731、3741、および3751からのそれぞれの順方向信号および逆方向信号に関する情報を受信するように構成される。第2の保護回路3760は、障害ノードFLT1~FLT4に連結されて、任意の1つまたは複数のチャネルドライバでの障害状態に関する情報を受信することができる。例では、第2の保護回路3760は、出力電力基準信号REF2およびRF閾値基準REF3を含む様々な基準信号を受信するように構成される。例では、第2の保護回路3760は、信号がRF信号発生器3714の出力に存在するかどうかについての情報を受信するように構成される。
例では、第2の保護回路3760は、順方向ノードVfwd1~Vfwd4および逆方向ノードVrev1~Vrev4から受信した情報に基づいて制御信号Vcを提供するように構成されたプロセッサ回路を含む。すなわち、第2の保護回路3760は、順方向ノードおよび/または逆方向ノードに関する第1の保護回路3720から情報を受信し、それに応答して、利得回路3715によって使用するための対応する制御信号Vcを提供するよう構成される1つまたは複数のフィードバック回路を含むことができるか、その一部を含むことができる。
フィードバックまたはプロセッサ回路は、様々なノードからの信号を監視でき(例えば、プロセッサ回路は、「アクティブまたは」構成を使用してノードを同時に監視するなど、信号を一緒に監視できる)、アンテナの不整合または負荷の問題が存在するかどうかを判断できる。例では、プロセッサ回路は、監視された信号を出力電力基準信号REF2と比較して、エラー状態を識別する。監視対象の信号は、任意選択でスケーリングして、順方向パスおよび逆方向パスの信号変化に対する感度を増減できる。例では、出力電力基準信号REF2は、通常または公称負荷状態で、すなわち、アンテナが十分に整合されているか、組織によって負荷がかかるときの状態で、外部供給源102の出力電力レベルを設定するために使用できるアナログ基準電圧信号を含む。不整合または不十分な負荷状態の下で、1つまたは複数の順方向ノードVfwd1~Vfwd4および逆方向ノードVrev1~Vrev4の信号は、出力電力基準信号REF2から逸脱する可能性があり、プロセッサ回路3760は制御信号Vcを利得回路3715がRF信号発生器3714からの入力信号を減衰させるべきであることを示す第1の値を調節し得る。エラー状態が存在しない場合、第2の保護回路3760は、利得回路3715によって適用されるより少ないまたはゼロの減衰を示す第2の値で制御信号Vcを提供する。
例では、第2の保護回路3760は、RF監視入力を含む。図37の例では、RF監視入力は、RF信号発生器3714の出力に連結されて、RF信号TXが存在するかどうかを監視する。第2の保護回路3760のプロセッサ回路は、例えば、制御信号Vcを使用して利得回路3715を変調することによって、RFモニタ入力からの情報をRF閾値基準REF3と比較して、駆動および分割回路3710の順方向経路を有効にするか無効にするかを判定することができる。
したがって、送信機回路3700は、アンテナの不整合または不十分な負荷状態に複数の異なる方法で、異なる程度または重大度の応答で応答するように構成される。例えば、第2の保護回路3760は、アンテナの不整合または公称レベルからの逸脱に応じて、外部供給源102の出力電力をゆっくりまたは徐々にロールバックするように制御信号Vcを調整するように構成される。システムが許容する不整合の相対量は、例えば、出力電力基準信号REF2に特定の値を選択するか、応答回路の感度を変更することによって指定できる。すなわち、第2の保護回路3760は、検出された負荷状態に応じてリアルタイムの連続的な出力電力調整を提供するように構成することができる。第1の保護回路3720は、チャネルドライバ回路の1つまたは複数の内側の増幅器回路をシャットダウンすることによってアンテナの不整合に迅速に応答するように構成される。システムによって許容される不整合の相対量は、閾値反射電力レベルREF1に特定の値を選択することなどによって、第1の保護回路3720に対して同様に指定することができる。特定の使用状態下での不整合を許容することが望ましい場合があり、例えば、使用者が、外部供給源102の初期位置決めまたは起動中に、身体に対して外部供給源102を配置またはシフトしている場合がある。例において、不整合の許容値は動的であり得、異なる使用状態に応じて変化する可能性がある。
例では、第2の保護回路3760は、RF入力検出および制御回路を含むまたは使用して、RF供給源からのRF駆動信号が検出されるまで、送信機が高減衰、低RF出力電力状態に留まるのを確実にする。この構成は、RF供給源の出力が低いか存在しないときに送信機が出力電力を供給しようとするのを防ぐことにより、RF出力のオーバーシュートを最小限に抑えるのに寄与する。この機能がないと、ALCループは入力よりも「先に進み」、RF利得を上限まで上げ、RF入力を適用するとRF出力のオーバーシュートが大きくなり、損傷を与えるに至る。
図38は、第2の送信機回路3800の例を全体的に示す。図38の例は、図37の例と実質的に同じ駆動および分割回路3710および第1の保護回路3720を含む。しかし、第2の送信機回路3800の例は、第2の保護回路3760の様々な部分の例示的な実装の詳細を含む。例えば、第2の保護回路3760は、RF検出器回路3761、制御論理回路3762、フィードバック回路3763、および積分器回路3764を含むことができる。
RF検出器回路3761は、駆動および分割回路3710で生成されるか、駆動および分割回路3710によって伝送される駆動信号TXに関する情報を受信するように構成することができる。例では、RF検出器回路3761は、駆動信号TXと基準値REF3との間の関係についての情報を提供する比較回路を含む。駆動信号TXが存在する場合、および任意選択で、駆動信号TXが基準値REF3を少なくとも指定された閾値量だけ超える場合、比較器は、駆動信号TXが存在することを示すバイナリ信号を制御論理回路3762に提供することができる。
積分器回路3764は、第2の保護回路3760の応答特性を調整または調節するように構成することができ、出力電力レベルを目標レベルまたはその近くに維持するために使用することができる。例では、積分器回路3764は、様々な順方向および逆方向ノードVfwd1~Vfwd4およびVrev1~Vrev4からの順方向および逆方向の電圧信号特性間の関係についてのフィードバック回路3763からの指示を受信する。関係情報は、閾値(例えば、REF2)と比較することができ、比較の結果を使用して、利得回路3715に提供される制御信号Vcの値を調整することができる。例では、応答時間特性を調整して、フィードバック回路3763からの情報に応答してVcの値がどれだけ速くまたはゆっくりと変化するかを判定することができる。例では、積分器回路3764は、制御論理回路3762などからの信号LOOP_RSTを受信することができるリセットスイッチでさらに構成される。例えば、LOOP_RST信号がハイの場合、積分器回路3764は、制御信号Vcに、利得回路3715が送信機の出力を効果的に低減するために最大減衰を適用するべきであることを示す信号レベルを提供できる。
例では、積分器回路3764は、初期RF出力ランプアップ特性および動的閉ループ応答特性の独立した制御を提供するように構成されたデュアル時定数積分器を備える。他の例では、RFランプアップと閉ループの動的応答時間は単一の時定数で定義できる。しかし、デュアル時定数アプローチは、例えば、比較的遅いRF出力ランプアップを提供して、オーバーシュートと帯域外放射を最小限に抑え、より高速な動的ループ応答を提供して、突然の負荷の不整合に対する増幅器の保護を強化する。
図38の例では、積分器回路3764は、動的応答の様々な特性を提供するように構成された構成要素を含み、出力負荷の不整合または他の変化を説明するための様々なチャネルドライバおよびRF出力レベルのためのPA RF出力電力ランプを含み、それは例えば目標出力電力を維持または達成するための利得調整を示すことができるなど、供給電圧または温度変化による。この例では、積分器回路3764は、U6、R6、C3、R8、およびC5を含み、これらはまとめて2つの時定数を提供する。時定数の最初の1つは、主に初期状態下でのRF出力のランプアップに関与し、2番目の時定数は、ランプアップ後の動的応答を定義する。つまり、最初の時定数T1はR8*C5として定義され、2番目の時定数T2はR6*C3として定義され、通常はT1>T2である。2つの時定数アプローチにより、比較的遅いTRAMPレートで制御されたRF出力ランプアップが可能になり、損傷を与える可能性のあるRF出力オーバーシュートを最小限に抑え、通信チャネル外の放射を最小限に抑えながら、さらに、突然の出力負荷の不整合イベントの存在下で、RF出力電力を迅速に調整して、PAを保護できるようにする。
図38の例では、U6は、R8を介して入力REF2を受信し(例えば、PA RF出力電力目標に対応する)、バッファU5およびR6を介してVfwdおよびVrevアクティブOR出力を受信する。U6の出力はVcであり、これにより、アクティブOR出力によって示されるREF2とPA RF出力レベルの間のエラーを最小限に抑えるように調整される。これは、VVA(電圧可変減衰器または利得回路3715)の利得設定を変更することで実現できる。
例では、積分器回路3764は、例えば、/RF_IN論理ロー状態によって判定されるように、チャネルドライバでのPAへのRF入力が存在するときにアクティブである。この場合、S3はオープンであり、S4は基準REF2をU6に接続する。PAへのRF入力が存在しない場合(例えば、/RF_INが論理ハイ状態の場合)、S3は閉じられ、S4はグラウンドに切り替えられる。これにより、U6の出力がゼロに近くなり、利得回路3715の減衰が最大になり、それによってチャネルOUT1~OUT4の駆動信号の振幅が最小になる。この構成は、RF入力の開始時に最適なRF出力ランプアップ状態を提供するのに寄与する。
制御論理回路3762は、送信機の他の場所から様々な入力信号を受信し、そのような信号を処理し、次に送信機に何らかの応答動作をとるように指示することができる。例では、制御論理回路3762は、送信機がその保護機構の1つまたは複数を不注意に無効にすることを防止するように構成された送信機用のフェイルセーフ論理を含む。例えば、論理は、増幅器の障害が存在し、RF入力信号が存在しない場合にのみ、リセット状態のアサートを許可できる。
制御論理回路3762は、例えば、S1およびS2を介して検出器コンデンサを接地に放電することによって、RF検出器をリセットするための、または送信機におけるPA負荷障害を管理するための状態を確立するように構成することができる。例では、検出器は、論理ハイ/RF_IN状態によって示されるようにRF入力がない場合、または検出された負荷不整合障害(FLT)イベントに続いて制御論理回路3762を介してリセットされる。制御論理回路3762は、1つまたは複数のPA障害が存在する場合、またはRF入力が存在し、障害が存在しない場合に、PA障害が/RF_INによってリセットされ得ないことを保証するように構成することができる。これは、/RF_INがコントローラによって処理される前に障害をクリアするのを妨げ、障害がクリアされた後にコントローラが検出器をリセット状態(RES_DET=論理ハイ)に保持するのを妨げるのに寄与し得る。第2の保護回路3760の制御下での低減されたRF出力は、最大(3)のPA障害の発生後の送信間隔の間継続することができ、FLT1~FLT4状態ラインは、障害が見逃されていないこと、または不注意でクリアされることを確実にするための割り込み信号を提供する。
図示されていない例では、制御論理回路3762は、検出されたRF入力信号状態に基づいて、および/または第1、第2、第3、および第4のチャネルドライバ3721、3731、3741、および3751のいずれか1つ以上での障害状態に基づいて、リセット信号、LOOP_RSTを積分器回路3764に提供することができる。つまり、チャネルドライバのいずれか1つまたは複数で検出された障害は、出力ポートまたはアンテナポートへのRF信号の提供を終了する障害状態を提供する可能性がある。送信機回路は、例えば、制御論理回路3762のパラメータを調整することによって、1つまたは複数のチャネル障害を許容するように異なるように構成することができる。例えば、ステートメントLOOP_RST=/RF_IN+FLTは、残りの回路を実質的に変更せずにLOOP_RST=/RF_INに変更できる。すなわち、積分器回路3764は、RF入力の検出された存在または不在を直接受信し、それに応答することができる。例では、制御論理回路3762は、チャネルドライバをシャットダウンまたは阻害する障害状態を示すために制御信号RES_DETを判定するようにさらに構成される。すなわち、RES_DET信号は、制御論理回路3762によって生成され、アンテナポートへの順方向信号経路を阻害するためにチャネルドライバ回路によって使用され得る。
フィードバック回路3763は、チャネルドライバの順方向および逆方向ノードVfwd1~Vfwd4およびVrev1~Vrev4から信号を受信し、それに応答して、積分器回路3764にフィードバック信号を提供するための様々な処理回路を含む。例では、フィードバック回路3763は、様々なノードからの信号を監視するように構成され(例えば、プロセッサ回路は、「アクティブまたは」構成を使用してノードを同時に監視するなど、信号を一緒に監視できる)、アンテナの不整合または負荷の問題が存在するかどうかを判断できる。監視された信号は、任意選択で、フィードバック回路3763によってスケーリングされて、様々なチャネルドライバにおける順方向経路および逆方向経路信号の変化に対する感度を増減することができる。例では、出力電力基準信号REF2は、通常または公称負荷状態で、すなわち、アンテナが十分に整合されているか、組織によって負荷がかかるときの状態で、外部供給源102の出力電力レベルを設定するために使用できるアナログ基準電圧信号を含む。不整合または不十分な負荷状態の下で、順方向ノードVfwd1~Vfwd4および逆方向ノードVrev1~Vrev4の1つまたは複数の信号は、出力電力基準信号REF2から逸脱する可能性があり、フィードバック回路3763はそれに応じて出力またはフィードバック信号を調整できる。
例では、フィードバック回路3763は、順方向ノードおよび逆方向ノードVfwd1~Vfwd4およびVrev1~Vrev4での信号における指定された量の変調を処理または受け入れるようにさらに構成される。すなわち、フィードバック回路3763は、指定された持続時間内など、指定された閾値の大きさの変化を超える順方向または逆方向のノード信号の大きさの変化にのみ応答するように構成することができる。
図38の例では、フィードバック回路3763は、U3、U4、D4、D5、R4、およびR5を含む。フィードバック回路3763は、RF OUT1~RF OUT4から順方向および逆方向の検出器出力を受信し、それらを単一のアナログ入力に統合し、Vfwd1~Vfwd4およびVrev1~Vrev4の中から最も高い電圧信号が応答を駆動できる。図38の例では、Vrev入力はR4とR5を介してスケールアップされ、U4~D5でのOR Vrev出力が、最大許容PA順方向および逆方向電力レベルでのVfwd OR出力U3~D4と等しくなる。つまり、Vrev=Vfwd/(U4利得)=Vfwd/(1+R4/R5)である。その場合、比率R4/R5は次のようになる。R4/R5=(Vfwd/Vrev)-1。
例では、U4利得(したがってR4とR5)は、PA RFout_max=(1+Vrev_max/Vfwd_max)/(1-Vrev_max/Vfwd_max)でのVSWRとなるように、最大許容PA RF出力での最大負荷VSWRを制限するように選択される。代入により、R4/R5=[(PA RFout_maxでのVSWR+1)/(PA RFout_maxでのVSWR-1)]-1。例えば、最大出力電力での最大PA安全負荷VSWRが3の場合、U4利得2に対して、R4/R5=[(3+1)/(3-1)]-1=1である。
送信機回路3800の例によれば、他の様々な利点および特徴が提供される。例えば、送信機回路は、より長い順方向および逆方向の検出器と積分器の時定数を使用して、包絡線変調されたRF信号をサポートする。包絡線周波数に比べて時定数が長いと、制御回路がピークRF出力電力を制限しながら、ピークより下の包絡線の値を無視し、そのため変調されたRF出力の適合性を確保できる。
次に、様々な送信機と保護回路の動作例について説明する。図39は、一般に、高VSWRまたは負荷不整合イベントに続くPAの保護(例えば、第1、第2、第3、および第4のチャネルドライバ3721、3731、3741、および3751のうちの1つまたは複数内部のPA保護)を含む第1の例を示す。この例には、障害状態のリセットと、リセット後のPAの継続的な動作が含まれる。V(rfout_rev)は、D1へのDC出力に対応するPA方向性カプラ出力での反射電力であり(例えば、図38を参照)、10dBのカップリング係数で30dBmのRF出力電力で3:1VSWRに相当する。最初の例では、時間0~10uSで、PAは3:1のVSWR負荷の不整合にRF出力を提供し、V(rfout_rev)はREF1によって判定された障害閾値を下回る。T1=10.2uSで、高VSWR/反射RF出力電力イベントが発生し、FLTラインが高に遷移するため、PAがシャットダウンされ、対応するRF出力が最小化される。PAへのRF入力は、RF_INのハイ状態(明確にするためにここで使用される、/RF_INを補完する正の論理)によって示されるように持続する。最初の例では、RF入力がまだ存在しているため、T2=20uSでRES_FLTを介して制御論理によって障害リセットが試行されると、FLT出力はラッチされたハイ状態のままになる。T3=22uSで、制御論理はRF入力をオフにし、RF_INはローに遷移し、障害は、制御論理によって生成されたRES_DETパルスと、FLTのハイからローへの遷移によって示されるようにリセットされる。障害がクリアされると、制御論理が論理信号を強制的にローにするため、RES_DETは一時的にハイのままになる。これにより、制御論理によって制御ループが誤ってリセット状態または非アクティブ状態に保持され、保護回路が無効になるのを防ぐことができる。最初の例では、時間T4=23uSで、RF入力が再開され(RF_INがハイになる)、PA RF出力が、例の最初の0~10uSの間隔の間に存在したのと同じレベルで同じ負荷不整合状態(例えば、高VSWRイベントが存在しない)で、復元される。制御論理によって生成されたRES_FLTラインは、T5でロー状態に戻ることができるが、障害がクリアされるとコントローラがこの入力を非アクティブにするため、動作に影響はない。例では、RES_FLTがT5の後もハイのままである場合、動作に悪影響はない。
図40は、一般に、図39に関して上で論じたのと実質的に同じ一連の事象を伴う第2の例を示している。しかし、図40では、RF入力は一定のままである。したがって、制御回路は、RES_FLTを介した障害リセットの試行に応答してRES_DETがアサートされるのを防ぐ。この2番目の例では、U1は論理ハイ障害状態でラッチされたままであり、PAはシャットダウンされたままである。図41は、図40の第2の例とほぼ同じ高さのVSWR/反射電力イベントを示しているが、PAに損傷を与える可能性があるなど、保護回路がない。
ここで図42~図46の例を参照すると、PA順方向出力電力は、指定された目標出力電力によって支配され得、安全な反射電力レベルを維持するために低減され得る。例では、図42および図46は、多くのRFサイクルで発生するようなイベントのタイミングをキャプチャするために必要な正弦波形ではなく、包絡線としての順方向および逆方向のRF出力V(rfout_fwd)およびV(rfout_rev)を全体的に示している。図43~図45は、図42のイベントの詳細を示す拡大プロットを表す。例では、第2の保護回路3760は、第1の保護回路3720よりも低速で動作するが、安全な動作を維持し、PAの全出力電力能力内に負荷VSWR内の目標RF出力電力を維持するために、低速で高いVSWRイベントのPA出力電力を動的に低減することができる。送信機アンテナが突然切断または短絡された場合に発生する可能性があるような非常に急速な高VSWRイベントの場合、第1の保護回路3720が制御を行ってPAを保護する。
図42の例は、最初のRFランプアップとそれに続くRF入力の停止、続いてRF入力が再導入された後の第2のランプアップを示している。この例には、高VSWRイベント後のRF出力電力の削減がさらに含まれ、最後に、高VSWRイベントが終了した後の完全なRF出力電力の再開が示されている。この例では、REF2を介したRF出力電力設定は30dBmであり、50オームのシステムインピーダンスへの10Vp-p RF出力電圧に対応する。PAが3:1のVSWRで動作しているため、実際の順方向RF出力電力V(rfout_fwd)はこれをわずかに下回り、2番目の保護回路3760は、VSWR≧3:1のPA RF出力電力の制限を開始するように設定される。30dBmの順方向電力設定での逆方向電力V(rfout_rev)は、順方向電力の1/2であり、3:1VSWRに対応する。V(rfout_rev)が増加すると、ループはV(rfout_fwd)を減らして一定のV(rfout_rev)を維持し、PAの安全な動作範囲内で動作を維持する。時間0から20uSまで、/RF_IN状態ラインで示されるRF入力は存在せず、ループは高減衰状態のままである。20uSで、RF入力が開始され、PA RF出力はRF出力ランプアップ時定数T1=R8*C5に従ってランプアップする。RF入力は400uSで停止し、その時点でループがリセットされ、スイッチS3およびS4を介して最大減衰状態になる。RF検出器はまたRES_DETを介してリセットされる。これらのアクションにより、600uSでのRF入力の再開など、後続のRFランプアップが、オーバーシュートなしで時定数T1に従って発生することが保証される。フルのRF出力は600uS+T1で再開され、1mSでの高VSWRイベントまで続く。1mSの時間で、積分器回路3764は、利得回路3715への制御電圧を低減することによってRF減衰を急速に増加させ、それにより、PA順方向出力電力を低減して、一定の逆方向電力を維持する。T2降下出力電力削減率は、全体的なループダイナミクスによって判定され、時定数T2=R6*C3によって支配される。例えば、ランプアップ時定数T1よりも小さくなる場合がある。図42の例では、時間1.3mSで、高VSWRイベントはおさまり、RF出力電力は、T2上昇間隔にわたって急速に増加して、目標値に戻る。例では、RF検出器の高速アタック/低速減衰特性からの自然な非対称性を含むループダイナミクスにより、T2の上昇はT2の下降よりもわずかに長くなる可能性がある。これは、例えば、PAを保護するために高VSWRイベントに迅速に応答する場合に望ましい場合がある。高VSWRイベント後の全出力電力の再開は遅くなる可能性があり、それによってRF出力のオーバーシュートを最小限に抑える。図43~図45は、それぞれ、RFランプアップT1、高VSWRイベント中のT2下降、および高VSWRイベント後のT2上昇の一般的な詳細または拡大図を示している。
図46は、一般に、高VSWR出力電力低減およびRF入力状態制御が排除された第2の保護回路3760の動作の例を示している。図46の例のイベントのタイミングは、図42の例のイベントのタイミングと同じである。図46では、第2の保護回路3760は、逆方向電力を監視することなく、初期RF出力ランプアップおよび順方向出力電力のみを制御する。時間600uSに先行するイベントおよび特徴は、完全に機能するループ(図42に関して上で説明した)の場合と同じであるが、RF入力が再開されるとき、600uS後の第2のRFランプアップは、大きく、潜在的に破壊的なオーバーシュートをもたらす。オーバーシュートは、積分器回路3764からの利得回路3715制御信号に起因する可能性があり、これは、時間400uSから600uSまでのRF入力オフ間隔の間にその最大値に飽和する。RF入力状態がない場合、ループは目標RF出力電力を供給しようとしてRF利得を増加させ続ける。その結果、RF入力が再開されると、RF出力はPAから可能な最大レベルにジャンプし、PAを損傷する可能性がある。この破壊的な可能性のあるRF出力オーバーシュートイベントに続いて、ループによる過補正のために出力がすぐにゼロに戻り、/RF_IN駆動ループのリセットがないため、T1レートではなくT2レートで3回目のランプアップが続く。最後に、1mSで始まる高VSWRイベントは抑制されていないため、PAに損傷を与える可能性もある。例では、順方向電力が制御されているが逆方向電力が制御されていない場合、同様のVSWRイベントが悪影響を与える可能性がある。
植込み型除装置で使用するための受信機および整流器回路
図47は、概して植込み型装置110、標的装置、または別のミッドフィールド受信機装置用の受信機回路4700の一部を含むことができる例を示している。例では、受信機回路4700は、本開示と一致する細長い装置に含まれるまたは使用され得、任意選択で、血管の内部を含むなど、患者の組織の内部に展開され得る。受信機回路4700は、例では、整流器546、チャージポンプ552、または刺激駆動回路556を含む、図5で本明細書に記載されているものに対応する構成要素を含むことができる。
例では、受信機回路4700は、ミッドフィールド電力信号またはデータ信号を受信するように構成されたアンテナ4701を含む。例では、アンテナ4701はアンテナ108を含む。受信信号は、組織内部の伝搬信号の一部を含むことができ、組織界面でエバネセント場を操作して組織内の伝搬信号を生成するように構成できるような、外部ミッドフィールド送信機から発信することができる。受信機回路4700は、アンテナ4701から受信したAC電力信号を整流するように構成された整流回路4746をさらに含むことができる。整流回路4746に続く信号経路内の他の回路は、とりわけ、電力貯蔵、レベル変換、および刺激制御回路を含むことができる。例えば、図47にChrvstとして示されている第1のコンデンサ4750は、アンテナ4701を使用して受信される収集されたエネルギーを記憶するように構成されたコンデンサを含むことができる。
例では、受信機回路4700は、DC-DCコンバータ回路4752を含む。変換器回路4752は、整流回路4746、または第1のコンデンサ4750からの受信信号の電圧を増加させて、電気刺激または植込み型装置110内の他の回路の動作のために構成された別の信号を提供するように構成することができる。変換器回路4752は、第1および第2の電力ドメインに供給するなど、複数の出力を有することができる。例では、第1の電力ドメインは、低電圧コンデンサ4753、またはCVDDLによって供給され、第2の電力ドメインは、高電圧コンデンサ4754、またはCVDDHによって供給される。
例では、高電圧コンデンサ4754は、図5の例からの刺激ドライバ回路556などの刺激回路を駆動する。刺激ドライバ回路は、電極アレイへの1つまたは複数の出力を介してプログラム可能な刺激を提供することができる。
例示的な受信回路4700は、電力損失が発生する潜在的な機会を含む、様々な欠点を有する可能性がある。例えば、電力損失は、整流回路4746または変換回路4752などでの電力信号の変換または調整のために発生する可能性がある。漏れ関連の損失は、第1のコンデンサ4750、低電圧コンデンサ4753、および/または高電圧コンデンサ4754のうちの1つまたは複数が原因で発生する可能性がある。例では、低電圧コンデンサ4753に蓄積されたエネルギーは、電気刺激を調節するために様々な回路または他のコントローラ構成要素によって使用され得、電気刺激は、高電圧コンデンサ4754によって蓄積されたエネルギーを使用し得る。低電圧コンデンサ4753および高電圧コンデンサ4754は個別のコンデンサとして表されるが、これらのコンデンサには、複数のそれぞれのコンデンサ、バンク、またはコンデンサのアレイを含めることができる。
本発明者らは、解決されるべき問題が、無線電力信号の受信、変換、および電気刺激における使用の効率を高めることを含むことを認識した。本発明者らはさらに、問題の解決策が、整流回路4746に続いて生じる損失を回避するために第1のコンデンサ4750をバイパスすることを含み得ることを認識した。本発明者らはさらに、問題の解決策が多段整流回路の使用を含むことができることを認識した。例では、多段整流器は、各段のそれぞれの出力を含むことができ、出力は、マルチプレクサに連結され、電気刺激に使用されるか、ミッドフィールド装置などの他の構成要素または装置に電力信号を供給するために使用され得る。マルチプレクサの様々な出力または分岐は、必要な電気刺激レベルに応じて選択できる。
図48は、概して多段整流回路4846およびマルチプレクサ回路4810を含む例を示している。多段整流回路4846は、収集された第1の電力ドメイン(例えば、図48の例ではVHRVST1と称される)、収集された第2の電力ドメイン(例えば、VHRVST2と称される)、および収集された第3の電力ドメイン(例えば、VHRVST3と称される)に対応するような異なるレベルまたは電力ドメインでの複数のタップまたは出力を含む。多段整流回路4846からのタップは、マルチプレクサ回路4810の入力に連結することができ、マルチプレクサ回路4810からの出力は、刺激電力ドメインに供給することができる(例えば、VDDHと称される電力または信号レベルで)。
図48の例では、収集された第3の電力ドメインは、低電圧電力ドメイン(VDDLで)を提供するために使用できるような、DC-DCコンバータ回路4852に連結することができる。DC-DCコンバータ回路4852からの信号、またはDC-DCコンバータ回路4852に連結された制御回路からの信号を使用して、刺激電力領域の信号を使用して電気刺激を変調することができる。これは、図48の例では、DC-DCコンバータ回路4852を刺激電力ドメインVDDHに連結する破線によって概略的に表されている。植込まれた装置の1つまたは複数の電極などへの電気刺激信号の送達を変調または制御するために、1つまたは複数のスイッチまたは他の制御回路を刺激電力ドメインに設けることができる。
図49は、概して多段整流回路4846の例を示す概略図を示している。この例では、アンテナ4702(例えば、アンテナ108を含む)から収集されたエネルギーまたは電力信号は、整流器内の1つまたはいくつかの異なる脚または段に連結され、処理されて、VHRVST1(例えば、最大約1.4ボルト)などの第1段コンデンサChrvst1、VHRVST2(例えば、最大約3.0ボルト)などの第2段コンデンサChrvst2、およびVHRVST3(例えば、最大約5.0ボルト)などの第3段コンデンサChrvst3それぞれの異なる電力ドメインの電圧信号を生成することができる。
図49の例では、多段整流回路4846は、個別の段を含み、各段は、アンテナ4702に容量連結されている。例えば、コンデンサC1、C2、およびC3は、アンテナ4702と電力ドメインのそれぞれのものとの間で連結することができる。各コンデンサは、DC信号構成要素の送信をブロックし、RFまたはAC信号を渡すように構成できる。図49の例では、異なる電力ドメインへの入力は、アンテナ4702に容量連結されている。入力に続いて、各段は、直列に連結されたダイオードのペア間の少なくとも1つの共通ノードに連結される。ダイオードの第1のものは共通ノードと基準ノードの間に連結され、ダイオードの第2のものは共通ノードと整流器出力の間に連結される。例では、第1または最も低い整流器段の基準ノードは、地上の高さであり得る。例えば、第2の整流器段の基準ノードは、第1の段に対応する電圧レベルであり得る。第3の整流器段の基準ノードは、複数の段のそれぞれについて、第2の段に対応する電圧レベルであり得、以下同様である。
再び図48を参照すると、整流回路4846の第1の段は、マルチプレクサ回路4810によって選択されて、VHRVST1の第1の電力ドメインを出力に連結する。したがって、出力で利用可能な最大電圧信号は、VDDHでVHRVST1にすることができる。
図50は、概して、図48の例からの多段整流回路4846を含み、その第2の段がVDDHでの出力用に選択された例を示している。図示の構成では、出力で利用可能な最大電圧信号は、VDDHでVHRVST2にすることができる。図51は、概してVDDHでの出力用に選択された第3の段を備えた図48の例からの多段整流回路4846を含む例を示している。図示の構成では、出力で利用可能な最大電圧信号は、VDDHでVHRVST3にすることができる。
例では、収集された第3の電力ドメインからの電力信号(例えば、約3.2から5.0VDCの間などの信号レベルVHRVST3)を使用して、植込み型装置110に搭載された起動回路に電力を供給することができる。すなわち、例えば植込み型装置110が最初に、遠隔(例えば、外部)ミッドフィールド送信機から電力信号を受信する、または植込み型装置110がスリープ状態または他の低電力状態からウェイクアップするように構成されているときに、第3の電力領域からの信号を使用して、1つまたは複数の他のプロセッサ回路、メモリ回路、発振器回路、スイッチング回路、または植込み型装置110の1つまたは複数の機能を提供する他の回路を開始または電力供給することができる。
例では、整流器段の数を増やすと(例えば、例に示されている3つの段または電力ドメインを超えて)、アンテナが受信する特定のRF電力に利用できる最大電圧を対応して増やすことができる。しかし、動作電圧または段数の増加はまた、整流器の様々な段でのオーミック損失またはその他の損失の増加などによる、整流器での電力変換効率の低下に対応する。
図48~図51の例では、多段整流回路4846から第3の電力領域信号レベルVHRVST3への出力を使用して、低電力状態下で植込み型装置110の他の回路を「ウェイクアップ」または初期化することができる。そのような低電力消費状態では、植込み型装置110は、より良いまたはより効率的な連結を確立し、それによって植込み型装置110への電力伝送を強化するなど、リモートのミッドフィールド送信機との通信を確立し、任意選択でフィードバックを提供するように構成することができる。強化された連結およびより良い電力変換効率が達成された後、多段整流回路4846からのより低いレベルの信号(例えば、第1または第2の電力領域信号レベルVHRVST1またはVHRVST2で)を植込み型装置110が使用して、1つまたは複数の他の装置の機能を実行することができ、または電気刺激に使用することができる。
例えば、刺激信号は、利用可能な異なる電力領域のいずれか1つまたは複数からの信号を使用して準備することができる。すなわち、刺激のための多段整流回路4846からの出力の選択は、所望の刺激電圧レベルまたは電流レベルに基づくことができる。例では、多段整流回路4846の段は、デジタル-アナログ変換器(DAC)回路として使用することができる。この例では、整流回路4846からの出力または段のうちの選択されたものを、粗い出力電圧として使用することができる。使用する特定の段の選択は、外部送信機装置からのフィードバックおよび/またはRF送信電力レベルに基づくことができる。例では、指定された目標刺激電圧レベル、外部送信機装置の指定されたRF送信レベル、外部送信機装置の指定されたデューティサイクル、および多段整流回路4846からの選択された段または出力などのパラメータは、送信されたRF電力から刺激信号への変換効率を最大化するために、一緒に調整するか、閉ループ方式などで最適化し得る。刺激電圧の大きさまたは波形のより細かい調整は、レギュレータ回路を使用して制御または提供することができる。
例では、刺激信号は、電流信号を含むまたは使用することができる。この例では、電流制限器をフィードバック回路と一緒に使用して、整流回路4846からの利用可能な電圧が、刺激電極を含むことができる出力インピーダンスを通してプログラムされた電流を駆動するのに十分に高いことを保証することができる。
例では、植込み型装置110は、後方散乱信号112を使用するなど、後方散乱通信を使用して外部供給源102と通信するように構成することができる。例では、植込み型装置110は、特定の時間に電力を受け取って負荷をかけるように構成することができ、異なる時間に電力を反射するように構成することができる。デジタル信号は、電力負荷および反射時間から導出することができ、例では、植込み型装置110は、外部供給源102または別の受信機と通信するための様々な情報をデジタル信号に符号化することができる。例では、後方散乱信号112の変調深度を変更または増強することができる。変調深度は、専用回路を使用して、または供給源102から受信したミッドフィールド信号に基づいて刺激または電力を提供するように構成された多段整流回路の一部を使用して強化することができる。
図52は、概して第1の整流回路5200の例を示している。第1の整流回路5200は、図49の例に示される多段整流回路4846のものと同様のトポロジーまたは構成要素を含むことができる。図52の例では、アンテナ108から収集されたエネルギーまたは電力信号は、整流器内の1つまたはいくつかの異なる脚または段に連結することができ、複数の異なる脚または段のそれぞれで異なる電力ドメインに電圧信号を提供するように処理することができる。例えば、第1の整流回路5200は、V0(例えば、最大約1.4ボルト)まで充電できるような第1段コンデンサC4を備えた第1段を含むことができ、Vreg(例えば、最大約3.0ボルト)に充電できるような第2段コンデンサC3を備えた第2段を含むことができる。第1の整流回路5200は、調整可能な出力コンデンサC6をさらに含むことができる。
例では、第1の整流回路5200は、アンテナ108への負荷によるなどの寄生損失を最小限に抑えながら、回路の高電力モードと低電力モードの両方の後方散乱変調深度を増加させるように構成することができる。例えばVregが達成される前に、アンテナ108からの受信または収集された電力の低レベルでは、回路のQファクタは、高周波選択性で比較的高くなり得る。
例では、出力コンデンサC6の静電容量の値を変更して、それに応じて回路の調整または動作周波数を変更することができる。回路の調整の変更は、負荷と反射電力の対応する変更につながり得る。回路が離調するようにC6の静電容量の値が変更されると、比較的多くの電力が反射され(例えば、外部供給源102に)、後方散乱信号112として使用され得る。したがって、比較的高度の変調深度は、C6の値を変調または変更することによって達成することができ、これにより、ひいては第1の整流回路5200の共振周波数が変更またはシフトされる。
例では、第1の整流回路5200は実質的に非線形の回路であり、Vregの電圧の大きさは、定常または固定に保持されることが望ましい。したがって、第1の整流回路5200の共振周波数が変化した場合、DC-DCコンバータ入力ノードの電流は、それに応じて変化して、Vregを安定に保つことができる。例では、後方散乱通信で使用するためなど、変調を達成するためにC6の静電容量の値が変更される場合、変調信号の深さは浅くなり得る。例えば、Vregが達成されると、RF電圧振幅はダイオードD1のほぼ中央のピーク電圧に制限できる。例えば、Vdiode+(Vreg/4)程度に制限でき、式中Vdiodeはダイオードの順方向電圧閾値である。より高い電力または信号レベルでは、電流が増加してVregを安定した値に維持する。したがって、受信機のQファクタが減少するか、等価直列抵抗Rsの複素インピーダンスが増加する。概して対応する寄生損失と、容量の調整可能な範囲に比例する固定されたゼロ以外のベースラインの容量のために、出力コンデンサC6で利用可能な容量の値の変動のサイズを単純に大きくすることはできない。
本発明者らは、第1の電力ドメインにスイッチS1を追加することが、変調深度を増加させるのに役立つ可能性があることを認識した。S1は、整流器の第1の電力領域または第1の段を短絡するように構成されている。設置や基準ノードなどの整流器の第1段を短絡することにより、回路のRFスイングをVdiodeのほぼVc-pに減らすことができる。RFスイングのVc-pはすでにVdiodeに近い可能性があるため、スイッチS1は低電力では同様に効果的ではない可能性がある。例では、植込み型装置110は、C6を実質的に同時に変更し、スイッチS1を切り替えて変調深度を増加させるように構成された論理またはプロセッサ回路を含むことができる。例では、実装を容易にするために、第1の整流回路5200は、その容量の更新を出力コンデンサC6に適用することができ、高電力モードで変調深度の向上がより顕著になっても低電力モードと高電力モードを区別せずに、スイッチS1を常時切り替えることができる。
図53は、概して第2の整流回路5300の例を示している。第2の整流回路5300は、図49の例に示されているが4段を備えた多段整流回路4846のものと同様のトポロジーまたは構成要素を含むことができる。図53の例では、アンテナ108から収集されたエネルギーまたは電力信号は、整流器内の1つまたはいくつかの異なる脚または段に連結することができ、V0などの第1段、コンデンサC4、V1などの第2段コンデンサC3、V2などの第3段コンデンサC9、およびV3などの第4段コンデンサC10のそれぞれで、それぞれの異なる電力領域に電圧信号を提供するように処理することができる。第2の整流回路5300は、調整可能な出力コンデンサC6を含むことができる。
図53の例は、Vreg脚を含まない。代わりに、電圧源V1、V2、またはV3のいずれかが刺激に使用され、その脚または供給源から電流が沈むと、回路のQファクタを下げることができる。スイッチS1は、整流器のV0脚に連結して、後方散乱通信で使用する場合など、電力をシャントし、変調深度を高めるために使用できる。
図54は、概して第3の整流回路5400の例を示している。第3の整流回路5400は、図52の例からの第1の整流回路5200の例に概ね対応することができる。図54の例では、第3の整流器回路5400は、スイッチS1と並列に設けられた抵抗器R1を含み、整流器のV0脚は、スライサー回路5410に連結されている。
例では、並列の抵抗器R1の追加により、S1のASIC入力を、植込み型装置110に送信される変調データ(例えば、OOKデータ)を復号するためなどのスライサー回路入力として使用することが可能になる。図54の例では、アンテナ108から調整可能なコンデンサC6への接続は、ASICへのRF入力を提供し、後方散乱変調およびデータ復号化がアナログRF入力で実行され得るので、任意選択であり得る。この機能がないと、包絡線検波器をオンチップで実装する必要がある。これにより、損失が増大し、容量バジェットが低下して、目的の共振周波数が達成される可能性がある。
図54の例では、抵抗器R1およびコンデンサC4は、データの復号化を可能にするために特定の時定数に調整することができる。例えば、変調レートが500KHzの場合、C4値が5pF、R1値が200Kオームの時定数が1usであることが望ましい場合がある。例では、抵抗器R1の抵抗を増加させ、コンデンサC4の静電容量を減少させることは、回路の損失を減らすのに役立つ可能性がある。しかし、電気機械構造およびスライサー回路5410の入力インピーダンスに固有の浮遊容量の減少の制限は、抵抗器R1およびコンデンサC4の値を調整することができる量を制限する可能性がある。
ミッドフィールド受信機の植込みシステムおよび方法
植込み型装置の挿入、固定、および取り外しのための、様々なシステム、装置、および方法を提供することができる。図55は、植込み型装置5500の側面図の例を全体的に示す。植込み型装置5500は、植込み型装置110の全部または一部、あるいは本明細書で論じられる1つまたは複数の他の装置を含むことができる。図示のように、植込み型装置5500は、細長い遠位本体部分5502を含む。例では、本体部分5502は、植込み型装置110の本体部分を含むまたは備える。本体部分5502は、少なくとも部分的にその中に植込まれた、またはそれに取り付けられた複数の電極5504を含む。本体部分5502は、遠位端5506および近位端5508を含む。近位端5508は、回路ハウジング5510に取り付けられている。回路ハウジング5510は、アンテナハウジング5512に取り付けられている。図示のように、アンテナハウジング5512は、それに取り付けられた第1のタイン5514を含む。例では、アンテナハウジング5512は、本明細書で論じられるアンテナハウジング610を含み、回路ハウジング5510は、本明細書で論じられる回路ハウジング606を含む。例では、植込み型装置5500は、近位端5508の近くなど、それに取り付けられた他のタインを含むことができる。
本体部分5502、電極5504、回路ハウジング5510、およびアンテナハウジング5512は、ほんの例として、略円筒形であるとして示されている。植込み型装置5500は、無線で電力を供給されるように構成される(例えば、植込み型装置5500が植込まれる組織の外部から植込み型装置5500に入射する電磁波を介して)。植込み型装置5500は、患者(例えば、ヒトまたは他の動物の患者)の体内の治療部位に電気刺激を提供するように構成される。植込み型装置5500は、図56~図68に関して論じられた方法を使用して、患者の内部に配置することができる。
本体部分5502は、可撓性材料を含むことができる。可撓性材料は、ポリウレタン、シリコーン、またはエポキシを含み得る。可撓性材料は、本体部分が患者の内部にあるときなど、本体部分5502を成形する能力を提供することができる。
図示された電極5504は、本体部分5502に沿った4つの刺激電極5504の電極アレイを含む。電極5504は、1つまたは複数の実施形態では、白金、イリジウム、ステンレス鋼、チタン、窒化チタン、または他の生体適合性の導電性材料を含む。1つまたは複数の実施形態では、電極は、90%白金および10%イリジウムである組み合わせなどの白金およびイリジウム合金を含む。1つまたは複数の実施形態では、電極5504は、1つまたは複数の電気スイッチなどによって、互いに電気的に分離されている。電極5504は、それぞれ、回路ハウジング5510に密閉された回路に電気的に接続されている。
回路ハウジング5510は、その中の回路のための気密エンクロージャを提供することができる。回路ハウジング5510は、チタン(例えば、商業的に純粋な6Al/4Vまたは他の合金)、ステンレス鋼、またはセラミック材料(例えば、ジルコニアまたはアルミナなど)、または他の気密性の生体適合性材料を含むことができる。回路ハウジング5510は、回路に気密空間を提供する。金属材料が回路ハウジング5510に使用される場合、回路ハウジング5510を電極アレイの一部として使用することができ、刺激のために選択可能な電極5504の数を効果的に増やすことができる。図89および図90は、気密性の回路ハウジング5510を形成する方法を示している。
アンテナハウジング5512は、回路ハウジング5510の近位端5511に取り付けることができる。アンテナハウジング5512内のアンテナは、植込み型装置5500が配置されている媒体の外部の装置からなど、植込み型装置5500への、および/または植込み型装置5500からの電力供給および通信に使用することができる。アンテナハウジング5512の実施形態の部分は、とりわけ、図20~図25、図85~図87、および図93にさらに詳細に示されている。
タイン5514は、アンテナハウジング5512の近位部分(例えば、植込み後に組織5728(図57を参照)の表面に面するアンテナハウジング5512の部分)に取り付けることができる。第1のタイン5514は、組織内の特定の位置に植込み型装置5500を取り付ける能力を提供することができる。第1のタイン5514は、植込み型装置5500を特定の解剖学的構造またはその近くに固定するように構成することができる。第1のタイン5514は、ポリマーまたは他の可撓性または半可撓性材料で作ることができ、例えば、シリコーン、ポリウレタン、エポキシ、または同様の材料を含み得る。第1のタイン5514は、アンテナハウジング5512の中心軸または長手方向軸から離れてフレアすることができ、その結果、他の図の中でもとりわけ、図55に示されるように、第1のタイン5514の所与の1つの遠位部分は、同じタインのより近位の部分よりも中心軸に近くなり得る。アンテナハウジング5512に取り付けられていない第1のタイン5514の端部(例えば、タインの自由端)は、アンテナハウジング5512に取り付けられた第1のタイン5514の端部よりも(例えば、植込み後)組織の表面に近くなり得る。そのような構成は、患者が移動または様々な通常の活動を進行するときなど、植込み型装置5500が組織の表面に向かって移動またはそれることがないことを確実にするのに寄与することができる。
第2のタイン5518および第3のタイン5520は、本体部分5502の近位端の近くに取り付けることができる。第2および第3のタイン5518および5520は、第1のタイン5514と同様であり得るが、装置の縦軸に沿った異なる位置で植込み型装置5500に取り付けることができる。第2および第3のタイン5518および5520は、近位端5508の近くで装置5500に取り付けることができる。本体部分5502に取り付けられていない第2のタイン5518の端部(例えば、第2のタイン5518の自由端)は、本体部分5502に取り付けられている第2のタイン5518の端部よりも組織の表面に近くすることができる。そのような構成は、植込み型装置5500が植込み後にそれたり移動したりしないことを確実にするのを補助することができる。本体部分5502に取り付けられていない第3のタイン5520の端部(例えば、第3のタイン5520の自由端)は、本体部分5502に取り付けられた第3のタイン5520の端部よりも組織の表面から遠く離れていてもよい。そのような構成は、植込み型装置5500が植込み後にそれたり移動したりしないことを確実にするのを補助することができる。
プッシュロッドインターフェース5516は、植込み型装置5500の近位端に配置することができる。プッシュロッドインターフェース5516は、プッシュロッドと嵌合するようなサイズおよび形状にすることができる(とりわけ、図26~図30を参照のこと)。植込み型装置5500のいくつかの構成要素の実施形態に関する詳細は、他の図および本明細書の他の場所に関して提供される。
図56~図68は、装置を組織に植込むためのプロセスの部分の全体的な側面図を示している。図56は、例として、針5622およびスタイレット5623の実施形態の側面図を示す。針5622は、組織を貫通し、ガイドワイヤ5624がそれを通ってスライドすることを可能にする中空点5626を含む。針5622は、白金、チタン、イリジウム、ニチノールなどの生体適合性金属を含むことができるような金属で作ることができる。針5622は、ガイドワイヤ5624を配置することができる管腔(例えば、管状構造)を含む。
スタイレット5623は、針5622の管腔を満たす構造である。スタイレット5623は、針5622に挿入されると、針5622が組織を通って前進するときに、材料が針5622の管腔に入るのを防ぐのに寄与し得る。
図57は、例として、スタイレット5623が取り外された後、組織5728に部分的に配置された針5622およびガイドワイヤ5624の側面図を示す。針5622は、組織5728およびその表面の下の組織5728の表面を貫通することができる。針5622は、点5626が植込み型装置5500の植込み部位の近くに来るまで、一般にハンドル5730によって押すことができる。針5622は、組織5728内の所望の位置および向きに配置することができる。ガイドワイヤ5624は、それが点5626またはその近くに来るまで、針5622を通して押すことができる。
ガイドワイヤ5624は、他のツールをインプラント部位に挿入することができる上または周囲の構造を提供する。ガイドワイヤ5624は、針5622を使用して、植込み型装置5500が植込まれる場所の近くに挿入することができる。ガイドワイヤ5624は、白金、チタン、イリジウム、ニチノールなどを含むことができる生体適合性金属材料で作ることができる。
図58は、例として、組織5728から部分的に除去された針5622の実施形態の側面図を示す。図59に示されるように、ガイドワイヤ5624は、針5622の除去後に組織5728に残され得る。ガイドワイヤ5624は、他の植込み器具または植込み型装置5500のための植込み部位への経路を提供することができる。
図60は、例として、ガイドワイヤ5624の一部の上に配置された拡張器6030の実施形態の側面図を示す。拡張器6030は、ガイドワイヤ5624が通過することができる管腔6041を含む。管腔6041は、ガイドワイヤ5624を収容するのに十分な直径(矢印6032で示される)を含む。拡張器6030は、遠位端6036でテーパーにすることができる。テーパーは、テーパーのない拡張器と比較して、組織5728の穴6038に拡張器6030を挿入することをより容易にすることができる。テーパーは、テーパーのない拡張器と比較して、穴6038を広げるのを容易にすることができる。拡張器6030は、針5622によって形成された組織5728の穴6038に押し込むことができる。拡張器6030は、穴6038を外径(矢印6034によって示される)まで広げることができる。拡張器6030は、金属または他の剛性構造を含むことができる。剛性材料は、筋膜または骨からの力による拡張器6030のねじれ、押しつぶし、および座屈を防ぐことができる。
図61は、例として、組織5728の表面を通って穴6038に押し込まれた拡張器6030の実施形態の側面図を示す。端部6036はインプラント部位の近くに配置できる。拡張器6030は、放射線不透過性マーカー6143を含むことができる。蛍光透視法下などの放射線不透過性マーカー6143は、拡張器6030をインプラント部位に誘導するのに寄与する。放射線不透過性マーカー6143は、拡張器6030のテーパー部分の近くに配置されるように、拡張器6030の端部6036の近くに配置することができる。
図62は、例として、組織から除去された拡張器6030、およびカテーテル6250に配置され、組織5728の表面に向けられた別の拡張器6240の実施形態の側面図を示す。拡張器6240は、ガイドワイヤ5624が通過することができる管腔6251を含む。管腔6251は、ガイドワイヤ5624を収容するのに十分な直径(矢印6242で示される)を含む。拡張器6240は、遠位端6246でテーパーにすることができる。テーパーは、テーパーのない拡張器と比較して、拡張器6030によって生成された広げられた穴6248に拡張器6240を挿入することをより容易にすることができる。拡張器6240は、拡張器6030によって形成された組織5728の穴6248に押し込むことができる。拡張器6240は、穴6248を外径(矢印6244で示される)まで広げることができる。拡張器6240は、金属または他の剛性材料を含むことができる。剛性材料は、筋膜または骨からの力による拡張器6240のねじれ、押しつぶし、および座屈を防ぐことができる。
拡張器6240は、拡張器6030を組織5728を通して押すことによって生成された穴6248を広げることができる。例えば、拡張器6030は、穴を約5フレンチ(例えば、約1.6667mm)に広げることができ、拡張器6240は、穴をさらに約7フレンチ(例えば、約2.3333mm)に広げることができる。これらの寸法は単なる例であり、適用例に応じて変更できる。
カテーテル6250は、拡張器6240が通過することができる管腔を含むことができる。カテーテル6250の内径は、植込み型装置5500の最大幅を収容するのに十分であり得る。植込み型装置5500の最大幅は、植込み型装置5500の長さ(最長寸法)に垂直な最大の長さである。図55の植込み型装置5500の例では、最大幅は、回路ハウジング5510またはアンテナハウジング5512の幅である。タイン5514、5518、および5520は可撓性があるため、幅の判定で考慮する必要はない。カテーテル6250は、内径(矢印6252で示される)および外径(矢印6254で示される)を含むことができる。拡張器6240が挿入されたカテーテル6250は、穴6248に向かって(例えば、手動で)押し込むことができる。カテーテル6250は、金属または他の剛性材料を含むことができる。剛性材料は、筋膜または骨からの力によるカテーテル6250のねじれ、押しつぶし、および座屈を防ぐことができる。
カテーテル6250は、その遠位端の近くに配置された放射線不透過性マーカー6257を含むことができる。蛍光透視法の放射線不透過性マーカー6257は、エンティティが場所または放射線不透過性マーカー6257を視覚化するのを補助することができる。植込み型装置5500が仙骨神経の近くに配置される実施形態では、放射線不透過性マーカー6257は、S3孔として知られる骨の開口部に配置することができる。
図63は、例として、組織内の所定の位置に挿入された拡張器6240およびカテーテル6250の実施形態の側面図を示す。図64は、例として、拡張器6240およびガイドワイヤ5624が除去され、カテーテル6250を組織内に残した実施形態の側面図を示す。いくつかの実施形態では、ガイドワイヤ5624は、拡張器6240の前または後に除去され得るか、ガイドワイヤ5624は、拡張器6240と同時に除去され得る。
図65Aは、例として、プッシュロッド6850と嵌合した植込み型装置5500の例の図を示している。図65Aの例では、植込み型装置5500は、装置が組織に植込まれたときに植込み型装置5500の移動を防止するのを補助するように構成できるような、タイン構造を含むまたは使用することができる近位部分を含む。図65Aの例では、植込み型装置5500は、第1のタイン5514および第2のタイン118を含む。第1または第2のタイン114および118は、植込み型装置5500の長手方向軸から半径方向に離れて延びるように構成することができ、第1および第2のタイン114および118は、同様または異なる寸法にすることができる。例では、第1または第2のタイン114または118は、植込み型装置5500から半径方向に離れて長手方向に延びるように角度を付けることができる。図65Aの例では、第1のタイン5514および第2のタイン118は、実質的に同じ方向に、すなわち、長手方向軸から半径方向に離れて近位部分に向かって延びるか、角度が付けられている。
図65Bは、例として、プッシュロッド6850と嵌合し、他のタイン構造を含む植込み型装置5500の例の図を示している。図65Bの例は、第1のタイン5514を含み、第4のタイン5519を含む。第4のタイン5519は、植込み型装置5500の長手方向軸から半径方向に離れて延びるように構成することができ、第1のタイン5514と反対の方向に延びるように構成することができる。すなわち、第4のタイン5519は、植込み型装置5500の遠位部分に向かって延びるか、角度を付けられるように構成することができる。例では、植込み型装置5500および/またはそれに連結された送達装置は、植込み中に第4のタイン5519を展開されていない構成に保持するように構成でき、第4のタイン5519は、植込み型装置5500が標的組織部位に位置付けられるとき、放出および拡張され得る。反対方向の第1のタイン5514および第4のタイン5519は、標的組織部位から離れる植込み型装置5500の移動を防ぐのに寄与することができる。
植込み型装置5500は、その近位端から延びる縫合糸6852を含むことができる。縫合糸6852は、(植込み後)組織5728の表面を超えて延在し、植込み後に植込み型装置5500が配置されているエンティティの外部にあることができる。縫合糸6852は、組織から植込み型装置5500を抜去するなど、引っ張ることができる構造を提供することができる。
プッシュロッド6850は、植込み型装置5500のプッシュロッドインターフェース5516と嵌合するように構成された遠位インターフェース6854を含むことができる。プッシュロッド6850は、とりわけ、例えば、図26~図30に、より詳細に記載されている。
図66は、例として、プッシュロッド6850によってカテーテル6250に押し込まれている植込み型装置5500の実施形態の図を示している。タイン5514および5518(または他のタイン)は、カテーテル6250に挿入されるときに、カテーテル6250の内壁に対して折りたたむことができる。タイン5520などの他のタインは図示されていないが、植込み型装置5500に含めることができることに留意されたい。
図67は、例として、組織5728内の所定の位置に押し込まれ、カテーテル6250を通り抜け、カテーテル6250が引き出されてタイン5514および5518を展開する植込み型装置5500の実施形態の図を示す。植込み型装置5500は、縫合糸6852が部分的に組織5728の内部にあり、部分的に植込み型装置5500が配置されている組織5728の外部にあるように配置することができる。
プッシュロッド6850は、プッシュロッド6850を組織5728にどれだけ押し込むかを示すマーカー6760を含むことができる。植込みを実施するエンティティは、マーカー6760がカテーテル6250の近位端6770または組織5728の表面またはその近くにあるとき、植込み型装置5500が適切な位置にあることを知ることができる。
プッシュロッド6850のマーカー6760は、マーカー6760がカテーテル6250の近位端と位置合わせされたときに電極5504が正しい位置にあるように配置することができる。マーカー6760は肉眼で見ることができる。この時点で、タイン5514および5518(または他のタイン)はまだカテーテル6250内にあり、まだ展開されていない。植込みを行うエンティティが電極の配置を確認した後(例えば、X線(蛍光透視法)を通して)、エンティティは、カテーテル6250を組織5728の表面に向かって引っ張り、タイン5514および5518を解放することができる。蛍光透視法による確認は、植込み型装置5500が適切に配置されたままであることを確認するために行うことができる。
図68は、例として、組織から除去されたプッシュロッド6850およびカテーテル6250を含み、植込み型装置5500を組織に植込まれたままにする実施形態の図を示す。
図56~図68と一致する例示的な植込み手順が、S3孔を通して仙骨神経の近くに植込み型装置5500を植込むことに関して本明細書で提供される。エンティティまたは操作者は、ランドマークS3およびS4への坐骨ノッチを触診できる。滅菌外科用マーカーを使用して、骨の多い目印を特定できる。蛍光透視装置を所定の位置に操作して、仙骨の正中線、仙腸関節(SI)関節、坐骨ノッチ、内側孔境界、または仙骨孔の位置を特定できるように、S3仙骨領域の蛍光透視イメージングまたはマッピングを提供できる。例では、C-アーム蛍光透視法は、装置の挿入中に使用することができる。
孔針5622は、仙腸関節の頭側約2cm、仙骨正中線の外側2cmに位置し、S3孔が特定されて貫通するまで孔の縁を感じ取る。必要に応じて、操作者は針5622を取り外して再度挿入することにより、位置を調整できる。蛍光透視法を使用して、操作者は、絶縁された孔針5622が、皮膚(例えば、組織5728の表面)に対しておおよその角度(例えば、60度の挿入角度)で孔に挿入されることを確実にすることができる。針5622は、骨の表面に垂直な孔管に入ることができる。これにより、針5622を仙骨神経と実質的に平行に配置できる。操作者は、針5622の位置、向き、深さを蛍光透視法で確認し、必要に応じて、針を取り外して再度挿入することで位置を調整できる。画像は、後で参照または比較するために、植込みプロセス全体で保存できる。
スタイレット5623は、針5622から取り外して、廃棄することができる。ガイドワイヤ5624は、ガイドワイヤ5624のマーク(図示せず)が針5622の上部に到達するまで、針を通して提供することができる。孔針5622は、ガイドワイヤ5624を安定に保持しながら、ガイドワイヤ5624上で引き抜くことができる。針5622は廃棄できる。
拡張器6030を挿入する前に、ガイドワイヤ5624に沿って刺し傷を作ることができる。拡張器6030は、ガイドワイヤ5624を介して提供され、拡張器6030の遠位先端6036が仙骨の前面に提供されるまでなど、組織5728内に前進させることができる。必要に応じて、操作者は拡張器6030を回転させて、拡張器を組織内に前進させることができる。拡張器6030は、ガイドワイヤ5624を安定に保ちながら引き抜くことができる。拡張器6030は廃棄できる。
組み合わされた拡張器6240およびカテーテル6250は、放射線不透過性マーカー6257が仙骨の前面と後面との間の中間になるまでなど、ガイドワイヤ5624を介して組織5728内に前進させることができる。必要に応じて、操作者は、拡張器6240およびカテーテル6250を回転させて、それを組織5728内に前進させるのを補助することができる。操作者は、拡張器6240およびカテーテル6250を所定の位置に残したまま、ガイドワイヤ5624を取り外すことができる。その後、ガイドワイヤ5624を廃棄することができる。
例では、拡張器6240は、カテーテル6250を所定の位置に残したまま除去することができ、拡張器6240は廃棄することができる。植込み型装置5500およびプッシュロッド6850は、例えば、プッシュロッドインターフェース5516を植込み型装置インターフェース8022と嵌合することによって接続して、プッシュロッドアセンブリを作成することができる。プッシュロッドアセンブリは、最初に植込み型装置5500の遠位先端であるカテーテル6250内に前進させることができる。アセンブリは、プッシュロッド6850のマーカー6760がカテーテル6250の上部に到達するまで前進させることができる。プッシュロッド6850を回転させて、植込み型装置5500を配置することができる。
蛍光透視法を使用して、操作者は、植込み型装置5500が適切な位置にあることを確認できる。遠位先端5506からの最も近位の電極5504は、シース上の放射線不透過性マーカー6257と整列させることができる。蛍光透視法下の植込み型装置5500の画像を保存することができる。植込み型装置5500の位置は、必要に応じて調整することができる(また、蛍光透視法で確認する)。
片手でプッシュロッド6850を所定の位置にしっかりと保持し、操作者は、別の手を使用して、カテーテル6250がプッシュロッド6850のハンドルに接触し、それ以上引き抜くことができなくなるまで、カテーテル6250を部分的に引き抜くことができる。これにより、植込み型装置5500のタインが露出する可能性がある。プッシュロッド6850の長さは、概して植込み型装置5500をカテーテル6250に挿入し、カテーテル6250を引き抜いてタインを露出させるのに十分であり得る。
蛍光透視法を使用して、操作者は、装置が移動したかどうかを判定するなど、植込み型装置5500の位置を確認することができる。次に、必要に応じて、操作者が植込み型装置5500の位置を調整することができる。ルアーキャップ(例えば、図82を参照)は、プッシュロッド6850から取り外すことができる。プッシュロッド6850は、カテーテル6250から約4分の1から約半分まで取り外すことができる。蛍光透視法を使用して、植込み型装置5500が同じ位置または目標位置に留まっているかどうかを操作者が再度確認することができる。植込み型装置5500が動かなかった場合、プッシュロッド6850は、植込み型装置5500の近位端に取り付けられた縫合糸6852上で取り外すことができる。植込み型装置5500のラジアルタイン(例えば、タイン5514、5518、5519、または5520)は、概して植込み型装置5500をその所望の軸方向位置に維持することができる。プッシュロッド6850は廃棄可能である。植込み型装置5500が移動した場合、縫合糸6852をぴんと張った状態に保持しながら、操作者は、プッシュロッド6850を再挿入して、植込み型装置を適切に配置することができる。プッシュロッド6850の取り外しステップは、植込み型装置5500が目標または正しい位置に置かれた後に繰り返すことができる。操作者は、蛍光透視法を使用して、植込み型装置5500が移動したかを判断できる。次に、カテーテル6250を少なくとも部分的に取り外すことができる。蛍光透視法を使用して、操作者は、植込み型装置5500がまだ移動していないことを確認できる。植込み型装置5500が動かなかった場合、操作者は、カテーテル6250を取り外し続け、カテーテル6250を廃棄することができる。次に、操作者は、蛍光透視法を使用して、標的組織部位に対するものなど、植込み型装置5500の位置を視覚化することができる。必要に応じて、操作者は、例えば、縫合糸6852を引っ張ることによって、植込み型装置5500の位置を調整することができる。
図69は、例として、カテーテル6250およびプッシュロッド6850が完全に取り外された後に植込まれたままにされた植込み型装置5500の別の実施形態の図を示す。植込み型装置5500を抜去するために、縫合糸6852を組織5728の表面から引き離すことができる。プッシュロッドインターフェース5516は、植込み型装置5500の抜去を容易にする(より少ない力を必要とする)か、植込み型装置5500が植込まれた組織への損傷を少なくするのを補助するなど、先細にすることができる。
縫合糸6852を引っ張って抜去するのは難しい場合がある。抜去を補助するために、シース6960を、縫合糸6852の遠位部分(植込み型装置5500に取り付けられた縫合糸6852の部分)の周りに配置することができる。シース6960は、ペバックス、ポリウレタン、ナイロン、ポリエチレン、ポリプロピレンなどを含むことができるような可撓性ポリマー材料を含むことができる。シース6960は、縫合糸6852の近位部分が組織に付着するのを防ぐのを補助することができる。組織は、縫合糸6852およびその周辺で治癒する可能性があり、例えば植込み型装置5500の抜去をより困難にする。シース6960は、そのような治癒から縫合糸6852を保護し、シース6960なしで実現されるよりも、縫合糸6852と周囲の組織との間に大きな空間を提供し得る。
図70は、例として、縫合糸6852が引っ張られ、植込み型装置5500が組織5728の表面に向かって移動し始めた後の植込み型装置5500の実施形態の図を示す。シース6960は、組織5728を通る動きに応答して崩壊し得る。シース6960の崩壊は、植込み型装置5500の抜去のための経路を形成するのを補助することができる。
ミッドフィールド受信機の構成要素、アセンブリ、および調整
図71は、例として、植込み型装置5500などの植込み型装置の部分7100の分解図を示す。図示された部分7100は、縫合糸6852、シース6960、リテーナ7164上のタイン5514、プッシュロッドインターフェース5516、アンテナハウジング5512、および回路ハウジング5510を含む。
植込み型装置を組み立てる際に、縫合糸6852をプッシュロッドインターフェース5516に取り付けることができる。シース6960は、縫合糸6852がプッシュロッドインターフェース5516に取り付けられる前または後など、縫合糸6852の周囲に配置され得る。リテーナ7164は、プッシュロッドインターフェース5516の周りに取り付けることができる。リテーナ7164、リテーナ7164は、アンテナハウジング5512の近位端に隣接するように配置することができる。アンテナハウジング5512は、アンテナコア7162およびコアハウジング7166を含むことができる。例では、アンテナコア7162は、本明細書で論じられる第1の誘電体コア7488などの誘電部材を含む。コアハウジング7166は、アンテナコア7162がコアハウジング7166によって囲まれるように、アンテナコア7162の周りに配置することができる。アンテナコア7162の遠位端は、回路ハウジング5510に取り付けることができる。コアハウジング7166は、回路ハウジング5510の近位部分を取り囲むことができる(例えば、近位翼付きフランジ7270Aおよび7270B、とりわけ、図18および図19を参照のこと)。アンテナコア7162は、回路ハウジング5510に取り付けることができる。図71の構成要素のいくつかの実施形態は、図72~図83、および本明細書の他の場所に関してより詳細に説明されている。例では、コアハウジング7166は、ポリエーテルエーテルケトン(PEEK)、液晶ポリマー(LCP)、または他の材料を含むことができるような誘電体材料を含む。例では、コアハウジング7166は、アンテナコア7162と、例えば、回路ハウジング5510との間に堅固で堅牢な機械的接合を提供するように構成される。
図72および図73は、例として、回路ハウジング5510の実施形態のそれぞれの図を示す。図示の回路ハウジング5510は、近位翼付きフランジ7270A、7270B、第1のハウジング板7272、近位導電性フィードスルー7274、中空容器7276、第2のハウジング板7278、遠位翼付きフランジ7280A、7280B、および遠位導電性フィードスルー7282を含む。翼付きフランジ7270A~7270Bおよび7280A~7280Bは、容器7276のフットプリント内に配置できる。
翼付きフランジ7270A~7270Bは、アンテナコア7162の対応する特徴と係合するように構成することができる(とりわけ、図76を参照のこと)。翼付きフランジ7280A~7280Bは、本体部分5502の近位端5508またはその近くで対応する特徴と係合するように構成することができる。翼付きフランジ7270A~7270Bおよび7280A~7280Bは、弧状または湾曲した壁と、湾曲した壁の両端の間を走るトラックとを含むことができる。トラックの各側で、翼付きフランジ7270A~7270Bおよび7280A~7280Bは、回路ハウジング5510の長手方向軸(破線7284によって示される)から外向きに延びるリップまたは突起を含むことができる。
導電性フィードスルー7274は、アンテナコア7162の嵌合導体と係合するように構成することができる(とりわけ、図74~図76を参照のこと)。導電性フィードスルー7274は、電気信号がアンテナ7486に伝わることができる経路を提供することができる。例では、アンテナ7486は、植込み型装置110に提供され得るようなアンテナ108の例を含む。アンテナ7486は、第1の誘電体コア7488の周りに提供または巻くことができる(とりわけ、図74~図76を参照のこと)。アンテナ7486は、回路ハウジング5510の回路に連結することができる。導電性フィードスルー7274は、第1のハウジング板7272を通って延びることができる。
第1のハウジングプレート7272および第2のハウジングプレート7278は、ろう付け、溶接、または他の方法で容器7276の両端に取り付けることができる。第1のハウジングプレート7272および第2のハウジングプレート7278の容器7276への取り付けは、回路ハウジング5510内の回路を保護するためなどに、回路ハウジング5510を密閉することができる。回路ハウジング5510の実施形態は、図90および図91に関して説明される。
導電性フィードスルー7282は、それぞれの電極5504に電気的に連結または接続されている本体部分5502の嵌合導体と係合するように構成することができる。導電性フィードスルー7282は、回路ハウジング5510内の回路からの電気信号が電極5504に提供される経路を提供することができる。導電性フィードスルー7282は、第2のハウジング板7278を通って延びることができる。
図74および図75は、例として、アンテナコア7162の実施形態の図を示している。アンテナコア7162は、第1の誘電体コア7488およびアンテナ7486を含み得る。第1の誘電体コア7488は、誘電体材料などの非導電性材料でできていてもよい。誘電体材料には、ポリエーテルエーテルケトン(PEEK)、液晶ポリマー(LCP)(PEEKのようなプラスチックは水分を保持し、誘電率をシフトできるが、LCPは水分飽和により誘電シフトが少ない)、エポキシモールドなどが含まれ得る。アンテナ7486は、銅、銀、金、白金、スズ、アルミニウム、真ちゅう、ニッケル、チタン、それらの組み合わせなどの導電性材料を含むことができる。アンテナ7486は、第1の誘電体コア7488の周りに巻くことができる。第1の誘電体コア7488は、アンテナ7486が第1の誘電体コア7488の周りに配置された後に崩壊するのを防ぐのを補助するなど、アンテナ7486の機械的支持を提供することができる。
第1の誘電体コア7488は、翼付きフランジ7270A~7270Bの弧状または湾曲した壁と嵌合するように湾曲した弧状または湾曲した壁7490Aおよび7490Bを含むことができる。翼付きフランジ7270A~7270Bは、回路ハウジング5510がアンテナコア7162と嵌合されている場合、湾曲した壁7490A~7490Bの外側に配置することができる。
図76は、例として、回路ハウジング5510とアンテナコア7162との間のカップリングの実施形態の図を示している。フィードスルー7274は、アンテナ7486に電気的に接続することができる。フィードスルー7274は、はんだ付け、溶接、ろう付け、またはその他の方法でそれぞれのアンテナ7486導体に電気的に接続することができる。導電性フィードスルー7274をアンテナ7486に接続することに関するさらなる詳細は、図86および図87に関して記載されている。
図77~図79は、例として、コアハウジング7166およびプッシュロッドインターフェース5516のそれぞれの図を示している。コアハウジング7166は、それを通る係合穴7702を含むことができる。係合穴7702は、植込まれると周囲の組織と係合することができる。係合穴7702は、植込み型装置5500を植込まれた位置に保持するのを補助することができる。コアハウジング7166は、その遠位端に開口部7704を含むことができる。アンテナコア7162は、開口部7704に配置することができる。コアハウジング7166は、アンテナコア7162を取り囲むことができる。
図示のプッシュロッドインターフェース5516は、露出した丸いエッジを有する台形プリズムなどの台形形状を含む。台形の短いベースは、台形の長いベースよりも近位にある。プッシュロッドインターフェース5516の側部は、長いベースから短いベースに向かって先細にすることができる。そのような構成は、プッシュロッド6850の遠位端と係合するためのインターフェースを提供しながら、植込み型装置5500を外植することをより容易にするのを補助することができる。
プッシュロッドインターフェース5516は、縫合糸6852の遠位端にある縫合糸リテーナ6853(例えば、ボールまたはノットなど)と係合するためのソケット開口部7810を含むことができる(図71を参照)。縫合糸6852は、縫合糸6852の近位端から開始して、ソケット開口部7810を通して押し込むことができる。リテーナ6853がソケット開口部7810に配置されるまで、縫合糸をソケット開口部7810を通して引っ張ることができる。リテーナ6853は、縫合糸6852がプッシュロッドインターフェース5516に連結されたままであり、植込み型装置5500を引っ張られて抜去することができることを保証するためなど、ソケット開口部7810の露出部分の半径よりも大きい境界または半径を有する構造を含むことができる。
プッシュロッドインターフェース5516は、コアハウジング7166をキャップするベース7812をさらに含むことができる。ベース7812は、接着剤、コアハウジング7166の弾性収縮によって生成される力などによって、コアハウジング7166に取り付けることができる。ベース7812は、リテーナ7164を超えて延びるリップを含むことができ、リテーナ7164がソケット開口部7810に向かって移動しないことを確実にするのに役立つ。
アンテナコア7162は、コアハウジング7166内に配置することができる。アンテナコア7162は、エポキシまたは他の誘電性接着剤を使用することなどによって、コアハウジング7166に固定することができる。誘電体接着剤は、アンテナコア7162がコアハウジング7166内にある間、およびアンテナ7486がフィードスルー7274に電気的に接続された後など、穴7702の1つまたは複数を通して導入することができる。
接続材料7811は、プッシュロッドインターフェース5516に配置することができる。接続材料7811は、リテーナ6853または縫合糸6852の端部の結び目を保持するのを補助することができる。結合材料7811は、リテーナ6853が結合材料7811と接触している間に硬化させることができる。接続材料7811は、リテーナ6853が開口部7810を通って、またはコアハウジング7166に向かって滑らないことを確実にするのを補助することができる。
図80は、例として、プッシュロッド6850の実施形態の斜視図を示す。プッシュロッド6850は、細長い本体部分8024を含むことができる。細長い本体部分8024は、縫合糸6852またはシース6960がそこを通過できるようにするために、その遠位部分が中空であり得る。細長い本体部分8024は、金属、プラスチック、ステンレス鋼、ポリ塩化ビニル(PVC)、ポリテトラフルオロエチレン(PTFE)などを含むことができる。
プッシュロッド6850は、カテーテル6250に対するマーカー6760の位置を示すマーカー6760を含むことができる。使用中、インプラントの手順を実行するエンティティは、マーカー6760がカテーテル6250の最も近位の端部またはその近くに来るまで、プッシュロッド6850を押すことができる。プッシュロッド6850は、植込み型装置インターフェース8022を含むことができる。植込み型装置インターフェース8022は、プッシュロッドインターフェース5516と嵌合するように構成される。
図81は、例として、プッシュロッド6850の植込み型装置インターフェース8022の実施形態の分解図を示す。植込み型装置インターフェース8022は、細長い本体部分8024から延びる対向する脚8130A、8130Bを含む。対向する脚部8130A、8130Bは、部分的な円柱、部分的な楕円体、部分的な超立方体、他の多角形などであり得る。脚8130A、8130Bは、互いに向き合うそれぞれの対向する面8136A、8136Bを含むことができる。対向する面8136A、8136Bは、略平坦であり得るか、さもなければ、プッシュロッドインターフェース5516の形状を補完することができる。対向する面8136A、8136Bは、縫合糸6852またはシース6960の形状に対応するためなど、その中にディボット8132を含むことができる。ディボット8132は弧状にすることができる。細長い本体部分8024は、それを通って延びる管腔8134(例えば、管状構造)を含むように中空にすることができる。管腔8134は、縫合糸6852またはシース6960がそこを通過することを可能にする形状を含むことができる。そのような構成は、植込み型装置インターフェース8022が、プッシュロッドインターフェース5516を、少なくとも部分的に管腔8134内で縫合糸6852またはシース6960と係合させることを可能にすることができる。
図82は、例として、プッシュロッド6850の近位部分の実施形態の図を示している。図示のプッシュロッド6850は、中空ロッドの細長い本体部分8024、ハンドル8280、戻り止め8282、ルアーキャップ8284、および縫合糸6852を含む。プッシュロッド6850は、本明細書の他の場所で説明されているように使用することができる。ルアーキャップ8284キャブは、嵌合するルアースレッドによってハンドル8280に取り外し可能に取り付けられる(ルアーキャップ8284によって閉塞されているため、示されていない)。ルアーキャップ8284がルアースレッドにねじ込まれると、ルアースレッドの先細の開口部が縫合糸6852に圧力をかけ、それを所定の位置に保持する。プッシュロッド6850を縫合糸6852から取り外すために、ルアーキャップ8284をルアースレッドから外して、縫合糸6852に沿って前進させることができる。縫合糸6852がルアーキャップ8284内にもはや入っていない後、プッシュロッド6850を縫合糸6852上に前進させ、植込み型装置5500から取り外すことができる。
図83は、例として、縫合糸6852が管腔8134内に部分的に配置されたプッシュロッド6850の実施形態の斜視図を示す。図84は、例として、植込み型装置インターフェース8022と係合するプッシュロッドインターフェース5516の実施形態の斜視図を示す。シース6960および縫合糸6852は、プッシュロッド6850の管腔8134に配置されている。面8136A、8136Bは、プッシュロッドインターフェース5516の対応する面と係合している。
フィードスルー7274とアンテナ7486との間の電気的接続が、植込みプロセスなどによって損なわれないことを確実にするのを補助するために、エポキシ、樹脂、ポリマー、成形材料、または他の誘電体材料を第1の誘電体コア7488の周りに注入することができる。破線9213で示される誘電体材料は、1つまたは複数の穴7702を通して注入することができる。誘電体材料は、コアハウジング7166を第1の誘電体コア7488および翼付きフランジ7270A~7270Bまたは回路ハウジング5510の板7272から突出する他の品目にさらに連結することができる。
図85は、例として、第2の誘電体コア8590の実施形態の図を示している。アンテナ7486をフィードスルー7274に電気的に接続するために、アンテナコア7162は、翼付きフランジ7270A~7270Bが湾曲した壁7490A~7490Bに隣接するように、回路ハウジング5510の近くに配置することができる。アンテナコア7162および回路ハウジング5510は、フィードスルー7274およびアンテナ7486がレーザー溶接されるか、さもなければ互いに電気的に接続されている間、この位置に保持することができる。
このようなレーザー溶接を行うことは困難である。この困難は、部分的には、フィードスルー7274とアンテナ7486の導電性表面を接合する化学的性質に起因し、部分的には、溶接を形成するためにアンテナ7486に十分に近接してフィードスルー7274を保持することの困難に起因し得る。第2の誘電体コア8590は、アンテナ7486をフィードスルー7274に十分に近づけて保持するのを補助することができ、例えば、それらを互いに電気的に接続するプロセスを補助することができる。
図示の第2の誘電体コア8590は、近位端3196および遠位端8598を備えた第2の誘電体コア8590を含む。本明細書で使用される遠位および近位は、互いに対して相対的である。遠位部分は、遠位部分および近位部分が完全に植込まれたときに、近位部分よりも植込み部位に近い部分である。図示の第2の誘電体コア8590は、その側面に2つのくぼみ8594A、8594Bを含む。くぼみ8594A、8594Bは、第2の誘電体コア8590の遠位端8598の近くにあってもよい。第2の誘電体コア8590は、第1の誘電体コア7488と同じ材料を含み得る。
図86は、例として、「86」とラベル付けされた矢印の方向から見た、図85の誘電体コアの実施形態の図を示している。第2の誘電体コア8590の遠位端8598は、各フィードスルー7274のためにその中に穴8599A、8599Bを含むことができる。穴8599A~8599Bは、フィードスルー7274に対応するサイズと形状にすることができる。フィードスルー7274は、フィードスルー7274の端部がそれぞれくぼみ8594A-8594Bに位置するように、穴8599A~8599Bを通して押し込むことができる。穴8599A~8599Bは、フィードスルー7274がその中に挿入されたときに所定の位置に保持されるように構成することができる。いくつかの実施形態では、エポキシ、樹脂、または他の接着剤は、フィードスルー7274が穴8599A~8599Bに挿入される前または後に、穴8599A~8599Bに配置され得る。そのような実施形態では、フィードスルー7274は、接着剤によって所定の位置に保持することができる。図87は、例として、フィードスルー7274がアンテナ7486の近くのくぼみ8594A-8594Bに配置され、レーザー溶接の準備ができた後の植込み型装置の一部の実施形態の側面図を示す。
前述のように、2つの金属のレーザー溶接は難しい場合がある。例えば、導電性(例えば、金、白金、イリジウム、ニチノールなどの金属)アンテナ7486および導電性(例えば、金、白金、イリジウム、ニチノールなどの金属)フィードスルー7274を検討する。フィードスルー7274は、アンテナ7486が溶融して別の導体との導電性接続を形成するのに十分なエネルギーを吸収しない可能性があるように、またはその逆のように、レーザーエネルギーを反射する可能性がある。
図88は、例として、植込み型装置用のアンテナアセンブリの一部の実施形態8800の図を示し、アンテナアセンブリは、フィードスルー7274とアンテナ7486との間の導電性接続を形成するのを補助するためのスリーブ8802を含む。スリーブ8802は、本明細書で論じられる異なるアンテナ例のアセンブリのいずれかで使用または適用することができる。スリーブ8802は、アンテナリードを1つまたは複数の他の導電性リード、トレース、パッド、または他の材料に接続するために使用されるエネルギー源の周波数で高い吸収率を有することができるような、プラチナなどの材料で作ることができる。スリーブ8802は、くぼみ8594Aまたは8594Bに配置することができる。スリーブ8802は、アンテナ7486の一部の周りに配置することができる。フィードスルー7274は、スリーブ8802内に配置することができる。エネルギー吸収、および最終的にはフィードスルー7274とアンテナ7486との間の導電性接続を補助するために、スリーブ8802は、フィードスルー7274とアンテナ7486との間のインターフェースの周りに配置され得る。スリーブ8802は、レーザーまたは他のエネルギー源からエネルギーを吸収し、そのエネルギーをフィードスルー7274およびアンテナ7486に伝達することができる。伝達されたエネルギーは、フィードスルー7274および/またはアンテナ7486を溶融するのを補助することができ、例えば、それらの間に導電性接続を形成することができる。
スリーブ8802は、照準穴8803を含むことができる。照準穴8803を通して、フィードスルー7274およびアンテナ7486をレーザー溶接するエンティティは、フィードスルー7274およびアンテナ7486がスリーブ8802内に適切に配置されているかどうかを視覚的に確認することができる。
図89は、例として、図73の「89」とラベル付けされた矢印によって示される方向からの回路ハウジング5510の実施形態の断面図を示す。図示の回路ハウジング5510は、容器7276、誘電体ライナー8906、回路8908、および乾燥剤8910を含む。容器7276は、回路8908を保護するためなどに、気密封止することができるセラミック、金属、または他の生体適合性材料で作ることができる。
誘電体ライナー8906は、カプトンまたは他の誘電体材料を含むことができる。誘電体ライナー8906は、容器7276の内面を覆うことができる。誘電体ライナー8906は、容器7276が導電性材料を含む実施形態のように、回路8908と容器7276との間に電気的接続が形成されるのを防ぐのを補助することができる。
回路8908は、電極5504に電気刺激信号を提供し、それに入射する信号からエネルギーを収集する、例えば、電気または電子部品、エネルギー貯蔵部品(例えば、コンデンサまたは電池)、アンテナに入射する信号をデータに変換する受信機回路(例えば、復調器、増幅器、発振器など)、送信するデータを波に変換するための送信機回路(例えば、変調器、増幅器、位相ロックループ、発振器など)などに電力を供給するように構成された電気または電子部品を含めることができる。電気または電子部品は、1つまたは複数のトランジスタ、抵抗器、コンデンサ、インダクタ、ダイオード、スイッチ、表面音響波装置、変調器、脱変調器、増幅器、電圧、電流、または電力レギュレータ、電源、論理ゲート(例えば、AND、OR、XOR、ネゲートなど)、マルチプレクサ、メモリ装置、アナログ-デジタルまたはデジタル-アナログコンバータ、デジタルコントローラ(例えば、中央処理ユニット(CPU)、アプリケーション固有の集積回路(ASIC)、など)、整流器などを含み得る。回路8908は、剛性、可撓性、またはそれらの組み合わせであり得るプリント回路基板(PCB)などのルーティングボードを含むことができる。
乾燥剤8910は、回路8908、誘電体ライナー8906、または容器7276上に配置することができる。乾燥剤8910は、植込み型装置5500の植込みの前または後など、回路ハウジング5510のいずれかの水分を吸収することができる。一般的な乾燥剤には、シリカ、活性炭、硫酸カルシウム、塩化カルシウム、ゼオライトなどが含まれる。
図90および図91は、例として、回路ハウジング5510を密閉する実施形態の図を示している。インジウムまたはインジウム合金はんだ9040は、容器7276とフィードスルー板7272との間、および容器7276とフィードスルー板7278との接合部の近くに配置することができる。インジウム合金はんだ9040はリフロー(加熱して液化)することができる。インジウム合金はんだ9040をリフローすると、はんだ9040が移動し、容器7276とフィードスルー板7272および7282との間のギャップを埋めることができる。冷却後、信頼性が高く、気密性のある導電性の接続が、容器7276とフィードスルー板7272および7282との間に形成され得る。
図92および図93は、例として、誘電体材料(破線9213によって示される)をアンテナハウジング5512内に配置する実施形態の斜視図を示す。第1に、針9222の一部を冷却してその温度を下げることができる。温度は、誘電体が針9222を通って流れるのを止めるのに十分であり得る。冷却は、冷却装置9220によって実行することができる。冷却装置の例は、対流、伝導、熱放射、蒸発冷却などの様々な熱伝達メカニズムを使用して動作する。1つまたは複数の実施形態では、ペルチェ冷却器(ペルチェ効果に基づいて動作する装置)を冷却装置9220として使用することができる。
針9222は、冷却装置9220上またはその近くに配置することができ、その結果、針9222の一部は、誘電体材料が自由に流れることができる温度未満に冷却される。次に、誘電体材料を針9222に挿入することができる。誘電体材料は、その温度が自由流動温度を下回るまで流動し、その時点で、誘電体材料は流動を停止し、針9222に溜まり始める。十分な誘電体材料が針9222内に配置された後、針9222を冷却装置9220から取り外すことができる。針9222の周りの周囲温度(冷却装置9220から取り外した後)は、誘電体材料の自由流動温度よりも高くなり得る。したがって、誘電体材料は温度が上昇する可能性がある。針9222は、その端部が、穴7702などを通ってコアハウジング7166にあるように配置することができる。誘電体材料が(周囲加熱によって)加熱されると、自由に流れる温度に達する。次に、誘電体材料は、針9222の端部を通ってコアハウジング7166に流れ込み、翼付きフランジ7270A~7270B、第1の誘電体コア7488、フィードスルー7274、アンテナ7486、およびスリーブ8802に流れる。図91および図92の方法により、誘電体材料の量および位置を制御することができる。
図94~図96は、例として、第1の誘電体コア7488の実施形態のそれぞれの斜視図を示す。第1の誘電体コア7488は、第2の誘電体コア8590の代わりに使用することができ、同じまたは異なる材料を含むことができる。図示の第2の誘電体コア8590は、その中に連続溝9402を含む。溝9402は、アンテナ7486が溝9402に配置されるとき、アンテナが指定された周波数応答を有するように、形状およびサイズが決められている。溝9402に配置される場合(図96~図98を参照)、アンテナ7486は、ほぼ2つの全巻線(例えば、約1.5から約1.75の全巻線の間)を有する。溝9402は、アンテナ7486の周波数応答に影響を与えるアンテナ7486の所望の形状を規定する。溝9402は、アンテナ7486の機械的支持を提供する。溝9402は、アンテナ7486がその中に配置された後、アンテナ7486が移動したり、さもなければ形状を変えたりしないことを確実にするのに役立つ。溝9402は、延長された側壁を備えた略半円形であり得、その結果、円形断面を有するアンテナ7486は、その中に配置され得る。第1の誘電体コア7488の長手方向軸を一般に横切る第1の誘電体コア7488の穴9406は、アンテナ7486および溝9402のために第1の誘電体コア7488の反対側への経路を提供することができる。穴9406を取り囲む第1の誘電体コア7488の材料は、アンテナ7486の位置を保持するのを補助することができる。
アンテナ7486の端部は、溝9402に隣接する凹部9410内に延びることができる(図97および図98を参照)。第1の誘電体コア7488の側面には、図94~図96において、見えない別のくぼみがあることに留意されたい。アンテナ7486のそれぞれの各々の端部は、第1の誘電体コア7488のそれぞれの凹部9410内に延びることができる。凹部9410は、アンテナ7486が回路ハウジング5510のフィードスルー7274に導電的に接続され得る空間を提供することができる。フィードスルー7274は、第1の誘電体コア7488の遠位端の穴9408を通してフィードスルー7274を押すことなどによって、凹部9410に配置することができる。スリーブ8802は、アンテナ7486またはフィードスルー7274が照準穴8803を通して見えるように、アンテナ7486またはフィードスルー7274の端部の周りに配置することができる。次に、フィードスルー7274またはアンテナ7486の端部は、アンテナ7486またはフィードスルー7274の端部とともにスリーブ8802に滑り込ませることができる。次に、スリーブ8802の2つの端部は、両端を溶融することによって(例えば、スリーブに入射するレーザー励起によって)、周囲冷却または他の冷却などによってスリーブ8802を冷却することによって、互いに接続することができる。
図示の第1の誘電体コア7488は、回路ハウジング5510の翼付きフランジ7270A~7270Bの壁に一致するサイズおよび形状の湾曲した壁7490を含む遠位部分を含む。第1の誘電体コア7488が回路ハウジング5510に押し付けられると、湾曲した壁7490は、フィードスルー7274に面する翼付きフランジ7270A~7270Bの壁を押すことができる。第1の誘電体コア7488は、湾曲した壁7490から半径方向外向きに延びるリップ9405をさらに含むことができる。リップ9405は、第1の誘電体コア7488が回路ハウジング5510に位置するとき、上側リップ(翼付きフランジ7270A~7270Bの最も近位の部分)と(物理的に接触して)静置することができる。
図97~図99は、アンテナ7486が溝9402内に配置され、スリーブ8802が凹部9410内のアンテナ7486上に配置された第1の誘電体コア7488を示している。図98および図99は、穴9408および凹部9410内のフィードスルー7274を示している。フィードスルー7274はまた、照準穴8803を調べることによって確認することができるように、スリーブ8802に配置され得る。
植込み型装置5500は、本明細書、例えば、図48~図54に記載されているような階段状シミュレーション回路を含むことができる。回路ハウジング5510は、本明細書に記載されるような回路を含むことができる。植込み型装置5500は、供給源102または別の装置など、それが植込まれる組織の外部の装置に無線で連結することができる。例では、外部装置は、外部トランシーバ、外部給電ユニット(EPU)、ミッドフィールド送信機、送信機などと呼ばれることがある。植込み型装置と送信機のそのような組み合わせは、電気刺激、生物学的モニタリングなどに使用できる植込み型装置システムを形成することができる。
例では、植込み型装置で使用するための1つまたは複数の回路のインピーダンスは、植込み型装置が重複しない周波数帯域を使用して通信できるように調整することができる。植込み型装置アンテナのインピーダンスを調整する方法には、プリント回路パターンの変更を介してアンテナ端子間の静電容量を調整することが含まれ得る。回路パターンまたはトレースを含む回路のインピーダンスは、例えば、回路を駆動するアンテナの接続前などのプリント回路基板アセンブリの測定に基づいて、1つまたは複数のパターンまたはトレースの一部を除去することによって変更することができる。次に、アンテナは、基板が回路ハウジングに密封された後など、植込み型装置に取り付けることができる。次に、植込み型装置は、組織のインピーダンスをシミュレートする材料の中または近くに配置できる。次に、植込み型装置に、ミッドフィールド送信機などからの電気エネルギーを供給することができる。
植込み型アセンブリのアンテナ調整の検証は、フィールド連結測定技術またはその他の機能テストを使用して遂行または実行できる。電界連結測定の場合、励起源を植込み型装置アンテナに近接場連結し、励起源の入射電圧または電流の変化を測定して、植込み型装置のアンテナインピーダンスを判定できる。機能テストは、意図された動作周波数での植込み型装置との信頼できる通信の検証など、様々な方法で実行できる。
植込み型刺激装置を製造する方法は、回路ハウジングの対向する端部の各々に電気的接続を形成することを含むことができ、例えば気密封止された回路ハウジングであり得る。この方法は、フィードスルーアセンブリ(例えば、電気および/または電子部品を配置することができる構造のキャップ)と回路基板のパッドとの間に電気的接続を形成することを含むことができる。回路基板のパッドの表面は、フィードスルーアセンブリのフィードスルーの端部の表面に対して略垂直であり得る。
この方法は、例えば、植込み型刺激装置または液体にさらされる可能性がある、または電気および/または電子部品に悪影響を及ぼす可能性がある他の環境要素にさらされる可能性がある他の装置の一部となり得るなど、気密回路ハウジングを形成するのに有用であり得る。基板の接続には、フィードスルーに略垂直な表面が含まれる場合があるため、ワイヤボンディングなどの手法を使用することは困難である。ワイヤボンドは通常、回路ハウジングを封止する際に圧縮される。電子基板の間を接続するために圧を加えることができる細いワイヤを使用することは、RFフィードスルーの寄生容量および/またはインダクタンスを増大させる可能性があり、RF受信構造を離調させる可能性がある。さらに、製造産出量が、そのような圧縮および/または細いワイヤによって制限される可能性がある。加圧は、ワイヤとパッドとの間の結合を破壊することがあり、またはワイヤ自体を破壊する。ワイヤの太さは、ワイヤが破損する可能性に影響を与える可能性がある。細いワイヤは、太いワイヤよりも圧縮すると破損する可能性が高くなる。
植込み型神経刺激装置の変位量をさらに減らすことが継続的に望まれている。さらなる小型化は、より容易に侵襲性のさらに低い植込み処置を可能にし、植込み型装置の表面積を減少させ、それによりひいては植込み後の感染の可能性を低下させ、長期的な通院の設定において患者に快適さを提供し得る。
植込み型刺激装置の構成は、パルス発生器を植込んだ従来のリードとは異なり得る。植込み型刺激装置は、電源(例えば、ミッドフィールド電源)から電力を供給できるような、リードのない設計を含むことができる。送信機、トランシーバ、植込み型装置、回路、および他の詳細を含むミッドフィールド給電技術は、本明細書において論じられている。例では、植込み型刺激装置は、図6の例からの第1の植込み型装置600を含むことができる。
動作中、第1の植込み型装置600は、組織内に配置することができる。1つまたは複数のコンデンサまたはインダクタをアンテナ108の電気経路にデジタルで切り替えることによって、またはデジタル制御可能なコンデンサまたはその他のインピーダンス変調装置のデジタル値を変更することによってなど、インプラント環境においてアンテナ108に影響を与えるインピーダンスを調整する際に幾ばくかの可撓性があり得る。この可撓性により、アンテナのインピーダンスを最適化して、動作周波数範囲にわたるインプラント環境の変動に対応できるため、植込み型装置アンテナへのエネルギー伝達を最適化したり、植込み型装置と外部電力ユニット(EPU)または供給源102などの外部装置との間の通信の完全性を最適化したりできる。
しかし、切り替え可能な構成要素を使用したインピーダンスの調整には制限がある場合がある。回路ハウジング606は、限られた物理的サイズを有することができ、コンデンサ、インダクタなどを含む受動部品は、比較的大きくすることができ、したがって、回路ハウジング606内の貴重なリアルエステートまたは体積を占めることができる。したがって、アンテナ108が所望のまたは適切な周波数範囲で動作することを提供するのを補助するために、アンテナ108は、植込み前に調整または調節することができる。そのような調整は、例えば、調整活動、測定、または調節が植込み前に実行され得、装置600が植込まれるときにアンテナの調整が変化またはシフトする可能性があるため、新しい一連の課題を提示する可能性がある。植込みによる調整の変化またはシフトの特性は、組織のタイプ、植込み深度、他の組織タイプまたは体の構造への近接性、および他の変数などの植込み環境の変動のために、一般に正確には知られていない。例では、アンテナインピーダンスの予測不可能性は、少なくとも部分的には、装置600が組織に植込まれたときの装置600内またはその周辺の組織の誘電率の変動に起因する可能性がある。アンテナ調整プロセスの様々な例が、例えば、図106~図116を参照して本明細書に記載されている。
様々な回路および回路ハウジング606の組み立ては、様々な方法で実行することができる。そのようなアセンブリのいくつかの例は、本明細書の図7および図100~105に記載されているが、他の技術を使用することができる。
再び図7を参照すると、例えば、回路ハウジング606の例の断面図は、様々な構成要素(例えば、構成要素ブロック712A、712B、712C、712D、712E、712F、および712Gとして示される)を含むことができ、回路基板714に電気的に接続することができるようにする。構成要素712A~Gおよび回路基板714は、エンクロージャ722の内部に提供することができる。上記のように、密閉されていることに加えて、またはその代わりに、エンクロージャ722は、その中の水分の侵入を防ぐために埋め戻され得る。埋め戻し材料は、エポキシ、パリレン、テコタン、または別の材料などの非導電性の防水材料を含むことができる。
図100は、例として、回路基板714の実施形態の側面図を示している。図101Aおよび図101Bは、例として、回路基板714の実施形態の上面図を示す。図示の回路基板714は、組み合わせまたは積み重ねて、可撓性である1つまたは複数の部分を備えた回路基板を提供することができる材料を含む。図100において、例えば、破線ボックス301および303内に示される回路基板714の部分は、変形可能または可撓性部分を含むことができる。回路基板714の他の部分は、同様に、可撓性または変形可能または剛性になるように構成することができる。
例では、回路基板714は、第1の誘電体材料302Aまたは302B、第1の導電性材料304A、304B、304C、304D、304E、または304F、第2の導電性材料306A、306B、306C、306D、306E、306F、306G、または306H、または第2の誘電体材料312Aおよび312Bを含むことができる。第1の誘電体材料302A~Bは、ポリイミド、ナイロン、ポリエーテルエーテルケトン(PEEK)、それらの組み合わせ、または他の可撓性誘電体材料を含むことができる。1つまたは複数の実施形態では、第1の導電性材料304A~Fは、圧延および/または焼きなましすることができる。第1の導電材料304A~Fは、銅、銀、ニッケル、金、チタン、白金、アルミニウム、鋼、それらの組み合わせ、または他の導電材料を含むことができる。第2の導電材料306A~Hは、はんだ付け可能な材料(例えば、溶融されたはんだとの結合を形成できる材料)を含むことができ、例えば第1の導電材料306A~Hに関して論じた材料を含むことができる。第2の導電材料306A~Hは、銀、金、ニッケル、および/または錫を含むことができるなど、比較的低い酸化速度を有する材料を含むめっきを含むことができる。第2の誘電体材料312A~Bは、はんだマスクおよび/または補強材を含むことができる。第2の誘電体材料312A~Cは、ポリマー、エポキシ、または他の誘電体はんだマスクおよび/または補強材を含むことができる。
第1の誘電体材料302Aは、回路基板714を形成するために1つまたは複数の他の材料を積み重ねることができるベース層を形成することができる。いくつかの材料は、第1の誘電体材料302Aの第1の表面309に積み重ねることができ、いくつかの材料は、第1の誘電体材料302Aの第2の表面311に積み重ねることができ、第1の表面309は、第2の表面311の反対側にあり得る。
第1の導電性材料304Aは、第1の誘電体材料302Aの第1の表面309と接続することができる。例では、別の材料、構成要素、または要素と接続する材料、構成要素、または要素は、連結することができるか、そうでなければ機械的に接触して提供することができる。例では、第1の導電性材料304Aは、第2の導電性材料306A、306C、および306D、ならびに第1の誘電体材料302Bと接続することができる。第1の導電性材料304Aは、第1の誘電体材料302Aと第1の誘電体材料302Bと第2の導電性材料306A、306C、および306Dとの間に配置することができる。第1の導電性材料304Aは、可撓性部分(例えば、図100において破線のボックス303および301によって示される領域)内に、それを通って延びることができる。
第2の導電性材料306A、306C、306D、306I、306J、または306Kは、第1の導電性材料304Aと接続することができる。第2の導電性材料306A、306C、306D、306I、306J、または306Kは、それぞれの開口部420A、420B、420C、420D、420E、および420Fの周りに配置することができる。開口部420A~Fは、第2の導電性材料306A、306C、306D、306I、306J、または306Kの表面から、それぞれ、第2の導電性材料306H、306F、または3056Eのそれぞれの反対側の表面まで延びることができる(これらのいくつかは、表示されている図では不明瞭になっている)。開口部420A~Fは、第2の導電性材料306A、306C、306D、306I、306J、または306K、第1の導電性材料304A、304C、304D、または304F、および/または第1の誘電体材料302Aを通って延びることができる。
例では、第1の誘電材料302Bは、第1の導電材料304Aおよび第1の導電材料304Bと接続することができる。第1の誘電材料302Bは、第1の導電材料304Aに設けることができる。第1の誘電材料302Bは、304Aの第1の導電材料と304Bの第1の導電材料との間に設けることができる。第1の誘電体材料302Bは、第2の導電性材料306Aと第2の導電性材料306Cとの間、例えばそれぞれ第2の導電性材料306Aと第2の導電性材料306Cとの間にある可撓性部分に対応するオープンスペース(例えば、図100において破線ボックス303および301によって示される領域)に、配置することができる。
第1の導電材料304Bは、第1の誘電材料302Bおよび第2の導電材料306Bと接続することができる。第1の導電性材料304Bは、第1の誘電体材料302B上にあることができる。第1の導電材料304Bは、第1の誘電材料302Bおよび第2の導電材料306Bとの間に設けることができる。第1の導電性材料304Bは、第2の導電性材料306Aと第2の導電性材料306Cとの間、例えばそれぞれ第2の導電性材料306Aと第2の導電性材料306Cとの間などにある可撓性部分に対応するオープンスペース(例えば、図100において破線ボックス303および301によって示される領域)に、配置することができる。
第2の導電性材料306Bは、第1の導電性材料304Bおよび第2の誘電体材料312Aと接続することができる。第2の導電性材料306Bは、第1の導電性材料304B上にあり得る。第2の導電性材料306Bは、第1の導電性材料304Bと第2の誘電体材料312Aとの間に配置することができる。第2の導電性材料306Bは、第2の導電性材料306Aと第2の導電性材料306Cとの間、例えばそれぞれ第2の導電性材料306Aと第2の導電性材料306Cとの間にある可撓性部分に対応するオープンスペース(例えば、図100において破線ボックス303および301によって示される領域)に、配置することができる。
第2の誘電体材料312Aは、第2の導電性材料306Bと接続することができる。第2の誘電体材料312Aは、第2の導電性材料306B上にある。第2の誘電体材料312Aは、第2の導電性材料306Bとは反対側を向いた表面313でさらすことができる。第2の誘電体材料312Aは、第2の導電性材料306Aと第2の導電性材料306Cとの間、例えばそれぞれ第2の導電性材料306Aと第2の導電性材料306Cとの間にある可撓性部分に対応するオープンスペース(例えば、図100において破線ボックス303および301によって示される領域)に、配置することができる。
第1の導電性材料304Eは、第1の誘電体材料302Aの第2の表面311と接続することができる。第1の導電性材料304Eは、第2の導電性材料306Gおよび第1の誘電体材料302Aと接続することができる。第1の導電性材料304Eは、第1の誘電体材料302B上にあり得る。第1の導電材料304Eは、第1の誘電材料302Bと第2の導電材料306Gとの間に設けることができる。第1の導電性材料304Eは、第1の導電性材料304Dと304Fとの間に位置し、例えば、それぞれ第1の導電性材料304Dと304Fとの間の可撓性部分(例えば、図100において破線ボックス303および301によって示される領域)に対応するオープンスペースに位置する。
第2の導電性材料306Gは、第1の導電性材料304Eおよび第2の誘電体材料312Bと接続することができる。第2の導電性材料306Gは、第1の導電性材料304E上にあり得る。第2の導電性材料306Gは、第1の導電性材料304Eと第2の誘電体材料312Bとの間に配置する。第2の導電性材料306Gは、第1の導電性材料304Dと第1の導電性材料304Fとの間、例えばそれぞれ第1の導電性材料304Dと第1の導電性材料304Fとの間などにある可撓性部分に対応するオープンスペース(例えば、図100において破線ボックス303および301によって示される領域)に、配置することができる。
第2の誘電体材料312Bは、第2の導電性材料306Gと接続することができる。第2の誘電体材料312Bは、第2の導電性材料306G上にあることができる。第2の誘電体材料312Bは、第2の導電性材料306Gとは反対側を向いた表面315でさらすことができる。第2の誘電体材料312Bは、第1の導電性材料304Dと第1の導電性材料304Fとの間、例えばそれぞれ第1の導電性材料304Dと第1の導電性材料304Fとの間にある可撓性部分に対応するオープンスペース(例えば、図100において破線ボックス303および301によって示される領域)に、配置することができる。
可撓性部分は、異なるそれぞれの長さ307および305を有することができる。長さ307は、長さ305よりも短くても長くてもよい。第2の導電性材料306A、306H、または306Kは、アンテナ108またはアンテナ108に接続することができる。回路基板714の第1の端部317の近くの可撓性部分の長さは、アンテナ108またはアンテナ108に影響を及ぼし得る寄生インダクタンスおよび/または寄生容量に影響を及ぼし得る。したがって、長さ307は、そのような寄生容量を低減するように構成または選択することができる。例では、長さ305は、長さ723より長くすることができる(図7を参照)。長さ723は、第2の誘電体材料312A、312Bの端部625からエンクロージャ722の端部までを測定することができる。長さ305は、開口部420A~Bがそれぞれのフィードスルー718A(図7の図で隠されている他のフィードスルー)上にあり、キャップ716Aがエンクロージャ722上、または少なくとも部分的にその中に配置され得るときに、開口部420C~Fがエンクロージャ722の外側に提供され得るように構成され得る。
破線ボックス301によって示される端部317から可撓性部分の端部までの回路基板の長さ(矢印333によって示される)は、エンクロージャ722の長さ(図2の矢印227によって示される)より長くなり得、例えば、開口部420C~Fまたはパッド1102が存在する回路基板の部分を可能にする。第1の可撓性部分と第2の可撓性部分との間の部分(破線ボックス335によって示される)は、可撓性または剛性であり得る。回路基板714の一部の剛性は、はんだ、電気および/または電子部品、第1および第2の導電性材料304および306の1つまたは複数、および/または第1および第2の誘電体材料302および312の1つまたは複数によって提供することができる。
図101Aおよび101Bは、全体的に、回路基板714の異なる例を含むことができるような、第1の回路基板714Aおよび第2の回路基板714Bを含むそれぞれの回路基板の例を示す。第1の回路基板714Aは、第2の回路基板714Bと同様であり得、第2の回路基板714Bは、ビアの代わりにパッド1102を含む。例では、第2の回路基板714Bは、ピン1110上にリフローすることができる(例えば、以下で説明する図106~図108を参照のこと)。例では、第1の回路基板714Aは、フィードスルー718A~C(ピンと呼ばれることもある)の端部に挿入され、フィードスルー718A~Cにはんだ付けされ得る。第1の回路基板714Aはビアを含み、パッドを含まず、第2の回路基板714Bはパッドを含み、ビアを含まないが、回路基板は、パッドおよびビアの組み合わせを含むことができ、キャップ716A~Bは、パッドおよび/またはビアを収容するよう構成できる。例えば、第1のキャップ716Aは1つまたは複数のフィードスルー718Aを含むことができるが、キャップ716Bはパッドを含むことができ、あるいは1つのキャップはフィードスルー718Aおよびパッド1102を含むことができる。
図7および図102~105は、概して例として、回路基板714を回路ハウジング606に電気的に接続して囲む方法の実施形態の異なる動作を示す図を示している。図102は、回路基板714にはんだ付けされた、またはそうでなければ電気的に接続された電気および/または電子部品712A~Gを含むことができる装置1020の例を示す。
図103は、第2の導電性材料306A、306K、および/または306Hが、フィードスルー316Aを含むことができるような、キャップ716Aのそれぞれのフィードスルーにはんだ付けされるか、さもなければ電気的に接続された後、装置1020を含むことができる装置1022の実施形態を示す。図104は、回路基板714および電気および/または電子部品712A~Gがエンクロージャ722内に配置された後に装置1022を含むことができる装置1024の実施形態を示す。キャップ716Aは、エンクロージャ722の開口部と位置合わせすることができる。キャップ716Aは、少なくとも部分的にエンクロージャ722内に配置することができる。図104に示されるような例では、回路基板714は、エンクロージャ722の端部731を超えて延びることができる。この延長部は、回路基板714の、例えば、キャップ716Bへの接続またははんだ付けを容易にする(図105を参照)。
図105は、第2の導電性材料306C~Dおよび/または306I-Jが、フィードスルー718B~Cを含むことができるような、キャップ716Bのそれぞれのフィードスルーにはんだ付けされるか、そうでなければ電気的に接続された後の装置1024を含む装置1026の実施形態を示す。再び図7を参照すると、回路ハウジング606の図示の例は、キャップ716Bがエンクロージャ722の端部731に配置された後などの装置1026を示している。キャップ716Aは、端部731の反対側のエンクロージャ722の端部に配置することができる。例では、キャップ716Bは、少なくとも部分的にエンクロージャ722内に配置することができる。図7の例では、回路ハウジング606は、ろう付け、溶接、または1つまたは複数の他の取り付けプロセスまたは技術によって取り付けることができるような、エンクロージャ722に取り付けられたキャップ716A~Bを備えた装置を含む。溶接/ろう付けマーク720A、720B、720C、および720Dは、キャップ716A~Bがエンクロージャ722に取り付けられていることを示している。このサンプルメソッドのバリエーションは、同様にアセンブリに使用できる。例えば、回路基板714が第2のキャップ716Bにはんだ付けされる前に、キャップ716Aを筐体722に溶接、ろう付け、接着、または他の方法で取り付けることができる。
図106は、例として、第3の回路基板714Cの例の図を示している。第3の回路基板714Cは、第1および第2の回路基板714Aおよび714Bと同様であり得る。第3の回路基板714Cは、トレース304から延びるように構成された1つまたは複数の導電性タブ1050を含むことができる。トレース304Bは、アンテナ端子パッド1102を介してアンテナ108またはアンテナ108に電気的に接続することができる。1つまたは複数の導電性タブ1050は、トリミングされた場合、トレース304Bを含むまたは使用する回路の電気的特性を変更することができる導電性部分を提供する。例えば、そのような回路のインピーダンスは、導電性タブ1050の体積または表面積を対応して変更することによって変更することができる。例では、トレース304Bを含む回路の静電容量は、導電性タブ1050の体積または表面積を変更することによって修正または変更することができる。例では、導電性タブ1050からの材料の除去は、アンテナ端子パッド1102で見られるかまたは測定される静電容量を減少させる。
例では、1つまたは複数の導電性タブ1050は、トレース304Bから延びるバストレース1052から延びることができる。1つまたは複数の導電性タブ1050は、トレース304Bと同じまたは異なる導電性材料を含むことができる。例では、バストレース1052および導電性タブ1050は電気的に開いており、電源からアースまでの完全な回路の一部を形成していない。したがって、電荷は、1つまたは複数の導電性タブ1050上に蓄積し、第3の回路基板714Cのインピーダンスに影響を与える可能性がある。図106は3つの導電性タブを示し、各タブはパッド1102の1つに電気的に接続されているが、第3の回路基板714Cは追加のまたはより少ないタブを含むことができる。図106は、バストレース1052を1つまたは複数の導電性タブ1050のすべてを含むものとして示しているが、電気的に並列に連結できる導電性タブを提供するためなど、それぞれの導電性タブごとに別個のトレースを使用することができる。
1つまたは複数の導電性タブ1050は、単一の個別の導電性タブとして提供することができ、第3の回路基板714Cを使用して実装される回路のインピーダンスは、タブの端部の材料を選択的に除去することによって調整することができる。第3の回路基板714C上または第3の回路基板714Cに連結された1つまたは複数の構成要素のレイアウトは、構成要素に連結された構成要素またはトレースが、導電性タブを含まない1つまたは複数の層に存在し、したがってタブ材料の除去が、他の構成要素やトレースを損傷するリスクを回避または制限しながら実行できるよう、提供され得る。
図107は、例として、アンテナ108のインピーダンスを測定するように構成することができるシステム1070の実施形態の図を示す。図示のシステム1100は、LCRメータ1154、アンテナアセンブリ2162、およびアンテナアセンブリ2162の誘電体コア(例えば、第1の誘電体コア7488)の周りに部分的に巻き付けることができるアンテナ108を含む。導電性プローブ1158は、LRCメータ1154とアンテナ108の端子との間に低インピーダンスの電気経路を提供することができる。測定精度に対するプローブ1158の影響は、植込み解除手順によって最小限に抑えることができ、それにより、短絡および開回路測定を実行して、測定に対するプローブ1158の影響を取り除くことができる。LCRメータ1154は、インピーダンスと呼ばれることもある、インダクタンス(L)、抵抗(R)、静電容量(C)、またはそれらの組み合わせを測定することができる。実験、推測およびチェック、電気理論、それらの組み合わせなどを通じて、アンテナ108の目標インピーダンスを判定または識別することができる。
LCRメータ1154を使用して測定されるインピーダンス1156は、実数、虚数、正味インピーダンス、それらの組み合わせなどの形態であり得る。虚数インピーダンスには、実数インピーダンスの位相角を含めることができる。正味インピーダンスは、虚数インピーダンスによって調整された後の実数インピーダンスの尺度になり得る。目標インピーダンスには、指定された実数、虚数、または正味のインピーダンス、あるいはそれらの組み合わせを含めることができる。測定されたインピーダンス1156は、目標インピーダンスと比較することができる。測定されたインピーダンス1156が標的に十分に近くない場合(例えば、少なくとも指定された閾値量だけ標的インピーダンスよりも大きいかまたは小さい場合)、アンテナ108の形状は、操作者により手動などによって、または機械的なトリミングまたは調整機を使用して自動的に調整することができる。
図108は、例として、パッド1102の観点から測定されるような、第3の回路基板714C上または第3の回路基板714Cに連結された1つまたは複数の回路のインピーダンスを測定するように構成できるシステム1080の実施形態の図を示す。システム1080は、LCRメータ1154、導電性プローブ1158、および第3の回路基板714Cを含むことができる。導電性プローブ1158は、LCRメータ1154と回路基板714Cのパッド1102との間に低インピーダンス電気経路を提供することができる。LCRメータ1154は、インピーダンスと呼ばれることもある、インダクタンス(L)、抵抗(R)、静電容量(C)、またはそれらの組み合わせを測定することができる。実験、推測およびチェック、電気理論、それらの組み合わせなどを通じて、目標インピーダンスを判定または特定することができる。LCRメータ1154は、プローブ1158を使用するなどして、パッド1102に電気的に接続することができ、LCRメータ1154は、パッド1102の観点からインピーダンス1162の測定値を提供することができる。測定されたインピーダンス1162は、第3の回路基板714Cの目標インピーダンスと比較することができる。測定されたインピーダンス1162が十分に大きい場合(例えば、測定されたインピーダンス1162が、少なくとも指定された閾値量など、指定された目標インピーダンスよりも大きい場合)、1つまたは複数の導電性タブ1050をトリミングすることができ、電気的にバストレース1052から1つまたは複数のタブを分離する。
導電性タブ1050の1つまたは複数を電気的に絶縁することは、導電性タブ1050のそれぞれのものをバストレース1052と電気的に結合することができる導電性材料1160を除去することを含むことができる。例では、導電性材料1160は、バストレース1052よりも狭くすることができる。導電性タブ1050を電気的に絶縁することは、導電性タブ1050の直接隣接するもの間に電気的に配置することができる、または導電性タブ1050とトレース304Bとの間に電気的に配置することができるようなバストレース1052の一部を除去することを含み得る。バストレース1052または導電性材料1160の少なくとも一部の除去を含むなどの導電性材料の除去は、ミリング、エッチング、切断、サンディングなどを含むことができる。
導電性タブ1050のうちの1つまたは複数を除去することにより、パッド1102から測定されるように、回路基板714Cの静電容量を低減することができる。導電性タブ1050は、インピーダンス1162、またはそこから導出されるインピーダンスが目標インピーダンス値に十分に近づくまで取り外すことができる。導電性タブ1050は、導電性タブを除去することによりインピーダンスを(約)所定の量だけ調整するように、サイズ設定、成形、または材料を含むことができる。概してタブが小さな領域または体積を占める場合、バストレース1052からのタブの除去またはデカップリングは、インピーダンスの比較的小さな変化に対応する。例では、実験から、導電性タブ1050のうちの1つを除去することは、パッド1102で測定される約10ピコファラッドの変化に対応するインピーダンスの低下に対応することが知られ得る。したがって、第3の回路基板714Cのインピーダンスが目標インピーダンスよりも約30ピコファラッド大きいと判定された場合、3つの導電性タブ1050をバストレース1052から取り外すか、切り離すことができる。
図109は、例として、1つまたは複数の導電性タブ1050のうちの2つが取り外された後の第3の回路基板714Cの実施形態の図を示している。タブを取り外し、第3の回路基板714Cのインピーダンスが目標インピーダンスに十分に近いと測定された後、第3の回路基板714Cは、本明細書で論じられる組み立て技術の1つを使用するなどして、植込み型装置110に組み立てることができる。
例では、植込み型装置110は、回路ハウジング606内に第3の回路基板714Cを含み、装置の本体部分に電気的に接続され得、アンテナ108およびアンテナハウジングは、図1または図6の例で図示しているように、回路ハウジング606に接続され得る。アンテナ108は、例えば、第3の回路基板714Cのインピーダンスが目標インピーダンス値にあるか、それに十分に近いと判定された後、回路ハウジング606に電気的に接続することができる。すなわち、アンテナ108は、例えば、第3の回路基板714Cが回路ハウジング606に配置された後、1つまたは複数の導電性タブ1050にアクセスできない可能性があるため、回路基板インピーダンスが検証された後に接続することができる。
図110は、例として、導電性材料1402のパッチを含み、導電性タブ1050を省略した、第3の回路基板714Cの別の実施形態の図を示している。導電性材料1402のフットプリントの下または上にある回路基板714Cの任意の層は、導電性材料または電気的または電子的構成要素を欠くことができる。例では、導電性材料1402は、第3の回路基板714Cの一部をトリミングまたは切断することなどによって除去することができる。
図111は、例として、導電性材料1402の一部が除去された後の第3の回路基板714Cの実施形態の図を示している。例では、導電性材料1402の除去は、導電性材料1402のフットプリントの上または下にある層上に提供され得るような、第3の回路基板714Cの他の任意の1つまたは複数の材料の除去を含む。除去される第3の回路基板714Cの部分は、矢印1504によって示されている。
図112は、例として、植込み型装置600の場連結共振テストのためのシステム1120の実施形態の図を示す。植込み型装置600の正しいインピーダンス、したがって動作周波数は、連結共振技術を使用してテストすることができる。そのような技術の実施形態は、RF供給源と同じ周波数に調整された共振回路にエネルギー供給するように構成された調整可能なRF供給源を含むまたは使用することができる測定装置1122を含むことができる。測定装置1122の共振回路は、植込み型装置600の近くに配置することができる。例えば、測定装置1122は、植込み型装置600の電磁場が測定装置1122に入射するように、植込み型装置600の十分に近くに設けることができる。測定装置1122の共振回路は、植込み型装置600のアンテナ108に電磁的に連結することができる。測定装置1122と植込み型装置600との間の分離は、例では、測定装置1122で正確な測定値を取得するために必要な距離よりも近くなく、したがって、測定装置1122および植込み型装置600間の連結レベル(例えば、1%以下)を保証することができる。そのような分離は、測定装置1122が植込み型装置600のインピーダンスに著しく影響を与えることを防ぐことができる。このように配置されると、測定装置の共振回路への電流またはその両端の電圧の変化を使用して、植込み型装置600のインピーダンス、したがって共振周波数を検出することができる。測定装置の共振回路への電流の増加、または測定装置の両端の電圧の減少は、植込み型装置600が測定装置1122と同じ周波数に調整されていることを示し得る。測定装置1122が調整される周波数は、内部測定回路(例えば、周波数カウンタ)、または場連結測定装置1122に接続された外部周波数測定装置を介して知ることができる。したがって、システム1120は、測定装置1122と植込み型装置600との間に物理的な電気的接続がない場合など、インピーダンス、したがって植込み型装置600の動作周波数を測定するために使用することができる。例えば、植込み型装置600が完全に組み立てられて密封されている場合、物理的な電気的接続が不可能な場合がある。
図113および図114は、例として、植込み型装置110が植込まれた後など、アンテナ108の周波数応答を試験するためのそれぞれのシステム1130および1140の図を示している。植込み型装置110が植込まれる組織の誘電率を推定することができる。前に説明したように、組織の誘電率は変化する可能性がある。ただし、一部の組織は、誘電率が多かれ少なかれあることが知られている。例えば、筋肉は脂肪組織(約5.6)よりも大きな誘電率(約55)を有する。別の例では、血液は、結合組織(例えば、腱(約45.8)、軟骨(約42.7)など)の誘電率よりも大きい誘電率(約61.4)を有する。
組織の推定誘電率を使用して、同じまたは類似の誘電率(例えば、1%未満、1%、2%、3%、4%、5%、10%、15%、20%、25%など、またはそれらの間の何らかのパーセンテージなどの推定誘電率の指定されたパーセンテージ内)を有する材料1304を設計することができる。材料1304は、とりわけ、セラミック植込み炭化水素材料またはセラミック含浸樹脂を含むことができる。
図113および図114の例では、外部電力ユニット1302は、電源102などのミッドフィールド電力装置または送信機を含むことができる。外部電力ユニット1302の回路は、ミッドフィールド電力供給の実施形態について一般的に説明されているが、2つの部分からなる近位アセンブリパッケージング戦略(例えば、回路ハウジング606およびアンテナハウジング610を含む装置)はまた、誘導近接場、ファーフィールド、容量連結、および/または超音波駆動の植込み型装置にも同様に適用可能であり得る。
例では、外部電力ユニット1302は、アンテナ108に入射する電磁波を提供することができる。アンテナ108は、電磁波を電気信号に変換して、植込み型装置110に電力を供給することができる。回路基板714は、追加的または代替的に、植込み型装置110の回路に電力を提供するために充電することができるエネルギー貯蔵構成要素を含むことができる。外部電力ユニット1302からの送信を効率的に受信するなど、植込み型装置110の回路が適切なインピーダンスに調整されることを確実にするために、植込み型装置110は、外部電力ユニットから1302指定された距離(例えば、植込み距離)に配置することができる。材料1304は、外部電力ユニット1302と植込み型装置110との間に配置することができる。材料1304は、外部電力ユニット1302からの送信が、植込み型装置110に入射するか、植込まれる装置110によって受信される前に、材料1304を通って移動するように配置することができる。
図113は、材料1304の第1の側1308に配置された植込み型装置110と、第1の側1308に対向する第2の側1310にある外部電力ユニット1302とを示している。図114は、例として、植込み型装置110が材料1304の空洞1412内に配置されている実施形態の図を示している。
植込み型装置110が外部電力ユニット1302からの送信を受信することを検証するために、検出回路1306を提供して、植込み型装置110からの送信を検出することができる。送信の振幅、外部電力ユニット1302からの送信と検出回路1306での送信の受信との間の時間などを使用して、回路基板714などの回路の調整(例えば、トレース、電気または電子部品、導電性タブなど)が正確または十分であるか判定する。
いくつかの実施形態では、回路基板714の回路は、外部電力ユニット1302から植込み型装置110への通信に応答するなど、デジタルでプログラム可能である。いくつかの実施形態では、外部電力ユニット1302は、検出回路1306に電気的に連結することができ、または検出回路1306は、外部電力ユニット1302の一部であることができる。検出回路1306は、外部電力ユニット1302に電磁波を送信させて、植込み型装置110にその静電容量、抵抗、またはインダクタンスを調整させることができ、それは例えば、植込み型装置110の回路のインピーダンス特性を変更するために使用される電気または電子部品に、デジタルまたはアナログのコマンドを発行することによる。
例では、植込み型装置が動作する周波数を調整することは、2つの所望の周波数スペクトルまたは帯域から選択することを含む。例えば、米国での植込み型装置操作専用の周波数スペクトルは915MHz(902MHz~928MHzという周波数の範囲)を中心とし、ヨーロッパでの植込み型装置操作専用の周波数スペクトルは868~870MHzである。植込み型装置110は、回路基板714を目標インピーダンス程度に調整することによってなど、2つのスペクトル間の周波数で電磁波を使用して動作するときに最も効率的になるように調整することができる(例えば、米国およびEUの医療機器の動作の間であれば約888MHz)。したがって、植込み型装置110は、展開後、回路基板714の回路のインピーダンスを調整またはプログラミングすることなどによって、2つのスペクトルのうちの選択された1つで最も効率的に動作するように調整することができる。
例では、外部電力ユニット1302は、外部装置、外部電力ユニット1302の測位システム(例えば、全地球測位システム、ガリレオ測位システム、または別の位置判定技術など)から場所を要求することなどによって、使用している場所を判定することができる。外部電力ユニット1302は、効率目標に到達するまでそのインピーダンスを変更するために、植込み型装置110に通信を発行することができる。
例では、植込み型装置110は、外部電力ユニット1302からの送信の効率が受信されることを示すように構成することができる回路(例えば、スピーカー、発光装置、モーターなど)を含むことができる。例えば、植込み型装置110は、回路基板714の回路のインピーダンスが十分に整合していることを示す音(例えば、スピーカーによる)、光(例えば、発光ダイオードなどによる)、または振動(例えば、モーターによる)を生成することができる。放射(例えば、光、音、物理的振動など)は、送信受信の相対的な効率を示すように調整することができる。例えば、光が明るくなっても、音が大きくなってもり、振動が強くなり、効率が向上してもよい。
再び図99を参照すると、アンテナアセンブリは、第1の誘電体コア7488の周りに配置または提供されるアンテナ108を含むことができる。アンテナアセンブリは、図107の例からのアンテナアセンブリ2162と同様であり得る。例では、第1の誘電体コア7488は、実質的に非導電性の誘電体材料を含むことができる。誘電体材料には、ポリエーテルエーテルケトン(PEEK)、液晶ポリマー(LCP)(PEEKのようなプラスチックは水分を保持し、誘電率をシフトできるが、LCPは水分飽和により誘電シフトが少ない)、エポキシモールドなどが含まれる。第1の誘電体コア7488は、その中に連続溝9402を含むことができる(例えば、図96の例を参照されたい)。溝9402は、アンテナ108が溝9402内に配置されるとき、アンテナ108が指定された周波数応答(例えば、2つの周波数スペクトル間、または指定された周波数のスペクトルの中心周波数、またはその近くなど、指定された周波数の中心となる周波数応答)を有するように成形およびサイズ決定することができる。溝9402内に配置される場合、アンテナ108は、ほぼ2つの全巻線(例えば、約1.5から約1.75の全巻線の間)を有することができる。他の数の巻線も同様に使用できる。
溝9402は、アンテナ108の所望のまたは目標の形状を画定することができ、その形状は、アンテナ108の周波数の応答に影響を与え得る。溝9402は、アンテナ108の機械的支持を提供することができる。溝9402は、アンテナ108がその中に配置された後、アンテナ108が移動しないか、さもなければ意図せずに形状を変化させないように、アンテナ108を保持または補強するように構成することができる。溝9402は、延長された側壁を備えた略半円形であり得、その結果、円形断面を有するアンテナ108は、その中に配置され得る。他の形状も同様に使用できる。
例では、アンテナ108の端部または端子部分は、溝9402と隣接することができるような凹部9408内に延びることができる。アンテナ108のそれぞれの各々の端部または端子は、第1の誘電体コア7488のそれぞれの凹部9408内に延びることができる。凹部9408は、アンテナ108が回路ハウジング606のフィードスルー7274に導電的に接続され得る空間を提供することができる。フィードスルー7274は、第1の誘電体コア7488の遠位端の穴を通してフィードスルー7274を押すことなどによって、凹部9408内に配置することができる。
導電性スリーブ8802は、アンテナ108またはフィードスルー7274がサイトホール(図99には示されていない)を通して見えるように、アンテナ108またはフィードスルー7274の一部の周りに提供され得る。次に、フィードスルー7274またはアンテナ108の端部をスリーブ8802に滑り込ませることができる。次に、スリーブ8802の2つの端部は、両端を溶融することによって(例えば、スリーブに入射するレーザー励起によって)、周囲冷却または他の冷却を使用するなどしてスリーブ3302を冷却することによって、互いに接続することができる。
第1の誘電体コア7488は、例えば、回路ハウジング606の翼付きフランジの壁に適合するようなサイズおよび形状の湾曲した壁7490を含む遠位部分を含むことができる。例では、第1の誘電体コア7488が回路ハウジング606に押し付けられると、湾曲した壁7490は、フィードスルー7274に面する翼付きフランジの壁を押すことができる。第1の誘電体コア7488は、湾曲した壁7490から半径方向外向きに延びるリップ9405をさらに含むことができる。例では、リップ9405は、第1の誘電体コア7488が回路ハウジング上に配置されている場合、翼付きフランジ7270A~7270Bの最も近位の部分で上側リップ上に位置するのであっても、上側リップと物理的に接触するのであってもよい。
例では、アンテナ108の周波数応答を調整するためなどに、アンテナ108の形状を変更することができる。アンテナ108は、例えばアンテナ108を溝9402から引き離すことによって、またはアンテナ108をへこませるか、さもなければ再成形または再構成することによって、変形させることができる。周波数応答に対する形状の変化の影響を予測することは困難である可能性があるが、アンテナの形状の変化は、アンテナ108の周波数応答を変化させて、目標周波数の応答に十分に近づけることができる。アンテナ108の形状は、例えば、アンテナハウジング610をアンテナ108の周りに配置する前に変更することができる。
図115は、概して第4の回路基板714Dの例を示している。例では、回路基板714は、図115に示される特徴のうちの1つまたは複数を含むことができる。第4の回路基板714Dは、近位電気接続部分11501、近位ネック領域1709のスリット11502、近位電気接続部分11501より遠位の本体部分1703、本体部分1703を遠位電気接続部分1713に接続する遠位ネック領域1711、遠位ネック領域1711のスリット1705および1706、および遠位接続部分カバー1712を含むことができる。
近位電気接続部分11501は、回路ハウジング606の近位端上のフィードスルー718などを介してアンテナ108のそれぞれの端部に電気的に接続される導電性材料306A、306Kを含むことができる。近位電気接続部分11501の形状は、端が丸い長方形を含むことができる。この形状は、例えば、とりわけ、図106に示される円形よりも少ないスペースを消費することができる。スペースの節約は、第4の回路基板714Dを回路ハウジング606に組み立てるのに寄与することができる。
例では、ネック領域1709は、本体部分1703および近位電気接続部分11501を接続することができる。ネック領域1709は、本体部分1703の切り込み1707によって本体部分1703から分離することができる。カット1707は、ネック領域1709を本体部分1703に引っ込めることができる。カット1707を含めることにより、ネック領域1709は、本体部分1703を曲げることなく曲げることができ、したがって、ネック領域1709の柔軟性を高める。さらに、カット1707を含めることにより、第4の回路基板714D(矢印1704によって示される)の全長を、本明細書で論じられる他の回路基板714(例えば、714A~714C)と比較して短縮することができる。長さの減少の量は、矢印1716によって示されている。矢印1704は、第4の回路基板714Dの縦軸を示している。
ネック領域1709は、その中にカットされたスリット11502を含むことができる。スリット11502は、回路基板714Dの材料の柔軟性を高めることができる。スリット11502は、第4の回路基板714Dを回路ハウジング606に組み立てるのを補助でき、導電性材料306A、306Kが向く方向の操作をし易くする。
本体部分1703は、近位ネック領域1709と遠位ネック領域1711とを接続する。本体部分1703は、植込み型装置110のインピーダンスを調整する際に使用される調整コンデンサおよびタブなどの、植込み型装置110の電気的および電子的構成要素を含む。
遠位ネック領域1711は、本体部分1703を遠位電気接続部分1713に接続する。遠位ネック領域1711は、その中に切り込まれたスリット1705、1706を含むことができる。スリット1705、1706は、スリット11502と同様に、ネック領域1711の材料の柔軟性を高めることができる。スリット1705、1706は、第4の回路基板714Dを回路ハウジング606に組み立てるのを補助することができ、導電性材料306C、306D、306I、および306Jが向く方向を変更することをさらに容易にする。例では、スリット1706は、スリット1705よりも広くまたは狭くすることがある。例では、スリット1706は、カバー1712上のタブ1714が挿入される場所を備えることができる。スリット1706に挿入されると、タブ1714は、遠位電気接続部分1713上のその位置にカバー1712を保持することができる。
遠位ネック領域1711は、曲がりくねった痕跡1708をさらに含むことができる。曲がりくねった痕跡1708は、直線トレースに対するトレースの弾性を変化させることができ、曲げられたときにトレースがスナップする感受性を低減し、トレースを壊さずにトレースを曲げて広げる回数を増やすことができる。
スリット1710は、遠位電気接続部分1713とカバー1712との間の領域の一部を形成することができる。スリット1710は、スリット1710を含まない実施形態と比較して、カバー1712を遠位電気接続部分1713上でより容易に折り畳むことを可能にすることができる。
カバー1712は、(矢印1719によって示されるように)遠位電気接続部分1713を折り返すことができる。カバー1712は、それが遠位電気接続部分1713上に折りたたまれたときに、遠位電気接続部分1713に電気的または機械的なシールドを提供することができる。図116は、概してカバー1712が遠位電気接続部分1713上にフォルダされ、タブ1714がスリット1706に挿入された後の第4の回路基板714Dの例を示している。
関連するコンピュータハードウェアおよび/またはアーキテクチャの実施例
図117は、例として、本明細書に記載の1つまたは複数の方法を実行できるか、本明細書に記載の1つまたは複数のシステムまたは装置と共に使用することができる機械11700の実施形態のブロック図を示す。図117は、上記のいくつかの実施形態および図に関連して論じられ説明されている構造の構成要素への言及を含む。1つまたは複数の例では、植込み型装置110、供給源102、センサ107、プロセッサ回路210、デジタルコントローラ548、回路ハウジング606~606Cの回路、システム制御回路、電力管理回路、コントローラ、刺激回路、エネルギー獲得回路、同期回路、外部装置、制御回路、フィードバック制御回路、植込み型装置110、位置決め回路、制御回路、植込み型装置110の他の回路、および/または外部供給源102の一部であるかそれに接続される回路は、機械11700の品目の1つまたは複数を含み得る。機械11700は、いくつかの例示的実施形態によれば、機械可読媒体(例えば機械可読記憶媒体)から指示を読み取り、方法論のうちの任意の1つまたは複数、方法論の1つまたは複数の操作、または本明細書に記載の1つまたは複数の回路の機能、例えば本明細書に記載の方法を実行することができる。例えば、図117は、コンピュータシステムの例示的な形態における機械11700の図表での表現を示しており、そのシステム内で、本明細書で論じられる方法論のうちの任意の1つまたは複数を実行するための機械11700を実行させる指示11716(例えば、ソフトウェア、プログラム、アプリケーション、アプレット、アプリ、または他の実行可能コード)を実行することができる。指示は、一般的なプログラムされていない機械を、説明された方法で、説明され図示された機能を実行するようにプログラムされた特定の機械に変換する。代替の実施形態では、機械11700は独立型装置として動作する、または他の機械に連結(例えばネットワーク化)することができる。ネットワークの配置では、機械11700は、サーバとクライアントのネットワーク環境でサーバマシンまたはクライアントマシンの能力で、またはピアツーピア(または分散型)ネットワーク環境でピアマシンとして動作することができる。機械11700の様々な部分は、外部供給源102および植込み型装置110のうちの1つまたは複数に含まれるか、それらと共に使用され得る。1つまたは複数の例では、機械11700の異なるインスタンス化または異なる物理的ハードウェア部分は、外部供給源102と植込み型装置110にて、別々に植込まれ得る。
1つまたは複数の例では、機械11700は、サーバコンピュータ、クライアントコンピュータ、パーソナルコンピュータ(PC)、タブレットコンピュータ、ラップトップコンピュータ、携帯電話、スマートフォン、モバイル機器、ウェアラブル機器(例えばスマートウォッチ)、植込み型装置、スマートホーム機器(例えばスマート機器)、他のスマート機器、ウェブ機器、ネットワークルータ、ネットワークスイッチ、ネットワークブリッジ、または機械11700によってなされるべき動作を指定する指示11716を順次または別の様式で実行することが可能な任意の機械を含むことができるが、これらに限定されない。さらに、単一の機械11700のみが示されているが、用語「機械」は、本明細書で論じられる方法論のうちの任意の1つまたは複数を実行するために個別にまたは共同で指示11716を実行する機械11700の集まりも含むと解するものとする。
機械11700は、プロセッサ11710、メモリ11730、またはI/O構成要素11750を含むことができ、それは、バス11702を介するなどして互いに通信するように構成することができる。1つまたは複数の例示的な実施形態では、プロセッサ11710(例えば、中央処理装置(CPU)、縮小指示セット計算(RISC)プロセッサ、複合指示セット計算(CISC)プロセッサ、グラフィック処理装置(GPU)、デジタルシグナルプロセッサ(DSP)、特定用途向け集積回路(ASIC)、無線周波数集積回路(RFIC)、他のプロセッサ、またはそれらの任意の適切な組み合わせ)は、例えば、指示11716を実行することができるプロセッサ11712およびプロセッサ11714を含むことができる。「プロセッサ」という用語は、同時に指示を実行することができる2つ以上の独立したプロセッサを含むことができるマルチコアプロセッサ(時に「コア」と呼ばれる)を含むことを意図している。図117はマルチプロセッサを示すが、機械11700は、シングルコアを有するシングルプロセッサ、マルチコアを有するシングルプロセッサ(例えばマルチコアプロセス)、シングルコアを有するマルチプロセッサ、マルチプルコアを有するマルチプロセッサ、またはそれらの任意の組み合わせを含むことができる。
メモリ/ストレージ11730は、メインメモリなどのメモリ11732、または他のメモリストレージ、および記憶装置11736を含むことができ、両方とも、例えばバス11702を介して、プロセッサ11710にアクセス可能である。記憶装置11736およびメモリ11732は、本明細書に記載の方法または機能のうちの任意の1つまたは複数を具体化する指示11716を記憶する。指示11716はまた、完全にまたは部分的に、メモリ11732内、記憶装置11736内、プロセッサ11710の少なくとも1つ内(例えば、プロセッサのキャッシュメモリ内)、またはそれらの任意の適切な組み合わせ内に、機械11700によるその実行の間、存在することができる。したがって、メモリ11732、記憶装置11736、およびプロセッサ11710のメモリは、機械可読媒体の例である。
本明細書で使用されるとき、「機械可読媒体」は、指示およびデータを一時的または恒久的に記憶することができる装置を意味し、ランダムアクセスメモリ(RAM)、読み取り専用メモリ(ROM)、バッファメモリ、フラッシュメモリ、光媒体、磁気媒体、キャッシュメモリ、他の種類の記憶装置(例えば、消去可能プログラマブル読み出し専用メモリ(EEPROM))および/またはそれらの任意の適切な組み合わせを含むことができるが、それらに限定されない。「機械可読媒体」という用語は、指示11716を格納することができる単一の媒体または複数の媒体(例えば、集中型または分散型データベース、または関連するキャッシュおよびサーバ)を含むと解釈されるべきである。「機械可読媒体」という用語はまた、機械(例えば機械11700)による実行のための指示(例えば指示11716)を記憶することができる任意の媒体、または複数の媒体の組み合わせを含むと解釈されるものとし、指示が、機械11700の1つまたは複数のプロセッサ(例えば、プロセッサ11710)によって実行されると、機械11700に、本明細書に記載の方法論のうちの任意の1つまたは複数を実行させる。したがって、「機械可読媒体」は、単一の記憶装置または機器、ならびに複数の記憶装置または機器を含む「クラウドベースの」記憶システムまたは記憶ネットワークを指す。「機械可読媒体」という用語はそれ自体信号を除外する。
I/O構成要素11750は、入力を受信し、出力を提供し、出力を生成し、情報を送信し、情報を交換し、測定値をキャプチャするなどのための多種多様な構成要素を含み得る。特定の機械に含まれる特定のI/O構成要素11750は、機械の種類に依存する。例えば、携帯電話や他の外部装置などの携帯式機器は、タッチ入力装置または他のそのような入力機構を含む可能性があり、一方でヘッドレスサーバ機器は、そのようなタッチ入力装置を含まない可能性が高い。当然のことながら、I/O構成要素11750は、図117には示されていない他の多くの構成要素を含み得る。I/O構成要素11750は、単に以下の説明を単純化するために機能に従ってグループ化されており、グループ化は決して限定的なものではない。様々な例示的実施形態では、I/O構成要素11750は出力構成要素11752および入力構成要素11754を含むことができる。出力構成要素11752は、視覚的構成要素(例えば、プラズマディスプレイパネル(PDP)、発光ダイオード(LED)ディスプレイ、液晶ディスプレイ(LCD)、プロジェクタ、または陰極線管(CRT)などのディスプレイ)、聴覚的構成要素(例えばスピーカ)、触覚的構成要素(例えば振動モータ、抵抗機構)、その他の信号発生器などを含むことができる。入力構成要素11754は、英数字入力構成要素(例えば、キーボード、英数字の入力を受け取るように構成されたタッチスクリーン、フォトオプティカルキーボード、または他の英数字入力構成要素)、ポイントベースの入力構成要素(例えば、マウス、タッチパッド、トラックボール、ジョイスティック、モーションセンサ、またはその他のポインティング機器)、触覚入力構成要素(物理的ボタン、タッチまたはタッチのジェスチャの位置および/または力を提供するタッチスクリーン、またはその他の触覚入力用構成要素など)、音声入力構成要素(例えば、マイクロフォン)などを含み得る。
さらなる例示的実施形態では、I/O構成要素11750は、バイオメトリック構成要素11756、運動構成要素11758、環境構成要素11760、または配置構成要素11762を、他の広範な構成要素の中に含むことができる。例えば、バイオメトリック構成要素11756は、表現(例えば、手の表現、顔の表現、声の表現、体のジェスチャ、または眼のトラッキング)を検出し、生理学的信号(例えば、血圧、心拍数、体温、発汗、または脳波、神経活動、または筋肉活動)、人の識別(例えば音声識別、網膜識別、顔識別、指紋識別、または脳波に基づく識別)などを測定する構成要素を含み得る。
運動構成要素11758は、加速度センサ構成要素(例えば加速度計)、重力センサ構成要素、回転センサ構成要素(例えばジャイロスコープ)などを含むことができる。1つまたは複数の例では、運動構成要素11758の1つまたは複数を外部供給源102または植込み型装置110と組み込むことができ、患者の運動または身体活動レベルを検出するように構成することができる。患者の運動に関する情報は、例えば、外部供給源102と植込み型装置110との間の物理的関係が変化またはシフトしたときに信号伝送特性(例えば、振幅、周波数など)を調整するために様々な方法で使用できる。
環境構成要素11760は、例えば、照度センサ構成要素(例えば、光度計)、温度センサ構成要素(例えば、周囲温度を検出する1つまたは複数の温度計)、湿度センサ構成要素、圧力センサ構成要素(例えば、気圧計)、音響センサ構成要素(例えばバックグラウンドノイズを検出する1つまたは複数のマイクロフォン)、近接センサ構成要素(例えば近くの物体を検出する赤外線センサ)、ガスセンサ(例えば安全のために有害ガスの濃度を検出する、または大気中の汚染物質を測定するガス感知センサ)、または周囲の物理的環境に対応する指示、測定値、または信号を提供することができる他の構成要素を含み得る。配置構成要素11762は、位置センサ構成要素(例えば、全地球測位システム(GPS)受信機構成要素)、高度センサ構成要素(例えば、高度を導出することができる気圧を検出する高度計または気圧計)、方位センサ構成要素(例えば、磁力計)などを含み得る。1つまたは複数の例では、I/O構成要素11750は、植込み型装置110および/または外部供給源102の一部であり得る。
通信は多種多様な技術を使用して実施することができる。I/O構成要素11750は、連結部11782および連結部11772を介して機械11700をネットワーク11780または装置11770にそれぞれ連結するように動作可能な通信構成要素11764を含むことができる。例えば、通信構成要素11764は、ネットワークインターフェース構成要素またはネットワーク11780とインターフェースをとるための他の適切な装置を含み得る。さらなる例では、通信構成要素11764は、有線通信構成要素、無線通信構成要素、セルラー通信構成要素、近接場(近接場)通信(NFC)構成要素、ミッドフィールド通信構成要素、ファーフィールド通信構成要素、および他のモダリティを介して通信を提供する他の通信構成要素を含み得る。装置11770は、他の機械または多種多様な周辺装置のうちのいずれかであり得る。
さらに、通信構成要素11764は、識別子を検出する、または識別子を検出するように動作可能な構成要素を含み得る。例えば、通信構成要素11764は、無線周波数識別(RFID)タグリーダー構成要素、NFCスマートタグ検出構成要素、光学式リーダー構成要素(例えば、ユニバーサルプロダクトコード(UPC)バーコード、多次元バーコード、例えばQuick Response(QR)コード、Aztecコード、Data Matrix、Dataglyph、MaxiCode、PDF417、Ultra Code、UCC RSS-2Dバーコード、およびその他の光学的コードなどの一次元バーコードを検出するための光学センサ)、または音響検出構成要素(例えばタグ付き音声信号を識別するためのマイクロフォン)を含み得る。さらに、インターネットプロトコル(IP)ジオロケーションによるロケーション、Wi-Fi信号三角測量によるロケーション、特定の場所を表示できるNFCビーコン信号などを検出することによるロケーションなど、様々な情報を通信構成要素11764を介して導出することができる。
いくつかの実施形態では、システムは(複数の特徴とは対照的に)単一の特徴として存在する様々な特徴を含む。例えば、一実施形態では、システムは、単一の外部供給源と、単一の植込み型装置または単一のアンテナを有する刺激装置とを含む。代替の実施形態では、複数の特徴または構成要素が提供される。
いくつかの実施形態において、システムは、以下の組織刺激用の手段(例えば植込み型刺激装置)、電力供給のための手段(例えばミッドフィールド電力供給装置またはミッドフィールドカプラ)、受信のための手段(例えば受信機)、送信するための手段(例えば、送信機)、制御するための手段(例えば、プロセッサまたは制御ユニット)などのうちの1つまたは複数を含む。
本明細書に開示される方法、システム、機器、および装置をよりよく説明するために、実施例の非限定的な列挙をここに提示する。
実施例1は、主題(例えば、装置、システム、機器、方法、行為を実行するための手段、または装置によって実行されるときに装置に実行させることができる命令を含む装置読み取り可能媒体、または製造品)を含むまたは使用することができ、例えば、ミッドフィールド送信機であって、送信機の第1の層に設けられる第1の導電性部分、送信機の第2の層に設けられる1つまたは複数のストリップラインを含む第2の導電性部分、送信機の第3の層に設けられる第3の導電性部分であり、第2の層を延びる1つまたは複数のビアを用いて第1の導電性部分に電気的に連結される第3の導電性部分、第1の層と第2の層との間に介在する第1の誘電部材、および第2の層と第3の層との間に介在する第2の誘電部材を含むミッドフィールド送信機を含むまたは使用することができる。
実施例2は、第1のスロットによって離間された内側ディスク領域および外側環状領域を含む第1の導電性部分を含むように、実施例1の主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができる。
実施例3は、実施例2の主題を含む、または使用することができ、あるいは任意選択に組み合わせることができ、1つまたは複数のビアを使用して、第3の層の第3の導電性部分に電気的に連結される、第1の導電性部分の外側環状領域を含む。
実施例4は、実施例1から3の1つまたは任意の組み合わせの主題を含むまたは使用することができ、または任意選択で組み合わせることができ、スロットによって離間された第1および第2の個別の領域を含む第1の導電性部分を任意選択に含むまたは使用する。実施例4では、ミッドフィールド送信機は、第1の導電性部分の第1の領域に連結された第1のコンデンサノードと、第1の導電性部分の第2の領域に連結された第2のコンデンサノードとを有する可変コンデンサをさらに含むことができる。
実施例5は、実施例4の主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、指定された目標共振周波数に基づいて可変コンデンサの静電容量を調整するように構成された制御回路を含む。
実施例6は、実施例5の主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、送信機を使用して送信された電力信号の反射部分に関する情報を使用して可変コンデンサの静電容量を調整するように構成される制御回路を含む。
実施例7は、実施例5の主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、送信機から受信機装置で受信された電力信号の部分に関する情報を使用して可変コンデンサの静電容量を調整するように構成される制御回路を含む。
実施例8は、実施例7の主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、受信機装置から後方散乱信号を受信し、受信機装置で受信された電力信号の部分に関する情報を判定するように構成された後方散乱受信機回路を含む。
実施例9は、実施例7および8の1つまたは組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、受信機装置からデータ信号を受信し、受信機装置で受信された電力信号の部分に関する情報を判定するように構成されたデータ受信機回路を任意選択で含む。
実施例10は、実施例5~9の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、プロセッサ回路であって、制御回路が、可変コンデンサの複数の異なる静電容量の値のそれぞれでミッドフィールド送信機の励起を制御し、異なる静電容量の値のそれぞれについてそれぞれの電力伝達特性を監視するように構成され、またプロセッサ回路が、電力伝達特性に基づいて、ミッドフィールド送信機が身体組織の近くにあるか、近くにある可能性があるかどうかを判定するように構成される、プロセッサ回路を任意選択で含むまたは使用するために、。
実施例11は、実施例5~9の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、プロセッサ回路であって、制御回路が、可変コンデンサの複数の異なる静電容量の値のそれぞれでミッドフィールド送信機の励起を制御し、異なる静電容量の値のそれぞれについてそれぞれのVSWR特性を監視するように構成され、またプロセッサ回路が、VSWR特性に基づいて、ミッドフィールド送信機が身体組織の近くにあるか、近くにある可能性があるかどうかを判定するように構成される、プロセッサ回路を任意選択で含むまたは使用する。
実施例12は、実施例1~11の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ波状または波打つ側縁プロファイルを有する、ストリップラインの少なくとも1つを任意選択で含むまたは使用する。
実施例13は、実施例1~12の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、双方向カプラであって、第1のカプラポートで駆動信号を受信し、駆動信号の一部を送信ポートおよび終端ポートに提供するように構成された双方向カプラであって、送信ポートは、送信機の第2の層に提供されるストリップラインの少なくとも1つに連結され、終端ポートが負荷回路に連結されている双方向カプラを任意選択で含むまたは使用する。
実施例14は、実施例13の主題を任意選択で含むまたは使用することができ、あるいは任意選択で組み合わせることができ、フィードバック信号処理回路を含み、双方向カプラは、フィードバック信号処理回路に連結された分離ポートを含み、フィードバック信号処理回路は、分離ポートで反射電力信号についての情報を受信するように構成され、フィードバック信号処理回路は、反射電力信号に関する情報を使用して、送信電力信号の効率を判定するように構成される。
実施例15は、実施例13の主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、負荷回路を含み、負荷回路は、双方向カプラの終端ポートに調整可能なインピーダンス負荷を提供するように構成された1つまたは複数の可変コンデンサを備える。
実施例16は、実施例1~15の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせて、異なる誘電率特性を有する第1および第2の誘電部材を任意選択で含める。
実施例17は、実施例16の主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、第2の誘電部材の厚さが第1の誘電部材の厚さよりも大きいことを含む。
実施例18は、実施例1~17の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、第3の導電性部分に電気的に連結された環状外側領域を有する第1の導電性部分を任意選択で含み、第1の導電性部分は第1のスロットにより環状外側領域から間隔を隔てた内側領域をさらに含む。
実施例19は、実施例18の主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、第1のスロットから第1の導電性部分の中心軸に向かって延びるスロット延長アームを含む。
実施例20は、実施例19の主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、約90度の間隔で配置され、第1のスロットから第1の導電性部分の中心軸までの少なくとも半分の距離で延びる4つのスロット延長アームを含む。
実施例21は、実施例19または20の主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、第1のスロットの幅と実質的に同じスロットの幅を有するスロット延長アームを含む。
実施例22は、実施例18~21の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、第1の導電性部分の内側領域に連結されたアノードと、第1の導電性部分の環状領域に連結されたカソードとを有するコンデンサを含むまたは使用する。
実施例23は、実施例1~22の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、接地された第1の領域と、接地された第1の領域から電気的に絶縁された別個の第2の領域とを含むエッチング銅層を含む第1の導電性部分を含むまたは使用する。
実施例24は、実施例23の主題を含むまたは使用することができ、あるいは任意選択に組み合わせることができ、送信機の周辺部から送信機の中央部に向かって延び、1つまたは複数のストリップラインが第1の導電性部分の第2の領域の少なくとも一部の上に配置される1つまたは複数のストリップラインを含む。
実施例25は、実施例23または24の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、第2の領域を四分円に分割するエッチングされた特徴またはビアを含む別個の第2の領域を含む。
実施例26は、実施例1~25の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、1つまたは複数のストリップラインのそれぞれに、それぞれの励起信号を提供するように構成された信号発生器回路を含むまたは使用し、信号発生器回路は、励起信号の少なくとも1つの位相または振幅特性を調整し、第1の導電性部分の周りの電流分布を調整するように構成される。
実施例27は、実施例26の主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、第3の導電面の第1の側面に配置され、第3の導電面の反対の第2の側面は、第1の導電性部分に面する信号発生器を含む。
実施例28は、実施例1~27の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、第3の導電性部分の表面積が第1の導電性の表面積と同じかそれよりも大きいことを含む。
実施例29は、実施例1~28の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、第1および第3の導電性部分が、実質的に円形で同軸の導電部材を備えることを含む。
実施例30は、実施例1~29の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、第1の導電性部分および第3の導電性部分のうちの少なくとも1つが基準電圧または接地に連結されていることを含む。
実施例31は、実施例1~30の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、第1または第2の誘電部材が、約3~13の誘電率Dkを有することを含む。
実施例32は、実施例1~30の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、第1または第2の誘電部材が、約6~10の誘電率Dkを有することを含む。
実施例33は、実施例1~32の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、第1の導電性部分と第3の導電性部分との間に延在し、第2の層から絶縁された複数のビアであって、複数のビアの配置が、第1の導電性部分を実質的に別個に励起可能な四分円に分割する複数のビアを含むまたは使用する。
実施例34は、実施例33の主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、別個に励起可能な四分円の各々が接地周辺領域と内側導電領域とを含み、第1の導電性部分が1つまたは複数の特徴でエッチングされて、周辺領域の少なくとも一部を内側導電領域から絶縁することを含む。
実施例35は、主題(例えば、装置、システム、機器、方法、行為を実行するための手段、または装置によって実行されるときに装置に実行させることができる命令を含む装置読み取り可能媒体、または製造品)を含むまたは使用することができ、例えば、調整可能なミッドフィールド送信機であって、第1の基板、第1の基板の第1の表面に設けられた第1のエミッタ、および第1のエミッタに連結された可変コンデンサであって、第1のエミッタの静電容量特性を調節して、受信機装置からの反射係数またはフィードバック情報の少なくとも1つに基づいてミッドフィールド送信機の共振周波数を調整するように構成される可変コンデンサを含む、調整可能なミッドフィールド送信機を含むまたは使用することができる。
実施例36は、実施例35の主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、反射係数に関する情報に基づいて、送信機が身体組織の近くにあるか、近くにある可能性があるかについての表示を提供するように構成された制御回路を含む。
実施例37は、実施例35または36の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、第1の基板に隣接して平行な第2の表面上に提供されるストリップラインを含むまたは使用し、ストリップラインは、第1のエミッタ上に少なくとも部分的に延びる。
実施例38は、実施例37の主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、内側ディスク領域および外側環状領域を含む第1のエミッタを含み、ストリップラインは、少なくとも部分的に、第1のエミッタの内側ディスク領域に延びる。
実施例39は、実施例38の主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、非導電性スロットによって複数の個別の導電性領域に分割される内側ディスク領域を含む。
実施例40は、実施例39の主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、導電性領域のそれぞれが実質的に同じ表面積を有することを含む。
実施例41は、実施例35~40の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、接地面、および接地面とストリップラインとの間に提供される第2の基板を含むまたは使用する。
実施例42は、実施例35~41の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、ミッドフィールド送信機が、組織内に適応操縦場を生成するように構成され、適応操縦場が、約300MHz~3000MHzの周波数を有することを含むまたは使用する。
実施例43は、実施例35~42の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、ストリップラインに励起信号を提供するように構成された励起回路であって、約300MHz~3000MHzの周波数を励起信号を含むまたは使用する。
実施例44は、実施例35~43の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、可変コンデンサの静電容量の値が、検出された反射係数に基づいて、または植込まれたミッドフィールド受信機装置からのフィードバックに基づいて更新されるように選択または構成されることを含むまたは使用する。
実施例45は、主題(例えば、装置、システム、機器、方法、行為を実行するための手段、または装置によって実行されるときに装置に実行させることができる命令を含む装置読み取り可能媒体、または製造品)を含むまたは使用することができ、例えば、ミッドフィールド送信機を調整して、ミッドフィールド送信機と植込まれた受信機との間の電力伝達効率を調節する方法であって、ミッドフィールド送信機は、ストリップラインによって励起可能な導電板を含む方法を含むまたは使用することができる。実施例45では、この方法は、ストリップラインにパイロット信号を提供すること、パイロット信号はパイロット周波数を有する、植込まれた受信機でミッドフィールド送信機から受信した電力信号を監視すること、および監視された利得/受信電力信号に基づいて、導電板と基準ノード間の電気的連結特性を調節することを含むことができる。
実施例46は、実施例45の主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、電気的連結特性を調節することが、導電板および基準ノードに連結された可変コンデンサの静電容量を変更することを含むことを含む。
実施例47は、主題(例えば、装置、システム、機器、方法、行為を実行するための手段、または装置によって実行されるときに装置に実行させることができる命令を含む装置読み取り可能媒体、または製造品)を含むまたは使用することができ、例えば、ミッドフィールド送信機を調整して、ミッドフィールド送信機と植込まれた受信機との間の電力伝達効率を調節する方法であって、ミッドフィールド送信機は、ストリップラインによって励起可能な導電板を含む方法を含むまたは使用することができる。実施例47では、この方法は、ストリップラインにパイロット信号を提供すること、パイロット信号はパイロット周波数を有する、ミッドフィールド送信機と植込まれた受信機間の連結特性を監視すること、および監視された利得/受信電力信号に基づいて、導電板と基準ノード間の電気的連結特性を調節することを含むことができる。
実施例48は、実施例47の主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、電気的連結特性を調節することであって、導電板および基準ノードに連結された可変コンデンサの静電容量を変更することを含む調整することを含む。
実施例49は、主題(例えば、装置、システム、機器、方法、行為を実行するための手段、または装置によって実行されるときに装置に実行させることができる命令を含む装置読み取り可能媒体、または製造品)を含むまたは使用することができ、例えば、実質的に同軸で互いに平行で、第1の誘電部材によって間隔を置いて配置される、第1および第2の実質的に平面の円形の導電部材であり、第2の導電部分が送信機の電気基準面として機能する導電部材、および導電部材間の中間層に介在する第1の対の励起部材、および第1の導電部材と同一平面上にあるか、同軸方向にオフセットしている励起パッチを含むミッドフィールド送信機を含むまたは使用することができる。
実施例50は、実施例49の主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、励起部材が第1および第2の導電部材から、また互いに電気的に絶縁され、第1の対の励起部材は送信機の両側に設けられることを含む。
実施例51は、実施例49または50の1つまたは任意の組み合わせの主題を含むか使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、励起部材がそれぞれのビアを使用して励起パッチに電気的に連結されていることを含むまたは使用する。
実施例52は、実施例49~51の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、第1の導電性部材の一部を含む励起パッチを含むまたは使用する。
実施例53は、実施例49~52の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、励起パッチが、第1および第2の導電部材から電気的に絶縁されている受動部材であることを含むまたは使用する。
実施例54は、実施例49~53の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、ストリップラインである励起部材を含むまたは使用する。
実施例55は、実施例54の主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、ストリップラインを受動励起パッチのそれぞれの部分に連結するそれぞれのビアを含む。
実施例56は、主題(例えば、装置、システム、機器、方法、行為を実行するための手段、または装置によって実行されるときに装置に実行させることができる命令を含む装置読み取り可能媒体、または製造品)を含むまたは使用することができ、例えば、ミッドフィールド送信機であって、送信機の第1の層に設けられる第1の導電面であり、内側ディスク領域から離間した外側環状領域を含む第1の導電面、送信機の第2の層に設けられる第2の導電面であり、1つまたは複数のビアを使用して第1の導電面の外側環状領域に電気的に連結される第2の導電面、第1の導電面と第2の導電面との間に介在する第1の誘電部材、および第1の導電面の内側ディスク領域に連結され、第2の導電面および第1の誘電部材を貫通して電気的に絶縁されたビアに連結される複数の信号入力ポートを含むミッドフィールド送信機を含むまたは使用することができる。
実施例57は、実施例56の主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、第1の層とは反対側の第2の層の第1の側面に配置される送信機励起回路であり、複数の信号入力ポートを使用して内側ディスク領域に駆動信号を供給するように構成される送信機励起回路を含む。
実施例58は、実施例57の主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、送信機励起回路が、はんだバンプを使用して第2の導電面の第1の側面に連結されるように構成されていることを含む。
実施例59は、実施例56~58の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、第1の導電面の環状領域に連結されたアノードと、第1の導電面のディスク領域に連結されたカソードとを有するコンデンサを含むまたは使用する。
実施例60は、実施例56~59の1つまたは任意の組み合わせの主題を含む、または使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、第1の導電面がディスク領域の周囲からディスク領域の中心まで少なくとも部分的に延在する複数の線形スロットを含むことを含むまたは使用する。
実施例61は、実施例60の主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、送信機の共振特性を調整するために選択または構成された複数の線形スロットの長さを含む。
実施例62は、実施例56~61の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、複数の信号入力ポートに、各励起信号を供給するように構成された信号発生器回路を含むまたは使用する。
実施例63は、実施例62の主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、信号発生器回路が、第1の導電面上の電流の分布を調節するために励起信号のうちの少なくとも1つの位相または振幅特性を調節するように構成されることを含む。
実施例64は、主題(例えば、装置、システム、機器、方法、行為を実行するための手段、または装置によって実行されるときに装置に実行させることができる命令を含む装置読み取り可能媒体、または製造品)を含むまたは使用することができ、例えば、無線送信機装置で使用するための信号プロセッサであって、RF駆動信号を受信し、条件付きでアンテナまたは別の装置に出力信号を提供するように構成された第1の制御回路、アンテナ出力信号に関する情報および/またはRF駆動信号に関する情報に基づいて制御信号を生成するように構成された第2の制御回路、およびRF駆動信号を第1の制御回路に提供するように構成された利得回路であって、第2の制御回路からの制御信号に基づいてRF駆動信号の振幅を変更するように構成される利得回路を含む信号プロセッサを含むまたは使用することができる。
実施例65は、実施例64の主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、第1の制御回路が、アンテナの負荷状態を示す反射電圧信号を受信し、反射電圧信号に基づいてアンテナ出力信号の位相または振幅を変更するように構成されることを含む。
実施例66は、実施例65の主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、第1の制御回路は、反射電圧信号が指定された反射信号の大きさまたは閾値を超えると、アンテナ出力信号を減衰させるように構成されることを含む。
実施例67は、実施例64~66の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、RF駆動信号を条件付きで増幅し、アンテナから受信した情報がアンテナが身体組織によって負荷をかけられているまたは負荷をかけられる可能性があることを示すときに、アンテナ出力信号を提供するように構成される増幅器回路を含むまたは使用する。
実施例68は、実施例64~67の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、第1の制御回路が、利得回路に連結され、RF駆動信号を受信するように構成された入力ポート、アンテナに連結され、アンテナ出力信号を提供するように構成された送信ポート、第2の制御回路に連結された連結ポート、および第2の制御回路に連結された分離ポートを含む双方向カプラ回路を含むことを含むまたは使用する。
実施例69は、実施例68の主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、双方向カプラの分離ポートに連結されたRFダイオード検出器回路を含む。
実施例70は、実施例68または69の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、双方向カプラの分離ポートに連結された後方散乱受信機回路であって、植込まれた装置から後方散乱データ通信を受信するように構成される後方散乱受信機回路を含むまたは使用する。
実施例71は、実施例64~70の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、第1の制御回路が、アンテナから受信された反射電力信号に関する情報が、反射電力の指定された閾値の量を超えると、障害信号を生成するように構成されることを含むまたは使用する。
実施例72は、実施例71の主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、第1の制御回路が、障害信号が生成されたときに出力信号を提供することを阻害するように構成されることを含む。
実施例73は、実施例72の主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、第1の制御回路が、第1の制御回路がリセット信号を受信するまで障害状態で存続するように構成されることを含む。
実施例74は、実施例64~73の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、第1の制御回路が、出力信号の提供を阻害することによって、検出された障害状態に第1の応答速度で応答するように構成され、第2の制御回路は、制御信号を生成することにより、同じまたは異なる障害状態に対しより低速の第2の応答速度で応答するように構成されることを含むまたは使用する。
実施例75は、実施例64~74の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、第1の制御回路が、RF駆動信号の検出された包絡線特性に基づいて出力信号を条件付きで提供するように構成されることを含むまたは使用する。
実施例76は、実施例64~75の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、第2の制御回路が、RF駆動信号の検出された包絡線特性に基づいて制御信号を生成するように構成されることを含むまたは使用する。
実施例77は、実施例64~76の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、利得回路が、RF入力信号に基づいてRF駆動信号を提供するように構成され、第2の制御回路は、RF入力信号の振幅特性に基づいて制御信号を生成するように構成されることを含むまたは使用する。
実施例78は、実施例64~77の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、第2の制御回路が、(1)アンテナ出力信号に関する情報がアンテナの次善の負荷状態を示す場合、または(2)RF駆動信号に関する情報が、RF駆動信号の振幅が指定された駆動信号振幅閾値を超えていることを示す場合に、第1の制御信号の値を有する制御信号を生成するように構成され、また利得回路が、制御信号が第1の制御信号の値を有するときに、RF駆動信号を減衰させることを含むまたは使用する。
実施例79は、実施例64~77の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、第2の制御回路は、(1)アンテナ出力信号に関する情報がアンテナの既知の良好な負荷状態を示す場合、または(2)RF駆動信号に関する情報が、RF駆動信号の振幅が指定された駆動信号振幅閾値を下回ることを示す場合に、第2の制御信号の値を有する制御信号を生成するように構成され、また利得回路が、制御信号が第2の制御信号の値を有するときに、RF駆動信号を減衰させないことを含むまたは使用する。
実施例80は、実施例64~79の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、第2の制御回路が、利得回路の制御信号を生成して、初期装置状態または装置リセット状態で第1の制御回路に提供されるRF駆動信号をランプアップするように構成されることを含むまたは使用する。
実施例81は、実施例64~80の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、第2の制御回路が、利得回路の制御信号を生成して、アンテナ不整合状態下で第1の制御回路に提供されるRF駆動信号を減衰するように構成されることを含む。
実施例82は、実施例64~81の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、第2の制御回路が、検出された障害状態に続いて、利得回路の制御信号を生成して、RF駆動信号の大きさを、検出された障害状態に先行するRF駆動信号の大きさに対応する大きさのレベルに戻すように構成されていることを含む。
実施例83は、実施例64~82の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、第2の制御回路が、フィードバック回路からの情報に基づいて利得回路の制御信号を生成するように構成され、フィードバック回路は、アンテナの不整合状態に関する情報を提供し、フィードバック回路は、指定された公称出力電力に対する装置の実際の出力電力に関する情報を提供することを含むまたは使用する。
実施例84は、実施例83の主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、第2の制御回路が、制御信号を生成して、利得回路に、初期装置状態または装置リセット状態の下で第1の制御回路に提供されるRF駆動信号をランプアップさせるように構成されることを含む。
実施例85は、実施例83または84の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、第2の制御回路が、制御信号を生成して、利得回路に、アンテナ不整合状態下で第1の制御回路に提供されるRF駆動信号を急速に減衰させるように構成されることを含むまたは使用する。
実施例86は、実施例85の主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、第1の制御回路が、アンテナ不整合ステータスに関する情報を第1の制御回路に提供するように構成され、アンテナ不整合ステータスに関する情報が、アンテナからの反射電力に基づくことを含む。
実施例87は、実施例83~86の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、アンテナからの反射電力の変化に対してフィードバック回路の感度を調節するように構成されたスケーリング回路を含むまたは使用する。
実施例88は、実施例83~87の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、フィードバック回路が、指定された最大VSWRに基づいて、出力信号の順方向電力の変化を正規化するように構成されることを含むまたは使用する。
実施例89は、実施例83~88の1つまたは任意の組み合わせの主題を含むかまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、フィードバック回路は、アンテナが受信機に十分に整合されている場合に、指定された基準電力レベルに対するアンテナへの順方向電力信号間の関係に関する情報を提供するように構成され、フィードバック回路は、アンテナが受信機と十分に整合していない場合に、指定された基準電力レベルに対するアンテナからの逆方向電力信号間の関係に関する情報を提供するように構成されていることを含むまたは使用する。
実施例90は、実施例64~89の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、第1の制御回路は、約850MHz~950MHzの周波数を有する信号を使用してアンテナ出力信号を提供するように構成されることを含むまたは使用する。
実施例91は、主題(例えば、装置、システム、機器、方法、行為を実行するための手段、または装置によって実行されるときに装置に実行させることができる命令を含む装置読み取り可能媒体、または製造品)を含むまたは使用することができ、例えば、無線電力送信機であって、アンテナに連結された信号発生器を含む無線電力送信機、およびアンテナの共振周波数に影響を与えるように構成されたチューナー回路を構成するための方法であって、第1の周波数を有する第1の駆動信号でアンテナにエネルギー供給することであって、第1の駆動信号が信号発生器によって提供される、エネルギー供給すること、およびチューナー回路のパラメータの値を掃引して、アンテナをそれぞれの複数の例で複数の異なる共振周波数に調整することを含む方法を含むまたは使用することができる。実施例91は、複数の異なる共振周波数のそれぞれについて、アンテナが第1の駆動信号によってエネルギー供給されたときにアンテナによって反射されたそれぞれの電力の量を検出すること、アンテナに反射された検出された最小電力量に対応するチューナー回路の特定のパラメータの値を識別すること、およびチューナー回路の特定のパラメータの値を使用して、身体組織内部の無線伝搬波を使用して、電力および/またはデータを植込まれた装置に通信するように無線電力送信機をプログラミングすることを含み得る。
実施例92は、実施例91の主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、チューナー回路に関する先験的情報に基づいて、無線電力送信機が、チューナー回路の識別された特定のパラメータの値に基づいて、身体組織インターフェースの指定された距離範囲内に配置される可能性を提供することを含む。
実施例93は、実施例92の主題を含むまたは使用することができ、任意選択で組み合わせることができ、可能性が、無線電力送信機が身体組織インターフェースの指定された距離範囲内にあることを示している場合、無線電力送信機と特定のパラメータの値に調整されたチューナー回路を使用して、電力および/またはデータを植込み型装置と通信することを含む。
実施例94は、実施例91~93の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、第1の駆動信号でアンテナにエネルギー供給することが、約850MHz~950MHzの周波数を有する信号を使用することを含む。
実施例95は、実施例91~94の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、チューナー回路のパラメータの値を掃引して、コンデンサの静電容量の値を調節することを含むアンテナを複数の異なる共振周波数に調整することを含むまたは使用する。
実施例96は、主題(例えば、装置、システム、機器、方法、行為を実行するための手段、または装置によって実行されるときに装置に実行させることができる命令を含む装置読み取り可能媒体、または製造品)を含むまたは使用することができ、例えば、無線送信機を構成するための方法であって、無線送信機が無線送信機のアンテナを複数の異なる共振周波数に調整するように構成された調整回路を含み、調整回路がアンテナを第1の共振周波数に調整するときに、第1の周波数掃引駆動信号で無線送信機のアンテナにエネルギー供給すること、第1の周波数掃引駆動信号の複数の周波数のそれぞれについて、アンテナに反射されたそれぞれの電力の量を検出することを含む方法を含むまたは使用することができる。実施例96は、アンテナに反射された検出されたそれぞれの電力の量に基づいて、無線送信機が身体組織の近くにある、または近くにある可能性があることかどうかを判定することを含むことができる。
実施例97は、実施例96の主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、アンテナに反射された検出されたそれぞれの電力の量に基づいて、無線送信機が身体組織の近くにある、またはその可能性が高いと判定された場合、第2の駆動信号で無線送信機のアンテナに電力供給すること、チューナー回路のパラメータの値を掃引して、アンテナが第2の駆動信号によってエネルギー供給されている間に、アンテナをそれぞれの複数の例で複数の異なる共振周波数に調整することを含む。実施例97では、複数の異なる共振周波数のそれぞれについて、アンテナに反射されたそれぞれの電力の量を検出すること、およびアンテナに反射された検出された最小電力量に対応するチューナー回路の特定のパラメータの値を識別すること、および識別された特定のパラメータの値に基づいて、無線送信機が身体組織の近くにあるかどうかを確認することを含み得る。
実施例98は、実施例97の主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、無線送信機が身体組織の近くにあることが確認されたときに、電力および/またはデータを植込まれた装置に通信することを試みることを含み、通信することを試みることが、特定のパラメータの値を使用してチューナー回路を調整することを含む。
実施例99は、実施例96~98の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、アンテナにエネルギー供給することが、アンテナの表面の周りに分散された複数のアンテナポートのうちの第1のものにエネルギー供給することを含み、またアンテナに反射されたそれぞれの電力の量を検出することが複数のアンテナポートのうちの第2のものを使用して反射信号を受信することを含むことを含む。
実施例100は、実施例99の主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、アンテナが、第1および第2のアンテナポートを通って延びる軸に関して実質的に対称であることを含む。
実施例101は、主題(例えば、装置、システム、機器、方法、行為を実行するための手段、または装置によって実行されるときに装置に実行させることができる命令を含む装置読み取り可能媒体、または製造品)を含むまたは使用することができ、例えば、ミッドフィールド送信機であって、1つまたは複数の励起可能な構造を備えたアンテナを含むミッドフィールド送信機、およびチューナーパラメータに基づいてアンテナの共振周波数特性を変更するように構成された送信機チューナー回路を調整する方法であって、チューナー回路が基準静電容量の値を使用して調整されている場合、第1のテスト信号でアンテナにエネルギー供給すること、第1のテスト信号でアンテナにエネルギー供給するのに応答してアンテナにより反射された電力の大きさを測定すること、およびアンテナに反射させた電力の大きさが指定された最小電力の反射の大きさを超える場合は、より小さな静電容量の値を使用するようにチューナー回路を調整すること、およびアンテナに反射させた電力の大きさが指定された最小電力の反射を超えない場合は、より大きな静電容量の値を使用するようにチューナー回路を調整する、通信することを含む方法を含むまたは使用することができる。
実施例102は、主題(例えば、装置、システム、機器、方法、行為を実行するための手段、または装置によって実行されるときに装置に実行させることができる命令を含む装置読み取り可能媒体、または製造品)を含むまたは使用することができ、例えば、ミッドフィールド送信機であって、1つまたは複数の励起可能な構造を備えたアンテナを含むミッドフィールド送信機、およびチューナーパラメータに基づいてアンテナの共振周波数特性を変更するように構成された送信機チューナー回路を調整する方法であって、チューナー回路が基準静電容量の値を使用して調整されている場合、第1のテスト信号でアンテナにエネルギー供給すること、植込まれた装置で、第1のテスト信号でアンテナにエネルギー供給することに応答してアンテナによって受信される電力の大きさを測定することを含む方法を含むまたは使用することができる。実施例102は、植込まれた装置から受信した電力の大きさに関する情報をミッドフィールド送信機に通信することであって、受信した電力の大きさが指定された最小電力の大きさよりも小さい場合は、実施例はより小さな静電容量の値を使用するようにチューナー回路を調整することを含むことができ、受信した電力の大きさが指定された最小電力の大きさよりも大きい場合は、実施例はより大きな静電容量の値を使用するようにチューナー回路を調整することを含むことができる。
実施例103は、主題(例えば、装置、システム、機器、方法、行為を実行するための手段、または装置によって実行されるときに装置に実行させることができる命令を含む装置読み取り可能媒体、または製造品)を含むまたは使用することができ、例えば、少なくとも内側中央領域および外側領域を含むアンテナ表面、アンテナ表面の近くまたは隣接して提供される複数の励起特徴、およびミッドフィールド送信機を含む複数の励起特徴のそれぞれのものに異なる信号を提供するように構成され、信号発生器からの異なる信号に応答して、アンテナ表面は、アンテナ表面の内側中央領域を横切って実質的に第1の方向に第1の表面電流を伝導し、アンテナ表面は、アンテナ表面の外側領域を横切って反対の第2の方向に少なくとも部分的に第2の表面電流を伝導することを含む、または使用することができる。実施例103において、信号発生器が複数の励起特徴のそれぞれのものに異なる信号を提供するとき、ミッドフィールド送信機は、アンテナ表面に隣接するエバネセント場に影響を及ぼし、エバネセント場が複数の反対方向の場のローブを含むようにする。
実施例104は、実施例103の主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、アンテナ表面の内側中央領域および外側領域は、同一平面上にあり、同軸であることを含む。
実施例105は、実施例104の主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、アンテナ表面の内側中央領域および外側領域は、誘電体またはエアギャップによって分離されていることを含む。
実施例106は、実施例103~105の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、信号発生器が複数の励起特徴のそれぞれのものに異なる信号を提供するとき、ミッドフィールド送信機は、アンテナ表面に隣接するエバネセント場に影響を及ぼし、エバネセント場が複数の反対方向の場のローブを含むようにすることを含む。
実施例107は、実施例103~106の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、ミッドフィールド送信機が身体組織に対して配置され、信号発生器が複数の励起特徴のそれぞれのものに異なる信号を提供するとき、ミッドフィールド送信機は、アンテナ表面に隣接するエバネセント場に影響を及ぼし、伝搬する場が身体組織に誘導されることを含む。
実施例108は、主題(例えば、装置、システム、機器、方法、行為を実行するための手段、または装置によって実行されるときに装置に実行させることができる命令を含む装置読み取り可能媒体、または製造品)を含むまたは使用することができ、例えば、リモートミッドフィールド送信機から発信された伝搬無線電力信号を受信するように構成された第1のアンテナ、第1のアンテナに連結され、それぞれの第1および第2の電圧レベルを有する少なくとも第1および第2の収集された電力信号を提供するように構成された整流回路、および整流回路に連結され、第1および第2の収集された電力信号のうちの選択されたものを電気刺激出力回路にルーティングするように構成されたマルチプレクサ回路を含むミッドフィールド受信機装置を含むまたは使用することができる。
実施例109は、実施例108の主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、第1および第2の収集された電力信号のいずれか一方を受信し、変換されたDC信号を提供するように構成されたDC-DCコンバータ回路を含むまたは使用する。
実施例110は、実施例109の主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、DC-DCコンバータ回路は、変換されたDC信号を電気刺激出力回路に提供する、電気刺激出力回路を含む。
実施例111は、実施例108~110の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、第1および第2の収集された電力信号のうちの少なくとも1つを受信し、受信された伝搬無線電力信号に関する情報をリモートミッドフィールド送信機に提供するように構成されたフィードバック回路を含むまたは使用する。
実施例112は、実施例108~111の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、整流回路は、約1ボルトから1.4ボルトの電圧レベルで第1の収集された電力信号を提供するよう構成され、整流回路は、約1.6ボルト~3.0ボルトの電圧レベルで第2の収集された電力信号を提供するよう構成されることを含む。
実施例113は、実施例112の主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、整流回路は、3.0ボルトを超える電圧レベルで第3の収集電力信号を提供するよう構成され、マルチプレクサ回路は、第1、第2、および第3の電力信号のうちの選択されたものを出力回路にルーティングするように構成されることを含む。
実施例114は、実施例108~113の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、整流回路が、第1のアンテナおよび第1の共通ノードに連結される第1の入力であって、第1の共通ノードは、(a)第1のダイオードのカソード、(b)第2のダイオードのアノード、および(c)第3のダイオードのアノードに連結され、第2のダイオードのカソードが、第1の電圧レベルで第1の収集された電力信号を提供する第1の整流器出力に連結されている第1の入力を含み、整流回路がさらに、第1のアンテナおよび第2の共通ノードに連結される第2の入力であって、第2の共通ノードは、(a)第3のダイオードのカソード、および(b)第4のダイオードのアノードに連結され、第4のダイオードのカソードは、第2の電圧レベルで第2の収集された電力信号を提供する第2の整流器出力に連結される第2の入力を含むことを含むまたは使用する。
実施例115は、実施例114の主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、第2の電圧レベルは、第1の電圧レベルよりも大きいことを含む。
実施例116は、実施例115の主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、第1および第2の入力は、それぞれのコンデンサを使用して第1のアンテナに容量連結されることを含む。
実施例117は、実施例108~116の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、後方散乱変調深度調整回路を含むまたは使用する。
実施例118は、実施例117の主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、後方散乱変調深度調整回路は、基準ノードと整流回路からの複数のタップのうちの1つとの間のシャント経路に設けられたスイッチを含むことを含む。
実施例119は、実施例108~116の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、第1のアンテナに連結され、第1のアンテナの調整特性を変調するように構成された調節可能なコンデンサを含むまたは使用する。
実施例120は、実施例119の主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、後方散乱変調深度調整回路および制御回路を含み、制御回路は、調節可能なコンデンサの静電容量の値および基準ノードと整流器回路からの複数のタップの1つとの間のシャント経路とを実質的に同時に調節するように構成される。
実施例121は、実施例108~120の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、第1のアンテナがその周りに巻かれる誘電体アンテナコアと、アンテナおよび誘電体アンテナコアとを実質的に取り囲むアンテナハウジングと、整流回路およびマルチプレクサ回路を実質的に取り囲む回路ハウジングとを含み、アンテナハウジングと回路ハウジングは電気的および/または機械的に一緒に連結され得ることを含むまたは使用する。
実施例122は、主題(例えば、装置、システム、機器、方法、行為を実行するための手段、または装置によって実行されるときに装置に実行させることができる命令を含む装置読み取り可能媒体、または製造品)を含むまたは使用することができ、例えば、多段整流回路であって、第1の収集されたエネルギー信号を受信するように構成され、第1の共通ノードに連結される第1の入力であって、第1の共通ノードが、(a)第1のダイオードのカソード、(b)第2のダイオードのアノード、および(c)第3のダイオードのアノードに連結され、第2のダイオードのカソードが、第1の電圧レベルで第1の収集された電力信号を提供する第1の整流器出力に連結されている第1の入力を含み、第1の収集されたエネルギー信号を受信するように構成され、第2の共通ノードに連結される第2の入力であって、第2の共通ノードが(a)第3のダイオードのカソード、および(b)第4のダイオードのアノードに連結され、第4のダイオードのカソードは、第2の電圧レベルで第2の収集された電力信号を提供する第2の整流器出力に連結されている第2の入力を含む多段整流回路を含むまたは使用することができる。実施例122では、第2の電圧レベルは、第1の電圧レベルよりも大きくすることができる。
実施例123は、主題(例えば、装置、システム、機器、方法、行為を実行するための手段、または装置によって実行されるときに装置に実行させることができる命令を含む装置読み取り可能媒体、または製造品)を含むまたは使用することができ、例えば、植込み型ミッドフィールド装置用の電気刺激回路であって、ミッドフィールド送信機から無線電力信号を受信するように構成された第1のアンテナ、第1のアンテナに連結され、それぞれの第1および第2の電圧レベルを有する少なくとも第1および第2の収集された電力信号を提供するように構成された整流回路、および整流回路に連結され、第1および第2の収集された電力信号のうちの選択されたものをマルチプレクサ出力ノードにルーティングするように構成されたマルチプレクサ回路を含む電力収集回路を含む、電気刺激回路を含むまたは使用することができる。実施例123では、電気刺激回路は、マルチプレクサ出力ノードからの信号を少なくとも2つの電気刺激電極にルーティングして、ミッドフィールド送信機から受信した無線電力信号の一部を使用して電気刺激療法を提供するように構成された少なくとも2つの電気刺激電極およびスイッチング回路をさらに含むことができる。
実施例124は、実施例123の主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、第1のアンテナは、患者の体の外部のミッドフィールド送信機から発信された伝搬無線電力信号を受信するように構成されることを含むまたは使用する。
実施例125は、主題(例えば、装置、システム、機器、方法、行為を実行するための手段、または装置によって実行されるときに装置に実行させることができる命令を含む装置読み取り可能媒体、または製造品)を含むまたは使用することができ、例えば、ヒトまたは機械的操作者などの操作者によって行うことができる、無線植込み型装置を身体組織に植込むための方法であって、少なくとも(1)ガイドワイヤを含む孔針で組織を突き刺すこと、(2)ガイドワイヤを少なくとも部分的に組織内に残して、孔針を取り除くこと、(3)ガイドワイヤの露出部分上に拡張器およびカテーテルを配置して、ガイドワイヤを拡張器内に少なくとも部分的に配置すること、(4)拡張器とカテーテルをガイドワイヤに沿って組織に押し込むこと、(5)ガイドワイヤと拡張器を組織から取り除くこと、(6)植込み型装置をカテーテルの管腔に挿入すること、(7)プッシュロッドを使用して、植込み型装置をカテーテルを通して組織に押し込むこと、および(8)カテーテルを取り外し、植込み型装置を組織に残すことを含む方法を含むまたは使用することができる。
実施例126は、実施例125の主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、拡張器が第2の拡張器であり、方法がガイドワイヤ上に第1の拡張器を配置すること、第1の拡張器をガイドワイヤに沿って組織に押し込むこと、および組織から第1の拡張器を取り除くことをさらに含むことができることを含む。
実施例127は、実施例125または126の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、植込み型装置を組織に押し込む前に、植込み型装置の遠位端に取り付けられた縫合糸を、プッシュロッドの管腔内に少なくとも部分的に配置することを含む。
実施例128は、実施例127の主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、押し込むステップが、プッシュロッドを使用することを含み、カテーテルを通して植込み型装置を組織に押し込むことは、プッシュロッドを押して、縫合糸の少なくとも一部を組織から残すことを含む。
実施例129は、実施例127または128の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択に組み合わせることができ、任意選択で、植込み型装置を組織に押し込む前に、縫合糸の周りにあるシースをプッシュロッドの管腔に配置することを含む。
実施例130は、実施例129の主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、縫合糸を引っ張ることによって組織から植込み型装置を抜去することを含む。
実施例131は、実施例125~130の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、拡張器が放射線不透過性マーカーを含み、拡張器を組織に押し込むステップは、蛍光透視法または他の無線イメージングを使用して判定された放射線不透過性マーカーの位置に関する情報を使用して、標的組織部位に拡張器を配置することを含む。
実施例132は、実施例125~131の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、カテーテルが放射線不透過性マーカーを含み、カテーテルを組織に押し込むことは、蛍光透視法または他の無線イメージングを使用して判定された放射線不透過性マーカーの位置に関する情報を使用して、標的組織部位にカテーテルを配置することを含む。
実施例133は、主題(例えば、装置、システム、機器、方法、行為を実行するための手段、または装置によって実行されるときに装置に実行させることができる命令を含む装置読み取り可能媒体、または製造品)を含むまたは使用することができ、例えば、植込み型装置であって、その上に露出された複数の電極を含む細長い本体部分、電極に電気信号を提供するために電気的に連結された回路を含む回路ハウジング、回路ハウジングと細長い本体部分との間に設けられる、例えばフルストコニカル本体プロファイルを有することができるコネクタであって、その遠位端で本体部分に、およびその近位端で回路ハウジングに取り付けられたコネクタ、その中にアンテナを含み、回路ハウジングの近位端で回路ハウジングに接続されたアンテナハウジング、およびアンテナハウジングの近位端でアンテナハウジングに接続されたプッシュロッドインターフェースを含む植込み型装置を含むまたは使用することができる。
実施例134は、実施例133の主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、プッシュロッドインターフェースが、アンテナハウジングとは反対側を向いた短いまたは小さいベース部分とアンテナハウジングに向いた長いまたは大きいベース部分とを備えた実質的に台形形状を有することを含む。
実施例135は、実施例133または134の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、アンテナハウジングの近位端に連結されたタインの第1のセットを含む第1のタインカラーを含むまたは使用する。
実施例136は、実施例135の主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、コネクタによって本体部分に連結されたタインの第2のセットを含む第2のタインカラーを含む。
実施例137は、実施例136の主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、タインの第2のセットが、第2のタインカラーから本体部分の遠位端に向かって延びることを含む。
実施例138は、実施例137の主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、タインの第1のセットが、第1のタインカラーからプッシュロッドインターフェースの近位端に向かって延びることを含む。
実施例139は、実施例136~138の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、第2のタインカラーは、本体部分の近位端から回路ハウジングに向かって延びるタインの第3のセットを含むことを含むまたは使用する。
実施例140は、実施例133~139の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、回路ハウジングが、遠位ハウジングプレートから本体部分に向かって延びる第1の翼付きフランジを含むことを含むまたは使用する。
実施例141は、実施例140の主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、コネクタの近位端が、第1の翼付きフランジと係合するように構成されることを含む。
実施例142は、実施例140または141の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、回路ハウジングが、近位ハウジングプレートからアンテナハウジングに向かって延びる第2の翼付きフランジを含むことを含むまたは使用する。
実施例143は、実施例142の主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、アンテナハウジングは、コアハウジング内に誘電体コアを含み、誘電体コアは、誘電体材料を含み、アンテナは、誘電体コアの周りに巻かれていることを含む。
実施例144は、実施例143の主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、アンテナハウジングが、それを通る1つまたは複数の穴を含むことを含む。
実施例145は、実施例144の主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、導電性フィードスルー上およびその周囲に配置された第2の誘電体材料およびコアハウジング内のアンテナを含むまたは使用する。
実施例146は、実施例143~145の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、実質的にアンテナおよびフィードスルーの周囲に設けられた導電性スリーブを含むまたは使用する。
実施例147は、実施例143~146の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、誘電体ハウジングは、その遠位部分を通る穴を含み、さらにその反対側にディボットを含み、アンテナのフィードスルーおよび端部は、誘電体コアのディボットに配置されることを含むまたは使用する。
実施例148は、実施例133~147の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、プッシュロッドインターフェースがその近位端に開口部を含み、植込み型装置が、縫合糸の遠位端に配置された保持装置を備えた縫合糸をさらに含み、縫合糸が開口部を通って延び、保持装置は、開口部の対応する寸法よりも大きい寸法を含むことを含むまたは使用する。
実施例149は、実施例148の主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、縫合糸の上に配置された可撓性シースを含む。
実施例150は、実施例133~149の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、回路ハウジング内の誘電体ライナーであって、回路ハウジングの容器と回路ハウジング内の回路との間に設けられる誘電体ライナーを含むまたは使用する。
実施例151は、実施例133~150の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、回路ハウジング内に乾燥剤を含むまたは使用する。
実施例152は、実施例133~151の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、回路ハウジングが、容器とそのフィードスルー板との間にインジウムまたはインジウム合金を含むことを含むまたは使用する。
実施例153は、主題(例えば、装置、システム、機器、方法、行為を実行するための手段、または装置によって実行されるときに装置に実行させることができる命令を含む装置読み取り可能媒体、または製造品)を含むまたは使用することができ、例えば、中空針の一部を、針を冷却装置上またはその近くに配置することにより、誘電体材料の自由流動温度未満に冷却すること、誘電体材料を針に流し込み、中空針の冷却部分に流すこと、植込み型装置のコアハウジングの穴に中空針を配置すること、中空針を誘電体材料の自由流動温度またはそれ以上の温度に温めること、および中空針を穴に保持して、誘電体材料が針を自由に流れるようにすることを含む方法を含むまたは使用することができる。
実施例154は、実施例153の主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、中空針を温めることは、針を冷却装置から遠ざけることと、周囲空気が針を温めることを可能にすることとを含む。
実施例155は、実施例154の主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、誘電体材料がエポキシを含むことを含む。
実施例156は、実施例153および154の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、冷却装置がペルチェ冷却装置を含むことを含むまたは使用する。
実施例157は、実施例153~156の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、自由流動温度が摂氏約-40度から摂氏約0度の間である材料を含むまたは使用する。
実施例158は、主題(例えば、装置、システム、機器、方法、行為を実行するための手段、または装置によって実行されるときに装置に実行させることができる命令を含む装置読み取り可能媒体、または製造品)を含むまたは使用することができ、例えば、フィードスルー板と容器との間の接合部の近くの回路ハウジングの容器上にインジウムはんだを配置すること、およびインジウムはんだをリフローして、フィードスルー板を容器に結合することを含む方法を含むまたは使用することができる。
実施例159は、実施例158の主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、インジウムはんだをリフローすることにより、フィードスルー板と容器との間に密閉が形成されることを含む。
実施例160は、主題(例えば、装置、システム、機器、方法、行為を実行するための手段、または装置によって実行されるときに装置に実行させることができる命令を含む装置読み取り可能媒体、または製造品)を含むまたは使用することができ、例えば、アンテナアセンブリが取り付けられる導電性接触パッドの観点から、植込み型装置の回路基板のインピーダンスを判定すること、インピーダンスがインピーダンス値の目標範囲内にないことを判定することに応答して、回路基板の他の回路から導電性材料を除去すること、インピーダンスがインピーダンス値の目標範囲内にあると判定することに応答して、アンテナアセンブリを接触パッドに電気的に接続して回路基板アセンブリを作成し、回路基板を気密エンクロージャに密封することを含む方法を含むまたは使用することができる。実施例160は、外部電力ユニットからの送信が材料を通って移動してアンテナアセンブリのアンテナに入射するように、材料の近くまたは少なくとも部分的に材料内に回路基板アセンブリを配置することであって、材料は、植込み型装置が植込まれる組織の誘電率を含む、配置すること、外部電力ユニットからの送信を受信すること、および受信した送信の電力を示す応答を生成することをさらに含むことができる。
実施例161は、実施例160の主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、回路基板アセンブリを材料の近くまたは少なくとも部分的に材料内に配置する前に、回路基板が回路ハウジング内に含まれるように回路基板を回路ハウジングに組み立てることを含む。
実施例162は、実施例161の主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、アンテナを接触パッドに電気的に接続する前に回路ハウジングを密閉することを含み、アンテナを接触パッドに電気的に接続することは、アンテナを、接触パッドに電気的に接続された回路ハウジングのフィードスルーに電気的に接続することを含むことができる。
実施例163は、実施例161または162の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、アンテナが回路ハウジングの近位端に電気的に接続されることを含むまたは使用する。実施例163は、回路基板の他の回路が細長い植込み型アセンブリの1つまたは複数の電極に電気的に接続されるように、回路ハウジングの遠位端を細長い植込み型アセンブリに取り付けることを含むことができる。
実施例164は、実施例160~163の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、回路基板の他の回路から1つまたは複数の導電性タブを電気的に絶縁することは、導電性材料を除去し、1つまたは複数の導電性タブが、接触パッドに電気的に接続されたトレースに電気的に接続されていないようになることを含む。
実施例165は、実施例160~164の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、接触パッドが回路基板の近位部分に配置され、回路基板が回路基板の遠位部分に配置された第2の接触パッドをさらに含むことを含む。
実施例166は、実施例165の主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、回路基板は、第1の可撓性部分、第2の可撓性部分、および第1の可撓性部分と第2の可撓性部分との間に位置する本体部分をさらに含み、第1の接触パッドは、第1の可撓性部分を介して回路部分に連結され、第2の接触パッドは、第2の可撓性部分を介して回路部分に連結されていることを含む。
実施例167は、実施例166の主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、第1の可撓性部分が、第2の可撓性部分の長さよりも短い長さを含むことを含む。
実施例168は、実施例166および167の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、第1の可撓性部分が、回路基板の長手方向軸に概ね垂直であるカットをその中に含むことを含む。
実施例169は、実施例166~168の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、回路基板の隣接する遠位電気接続部分上に回路基板と一体のカバーを折り畳むことを含む。
実施例170は、実施例160~169の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、材料の空洞において回路基板アセンブリを配置することを含め、材料の近くまたは少なくとも部分的に材料内に回路基板アセンブリを配置することを含む。
実施例171は、実施例160~170の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、材料が約5から約70の間の誘電率を含むことを含むまたは使用する。
実施例172は、実施例160~171の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、受信された送信の電力を示す応答を生成することは、光送信、音、振動、または電磁波を生成することを含むことを含む。
実施例173は、実施例160~172の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、生成された応答に基づいて、回路基板のインピーダンスが目標値の指定された範囲内にないことを判定し、回路基板の他の回路にその構成要素のインピーダンスをデジタル調整させる通信を生成することを含む。
実施例174は、実施例160~173の1つまたは任意の組み合わせの主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、任意選択で、アンテナを接触パッドに電気的に接続する前にアンテナアセンブリのインピーダンスを判定すること、および回路基板の両方のインピーダンスがインピーダンス値の標的範囲内にあり、アンテナのインピーダンスは、インピーダンス値の異なる標的範囲にあると判定することに応答してアンテナを接触パッドに電気的に接続することを含む。
実施例175は、主題(例えば、装置、システム、機器、方法、行為を実行するための手段、または装置によって実行されるときに装置に実行させることができる命令を含む装置読み取り可能媒体、または製造品)を含むまたは使用することができ、例えば、植込み型装置のインピーダンスを調整するための方法であって、植込み型装置の回路基板から導電性材料を除去して、回路基板のインピーダンスを調整すること、回路基板のインピーダンスが指定された周波数範囲内にあることを確認した後、また導電性材料を除去した後、植込み型装置の回路ハウジング内の回路基板を密閉すること、および回路基板を回路ハウジングに密閉した後、アンテナを回路ハウジングのフィードスルーに取り付けることを含む方法を含むまたは使用することができる。
実施例176は、実施例175の主題を含むまたは使用することができ、あるいは任意選択で組み合わせることができ、アンテナを取り付けた後、場連結共振テストを使用して、植込み型装置の動作周波数が指定された周波数範囲内にあることを確認することを含む。
これらの実施例各々は、単独で使用しても、または様々な組み合わせや順列で組み合わせてもよい。
本明細書では様々な一般的および特定の実施形態を説明しているが、本開示のより広い精神および範囲から逸脱することなくこれらの実施形態に様々な修正および変更を加えることができることは明らかである。したがって、明細書および図面は限定的な意味ではなく例示的な意味で考慮するべきである。本願の一部を形成する添付の図面は、限定ではなく例示として、主題を実施することができる特定の実施形態を示す。例示された実施形態は、当業者が本明細書に開示された教示を実施することを可能にするのに十分詳細に記載されている。本開示の範囲から逸脱することなく、構造的および論理的な置換および変更を行うことができるように、他の実施形態をそれから使用または導出することができる。したがって、この詳細な説明は限定的な意味で解釈されるべきではなく、様々な実施形態の範囲は、添付の特許請求の範囲とそのような特許請求の範囲が権利を与える等価物の全範囲によってのみ定義される。本明細書では特定の実施形態または例を図示および説明しているが、同じ目的を達成するために計算された任意の構成を図示の特定の実施形態の代わりに使用できることを理解されたい。本開示は、様々な実施形態のありとあらゆる適応または変形を網羅することを意図している。上記の実施形態と、本明細書に具体的に記載されていない他の実施形態との組み合わせは、上記の説明を検討すれば当業者に明らかである。
本文書では、特許文書で一般的であるように、用語「a」または「an」は、他のいずれかの「少なくとも1つ」または「1つまたは複数」の事例または使用法とは無関係に1つまたは複数を含むように使用される。本文書では、「または」という用語は、排他的ではないどちらかを示すために使用され、そのため「AまたはB」は、特に明記しない限り、「AであるがBではない」、「BであるがAではない」および「AおよびB」を含む。本文書では、「含む」および「その中で」という用語は、プレイン・イングッシュでのそれぞれの用語「含む」および「その中で」の等価物として使用される。また、以下の特許請求の範囲において、「including」および「comprising」という用語はオープンエンドであり、すなわち、特許請求の範囲でそのような用語の後に列挙されるものに加えて要素を含むシステム、装置、物品、組成物、配合物、またはプロセスは、依然としてそのクレームの範囲内にあるとみなされる。さらに、後続の特許請求の範囲において、「第1」、「第2」、および「第3」などの用語は単にラベルとして使用されており、それらの対象に数値的な要件を課すことを意図してはいない。
また、本明細書に開示されている範囲は、ありとあらゆる重複、部分的な範囲、およびそれらの組み合わせも包含する。「最大」、「少なくとも」、「より大きい」、「より小さい」、「間」などのような文言は、列挙された数字を含む。「約」または「概ね」などの用語が先行する数字は、列挙された数字を含む。例えば、「約10kHz」は「10kHz」を含む。「実質的に」または「略」などの用語の前にある用語または句は、列挙された用語または句を含む。例えば、「実質的に平行」は「平行」を含み、「略円筒形」は円筒形を含む。
上記の説明は例示的であり、限定的ではない。例えば、上述の例(またはその1つまたは複数の態様)を互いに組み合わせて使用することができる。上記の説明を検討すると、例えば当業者が、他の実施形態を使用することができる。要約書は、読者が技術的開示の性質を迅速に確認することを可能にするために提供される。それは、特許請求の範囲またはクレームの意味を解釈または限定するために使用されることはないとの理解のもとに提出されている。また、上記の発明を実施するための形態では、開示を簡素化するために様々な特徴を一緒にグループ化することができる。これは、特許請求されていない開示された特徴がいずれかのクレームに本質的であると意図していると解釈されるべきではない。むしろ、発明の主題は、特定の開示された実施形態のすべての特徴より少ない特徴にあり得る。したがって、後続の特許請求の範囲は、例または実施形態として発明を実施するための形態にそれによって組み込まれ、各特許請求の範囲は別個の実施形態としてそれ自体自立しており、そのような実施形態は様々な組み合わせまたは順列で互いに組み合わせることができると考えられる。本発明の範囲および実施形態は、添付の特許請求の範囲、ならびにそのような特許請求の範囲が権利を有する等価物の全範囲を参照して判断されるべきである。

Claims (20)

  1. 調整可能なミッドフィールド送信機であって、
    励起信号を受信するように構成される励起構造と、
    第1の基板と、
    前記第1の基板の第1の表面に前記励起構造とは離れて設けられ、第1の導電性領域及び第2の導電性領域を含む第1のエミッタであって、前記励起構造とは電気的に絶縁された第1のエミッタと、および
    前記第1のエミッタの前記第1の導電性領域と前記第2の導電性領域とを連結する可変コンデンサであって、前記第1のエミッタの静電容量特性を調整して、受信機装置からの反射係数またはフィードバック情報の少なくとも1つに基づいて前記ミッドフィールド送信機の共振周波数を調整するように構成される可変コンデンサと
    を備える、
    調整可能なミッドフィールド送信機。
  2. 前記反射係数に関する情報に基づいて、前記ミッドフィールド送信機が身体組織の近くにあるか、近くにある可能性があるかについての表示を提供するように構成された制御回路をさらに備える、
    請求項1に記載の調整可能なミッドフィールド送信機。
  3. 前記励起構造は、前記第1の基板に隣接し、かつ平行な第2の表面上に提供されるストリップラインを備え、前記ストリップラインは、前記第1のエミッタ上に少なくとも部分的に延びる、請求項1に記載の調整可能なミッドフィールド送信機。
  4. 前記第1の導電性領域が内側ディスク領域を含み、前記第2の導電性領域が外側環状領域を含み、前記ストリップラインが前記第1のエミッタの前記内側ディスク領域上に少なくとも部分的に延びる、
    請求項3に記載の調整可能なミッドフィールド送信機。
  5. 前記内側ディスク領域は、非導電性スロットによって複数の別個の導電性領域に分割され、前記導電性領域のそれぞれがじ表面積を有する、
    請求項4に記載の調整可能なミッドフィールド送信機。
  6. 接地面と、および
    前記接地面と前記励起構造との間に提供される第2の基板と
    をさらに備える、
    請求項1に記載の調整可能なミッドフィールド送信機。
  7. 前記ミッドフィールド送信機は、組織内に適応操縦場を生成するように構成され、前記適応操縦場は、300MHz~3000MHzの周波数を有する、
    請求項1から6のいずれかに記載の調整可能なミッドフィールド送信機。
  8. 前記励起構造に前記励起信号を提供するように構成された励起回路をさらに備え、前記励起信号は、300MHz~3000MHzの間の周波数を有する、
    請求項1から6のいずれかに記載の調整可能なミッドフィールド送信機。
  9. 前記可変コンデンサの静電容量の値が、前記反射係数に基づいて、または前記受信機装置からの前記フィードバック情報に基づいて更新されるように構成される、
    請求項1から6のいずれかに記載の調整可能なミッドフィールド送信機。
  10. アンテナに連結された信号発生器を含む無線電力送信機、および前記アンテナの共振周波数に影響を与えるように構成されたチューナー回路を構成するための方法であって、
    前記信号発生器によって、第1の導電性領域及び第2の導電性領域を含むエミッタから離れた励起構造であって、該エミッタから電気的に絶縁された励起構造に提供される第1の駆動信号であって、第1の周波数を有する第1の駆動信号で前記アンテナにエネルギー供給することと、
    前記チューナー回路のパラメータの値を掃引して、前記エミッタの前記第1の導電性領域及び前記第2の導電性領域の間の容量結合を変更し、これにより、前記アンテナをそれぞれの複数の例で複数の異なる共振周波数に調整することと、
    前記複数の異なる共振周波数のそれぞれについて、前記アンテナが前記第1の駆動信号によってエネルギー供給されたときに前記アンテナによって反射されたそれぞれの電力の量を検出することと、
    前記アンテナに反射された検出された最小電力量に対応する前記チューナー回路の掃引パラメータの中から特定のパラメータの値を識別することと、および
    前記チューナー回路の前記特定のパラメータの値を使用して、身体組織内部の無線伝搬波を使用して、電力および/またはデータを植込まれた装置に通信するように前記無線電力送信機をプログラミングすることと
    を含む、方法。
  11. 前記チューナー回路に関する先験的情報に基づいて、前記チューナー回路の前記識別された特定のパラメータの値に基づいて、身体組織インターフェースの指定された距離範囲内に前記無線電力送信機が配置されている可能性を提供すること
    をさらに含む、
    請求項10に記載の方法。
  12. 前記可能性が、前記無線電力送信機が前記身体組織インターフェースの前記指定された距離範囲内にあることを示している場合、前記無線電力送信機と前記特定のパラメータの値に調整された前記チューナー回路を使用して、電力および/またはデータを植込み型装置と送受信することをさらに含む、
    請求項11に記載の方法。
  13. 前記第1の駆動信号で前記アンテナに前記エネルギー供給することは、約850MHz~950MHzの周波数を有する信号を使用することを含む、
    請求項10に記載の方法。
  14. 前記アンテナを複数の異なる共振周波数に調整するために前記チューナー回路の前記パラメータの値を掃引することは、コンデンサの静電容量の値を調整することを含む、
    請求項10から13のいずれかに記載の方法。
  15. 無線送信機であって、前記無線送信機のアンテナを複数の異なる共振周波数に調整するように構成された調整回路を含む無線送信機、を構成するための方法であって、
    前記調整回路が前記アンテナを第1の共振周波数に調整するときに、第1の周波数掃引駆動信号で前記無線送信機の前記アンテナにエネルギー供給することと、
    前記第1の周波数掃引駆動信号の複数の周波数のそれぞれについて、前記アンテナに反射されたそれぞれの電力の量を検出することと、および
    前記アンテナに反射された前記検出されたそれぞれの電力の量に基づいて、前記無線送信機が身体組織の近くにある、または近くにある可能性があることかどうかを判定することと
    を含む、方法。
  16. 前記アンテナに反射された前記検出されたそれぞれの電力の量に基づいて、前記無線送信機が身体組織の近くにある、またはその可能性が高いと判定された場合、
    第2の駆動信号で前記無線送信機の前記アンテナにエネルギー供給することと、
    チューナー回路のパラメータの値を掃引して、前記アンテナが前記第2の駆動信号によってエネルギー供給されている間に、前記アンテナをそれぞれの複数の例で複数の異なる共振周波数に調整することと、
    前記複数の異なる共振周波数のそれぞれについて、前記アンテナに反射されたそれぞれの電力の量を検出することと、
    前記アンテナに反射された検出された最小電力量に対応する前記チューナー回路の掃引パラメータの中から特定のパラメータの値を識別することと、および
    前記識別された特定のパラメータの値に基づいて、前記無線送信機が身体組織の近くにあるかどうかを確認することと
    をさらに含む、
    請求項15に記載の方法。
  17. 前記無線送信機が身体組織の近くにあることが確認されたときに、電力および/またはデータを植込まれた装置に伝送することを試みることをさらに含み、前記伝送することを試みることは、前記特定のパラメータの値を使用して前記チューナー回路を調整することを含む、
    請求項16に記載の方法。
  18. 前記アンテナに前記エネルギー供給することは、前記アンテナの表面の周りに分散された複数のアンテナポートのうちの第1のものにエネルギー供給することを含み、
    前記アンテナに反射された前記それぞれの電力の量を前記検出することは、前記複数のアンテナポートのうちの第2のものを使用して反射信号を受信することを含む、
    請求項15に記載の方法。
  19. 前記アンテナが、前記第1のアンテナポートおよび前記第2のアンテナポートを通って延びる軸に関して実質的に対称である、
    請求項18に記載の方法。
  20. 前記励起構造は、各々が前記第1のエミッタとは電気的に分離された複数の励起構造であり、
    前記複数の励起構造は、前記第1のエミッタとは反対側に設けられ、各々が異なる励起信号を受信するように構成される、
    請求項1に記載の調整可能なミッドフィールド送信機。
JP2020554854A 2018-04-12 2019-04-12 無線の植込まれた装置用のミッドフィールド電源 Active JP7261814B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023007318A JP2023055762A (ja) 2018-04-12 2023-01-20 無線の植込まれた装置用のミッドフィールド電源

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
US201862656637P 2018-04-12 2018-04-12
US201862656675P 2018-04-12 2018-04-12
US62/656,675 2018-04-12
US62/656,637 2018-04-12
US201862701062P 2018-07-20 2018-07-20
US62/701,062 2018-07-20
US201862756648P 2018-11-07 2018-11-07
US62/756,648 2018-11-07
US16/220,815 2018-12-14
US16/220,815 US10561842B2 (en) 2017-12-14 2018-12-14 Layered midfield transmitter with dielectric tuning
PCT/US2019/027270 WO2019200285A1 (en) 2018-04-12 2019-04-12 Midfield power source for wireless implanted devices

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023007318A Division JP2023055762A (ja) 2018-04-12 2023-01-20 無線の植込まれた装置用のミッドフィールド電源

Publications (2)

Publication Number Publication Date
JP2021521761A JP2021521761A (ja) 2021-08-26
JP7261814B2 true JP7261814B2 (ja) 2023-04-20

Family

ID=68163788

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020554854A Active JP7261814B2 (ja) 2018-04-12 2019-04-12 無線の植込まれた装置用のミッドフィールド電源
JP2023007318A Pending JP2023055762A (ja) 2018-04-12 2023-01-20 無線の植込まれた装置用のミッドフィールド電源

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023007318A Pending JP2023055762A (ja) 2018-04-12 2023-01-20 無線の植込まれた装置用のミッドフィールド電源

Country Status (6)

Country Link
EP (1) EP3776850A4 (ja)
JP (2) JP7261814B2 (ja)
CN (1) CN112673567A (ja)
AU (2) AU2019252904B2 (ja)
CA (1) CA3096463A1 (ja)
WO (1) WO2019200285A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11596794B2 (en) 2017-12-14 2023-03-07 NeuSpera Medical Inc. Enhanced wireless communication and power transfer between external and implanted devices
US10561842B2 (en) 2017-12-14 2020-02-18 NeuSpera Medical Inc. Layered midfield transmitter with dielectric tuning
CN111859845B (zh) * 2020-06-16 2024-01-19 眸芯科技(上海)有限公司 芯片内部顶层到外部顶层连线的检测系统及应用
CN112421207B (zh) * 2020-10-28 2022-11-25 维沃移动通信有限公司 显示屏模组及电子设备
CN115738073A (zh) * 2021-09-03 2023-03-07 精能医学股份有限公司 电刺激装置与电刺激系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011024355A1 (ja) 2009-08-25 2011-03-03 パナソニック株式会社 アンテナ装置及び無線通信装置
WO2011089676A1 (ja) 2010-01-19 2011-07-28 パナソニック株式会社 アンテナ装置及び無線通信装置
JP2013521676A (ja) 2010-02-26 2013-06-10 デカ・プロダクツ・リミテッド・パートナーシップ 渦電流トラップ付きrfidシステム
JP2013255199A (ja) 2012-06-08 2013-12-19 Japan Radio Co Ltd 生体用アンテナ
WO2015039108A2 (en) 2013-09-16 2015-03-19 The Board Of Trustees Of The Leland Stanford Junior University Multi-element coupler for generation of electromagnetic energy
WO2015179225A1 (en) 2014-05-18 2015-11-26 Yeh Alexander Jueshyan Midfield coupler
JP2016149783A (ja) 2007-09-06 2016-08-18 デカ・プロダクツ・リミテッド・パートナーシップ Rfidシステム及びその使用方法
US20170001003A1 (en) 2014-03-14 2017-01-05 Nalu Medical, Inc. Method and apparatus for versatile minimally invasive neuromodulators
WO2017070372A1 (en) 2015-10-21 2017-04-27 NeuSpera Medical Inc. Devices, systems, and methods for stimulation therapy

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06224618A (ja) * 1993-01-28 1994-08-12 Hitachi Ltd 自己インピーダンス可変アクティブアンテナ
US20040055610A1 (en) * 2002-09-25 2004-03-25 Peter Forsell Detection of implanted wireless energy receiving device
JP2005148329A (ja) * 2003-11-14 2005-06-09 Fujitsu Ltd 光変調装置
EP1740102A4 (en) * 2004-03-23 2012-02-15 Dune Medical Devices Ltd EVALUATION TOOL FOR CLEAN EDGES
US7202790B2 (en) * 2004-08-13 2007-04-10 Sensormatic Electronics Corporation Techniques for tuning an antenna to different operating frequencies
US7126393B2 (en) * 2004-08-20 2006-10-24 Micron Technology, Inc. Delay circuit with reset-based forward path static delay
US8629650B2 (en) * 2008-05-13 2014-01-14 Qualcomm Incorporated Wireless power transfer using multiple transmit antennas
US20120119698A1 (en) * 2008-09-27 2012-05-17 Aristeidis Karalis Wireless energy transfer for vehicles
US8634928B1 (en) * 2009-06-16 2014-01-21 The Board Of Trustees Of The Leland Stanford Junior University Wireless power transmission for implantable medical devices
US8731496B2 (en) * 2009-12-18 2014-05-20 Quantance, Inc. Power amplifier power controller
US9220897B2 (en) * 2011-04-04 2015-12-29 Micron Devices Llc Implantable lead
CN102769440B (zh) * 2012-07-16 2015-06-17 西安电子科技大学 基于寄生谐振频点的天线阻抗自动匹配装置及方法
US9435830B2 (en) * 2013-01-18 2016-09-06 Cyberonics, Inc. Implantable medical device depth estimation
US10335596B2 (en) * 2014-03-14 2019-07-02 Nalu Medical, Inc. Method and apparatus for neuromodulation treatments of pain and other conditions
KR102340550B1 (ko) * 2015-04-10 2021-12-21 에스케이하이닉스 주식회사 전원 제어장치
US20170271919A1 (en) * 2016-03-21 2017-09-21 Qualcomm Incorporated Wireless implant powering via subcutaneous power relay

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016149783A (ja) 2007-09-06 2016-08-18 デカ・プロダクツ・リミテッド・パートナーシップ Rfidシステム及びその使用方法
WO2011024355A1 (ja) 2009-08-25 2011-03-03 パナソニック株式会社 アンテナ装置及び無線通信装置
WO2011089676A1 (ja) 2010-01-19 2011-07-28 パナソニック株式会社 アンテナ装置及び無線通信装置
JP2013521676A (ja) 2010-02-26 2013-06-10 デカ・プロダクツ・リミテッド・パートナーシップ 渦電流トラップ付きrfidシステム
JP2013255199A (ja) 2012-06-08 2013-12-19 Japan Radio Co Ltd 生体用アンテナ
WO2015039108A2 (en) 2013-09-16 2015-03-19 The Board Of Trustees Of The Leland Stanford Junior University Multi-element coupler for generation of electromagnetic energy
JP2016538090A (ja) 2013-09-16 2016-12-08 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー 電磁エネルギー生成のための多素子カプラ
US20170001003A1 (en) 2014-03-14 2017-01-05 Nalu Medical, Inc. Method and apparatus for versatile minimally invasive neuromodulators
WO2015179225A1 (en) 2014-05-18 2015-11-26 Yeh Alexander Jueshyan Midfield coupler
JP2018514366A (ja) 2014-05-18 2018-06-07 ニュースペラ メディカル インク ミッドフィールドカプラ
WO2017070372A1 (en) 2015-10-21 2017-04-27 NeuSpera Medical Inc. Devices, systems, and methods for stimulation therapy
JP2018532501A (ja) 2015-10-21 2018-11-08 ニュースペラ メディカル インク 刺激治療のための装置、システム、および方法

Also Published As

Publication number Publication date
AU2019252904B2 (en) 2022-05-26
CA3096463A1 (en) 2019-10-17
JP2023055762A (ja) 2023-04-18
WO2019200285A1 (en) 2019-10-17
EP3776850A4 (en) 2022-05-04
JP2021521761A (ja) 2021-08-26
CN112673567A (zh) 2021-04-16
AU2019252904A1 (en) 2020-12-03
AU2022221472A1 (en) 2022-09-22
AU2022221472B2 (en) 2023-12-14
EP3776850A1 (en) 2021-02-17

Similar Documents

Publication Publication Date Title
US20210361940A1 (en) Midfield power source for wireless implanted devices
JP7261814B2 (ja) 無線の植込まれた装置用のミッドフィールド電源
AU2018213427B2 (en) Midfield transmitter and injectable midfield receiver
US11964151B2 (en) Devices, systems, and methods for stimulation therapy
US11596794B2 (en) Enhanced wireless communication and power transfer between external and implanted devices

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201211

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230120

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20230120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230130

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230131

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20230207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230410

R150 Certificate of patent or registration of utility model

Ref document number: 7261814

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150